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Can dasymetric mapping significantly improve population data reallocation in a 

dense urban area? 

1. Introduction 

As required by national, supranational and federal laws, the vast majority of social 

variables distributed by statistical agencies are offered aggregated by areal units 

because of confidentiality issues (see, e.g., UK Parliament 2007; OJEU 2013; USC 2002). 

This is the case, for example, with census figures, which are only available as 

geographically accumulated data in order to ensure that it is impossible to identify a 

particular person, either directly or indirectly in connection with any other published 

information. In fact, according to the US Census Bureau (2015), before issuing small-area 

aggregated statistics single records are even “switched with similar records from a 

neighboring area” and/or randomly perturbed to preserve individuals’ privacy. 

Social variables are disseminated in a great variety of geographic entities. Some of them 

are well-established administrative units, such as states, provinces, counties or cities. 

Others are more arbitrary and easily modifiable, such as state legislative and 

congressional districts used in US elections (which are redrawn every 10 years following 

US censuses) or census blocks and precincts (which are instances of the smallest 

geographical units for which social data are made public). 

For the first group of geographic entities, large series of data are increasingly available in 

developed countries and temporal comparisons and longitudinal studies can be 

performed directly from the published data. For the second group of spatial units, 

however, implementing longitudinal analyses is not so simple; the complexity of the 

problem even growing as the scale of geographical aggregation reduces. In the case of 

relatively large geographic entities (such as congressional districts), rebuilding the 

history of the variables of interest is not as a rule so complex, particularly when the data 

of the smallest geographic units that constitute it (such as precincts or census tracts) are 

available (Pavía and López-Quilez 2013). The real problem arises when we deal with 

smaller areas (such as census blocks). In the latter, when the data come from 

enumerations, surveys or administrative registers with detailed spatial references (like 



postal addresses or GPS coordinates), the figures of the target variables corresponding 

to the new redrawn areas could, after some additional workings, be theoretically 

restored from the microdata. 

Unfortunately, ordinary analysts hardly ever have access to such detailed information 

and, what’s more, in many cases complete geographical indicators are not available 

(even for statistical producers), as when dealing with historical data or with electoral 

outcomes or with surveys in which only rough spatial references are collected. Despite 

this, disciplines like economics, political science, sociology and other social sciences do 

not shy away from using census figures, unemployment rates or party supports to 

examine social trends, evaluate policy impacts or test social theory. Hence, it is not 

surprising that many approaches have been proposed in the literature attempting to 

overcome the limitations that the modifications of the spatial unit boundaries impose 

on performing longitudinal studies. 

In particular, to solve the problem of reallocating data from a set of geographical 

administrative units onto another overlapping but non-hierarchical set of spatial units 

(i.e., in a context where the scale of analysis is fixed and only the shape of the 

aggregation units is changed), a number of methods of progressively growing in 

complexity have been suggested over time. They have moved from simple areal 

weighting interpolation (see, e.g., Goodchild and Lam 1980)which are equal to 

performing an Euler-Venn geometric approachand point-based areal interpolation 

procedures (e.g., Martin 1989; Bracken and Martin 1989; Fisher and Langford 1995) to 

more complex strategies based on using dasymetric mapping with ancillary sources of 

information. Because social data are related to population, dasymetric methods use 

auxiliary variables to guide in an intelligent fashion the redistribution process (Wright, 

1936). Among the variables tested we can find data about land uses (Mennis 2003; 

Giordano and Cheever 2010), satellite imagery (Robinson et al. 2002; Holt et al. 2004), 

road networks and night-time lights (Reibel and Bufalino 2005; Briggs et al. 2007; 

Zandbergen and Ignizio 2010), address points (Zandbergen 2011), the spatial 

distribution of built structures (Maantay et al. 2007), LiDAR-derived building heights 

(Sridharan and Qiu 2013), or a combination of spatial methods and the Expectation-



Maximization (EM) algorithm (Flowerdew and Green 1994; Gregory and Ell 2005; 

Sridharan and Qiu 2013). 

The first methods are conceptually simple and do not require an in-depth knowledge of 

spatial methods. They are quite intuitive and can be implemented easily. The dasymetric 

approaches, nevertheless, are more complex and data demanding and ask for a higher 

understanding and ability in the use of GIS tools. They entail employing more spatial 

layers and combining data from more sources. The aim of this work is to examine 

whether and to what extent a more complex approach is worthwhile in an instance in 

which a priori its usefulness can be put into question. 

The rest of the paper is distributed as follows. Section 2 introduces the case study and 

sets the problem. Section 3 describes the sources utilized and the spatial methods 

tested in this research. In addition to the baseline approaches of point-areal 

interpolation and areal weighting, ten additional methods based on dasymetric 

techniques are analyzed. In Section 4 the different reallocations obtained are compared 

and their relative merits assessed. Finally, Section 5 summarizes and discusses the 

findings. 

2. Case Study 

Barcelona is the second-largest city in Spain with more than 1.6 million of inhabitants. 

Its metropolitan area, with a population of around 4.7 million people, makes up the 

largest European urban area on the Mediterranean Sea. Barcelona, located on the 

northeast coast of the Iberian Peninsula (see Figure 1), is a polycentric and spatially 

complex city (Catalán et al. 2008) with a marked social structure (Broner 2010) that 

extends for a total area of 170 km2, of which 101 are occupied by the city itself and just 

48.6 are classified as residential areas. 



 
Figure 1. Study area, Barcelona (Spain). Population density for the 2009 census sections (source 
units) depicted. The square delimits the area displayed in Figure 2. 

 

Barcelona is the focus for the study mainly because it constitutes, from both theoretical 

and empirical standpoints, an instance in which a priori we can expect the dasymetric 

allocating approaches not to perform any better than the simpler methods. From a 

theoretical perspective, it could be argued that when units are small enough to be 

relatively homogeneous with regards to their inner distribution of population and, 

moreover, when big differences between contiguous units are not expected, areal 

weighting should be sufficient and that any auxiliary data employed will result in 

marginal, if any, improvements. Indeed, some previous studies (Brinegar and Popick 

2010; Zandbergen and Ignizio 2010) point to this for relatively densely populated areas. 

Barcelona with an average population density of 16,000 inhabitants per km2, which rises 

to 34,000 if only to residential areas are considered, represents a very densely and 



continuously populated urban area (see Figure 1), with a statistically significant positive 

spatial correlation. Actually, taking the 2009 census sections as spatial units, the Moran 

index (Cliff and Ord 1981) of Barcelona population density is around 0.08 (p-value: 

0.0000), an indicator that population density does not change abruptly at the 

boundaries of the source units. What is more, the Moran index rises to 0.26 (p-value: 

0.0000) when we just consider the core of the metropolitan area (the census sections 

depicted in Figure 2-left), which comprises more than half the Barcelona total 

population (just under one million inhabitants). As a measure of urban compactness 

(Tsai, 2005), this value signals a very highly compact urban form, characteristic of the 

historic centers of the European cities. 

 
Figure 2. Extract of Barcelona (Spain) division in census sections during the 2009 (left panel) and 
2010 (right panel). The same zone (area around Catalonia Square, see Figure 1) depicted in both 
panels. Population densities by census section shaded in the figures. 

 

From an empirical perspective, in urban areas, and mainly in big cities, spatial 

breakdowns are usually performed by local expert analysts with an in depth knowledge 

of the region. The boundaries of small areas tend to be established in a thoughtful and 

intelligent way, respecting area barriers such as rivers, wide avenues, roads or 

municipalities’ boundaries, which can sometimes also act as social barriers. Indeed, in 

the Barcelona breakdowns the integrity of block buildings are always respected, with 

the boundaries of the majority of census sections being placed on streets. This, together 

with the clear spatial patterns that many social variables show, suggests that the 



transitions between old and new units should be smooth and consequently begs the 

question whether in these circumstances dasymetric reallocation techniques would 

provide significant improvement in accuracy. 

This question is pertinent because the majority of previous studies have been focused 

on big areas less densely populated, where moreover the population is sparsely 

distributed in the territory. For example, the study area in Eicher and Brewer (2001) 

encompasses 159 counties, covering four US states, with a maximum population density 

of 3,424 inhab/km2. Mennis (2009) considers Delaware County, an area of 490 km2 with 

550,864 people in the year 2000 and 144 census tracts. Zandbergen (2011) handles 16 

counties in Ohio, comprising 1 million people distributed in 230 census tracts across an 

area of 19,000 km2. And, Reibel and Bufalino (2005) focus their study on Los Angeles 

County: 9.5 million people in the year 2000 distributed in 10,570 km2. A similar picture is 

found for European studies. For example, Suárez et al. (2008) analyze the population 

distribution in the Gran Canaria island (Spain)with 304,000 people distributed in 1,560 

km2
, while Goerlich and Cantarino (2013) and Batista et al. (2013) deal with, 

respectively, the whole of Spain and the whole of Europe. 

Every year, and referenced to the first of January, the Spanish Official Statistical Agency 

(Instituto Nacional de Estadística, INE) publishes (among many other variables) the 

population by age, broken down into five year groups, for each census section. These 

data come from the Municipal register, where municipality inhabitants are recorded, 

and can be downloaded free from the INE website (http://www.uv.es). Census section 

data published refers to the spatial census section breakdown in force in each period. 

Hence, for Barcelona and at census section level, the official population data were 

delivered using different breakdowns in 2009 and 2010. Therefore, to link them we 

would need to express them in the same breakdown. 

Once a variable is reallocated from the 2009 breakdown to the 2010 breakdown, a 

problem emerges when one tries to compare the resulting approximations to the official 

statistics available for the 2010 breakdown. The official data available for the 2010 

breakdown correspond to the first of January of 2010, whereas the reallocated data is 

referred to the first of January of 2009. In addition to the differences resulting from the 



reallocation process, divergences can also occur because of natural and migration 

annual population movements registered during the year of 2009. Fortunately, on this 

occasion, single records are available and, under request and on payment, INE agents 

were kind enough to compute for us the actual data that they would have published if 

the 2010 breakdown had been in force on the first of January, 2009. In particular, INE 

agents provided us with a file containing for each 2010 census section the number of 

people living there the first of January of 2009 broken down into eighteen age groups: 0-

4, 5-9, 10-14, 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 45-49, 50-54, 55-59, 60-64, 65-

69, 70-74, 75-79, 80-84, and >85. These have been the variables reallocated in our 

analysis. 

We assess whether dasymetric reallocation techniques would provide significant 

improvement in the case of a densely and continuously populated urban area (taking 

Barcelona as an ongoing example), by reallocating the population figures available for 

the 2009 breakdown into the 2010 breakdown and by comparing the resulting estimates 

to the INE values that would have been observed if the 2010 breakdown had been in 

force the first of January of 2009. 

In addition to performing our scrutiny in absolute values as is usual in the reallocating 

spatial interpolation literature, we have also applied the reallocating approaches to the 

variables measured in percentages: calculated as a ratio over the total population of 

each census section. Many health and social variables are observed as rates or 

proportions and, therefore, in our opinion more effort should be devoted to finding out 

how simple and dasymetric interpolation methods would work when faced with the 

problem of reallocating rates or proportions from a set of geographical administrative 

units onto another, overlapping but non-hierarchical, set of spatial units. 

3. Data sources and methods 

In this section, we describe and explain the details of the reallocating approaches 

assessed in this research. Grouped in pairs, fourteen methods have been tested. The 

first two pairs of proposals (grounded on point-based interpolation and areal weighting 

interpolation) are considered simple: they do not require auxiliary variables. They are 



used as baseline methods to gauge the value of the other ten alternatives, which are 

based on dasymetric techniques and therefore are more complex. The point and areal 

weighting interpolation solutions just require the files providing the polygon attribute 

tables of the spatial breakdowns to be executed. The dasymetric mapping approaches 

need additional sources of information to guide the reallocation process: auxiliary 

variables related to the distribution of the population. In what follows, we first present 

the ancillary sources and variables employed in the dasymetric approaches, 

subsequently we introduce the methods considered. 

3.1. Ancillary sources of information 

In addition to data from INE, which provides the census variables analyzed in this 

research, we have dealt with geographical objects provided by four additional 

institutions: the City Council of Barcelona (l’Ajuntament de Barcelona), the Spanish 

Geographic Institute (Instituto Geográfico Nacional), the European Environment Agency 

(EEA) and the Spanish Cadastral Agency (Dirección General del Catastro). We also 

examined information from the OpenStreetMap project. However, because in that 

project data are collected by different teams using different standards, we had to 

discard it due to its limited adaptability and wide heterogeneity in terms of quality. 

CartoBCN is the official website for cartographic information of l’Ajuntament de 

Barcelona (http://w20.bcn.cat/cartobcn/default.aspx?lang=en), from which many 

geographic files can be downloaded after registering free. From this source, we 

obtained (i) the shape (shp) files corresponding to January 2009 and January 2010 

section breakdowns of Barcelona (according to which INE official census variables are 

delivered), and (ii) the Barcelona city street map (Callejero). Callejero contains 

information on the streets of Barcelona and their intersections. In Callejero, each stretch 

of road has associated with it, among other information, INE and city council specific 

codes, the street name and the type of road. 

Files corresponding to 2009 SIOSE, LiDAR and MDT05 databases are available in the 

Download Center (http://centrodedescargas.cnig.es/CentroDescargas/) of the Instituto 

Geográfico Nacional. Land Cover and Land Use Information System of Spain (SIOSE) is a 

http://w20.bcn.cat/cartobcn/default.aspx?lang=en
http://centrodedescargas.cnig.es/CentroDescargas/


unique database of Spain produced at 1:25,000 scale combining topographic maps, 

satellite imagery, aerial photography and cadastral registers. This database contains 

information about heterogeneity of land use within any given Spanish polygon (Goerlich 

and Cantarino 2013). SIOSE comprises 2.5 million polygons with nearby 820,000 

different land cover categories, obtained after combining the land cover elements with 

different weights (Cantarino et al. 2014). Each SIOSE polygon contains information 

about what percentage of the surface in the polygon corresponds to each attribute. 

Inhabited buildings are identified with four different type attributes in SIOSE. They 

correspond to compact apartment blocks (A1), isolated apartment blocks (A2), terraced 

houses (H1), and detached houses (H2). According to Goerlich and Cantarino (2013), 

taking 1.00 as reference value of the relative population density for a standard spatial 

unit of detached houses (H2), the values of relative population densities for compact 

apartment blocks (A1), isolated apartment blocks (A2) and terraced houses (H1) are, 

respectively, 9.23, 6.67 and 1.83. 

Digital files with altimetry information from the LiDAR (which stands for Light Detection 

and Ranging) cloud of points are distributed in Spain in files of a 2x2 km grid. The 

download is done by municipality. Point clouds have been captured by flights using 

LiDAR sensor with a density of 0.5 points/m2 and automatically classified and colored by 

RGB obtained from orthophotos with a pixel size of 25 or 50 cm of the Spanish National 

Aerial Orthophotography Plan (PNOA). The points, besides elevation, contain 

information about nine classes of terrain attributes. 

MDT05 is a digital elevation model (DEM) with 5 meters resolution, which has been 

obtained, depending on the map sheet, using one of two main procedures. In Barcelona 

MDT05 data have been computed by interpolation from LiDAR flights of PNOA by 

selection of class type “Ground”, with sub-metric precision. 

The European Environment Agency (EEA) provides the Urban Atlas database. This offers 

pan-European comparable land use and land cover data for Functional Urban Areas. It 

can be downloaded (http://www.eea.europa.eu/data-and-maps/data/urban-atlas) for 

the main European cities, including Barcelona. Available at a 1:10,000 scale with a 

position accuracy of +/-5 m, its date of production is 2009. The layer called “Urban 

http://www.eea.europa.eu/data-and-maps/data/urban-atlas


Fabric”, which classified the polygons into categories according to their percentage of 

soil sealing or sealing levels, has been the one used in this research. Under the principle 

that the larger the percentage of soil sealing in a polygon the larger is the percentage of 

residential area of the polygon, we have considered as proportions of residential areas 

in each polygon the average of soil sealing of its class: 0.05, 0.20, 0.40, 0.70 and 0.90 for, 

respectively, the categories “Discontinuous Very Low Density Urban Fabric”, 

“Discontinuous Low Density Urban Fabric”, “Discontinuous Medium Density Urban 

Fabric”, “Discontinuous Dense Urban Fabric” and “Continuous Urban Fabric” and 

“Isolated Structures”. 

The Spanish cadastral database is an administrative register that is supported by the 

Ministry of Finance and Public Administration and contains the description of all the 

rustic, urban and special feature properties in Spain. Cadastral information is a free 

service (https://www.sedecatastro.gob.es/), but an electronic certificate is required to 

access it. Shapefile (shp) and alphanumeric (cat) data can be downloaded by 

municipality. The shp files define the boundaries of the cadastral parcels. The cat files 

contain information about the use (residential or other types), year of building and living 

area per dwelling. Shapefile files have no information about the use of buildings or 

surface of housing, but thanks to cadastral references they can be linked with the data 

of cat files. 

3.2. Spatial reallocating approaches 

This subsection offers details of the fourteen reallocating approaches considered in our 

scrutiny. The first two methods (M01-rIDW and M02-rNN) are point-based approaches, 

the Tobler’s approach (M12-TPYC) is rasted-based, and the other eleven methods are 

vector-based procedures. The point-based methods have been included for the sake of 

comparison. Besides being inefficient, they do not verify the pycnophylactic condition of 

volume preservation (Tobler 1979). All the other twelve approaches are volume-

preserving (also called mass-preserving). Table 1 displays a summary of the methods 

with some details regarding the way they have been computed. The auxiliary variables 

(and sources) employed as well as the acronyms with which we are going to identify 

them are also included. Following the classical terminology (Goodchild and Lam, 1980), 

https://www.sedecatastro.gob.es/


the units in which the variable of interest is available are called source units (or 

polygons) and the alternative units where the reallocated data are required are called 

target units. 

Table 1. Summary of interpolation methods considered. 

  Ancillary information 

Name Procedure of computation Source Variable 

M01. IDW point 
Interpolation: rIDW. 

Target census section (CS) values are obtained from a 
population density surface constructed applying IDW 
interpolation on values located in source CS centroids. 

No n/a 

M02. NN point 
Interpolation: rNN. 

Similar to rIDW. The density surface is obtained by 
Natural Neighbors, instead of IDW. 

No n/a 

M11. Areal weighting 
interpolation: AW. 

Areal weighting interpolation. Weighted sum of source 
values, with source-target area intersections as weights. 

No n/a 

M12. Pycnophylactic 
reallocation: TPYC. 

Tobler’s pycnophylactic interpolation method (Tobler 
1979). 

No n/a 

M21. SIOSE 
residential: SIOSE-RSD. 

Weighted sum of source values, with source-target 
intersections, restricted to SIOSE residential areas, as 
weights. 

SIOSE 
Residential 

Area 

M22. SIOSE 
population: SIOSE-Pop. 

Similar to SIOSE-RSD, with weights weighted by relative 
population densities (Goerlich and Cantarino 2013). 

SIOSE 
Relative 

Population 

M31. Urban Atlas 
residential: UA-UF. 

Weighted sum of source densities, with source-target 
intersections, restricted to Urban Fabric areas, as 
weights. 

Urban 
Atlas 

Urban Fabric 
areas 

M32. Urban Atlas 
residential: UA-SS. 

Similar to UA-UF, with Urban Fabric areas weighted by 
relative soil sealing densities. 

Urban 
Atlas 

Urban Fabric 
soil sealing % 

M41. Volume 
buildings: UA-VB. 

Weights by volume (high) of buildings according to 
LiDAR, in the Urban Fabric areas defined by Urban Atlas. 

U. Atlas 
LiDAR 

LiDAR volume 
buildings 

M42. Adjusted volume 
buildings: UA-VBadj. 

Similar to UA-VB, with LiDAR data amended in class “high 
vegetation”. 

U. Atlas 
LiDAR 

LiDAR volume 
buildings 

M51. Road network 
length: CBCN-L. 

Weights determined by the length of the streets, 
according to Callejero, within source-target intersections. 

Carto BCN 
Length of 

streets 

M52. Buffer of streets: 
CBCN-SB. 

Buffer of streets of Callejero, and source-target 
intersection, restricted to the buffer areas, as weights. 

Carto BCN 
Area buffer of 

streets 

M61. Cadastral 
residential: C-RSD. 

Weighted sum of source values, with source-target 
intersections, restricted to cadastral footprints of 
residential buildings, as weights. 

Cadaster 
Footprints of 

residential 
buildings 

M62. Cadastral area 
homes: C-AH. 

Weights by total area of housing in cadastral residential 
buildings. 

Cadaster Dwelling area 

 

M01-rIDW and M01-rNN are point-based approaches. These procedures (i) identify each 

source unit with its centroid, to which is assigned the observed value in the source unit, 

(ii) create a smooth prediction raster surface of the target variable, and (iii) estimate the 

variable of interest in each target polygon by averaging the estimated surface on it. The 

implementation of this process requires specifying a grid resolution and an interpolation 

procedure. We have worked with cells of size 50x50 meters and have used the methods 



of inverse distance weighting (IDW) and of natural neighbor (NN) (as default in ArcGis® 

10.2) as interpolation procedures. 

In addition to being inefficient by reducing all the information of each source area to a 

point, the point-based approaches are not mass-preserving. That is, these procedures 

are not reversible: if we go back from target to source units, the outcomes will not 

coincide with the original values. The other twelve proposed methods are mass-

preserving and share approach. All of them use as allocation function an estimator of 

the form given by equation (1), where 𝑃̂𝑗 is the estimated population in target unit 𝑗, 𝑃𝑖 

is the population of source unit 𝑖, 𝑆 is the total number of source units and 𝑤𝑖𝑗 is the 

weight assigned to source unit 𝑖 in estimating the population of target unit 𝑗. The 

methods differ in the way the weights 𝑤𝑖𝑗 are computed. 

𝑃̂𝑗 = ∑ 𝑤𝑖𝑗

𝑆

𝑖=1
𝑃𝑖                                                         (1) 

The areal weighting (M11-AW) approach, also known as polygon overlay (Markoff and 

Shapiro 1973), is one of the most widely used methods (Goodchild and Lam 1980) and 

the most popular choice when ancillary information is not available. In this method, the 

source and target units are overlaid to obtain intersections and the (imputation) 

weights, 𝑤𝑖𝑗, are determined by the ratio between the area of the intersection between 

the source unit 𝑖 and the target unit 𝑗 and the total area of unit 𝑖. Areal weighting is 

considered a simple method because, as is the case with point-based methods, it does 

not require any additional data besides source and targets units. 

The implicit assumption of the M11-AW approach is that the variable of interest is 

homogeneously distributed in each source unit, which is quite unlikely. Hence, as an 

alternative, Tobler (1979) proposed the pycnophylactic method (M12-TPYC) that, 

maintaining the mass-preserving condition, assumes that the attribute values should not 

change abruptly at the boundaries of the source units (Kyriakidis 2004). This allows a 

different value to be assigned to each cell of each source unit, from which 𝑤𝑖𝑗 weights 

are calculated. To preserve the pycnophylactic property, Tobler proposed an iterative 

procedure, with Mennis (2003) as an alternative. This method is also categorized as a 



simple interpolation approach because no ancillary data is used to transfer the variable 

of interest from the source units to the target units. 

The above methods (initially) handled the space of each source unit equally, irrespective 

of where the population is located and how this is distributed within it. Dasymetric 

mapping exploits ancillary sources to provide insights on how the population is spatially 

distributed. The most popular methods track where population is located in each source 

unit using two-dimensional (2-D) areal measures as auxiliary variables. From richer 

databases, three-dimensional (3-D) volume measures can be constructed to additionally 

know how the population is distributed inside of the source unit (Sridharan and Qiu 

2013). Examples with one-dimensional (1-D) length measures can also be found in the 

literature (e.g., Reibel and Bufalino 2005). 

The simplest 2-D dasymetric mapping methods are based on a binary classification of 

land uses: residential and nonresidential (Eicher and Brewer 2001; Holt et al. 2004; 

Sridharan and Qiu 2013). In the binary approach, nonresidential land use areas are 

considered unpopulated and consequently omitted (or zero weighted) in the 

distribution process. Although this refinement is expected to improve population 

allocations, it is not without flaws. On the one hand, residential areas usually include 

parts of a landscape (such as roads, footways and yards) where people do not reside. On 

the other hand, this approach implicitly assumes that within each source unit the 

population is evenly distributed across its residential areas, which again is seldom true 

(Maantay et al. 2007). This assumption often results in population underestimates in 

areas with high-rise buildings and in overestimates in areas with low-rise buildings 

(Harvey 2002; Sridharan and Qiu 2013). As alternatives, the 2-D multiclass (or 

polycategorical) dasymetric approaches and the 3-D methods try to amend these 

misestimates by accounting for the vertical distribution of the population. The 2-D 

multiclass approaches classify residential areas in more than a class with different 

population densities and the 3-D methods account for the height, the volume or the 

total area of the residential buildings. Note that the 2-D multiclass methods could be 

also be cataloged as 3-D procedures observing relative population densities as heights. 



The 2-D binary methods that we have considered maintain quite a resemblance to the 

areal weighting procedure. In particular, the source and target units are again overlaid 

but this time restricted to residential areas and the weights, 𝑤𝑖𝑗, determined by the 

ratio between the corresponding area of the intersection between the source unit 𝑖 i 

and the target unit 𝑗 and the residential area of unit 𝑖. That is, the numerator of the ratio 

is determined by the area of the intersection among the source unit 𝑖, the target unit 𝑗 

and the residential land use polygons. The different methods diverge in the source 

employed to classify polygons as residential. M21-SIOSE-RSD method utilizes SIOSE, 

M32-UA-UF employs Urban Atlas and M61-C-RSD uses the footprints of the buildings 

classified as residential in the Cadaster. The details of the method M52-CBCN-SB are 

discussed in the next paragraph. 

In 1-D length methods, it is assumed that the density of population across a unit is 

directly related to the density of road/power/streetlights network segments across the 

unit. Hence, under this assumption, the 1-D length methods calculate the weights, 𝑤𝑖𝑗, 

as the ratio between the length of the network segments within the overlapping area 

between the source unit 𝑖 and the target unit 𝑗 and the total length of network 

segments within the unit 𝑖. The M51-CBCN-L method uses the Callejero road/street 

network. In Barcelona, however, the boundaries of the majority of census sections are 

placed on streets, so it is not uncommon (given the one-dimensional nature of street 

networks) that the majority of Callejero network segments located on street boundaries 

are completely subsumed in just one census section, when in these cases half of the 

corresponding length should be apportioned to each side of the street. To amend this, 

the M51-CBCN-SB method constructs a buffer of 10 meters centered in the road/street 

lines and proceeds as the other 2-D binary methods do, after viewing the buffer 

polygons as residential areas. This method could be classified as 1.5-D as it combines a 

1-D auxiliary variable with a 2-D strategy. 

Land use data are particularly useful as a means to distinguish residential areas from 

non-residential areas, but 2-D binary methods do not discriminate by residential 

attributes. In 2-D polycategorical dasymetric procedures, residential areas are divided 

into different groups (for example, from “Discontinuous Very Low Density Urban Fabric” 



to “Continuous Urban Fabric”) and a different weight per area unit is assigned to each 

type according to their relative population density. In particular, denoting by 𝐾 the 

number of residential types, 𝑑𝑘 the relative population (or the relative soil sealing 

surface) of residential polygons of type 𝑘 and 𝑤𝑖𝑗𝑘 the area of the intersection among 

the source unit 𝑖, the target unit 𝑗 and the residential polygons of type 𝑘, we have that 

the 𝑤𝑖𝑗 weights are reached after dividing ∑ 𝑑𝑘𝑤𝑖𝑗𝑘
𝐾
𝑘=1  by ∑ 𝑑𝑘𝑤𝑖𝑘

𝐾
𝑘=1 , where 𝑤𝑖𝑘 is the 

area of the intersection between the source unit 𝑖 and the residential polygons of type 

𝑘. The M22-SIOSE-Pop method employs the classification in apartment blocks, isolated 

apartment blocks, terraced houses and detached houses used by SIOSE to identify 

inhabited buildings and the M32-UA-SS procedures makes use of the five Urban Fabric 

categories defined in the Urban Atlas database. 

The M41-UA-VB, M42-UA-VBadj and M62-C-AH approaches are 3-D methods. They all 

consider the vertical dimension of residential buildings to compute the weights. The 

M41-UA-VB and M42-UA-VBadj methods are really close to the methods employed in 

Qiu et al. (2010) and Sridharan and Qiu (2013), being the M42-UA-VBadj approach a 

refinement of the M41-UA-VB method.  

In the M41-UA-VB method, we consider the residential areas defined by Urban Atlas and 

construct (LiDAR)-derived residential building volumes as product of LiDAR height 

measures and LiDAR areas corresponding to points confined in Urban Atlas residential 

areas and classified as buildings in the LiDAR database. In our approach, a 5x5 m cell is 

classified as a building when it contains any point classified as building. The relative 

heights of buildings from the ground are extracted from the LiDAR point cloud taking as 

reference MDT05 as digital elevation model. Once residential building volumes are 

calculated, we compute the 𝑤𝑖𝑗 weights as the ratio between the total volume of the 

buildings located within the intersection of the source unit 𝑖 and the target unit 𝑗 and 

the total volume of unit 𝑖. 

After a random revision of LiDAR point clouds, however, we were aware that many 

points classified as “high vegetation” in LiDAR should have been classified as building. 

Hence, to build the M42-UA-VBadj weights we reclassify as building cells those cells that 

being adjacent to a building cell and being located in an Urban Fabric polygon have a 



height higher than 12 meters and occupy a plot with an area of more than 75 m2. 

Afterwards we proceed in the same way as in the M41-UA-VB approach. 

The M62-C-AH method follows a different strategy. This approach constructs weights 

exploiting the more detailed information available to the original unit used by INE to 

collect population data: the household. Among other issues, the cadaster contains 

information about the postal address, floor and square meters of each existing property 

in Spain. Thus, we combine the cadastral shp and cat files to compute in each cadastral 

polygon its total housing area to then compute the 𝑤𝑖𝑗 weights as the ratio between the 

total housing area placed within the intersection of the source unit 𝑖 and the target unit 

𝑗 and the total housing area of unit 𝑖. 

All the spatial computations have been completed in ESRI ArcGIS® 10.2 (ESRI 2014), 

using its geo-processor ArcPy to create scripts. The calculation routines have been 

performed with Python 2.7.3 (Python Software Foundation, 2014). 

4. Assessing allocations 

A total of thirty-six variables (eighteen population variables in absolute values and the 

same number in percentages) have been allocated using fourteen methods for the 1,061 

census sections defining the 2010 breakdown (i.e., more than half a million values have 

been calculated). This section evaluates the closeness of allocations and actual values. 

The results are quite clear and robust. The same order of preference emerges among 

groups of methods for all the variables and with all the measures of closeness 

calculated. The method M62-C-AH, which allocates variables using as ancillary data the 

total area of the homes in each residential building, is the one producing by far the most 

accurate results, whereas the point-based methods and the 1-D approach (M51-CBCN-L) 

are clearly the less accurate. 

To evaluate which areal interpolation algorithm generates the most accurate estimates, 

three classical measures for summarizing the closeness between imputations, P̂j, and 

actual values, Pj, in the 𝑇 target units have been computed for each combination of 

variable and method: the root of the mean square error (RMSE), the mean absolute 



percentage error (MAPE) and the Pearson correlation coefficient (CORR); see Table 2. 

Although other measures may also be computedsuch as the mean squared error 

(Sadahiro 2000), the adjusted RMSE (Hawley and Moellering 2005) or the value 

weighted MAPE (Qiu et al. 2012)the conclusions would have remained the same. 

RMSE and MAPE statistics are distance measures. Thus, the smaller the RMSE and MAPE 

distances, the closer allocated values and actual values are. In many applications, 

however, more important than closely approximating actual values is to dispose of a 

variable really alike in correlation terms: a variable that may be used in a regression in 

place of the unobserved variable. In this sense, the closer CORR is to one, the more 

related (correlated) are allocated and actual values. 

Table 2. Closeness measures between imputations (𝑃𝑗̂) and actual values (𝑃𝑗). 

Description Acronyms Equations 

Root Mean Square Error RMSE √
1

T
∑ (P̂j − Pj)

2T

j=1
 

Mean Absolute Percentage Error MAPE 
100

T
∑

|P̂j − Pj|

Pj

T

j=1
 

Pearson Correlation CORR 

T ∑ P̂jPj
T
j=1 − ∑ P̂j

T
j=1 ∑ Pj

T
j=1

√T ∑ P̂𝑗
2 − (∑ P̂j)

2
√T ∑ P𝑗

2 − (∑ Pj)
2

 

 

Table S1 (available in the supplementary online appendix) presents, by method and 

variable, the values of the distances (computed using RSME and MAPE as closeness 

measures) and of the correlations (calculated using CORR) between the amount of the 

people (in whole numbers) living in the 2010 census sections at the first of January, 

2009 and the estimates obtained from the official values available in the 2009 census 

sections. The same statistics are displayed in Table S2 (see the online supplementary 

appendix) for the variables measured in percentages. 

From the analysis of the numbers in both tables, several patterns clearly emerge. Firstly, 

the point-based interpolation strategies, in addition to not being volume-preserving, 

clearly present the worst approximations. In our application, the M51-CBCN-L method 

also shows similar figures. Secondly, as a rule, dasymetric methods are clearly preferable 

to simple methods. Thirdly, within dasymetric approaches, 3-D approaches are 



preferable to 2-D procedures. Finally, the differences narrow when we work in relative 

terms (percentages) instead of in absolute values. 

 
Figure 3. Differences by method, measured using MAPE, between the actual and allocated 

population absolute values for different age groups. The M01, M02 and M51 methods have 

been excluded to avoid that their large values dominate the scrutiny. 

 

 
Figure 4. Differences by method, measured using RSME, between the actual and allocated 

population percentage values for different age groups. The M01, M02 and M51 methods have 

been excluded to avoid that their large values dominate the scrutiny. 

 

To make these patterns more evident, Figure 3 and Figure 4 display by variable, 

excluding the three worst methods (M01, M02 and M51), some of the numbers 



available in Tables S1 and S2. Figure 3 depicts MAPE distances for the allocations in 

absolute values and Figure 4 portrays RMSE distances for the estimates in percentages. 

A closer look at the results even highlights some preferences within the different 

strategies. Focusing on the allocations of the population figures in whole numbers, the 

order of preferences we find is: M62 ≻ M42 ≻ M41 ≻ M32 ≽ M22 ≽ M31 ≽ M61 ≻ 

M21 ≻ M12 ≻ M52 ≻ M11 ≻ M51 ≻ M02≻ M01. That is, within the 3-D approaches, 

which are clearly the best as a group, the method M62-CBCN-SB, whose auxiliary 

variable best approaches the way the population information is originally collected, 

reveals itself as the procedure generating the most accurate results. Furthermore, we 

notice that the refinement that method M42-UA-VBadj represents over method M42-

UA-VB also yields its fruits. 

Likewise, although the differences among the 2-D dasymetric methods are not so 

evident at first glance, a deeper look reveals a clear pattern among 2-D subgroups. The 

more complex multiclass 2-D methods (M32-UA-SS and M22-SIOSE-Pop) generate as a 

rule more accurate results than the binary 2-D approaches. This should not be a 

surprise, given that in our theoretical disquisition we already note that these methods 

could even be considered as 3-D. Following multiclass 2-D procedures, the list continues 

in order of accuracy with the three binary 2-D methods, with the M21-SIOSE-RSD 

method placed in the third position of the trio, probably consequence of the higher 

quality of Urban Atlas and Cadaster databases compared to SIOSE database. Among the 

non-dasymetric approaches, areal weighting procedures are preferable to point-based 

interpolation, with the Tobler procedure generating better outputs than the simple 

areal weighting approach. It is interesting to observe that the method M52-CBCN-SB, 

which can be thought of as dasymmetric 1.5-D, presents levels of accuracy alike to those 

of the areal weighting approaches. Finally, the 1-D method M51-CBCN-L and the two 

point-based procedures are clearly placed towards the end of the list. 



 
Figure 5. Comparing allocated estimates (horizontal axes) and actual values (vertical axes) of the 
2009 total population of Barcelona (Spain) in the 2010 census section breakdown. The distance 
from the 45º line indicates how far apart allocations and actual values are. The number of data 
points in each scatterplot is 1,061. Details of the allocating methods can be found in Table 1. The 
point-based methods have been excluded given their limited quality. 
 

The above conclusions are also manifestly visible observing Figure 5, where comparisons 

at the level of census section for the total population are displayed for all the methods 

but the point-based ones. Among panels of Figure 5, the panel corresponding to the 

M62-C-AH unambiguously stands out as the best and the one corresponding to M51-



CBCN-L unmistakably the worst. The rest of the estimates are in an intermediate 

position. 

When we look at the results of closeness measures corresponding to the allocations of 

the variables in percentages (Table S2 and Figure 4), the results are not so evident. 

Nevertheless, although the differences reduce significantly, the order of preference 

among the methods is almost the same as when we allocate whole numbers. The order 

of preferences we find in this case is: M62 ≻ M42 ≻ M41 ≻ M61 ≽ M22 ≽ M32 ≽ M31 

≻ M21 ≻ M52 ≽ M12 ≽ M11 ≻ M51 ≻ M02≻ M01. Despite there being some changes 

in the relative order of some methods, the general picture remains: 3-D methods are 

preferable to polycategorical 2-D methods and these again preferable to binary 2-D 

methods, these are followed by areal weighting and 1-D methods and point-based 

interpolation procedures are again towards the end of the list. 

5. Conclusions and final remarks 

The question of reallocating population figures from a set of geographical administrative 

units onto another set of units is an issue that has received a great deal of attention in 

the literature. Every other day, a new procedure exploiting a previously unused ancillary 

source of information is introduced in the literature, claiming that it outperforms 

alternative algorithms. Given that an accurate location of population is crucial to 

answering many practical questions of social interest, the introduction in the 

reallocation process of new auxiliary variables through dasymetric mapping is the route 

commonly followed. Unfortunately, when the new (usually more complex) methods are 

applied to a new instance, the improvements achieved are sometimes dubious and just 

marginal. The tradeoff cost-effectiveness of each solution tends to be case-dependent: 

it usually depends on both the data and the geography. 

In this sense, it is of unquestionable interested to know what approaches would 

generate satisfactory solutions under each group of circumstances since many studies 

have shown that different interpolation approaches can yield outcomes with really 

different implications. To evaluate which areal interpolation algorithm is the most 

appropriate for a given application, a significant majority of studies have been focused 



on large areas with really heterogeneous population densities, the general conclusion 

being that as a rule more sophisticated methods are worth the extra effort they entail. 

From a theoretical point of view, it could be proved that with a target variable uniformly 

distributed in the territory, areal weighting interpolation would produce perfect 

allocations. In the extreme opposite case, if people were concentrated in just a bunch of 

small subareas of the whole space, knowing the geographical distribution of the 

population would be a necessary condition to (depending on the exact breakdowns) 

yield accurate interpolations. Obviously, infinite in-between situations are possible. It 

could be argued, however, that when we work with (relative) homogeneous small 

source units whose variable to be allocated varies gradually between contiguous units, 

areal weighting interpolation could be enough and that any ancillary variable employed 

would yield marginal improvements. The spatial distribution of population in census 

sections of Barcelona in Spain meets these requirements. We have studied whether in 

these circumstances dasymetric reallocation techniques would provide significant 

improvement. 

Our study shows that even under the above conditions the most sophisticated 

approaches clearly produce the better results. In particular, the method that allocates 

people using as ancillary variable the total dwelling area in each residential building is by 

far the one yielding the most accurate outcomes. In general, our study shows the 3-D 

methods generating the better outcomes followed, in order, by the multiclass 2-D 

procedures, the binary 2-D approaches and the areal weighting and 1-D algorithms. The 

point-based interpolation procedures are by far the ones producing the worst estimates. 

Finally, it should be noted that, although some previous studies suggest that when 

working with small source units the use of more complex methods may be unnecessary 

when the variable to be distributed presents a strong spatial correlation (such as in the 

case of partisan vote proportion distributions), our analysis does not completely support 

this conclusion. Indeed, despite the differences between the methods showing a clear 

narrowing (for instance, from using areal weighting to using our best method the MAPE 

improvement gap reduces from 50% to 20%), we reach similar conclusions when we 

deal with the variables in percentages as well as in absolute numbers. Further research, 



therefore, should be done to gauge to what extent more sophisticated approaches 

could be helpful in the process of reallocating a rate or a proportion in an urban area. In 

particular, it would be interesting to find out how the relative performance of simple 

and complex methods could be affected by the type of variable to be distributed, the 

final aims of the reallocation process and/or the urban structure under study. A possible 

line of future research would consist in studying whether spatial measures of urban 

morphology (such as the Moran index, as a summary of the combined effect of the 

variable to be distributed and the urban geography) are related to the accuracies of the 

areal distribution methods. 
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SUPPLEMENTARY (ONLINE) APPENDIX 

 

Table S1. Closeness of actual and allocated population absolute values by method and variable. 

  
Variable: Age Group 

 
Method 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >85 Mean 

R
o
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t 
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n
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q
u
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e 

Er
ro
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M01 45.0 44.7 44.9 45.2 44.2 44.0 44.8 44.8 44.4 44.4 44.6 44.6 44.4 44.9 45.2 46.2 47.1 47.3 45.0 

M02 43.4 43.3 43.4 43.8 42.7 43.1 43.8 43.5 43.2 43.1 42.9 42.9 43.2 43.9 44.2 45.0 45.7 45.4 43.7 

M11 19.4 19.5 20.1 20.0 20.0 19.4 19.4 19.0 18.8 19.4 20.0 19.7 20.0 19.5 18.7 19.1 19.6 19.8 19.5 

M12 18.7 18.7 18.1 18.3 18.5 17.9 17.5 17.3 16.9 17.6 18.5 18.2 18.5 17.7 16.9 17.5 17.9 18.2 17.9 

M21 12.3 12.2 12.6 12.7 12.9 12.6 12.5 11.9 11.7 12.1 12.7 12.7 12.7 13.0 12.4 12.7 13.2 13.5 12.6 

M22 11.3 11.3 11.7 11.9 12.2 11.5 11.3 10.8 10.7 11.1 11.8 11.8 11.8 12.1 11.7 12.2 12.8 13.3 11.7 

M31 11.7 11.3 11.9 12.1 12.3 11.7 11.4 10.9 10.7 11.5 12.1 12.1 12.1 12.3 11.6 12.1 12.2 13.0 11.8 

M32 10.9 10.4 11.0 11.2 11.3 10.7 10.5 10.0 9.8 10.5 11.1 11.3 11.4 11.5 10.8 11.2 11.5 12.4 11.0 

M41 10.1 9.6 10.1 10.2 10.4 9.8 10.0 9.2 9.2 9.7 10.0 9.7 9.6 10.1 10.2 10.3 10.7 11.4 10.0 

M42 8.3 8.1 8.6 8.9 8.9 8.2 8.1 7.5 7.3 8.1 8.6 8.2 8.4 8.3 8.5 8.8 9.0 10.1 8.5 

M51 40.6 39.5 39.9 40.9 41.6 40.1 40.2 42.0 40.0 40.4 40.8 40.3 40.7 40.9 40.3 40.0 40.0 41.0 40.5 

M52 19.2 19.3 19.8 19.8 20.2 19.5 19.0 18.7 18.4 19.0 20.1 20.0 19.9 19.6 18.8 18.9 19.6 20.2 19.4 

M61 10.2 9.8 10.0 10.2 10.5 10.1 9.9 9.5 9.3 9.6 10.2 9.9 10.3 10.8 10.9 11.0 11.6 12.5 10.3 

M62 5.9 5.9 6.2 6.3 6.2 5.6 5.7 5.1 5.0 5.4 5.9 5.8 6.2 6.6 6.8 7.3 8.0 9.3 6.3 

M
ea

n
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n
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o
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M01 26.5 23.1 22.3 25.3 37.8 59.0 63.6 53.3 45.5 41.6 37.1 35.0 34.0 27.8 28.5 29.0 22.9 20.5 35.2 

M02 26.7 23.1 22.0 24.9 36.7 57.7 62.9 53.2 45.5 41.1 36.4 34.2 33.6 27.6 28.4 28.8 22.5 20.1 34.7 

M11 23.5 18.7 16.8 18.7 28.9 42.3 45.5 41.7 34.9 32.1 29.2 24.4 23.4 18.2 18.2 18.0 12.9 11.6 25.5 

M12 22.7 18.1 15.4 17.2 27.8 40.7 42.9 39.1 32.3 30.0 27.3 22.6 21.4 16.3 16.0 16.0 11.6 10.7 23.8 

M21 15.6 12.5 11.3 13.1 21.3 31.5 32.8 28.9 23.8 23.0 20.4 16.2 15.7 12.7 12.6 12.7 9.4 8.9 17.9 

M22 15.3 11.8 10.6 12.3 20.6 30.6 31.6 27.9 22.9 21.6 19.2 15.4 15.0 11.9 11.7 12.0 9.5 9.7 17.2 

M31 14.8 12.3 11.1 12.2 20.1 30.1 30.7 26.9 22.5 21.2 18.5 15.7 15.4 12.4 12.2 12.5 9.5 9.8 17.1 

M32 14.1 11.7 10.4 11.5 19.6 29.5 29.8 25.9 21.5 20.1 17.6 14.9 14.7 11.6 11.4 11.8 9.2 9.9 16.4 

M41 13.3 10.5 9.5 10.1 18.4 29.0 29.9 24.5 20.0 18.2 15.5 12.6 12.5 10.0 10.5 11.0 8.8 10.0 15.2 

M42 11.2 9.7 8.7 9.5 17.1 26.3 25.9 21.6 18.0 17.1 14.3 11.5 11.3 8.7 9.2 9.4 7.4 8.8 13.6 

M51 25.3 21.7 20.5 23.2 36.1 53.5 55.5 48.4 42.0 39.8 37.3 34.9 34.5 26.2 25.7 24.6 18.8 17.1 32.5 

M52 20.7 17.2 16.2 18.6 29.4 42.4 43.3 38.3 32.6 31.8 29.5 25.2 23.7 17.9 17.5 17.3 12.9 11.7 24.8 

M61 13.6 10.8 10.0 11.3 23.6 36.7 35.7 28.7 22.8 20.0 18.2 14.9 14.7 12.2 12.3 12.4 9.4 10.3 17.6 

M62 7.5 6.5 6.1 6.7 19.1 31.2 28.1 20.9 16.3 13.7 11.4 8.4 8.4 6.9 7.1 7.9 7.6 10.0 12.4 
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M01 .677 .658 .633 .593 .639 .680 .651 .613 .556 .534 .552 .626 .568 .502 .526 .500 .546 .646 .594 

M02 .661 .630 .613 .583 .638 .667 .622 .586 .531 .528 .549 .620 .552 .482 .498 .475 .530 .633 .578 

M11 .697 .725 .745 .744 .745 .785 .780 .723 .698 .679 .662 .773 .754 .754 .777 .783 .828 .851 .750 

M12 .711 .737 .776 .777 .765 .802 .803 .751 .730 .708 .695 .804 .793 .802 .827 .827 .859 .872 .780 

M21 .840 .856 .869 .856 .853 .875 .875 .846 .831 .805 .810 .890 .872 .861 .878 .877 .898 .906 .861 

M22 .844 .870 .884 .873 .863 .882 .884 .856 .844 .827 .829 .902 .884 .878 .896 .891 .896 .889 .872 

M31 .854 .859 .872 .876 .870 .886 .889 .866 .847 .831 .843 .896 .877 .866 .886 .882 .898 .885 .871 

M32 .865 .871 .885 .888 .876 .890 .895 .874 .858 .846 .857 .906 .886 .881 .900 .894 .903 .883 .881 

M41 .878 .893 .904 .914 .891 .894 .895 .886 .875 .874 .890 .934 .919 .912 .915 .908 .911 .882 .899 

M42 .913 .908 .918 .924 .905 .913 .921 .911 .898 .887 .905 .945 .932 .932 .934 .931 .937 .908 .918 

M51 .651 .651 .652 .635 .616 .673 .691 .651 .606 .560 .515 .569 .520 .560 .611 .646 .672 .709 .622 

M52 .746 .754 .754 .739 .730 .781 .796 .756 .724 .675 .643 .743 .736 .756 .787 .794 .823 .844 .755 

M61 .878 .891 .898 .895 .821 .831 .852 .847 .843 .850 .849 .908 .889 .869 .883 .883 .900 .875 .870 

M62 .961 .958 .960 .962 .882 .877 .906 .915 .915 .927 .939 .971 .963 .957 .960 .951 .933 .881 .934 



 

Table S2. Closeness of actual and allocated population percentages by method and variable. 

  
Variable: Age Group 

 
Method 0-4 5-9 10-14 15-19 20-24 25-29 30-34 35-39 40-44 45-49 50-54 55-59 60-64 65-69 70-74 75-79 80-84 >85 Mean 
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M01 10.7 9.6 9.9 10.4 10.0 8.5 8.8 8.5 7.2 7.4 9.6 11.0 11.5 11.2 11.8 13.5 14.8 16.6 10.6 

M02 10.3 9.4 9.7 10.1 9.5 8.2 8.4 8.2 7.1 7.2 9.4 10.7 11.0 11.0 11.6 13.2 14.5 16.1 10.3 

M11 6.9 6.6 6.6 6.6 6.5 5.5 5.8 5.3 4.6 5.1 6.2 6.7 7.3 7.8 8.4 9.1 10.0 10.7 7.0 

M12 6.9 6.5 6.6 6.6 6.4 5.5 5.7 5.2 4.5 5.1 6.1 6.6 7.2 7.7 8.4 9.0 9.9 10.5 6.9 

M21 6.3 6.0 6.2 6.0 6.0 5.1 5.3 4.7 4.2 4.7 5.6 5.9 6.5 7.1 7.6 8.4 9.4 10.2 6.4 

M22 6.2 5.9 6.1 6.0 6.0 5.1 5.3 4.6 4.1 4.6 5.6 5.7 6.5 7.1 7.5 8.2 9.2 10.1 6.3 

M31 6.2 5.9 6.0 5.9 5.8 5.1 5.2 4.6 4.1 4.6 5.5 5.8 6.3 7.0 7.3 8.2 9.0 9.9 6.2 

M32 6.2 5.8 6.0 5.8 5.8 5.0 5.1 4.6 4.1 4.6 5.4 5.8 6.3 7.0 7.2 8.1 9.0 9.8 6.2 

M41 6.1 5.7 6.0 6.0 5.7 5.0 5.1 4.4 4.0 4.6 5.4 5.6 6.3 6.9 7.2 7.9 8.8 9.8 6.2 

M42 5.8 5.5 5.7 5.7 5.5 4.8 4.9 4.3 3.8 4.4 5.2 5.3 6.0 6.6 6.9 7.5 8.5 9.4 5.9 

M51 8.8 8.5 8.5 8.8 8.8 7.1 7.4 7.0 6.1 6.6 8.1 9.3 10.1 10.2 10.7 11.7 13.1 14.3 9.2 

M52 7.0 6.7 6.9 6.8 6.8 5.7 5.9 5.5 4.7 5.2 6.4 7.0 7.5 8.0 8.5 9.4 10.4 11.2 7.2 

M61 6.1 5.6 5.9 5.7 5.6 4.8 5.1 4.5 4.0 4.5 5.3 5.6 6.1 6.7 7.2 8.1 8.9 9.8 6.1 

M62 5.6 5.3 5.5 5.3 5.2 4.5 4.7 4.0 3.7 4.1 4.9 4.9 5.5 6.2 6.5 7.2 8.0 9.3 5.6 
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M01 .823 .549 .504 .607 .792 1.000 1.145 1.055 .755 .764 .897 .914 .924 .739 .824 .906 .776 .810 .821 

M02 .772 .538 .490 .584 .760 .969 1.085 1.002 .740 .738 .858 .878 .905 .716 .795 .872 .754 .792 .792 

M11 .613 .439 .405 .456 .562 .734 .862 .759 .581 .598 .639 .605 .701 .583 .663 .707 .610 .692 .623 

M12 .607 .436 .401 .457 .556 .729 .853 .750 .576 .598 .636 .601 .695 .578 .658 .697 .596 .679 .617 

M21 .532 .406 .366 .409 .515 .686 .791 .664 .529 .550 .567 .505 .599 .522 .575 .620 .564 .671 .560 

M22 .527 .395 .357 .400 .509 .678 .781 .647 .520 .541 .553 .484 .594 .517 .526 .570 .529 .653 .543 

M31 .542 .402 .362 .402 .499 .682 .781 .666 .521 .536 .540 .507 .591 .503 .539 .597 .556 .683 .551 

M32 .538 .397 .356 .394 .494 .679 .776 .661 .512 .532 .528 .492 .586 .506 .532 .589 .552 .678 .544 

M41 .506 .374 .357 .419 .485 .674 .772 .631 .491 .534 .530 .470 .568 .492 .508 .570 .531 .655 .531 

M42 .492 .367 .346 .400 .484 .659 .752 .619 .477 .527 .516 .451 .555 .478 .490 .547 .511 .628 .517 

M51 .643 .492 .461 .539 .691 .852 .967 .836 .673 .713 .745 .787 .865 .702 .743 .807 .721 .788 .724 

M52 .597 .438 .400 .445 .576 .735 .847 .743 .577 .598 .646 .604 .697 .584 .637 .685 .603 .680 .616 

M61 .544 .391 .353 .389 .503 .668 .815 .668 .489 .524 .535 .491 .589 .489 .542 .601 .537 .669 .544 

M62 .493 .356 .335 .369 .469 .643 .754 .606 .465 .507 .495 .429 .527 .462 .472 .527 .510 .675 .505 
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M01 .809 .864 .870 .829 .822 .875 .870 .825 .828 .782 .817 .848 .851 .852 .846 .829 .842 .828 .838 

M02 .825 .864 .872 .839 .827 .883 .884 .841 .822 .792 .830 .857 .850 .858 .857 .842 .844 .829 .845 

M11 .880 .906 .909 .899 .898 .931 .925 .903 .883 .861 .898 .929 .907 .902 .897 .892 .887 .867 .899 

M12 .883 .908 .911 .899 .900 .932 .926 .905 .886 .861 .900 .931 .909 .904 .900 .895 .893 .873 .901 

M21 .911 .920 .926 .919 .916 .940 .937 .927 .904 .883 .921 .951 .933 .923 .924 .918 .904 .875 .919 

M22 .913 .925 .930 .922 .918 .942 .939 .931 .908 .887 .925 .955 .934 .924 .937 .932 .916 .882 .923 

M31 .907 .922 .928 .922 .921 .941 .939 .926 .907 .889 .929 .951 .935 .928 .934 .925 .907 .871 .921 

M32 .909 .924 .930 .925 .923 .942 .940 .927 .911 .891 .932 .954 .936 .928 .935 .927 .909 .873 .923 

M41 .920 .933 .930 .916 .925 .942 .940 .934 .918 .890 .931 .958 .940 .931 .941 .931 .916 .881 .927 

M42 .925 .936 .934 .923 .926 .945 .943 .937 .923 .893 .935 .961 .943 .935 .945 .937 .922 .891 .931 

M51 .867 .881 .880 .854 .841 .907 .904 .881 .840 .794 .860 .877 .854 .856 .870 .857 .838 .823 .860 

M52 .887 .907 .911 .903 .893 .932 .928 .907 .885 .860 .897 .930 .908 .903 .906 .900 .890 .871 .901 

M61 .907 .927 .932 .927 .919 .943 .933 .925 .919 .895 .930 .954 .935 .932 .933 .923 .914 .876 .923 

M62 .924 .940 .938 .935 .931 .948 .943 .939 .927 .902 .940 .965 .949 .940 .949 .942 .923 .873 .934 

 


