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ESTIMATES FOR VECTOR VALUED DIRICHLET POLYNOMIALS

ANDREAS DEFANT, URSULA SCHWARTING, AND PABLO SEVILLA-PERIS

Abstract. We estimate the `1-norm
∑N
n=1 ‖an‖ of finite Dirichlet polynomials

∑N
n=1 ann

−s,
s ∈ C with coefficients an in a Banach space. Our estimates quantify several recent results on
Bohr’s strips of uniform but non absolute convergence of Dirichlet series in Banach spaces.

1. Introduction

It is a well known fact from the classical theory that each Dirichlet series D =
∑

n ann
−s

defines four significant abscissas: the infimum over all σ such that in the halfplane [Re > σ]
the Dirichlet series converges (σc(D)), defines a bounded, holomorphic function (σb(D)),
converges uniformly (σu(D)) or converges absolutely (σa(D)).

H. Bohr showed in his fundamental Theorem [6, Satz I] that σb(D) = σu(D), and his main
interest was to determine the largest possible width of the band on which a Dirichlet series
can converge uniformly but not absolutely; in other words, to find the precise value of

S = supσa(D)− σu(D),

where the supremum ranges over all possible Dirichlet series D. The now called Bohr-
Bohnenblust-Hille Theorem [4,5] shows that S = 1

2 .
In the last few years there has been a renewed interest in this result, and it has been looked

at from different points of view. If we denote by H∞ the Banach space of all Dirichlet series
that define a bounded and holomorphic function on [Re > 0] (together with the sup norm),
then we can rewrite

S = sup
D∈H∞

σa(D) ,

and by the Bohr-Bohnenblust-Hille Theorem every Dirichlet series inH∞ converges absolutely
on [Re = 1

2 +ε], and the value 1
2 is optimal. A natural question then is to ask whether this even

holds for ε = 0; that is: is it true that for every Dirichlet series in H∞ we have
∑

n
|an|
n

1
2
<∞?

Extending the work of Konyagin and Queffélec from [20] (see also [27]) Balasubramanian,
Calado and Queffélec in [1, Theorem 1.1] gave a positive answer to this question. But they
prove a lot more: there is a constant C > 0 such that for every

∑
ann

−s ∈ H∞

(1.1)
∞∑
n=1

|an|
eC
√

logn log logn

n
1
2

<∞.

Moreover, Defant, Frerick, Ortega Cerdà, Ounäıes and Seip showed in [10] that the supremum
of the set of all such real numbers numbers C equals 1√

2
. This adds a level of precision that

enables us to extract much more precise information about the coefficients of a Dirichlet series
than what is obtained from the classical solution of the Bohr-Bohnenblust-Hille Theorem.
Closely related to this, Maurizi and Queffélec observed in [25, Theorem 2.4] that the maximal
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2 A. DEFANT, U. SCHWARTING, AND P. SEVILLA-PERIS

width S of Bohr’s strip equals the infimum of all σ ≥ 0 for which there exists a constant
C > 0 such that for all N and all a1, . . . , aN ∈ C we have

(1.2)
N∑
n=1

|an| ≤ CNσ sup
t∈R

∣∣∣ N∑
n=1

ann
−it
∣∣∣.

This motivates the following definition. Given a natural number N , let QN be the best
constant D ≥ 1 such that for each choice of a1, . . . , aN in C

(1.3)

N∑
n=1

|an| ≤ D sup
t∈R

∣∣∣ N∑
n=1

ann
−it
∣∣∣.

The following result gives the asymptotically optimal upper and lower bound for QN , and
it marks the endpoint of a long development started by Queffélec [27] in the mid nineties,
continued by Konyagin and Queffélec [20, Theorem 4.3] in 2002 and by de la Bretèche [9,
Théorèm 1.1] in 2008. The final result was proved in [10, Theorem 3]:

(1.4) QN =

√
N

e
( 1√

2
+o(1))

√
logN log logN

.

A key ingredient of the solution given by Bohnenblust and Hille to Bohr’s problem was to
consider M -homogeneous Dirichlet series

∑
n ann

−s, series for which an = 0 for all indices n
which do not have exactly M prime divisors according to their multiplicity. More precisely, if

n = p
α1(n)
1 · · · pαr(n)

r is the prime factorization of n and we write Ω(n) := α1(n) + . . .+ αr(n),
then an M -homogeneous Dirichlet series is of the form

∑
Ω(n)=M ann

−s. With this SM can be

defined in the same way as S, just taking the supremum over all M -homogeneous Dirichlet
series, and Bohnenblust and Hille showed that

SM =
1

2
− 1

2M
.

The M -homogeneous analog of (1.1) was proved in [1, Theorem 1.4]: for every Dirichlet series
in H∞M (the Banach space of all M -homogeneous Dirichlet series in H∞) we have

(1.5)

∞∑
n=1

Ω(n)=M

|an|
(log n)

M−1
2

n
M−1
2M

<∞ .

From this and a careful analysis of the proof of [25, Theorem 3.1] it follows that (up to
constants depending only on M)

(1.6) QMN ∼
N

M−1
2M

(logN)
M−1

2

;

clearly, QMN is here defined as above replacing arbitrary Dirichlet polynomials by M -homo-
geneous ones.

Let us turn to vector valued Dirichlet series
∑

n ann
−s, where the coefficients an are in some

Banach space X (and s still a complex variable). The study of the width of Bohr’s strips for
such objects was initiated in [11] and continued in [15]. Given a operator v : X → Y between
two Banach spaces we define the number

S(v) := sup (σa(vD)− σu(D)) ,
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where the supremum is taken over all Dirichlet series D in X. Here, given a Dirichlet series
D(s) =

∑
ann

−s in X, vD denotes the Dirichlet series
∑
vann

−s in Y . The number SM (v) for
M ∈ N is similarly defined considering only M -homogeneous instead of all Dirichlet series. If
v is the identity on X we write S(X) and SM (X). It turns out that for any finite dimensional
X we still have that S(X) = 1

2 and SM (X) = M−1
2M . But if X is infinite dimensional these

two numbers coincide and depend only on the optimal cotype of X. More precisely, the main
result from [11] shows that for any infinite dimensional Banach space X (see Section 2 for the
defintinion of cot(X))

(1.7) S(X) = SM (X) = 1− 1

cot(X)
.

For the scale of `p–spaces this gives

S(`p) = SM (`p) =

{
1
2 if 1 ≤ p ≤ 2

1− 1
p if 1 ≤ p ≤ ∞.

This means that in infinite dimensional Banach spaces Bohr’s strips do not distinguish be-
tween arbitrary and homogeneous Dirichlet series. In [15] this phenomenon was analysed for
operators on the `p–spaces. We have in [12, Corollary 5.7] and [15, Theorem 1.1] that for
1 ≤ p < q ≤ ∞

S(id : `p ↪→ `q) =

{
1
2 if p ≤ 2

1− 1
p if p ≥ 2 .

(1.8)

SM (id : `p ↪→ `q) =

{
M−2( 1

p
−max{ 1

q
, 1
2
})

2M if p ≤ 2

1− 1
p if p ≥ 2 .

(1.9)

Similarly, we know from [12, Corollary 5.9] and [14, Corollary 8.3] that for every operator
v : `1 → `q we have

(1.10) S(v) =
1

2
and SM (v) ≤


M−2(1−1/q)

2M if 1 ≤ q ≤ 2
2M(1−1/q)−1

2M if 2 ≤ q ≤ 2M
M−1

1
2 if 2M

M−1 ≤ q ≤ ∞ .

Our main focus of this article is to give quantified versions of these vector valued results
(1.7)–(1.10) similar to (1.4) and (1.6), and this will be done in terms of the following definition
(motivated by (1.2)).

Definition 1.1. Given N ∈ N and an operator v : X → Y between Banach spaces, define
QN (v) to be the best constant D ≥ 1 such that for each choice of a1, . . . , aN ∈ X we have

N∑
n=1

‖van‖Y ≤ D sup
t∈R

∥∥∥ N∑
n=1

ann
−it
∥∥∥
X
.

The M -homogeneous counterpart QMN (v) is defined by taking a1, . . . , aN ∈ X such that an = 0
whenever Ω(n) 6= M . If v is the identity on X, the notation we use is QN (X) and QMN (X).

Note first that the width S(v) and SM (v) can be rephrased in terms of these numbers.
A careful analysis of the proof of [25, Theorem 2.4] gives statement (1) in the following
proposition.
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Proposition 1.2.

(1) S(v) = inf {σ ≥ 0 | ∃Cσ∀N : QN (v) ≤ CσNσ}

(2) S(v) = lim sup
N→∞

logQN (v)

logN

The corresponding results for SM (v) also hold.

Proof. It remains to prove (2); take an s > lim sup logQN (v)
logN . Clearly, there is an N0 such that

logQN (v) ≤ logN s for every N ≥ N0. So there is a constant C such that QN (v) ≤ CN s for
every N , which implies that s ∈ {σ ≥ 0 | ∃Cσ∀N : QN (v) ≤ CσNσ}. Hence

lim sup
N→∞

logQN (v)

logN
≥ inf {σ ≥ 0 | ∃Cσ∀N : QN (v) ≤ CσNσ} = S(v).

On the other hand, we know from (1) that for every σ > S(v) there is a constant Cσ such
that QN (v) ≤ CσNσ for every N , which implies that

lim sup
N→∞

logQN (v)

logN
≤ lim sup

N→∞

(
logCσ
logN

+
σ logN

logN

)
= σ ,

which gives the conclusion. �

We have the following general upper and lower estimates.

Proposition 1.3.
√
N

e
( 1√

2
+o(1))

√
logN log logN

≤ QN (v) ≤ ‖v‖N.

Proof. The lower estimate is an immediate consequence of (1.4). The upper estimate follows
from Carlson’s equality (see [8] or [18, Lemma 3.2]): for every a1, . . . , aN ∈ C we have

N∑
n=1

|an|2 = lim
T→∞

1

2T

∫ T

−T

∣∣∣ N∑
n=1

ann
−it
∣∣∣2dt .

With this we get

N∑
n=1

‖van‖Y ≤ N‖v‖ max
1≤n≤N

‖an‖X = N‖v‖ max
1≤n≤N

sup
x′∈BX′

∣∣x′(an)
∣∣

≤ N‖v‖ sup
x′∈BX′

( N∑
n=1

∣∣x′(an)
∣∣2) 1

2
= N‖v‖ sup

x′∈BX′

(
lim
T→∞

1

2T

∫ T

−T

∣∣∣ N∑
n=1

x′(an)n−it
∣∣∣2dt) 1

2

≤ N‖v‖ sup
x′∈BX′

sup
t∈R

∣∣∣x′( N∑
n=1

ann
−it
)∣∣∣ = N‖v‖ sup

t∈R

∥∥∥ N∑
n=1

ann
−it
∥∥∥
X
.

�

It turns out that for more concrete operators the general estimate in Proposition 1.3 can be
improved considerably (see Theorems 3.1, 6.1 and 6.2).
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2. Preliminaries

By aN � bN we mean that there is a constant c > 0 such that aN ≤ cbN for every N ∈ N,
and whenever aN � bN and bN � aN , then we write aN ∼ bN . Moreover, aN � bN means
that aN ≤ cbN for some constant c and every N ; if aN � bN and bN � aN then we write

aN ∼ bN . We already indicated that if n = p
α1(n)
1 · · · pαr(n)

r is the prime factorization of n ∈ N,
then Ω(n) := α1(n) + . . .+ αr(n). As usual, π(n) denotes the number of primes p ≤. We use
standard notation and notions from Banach space theory, as presented e.g. in [23, 24]. All
Banach spaces X are assumed to be complex, their duals are denoted by X ′ and their open
unit balls by BX . The conjugate exponent p∗ for 1 ≤ p ≤ ∞ is as usual defined by 1 = 1

p + 1
p∗ .

A Banach lattice X is said to be q-concave, 1 ≤ q <∞, if there is a constant C > 0 such that
for every choice of finitely many x1, . . . , xN ∈ X we have( N∑

n=1

‖xn‖q
) 1
q ≤ C

∥∥∥( N∑
n=1

|xn|q
) 1
q
∥∥∥; .

The best such C is as usual denoted by Mp(X).
A function P : X → Y between two Banach spaces is said to be a (continuous)M -homogeneous
polynomial if there is a (continuous) M -linear mapping A : X×. . .×X → Y such that P (x) =
A(x, . . . , x) for all x ∈ X. We denote by P(MX,Y ) the vector space of all M -homogeneous
continuous polynomials P : X → Y which together with the norm ‖P‖ = supx∈BX ‖P (x)‖Y
forms a Banach space.
An operator v : X → Y is (p, q)-summing, 1 ≤ p, q < ∞, if there is a constant C > 0 such
that for each choice of finitely many x1, . . . , xN ∈ X we have( N∑

n=1

‖vxn‖p
)1/p

≤ C sup
x′∈BX′

( N∑
n=1

∣∣x′(xn)
∣∣q ) 1

q
;

for the best such C we write πp,q(v).
A Banach space X is said to have cotype q, where 2 ≤ q ≤ ∞, if there exists a constant C > 0
such that for every choice of finitely many vectors x1, . . . , xN ∈ X we have( N∑

n=1

‖xn‖q
)1/q

≤ C
(∫ 1

0

∥∥∥ N∑
n=1

rn(t)xn

∥∥∥2
dt
)1/2

,

where rn stands for the nth Rademacher function on [0, 1]; the best such C is denoted by
Cq(X). We write cot(X) := inf {2 ≤ q ≤ ∞|X has cotype q}. Note that every Banach space
has cotype ∞. In particular, it is well known that

(2.1) cot(`p) =

{
2 p ≤ 2

p p > 2.

We finish this section by defining for each N and M the index sets

M(M,N) = {(i1, . . . , iM ) | 1 ≤ ik ≤ N for each k} = {1, . . . , N}M

J (M,N) = {i ∈M(M,N) | i1 ≤ . . . ≤ iM}
Λ(M,N) =

{
α ∈ NN0 | |α| = M

}
There is a one-to-one correspondence between Λ(M,N) and J (M,N): for each α ∈ Λ(M,N)
the associated index jα ∈ J (M,N) is given by jα = (1, α1. . ., 1, 2, α2. . ., 2, . . . , N, αN. . ., N) and
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on the other hand for j ∈ J (M,N) the associated multi-index jα ∈ Λ(M,N) is given by
jαr = |{k | jk = r}|. We define the following equivalence relation in M(M,N): i ∼ j if there

is a permutation σ such that iσ(k) = jk for all 1 ≤ k ≤ M , then M(M,N) =
⋃̇

j∈J (M,N)[j].

Note that card[jα] = M !
α! for every α ∈ Λ(M,N).

Our proofs involve techniques of complex analysis, number theory, local Banach space theory
and probability theory. One crucial ingredient is the following ingenious idea of Harald Bohr
relating the theory of Dirichlet series with infinite dimensional holomorphy. This fact was
rediscovered and systematised by Hedenmalm, Linqvist and Seip [18]: the mapping

B : H∞(Bc0) −−−−−−−−−→ H∞∑
α cαz

α cα=apα−−−−−→
∑

n ann
−s

defines an isometric isomorphism. Here H∞(Bc0) denotes the Banach space of all bounded,
holomorphic (i.e. complex Fréchet differentiable) functions on the open unit ball Bc0 of c0.
In the vector valued case, using the Hahn-Banach theorem we have that H∞(Bc0 , X) and
H∞(X) (both spaces defined in the obvious way) are isometrically isomorphic; in particular
for every finite choice of a1, . . . , aN ∈ X we have

(2.2) sup
t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥
X

= sup
z∈DN

∥∥∥ N∑
n=1

anz
α1(n)
1 · · · zαr(n)

r

∥∥∥
X
.

Our aim is to give estimates of QN (v) and QMN (v) for certain concrete operators. We will
obtain general upper and lower estimates involving (r, 1)-summing operators. Then the es-
timates for concrete operators between `p spaces (Theorems 6.1 and 6.2) will follow from
these general estimates (Theorems 4.1 and 4.2), together with the following two well-known
Grothendieck-type inequalities:

• Bennett-Carl inequalities [3, 7]: for 1 ≤ p ≤ q ≤ ∞ the embedding id : `p ↪→ `q, is
(r, 1)-summing with 1

r = 1
2 + 1

p−max{1
q ,

1
2}. A forerunner of this result is Littlewood’s

4
3 -inequality stating that id : `1 ↪→ ` 4

3
is (4

3 , 1)-summing.

• Kwapień’s theorem [21]: every linear operator v : `1 → `q is (r, 1)-summing for
1
r = 1− |1q −

1
2 |. The case q = 2 is Grothendieck’s theorem.

In both results the corresponding r is known to be optimal.

3. Estimates for identity operators

In view of Proposition 1.2, our first result is a quantified version of (1.7).

Theorem 3.1. Let X be a Banach space. Then with constants depending only on X we have

QN (X) =

√
N

e
( 1√

2
+o(1))

√
logN log logN

(3.1)

QMN (X) ∼ N
M−1
2M

(logN)
M−1

2

(3.2)
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provided X is finite dimensional. Whereas if X is infinite dimensional, then (with constants
depending on X and and ε)

N
1− 1

cot(X) � QN (X) � N
1− 1

cot(X)+ε(3.3) ( N

logN

)1− 1
cot(X) � QMN (X) � N

1− 1
cot(X)+ε .(3.4)

Proof. We suppose first that X is finite dimensional; then the identity idX is absolutely
(1, 1)-summing. Hence for every choice of a1, . . . , aN ∈ X we have

N∑
n=1

‖an‖ ≤ π1,1(idX) sup
x′∈BX′

N∑
n=1

|x′(an)| ≤ π1,1(idX) sup
x′∈BX′

QN sup
t∈R

∣∣∣ N∑
n=1

x′(an)n−it
∣∣∣

= π1,1(idX)QN sup
t∈R

sup
x′∈BX′

∣∣∣x′( N∑
n=1

ann
−it
)∣∣∣ = π1,1(idX)QN sup

t∈R

∥∥∥ N∑
n=1

ann
−it
∥∥∥ .

This gives the upper estimate in (3.1). The proof for (3.2) follows the same lines. The lower
estimates both in (3.1) and (3.2) follow from the finite dimensional case (1.4). Let us assume
now that X is infinite dimensional and let us give the upper estimate in (3.3). We know from
(1.7) and Proposition 1.2 that

1− 1

cot(X)
= S(X) = inf {σ ≥ 0 | ∃Cσ∀N : QN (X) ≤ CσNσ} .

Hence for every q > cot(X) there is a constant Cq such that for all N

QN (X) ≤ CqN1− 1
q .

This completes the proof of the upper bound; the M -homogeneous case follows in the same
way.
Finally, given X let us take r < cot(X). By [16, Theorem 14.5] for every 0 < ε < 1 and for
every N there are x1, . . . , xN ∈ X so that for every z ∈ CN

(3.5)
1

1 + ε
‖z‖∞ ≤

∥∥∥ N∑
n=1

znxn

∥∥∥
X
≤ ‖z‖r .

In particular, taking z = en we have 1
1+ε ≤ ‖xn‖. Then we have

N

1 + ε
≤

N∑
n=1

‖xn‖ ≤ QN (X) sup
t∈R

∥∥∥ N∑
n=1

xnn
it
∥∥∥

≤ QN (X) sup
z∈DN

∥∥∥ N∑
n=1

xnzn

∥∥∥ ≤ QN (X) sup
z∈DN

‖z‖r = QN (X)N
1
r .

This implies N1− 1
r

1+ε ≤ QN (X) for every 0 < ε < 1, hence N1− 1
r ≤ QN (X). Since this holds

for every r < cot(X) we get the lower estimate in (3.3). For (3.4) let us define apn = xn for
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n = 1, . . . , N (and 0 otherwise) and consider the Dirichlet series
∑
akk
−s. We have by (2.2)

N

1 + ε
≤

N∑
n=1

‖apn‖ ≤ Q1
pN

(X) sup
t∈R

∥∥∥ N∑
n=1

apnp
it
n

∥∥∥
= Q1

pN
(X) sup

z∈DN

∥∥∥ N∑
n=1

xnzn

∥∥∥ ≤ Q1
pN

(X) sup
z∈DN

‖z‖q = Q1
pN

(X)N
1
q .

Proceeding as before and by the Prime Number Theorem we have( N

logN

)1− 1
q � Q1

N (X) ≤ QMN (X) ,

as desired. �

Remark 1. For `p–spaces with 2 ≤ p ≤ ∞ we can improve the upper estimate given in (3.3)

getting QN (`p) ≤ N1− 1
p . Indeed, the case p =∞ is shown in Proposition 1.3. For 2 ≤ p <∞

we have( N∑
n=1

‖an‖p
) 1
p

=

( ∞∑
l=1

N∑
n=1

|an(l)|p
) 1
p

≤

( ∞∑
l=1

( N∑
n=1

|an(l)|2
) p

2

) 1
p

=

( ∞∑
l=1

lim
T→∞

(
1

2T

∫ T

−T

∣∣∣ N∑
n=1

an(l)nit
∣∣∣2dt) p

2

) 1
p

,

Now, for each fixed L we have, using Minkowski’s inequality(
L∑
l=1

lim
T→∞

(
1

2T

∫ T

−T

∣∣∣ N∑
n=1

an(l)nit
∣∣∣2dt) p

2

) 1
p

= lim
T→∞

(
L∑
l=1

(
1

2T

∫ T

−T

∣∣∣ N∑
n=1

an(l)nit
∣∣∣2dt) p

2

) 1
p

≤ lim
T→∞

(
1

2T

∫ T

−T

( L∑
l=1

∣∣∣ N∑
n=1

an(l)nit
∣∣∣p) 2

p

dt

) 1
2

≤

(
lim
T→∞

1

2T

∫ T

−T

∥∥∥ N∑
n=1

ann
it
∥∥∥2

p
dt

) 1
2

≤ sup
t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥
p
.

Since this holds for every L we have, by Hölder’s inequality,

N∑
n=1

‖an‖p ≤ N1− 1
p

(
N∑
n=1

‖an‖p
) 1

p

≤ N1− 1
p sup
t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥
p
.

4. Upper estimates

For our first upper estimate we follow the proof of Konyagin and Queffélec [20] as presented
by de la Bretèche in [9] for the scalar case together with its improvement of Defant, Frerick,
Ortega-Cerdà, Ounäıes, and Seip in [10]. The crucial point there is the so called hypercon-
tractivity of the polynomial Bohnenblust-Hille inequality. We will use a vector valued variant
of this inequality [13, Theorem 5.3].
Note that, although the setting here is quite general, when v = idC then q = 2 and r = 1, we
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recover the scalar result (1.4).

Theorem 4.1. Let Y be a q-concave Banach lattice with 2 ≤ q < ∞ and v : X → Y an
(r, 1)-summing operator with 1 ≤ r < q. Then

QN (v) ≤ N
1− 1

q

e

(
2
q−1
q

√
1
r−

1
q+o(1)

)√
logN log logN

Proof. For any natural n let P+(n) be the largest prime factor of n and P−(n) the smallest
prime factor of n, with the convention P+(1) = P−(1) = 1. For M,N ∈ N and y ≤ N define
the following sets

S(N, y) :=
{
n ≤ N | P+(n) ≤ y

}
T (N, y) :=

{
n ≤ N | P−(n) > y

}
TM (N, y) := {n ∈ T (N, y) | Ω(n) = M} .

By [9, Lemme 2.3] there is an absolute constant D > 0 such that for any M,N, y

|TM (N, y)| � N

yM
(logN)y−1 eDy .(4.1)

Note that for any y ≤ N each n ∈ {1, . . . , N} can be uniquely decomposed as

(4.2) n = kl, where k ∈ S(N, y) and l ∈ T (Nk , y).

Given a Dirichlet polynomial D =
∑N

n=1 ann
−s in X, let P = B−1(D) be the associated

polynomial P (z) =
∑N

n=1 anz
α1(n)
1 · · · zαd(n)

d with d = π(N) (the cardinality of all primes
≤ N). With the decomposition from (4.2) we have

P (z) =

N∑
n=1

anz
α1(n)
1 · · · zαd(n)

d =
∑

k∈S(N,y)

z
α1(k)
1 · · · zαs(k)

s

∑
l∈T (N

k
,y)

aklz
αs+1(l)
s+1 · · · zαd(l)

d ,

where s = π(y). For k ∈ S(N, y) define

Pk(zs+1, . . . , zd) =
∑

l∈T (N
k
,y)

aklz
αs+1(l)
s+1 · · · zαd(l)

d ,

and denote by P
(M)
k the M -homogeneous part of Pk. Following [20], an easy calculation shows

that

Pk(z) =
1

(2π)s

∫ 2π

0
. . .

∫ 2π

0
P (eit1 , . . . , eits , z)e−i(α1(k)t1+...+αs(k)ts)dt1 . . . dts .

This and Cauchy’s inequalities give

(4.3) ‖P (M)
k ‖ ≤ ‖Pk‖ ≤ ‖P‖ .

We have
N∑
n=1

‖van‖Y =
∑

k∈S(N,y)

∑
M≥1

∑
l∈TM (N

k
,y)

‖vakl‖ ≤ |S(N, k)| sup
k∈S(N,y)

∑
M≥1

∑
l∈TM (N

k
,y)

‖vakl‖Y .
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Using Hölder’s inequality with ρM = qrM
q+(M−1)r and ρ∗M = qM

(q−1)M− q
r

+1
we get

∑
l∈TM (N

k
,y)

‖vakl‖Y ≤
( ∑
l∈TM (N

k
,y)

‖vakl‖ρMY
) 1
ρM |TM (N, y)|

1
ρM∗ .

By [13, Theorem 5.3] there is an absolute constant C > 0 such that

( ∑
l∈TM (N

k
,y)

‖vakl‖ρMY
) 1
ρM ≤ CM‖P (M)

k ‖ .

Then (4.3), (2.2) and (4.1) give

∑
l∈TM (N

k
,y)

‖vakl‖Y ≤ C
M‖P‖ |TM (N, y)|

1
ρM∗

� CM sup
t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥( N

yM
(logN)y−1 eDy

) q−1
q
− 1
M

( 1
r
− 1
q

)

≤ N
q−1
q eh

q,r
N,y(M) sup

t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥,

where

hq,rN,y(x) := x logC − (1
r −

1
q ) 1
x logN − q−1

q x log y

+ (1
r −

1
q ) log y + q−1

q (y − 1) log logN + q−1
q Dy .

This holds for every y ≤ N ; we take y =
√

logN
log logN and by differentiating and maximizing we

have that, for N big enough

hr,qN,y(M) ≤
(
−
√

2 q−1
q (1

r −
1
q ) + o(1)

)√
logN log logN

for every M . Then

∑
l∈TM (

N
k ,y)

‖vakl‖Y � N
q−1
q sup

t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥e
(
−
√

2
q−1
q (

1
r−

1
q )+o(1)

)
√

logN log logN

.

On the other hand as in [9] we use that
∣∣∣S(N,

√
logN

log logN )
∣∣∣ ≤ eµ √logN

log logN for some µ > 0. Since N

has at most logN
log 2 prime factors, we have that TM (Nk , y) = ∅ for each M > logN

log 2 . Summarizing
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we finally have

N∑
n=1

‖van‖Y �
∣∣∣∣S(N,

√
logN

log logN
)

∣∣∣∣ sup
k∈S(N,y)

∑
M≥1

∑
l∈TM (

N
k ,y)

‖vakl‖Y

≤ N
q−1
q sup

t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥eµ √logN

log logN
+log logN

log 2
+
(
−
√

2
q−1
q (

1
r−

1
q )+o(1)

)√
logN log logN

= N
q−1
q sup

t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥e
(
−
√

2
q−1
q (

1
r−

1
q )+o(1)

)
√

logN log logN

�

We now present a general upper estimate for the M -homogeneous case.

Theorem 4.2. Let Y be a q-concave Banach lattice with 2 ≤ q < ∞ and v : X → Y an
(r, 1)-summing operator with 1 ≤ r < q. Then for every 0 < λ < q−1

q (M − 1) there is D > 0

such that for every N and every M -homogeneous Dirichlet series
∑
ann

−s

N∑
n=1

‖van‖Y
(log n)λ

n
(q−1)M−q( 1

r−
1
q )

qM

≤ D sup
t∈R

∥∥∥ N∑
n=1

ann
−it
∥∥∥
X
.

For the proof we need the following Lemma.

Lemma 4.3. With the assumptions of Theorem 4.2, for every N and every M -homogeneous
polynomial P ∈ P(M`N∞, X), P (z) =

∑
bj1...jM zj1 · · · zjM we have(

N∑
jM=1

( ∑
j1,...,jM−1:
j1≤...≤jM

‖vbj1...jM ‖
q
Y

) r
q

) 1
r

≤ C sup
z∈B

`N∞

∥∥∥ ∑
j∈J (M,N)

bj1...jM zj1 · · · zjM
∥∥∥ ,

where C = MMq(Y )
√

2
M−1

πr,1(v)
(

1 + 1
M−1

)M−1
.

Proof. Let P ∈ P(M`N∞, X) be an M -homogeneous polynomial, and A its associated sym-
metric M -linear mapping such that P (z) = A(z, . . . , z). It is well know that the monomial
coefficients bj1...jM of P and the coefficients ai1...iM := A(ei1 , . . . , eiM ) defining A are related
in the following way

bj1...jM = card[j]aj1...jM .

On the other hand, for each j = (j1, . . . , jM−1) ∈ J (M − 1, N) and 1 ≤ iM ≤ N we write
j, iM = (j1, . . . , jM−1, iM ) and have

card[j, iM ]

card[j]
=

M !

(M − 1)!
· |{k | jk = 1}|!
|{k | (j, iM )k = 1}|!

· · · |{k | jk = N}|!
|{k | (j, iM )k = N}|!

≤M.



12 A. DEFANT, U. SCHWARTING, AND P. SEVILLA-PERIS

With this, using the fact that Y is q-concave, we get

(
N∑

jM=1

( ∑
j1,...,jM−1:
j1≤...≤jM

‖vbj1...jM ‖
q
Y

) r
q

) 1
r

=

(
N∑

iM=1

( ∑
j1,...,jM−1:
j1≤...≤iM

‖ card[j, iM ]vaj,iM ‖
q
Y

) r
q

) 1
r

≤

(
N∑

iM=1

( ∑
j∈J (M−1,N)

‖ card[j, iM ]vaj,iM )‖
q
Y

) r
q

) 1
r

≤M

(
N∑

iM=1

( ∑
j∈J (M−1,N)

‖ card[j]vaj,iM )‖
q
Y

) r
q

) 1
r

≤MMq(Y )

(
N∑

iM=1

∥∥∥∥∥
( ∑

j∈J (M−1,N)

| card[j]vaj,iM (l)|q
) 1
q

∥∥∥∥∥
r

Y

) 1
r

≤MMq(Y )

(
N∑

iM=1

∥∥∥∥∥
( ∑

j∈J (M−1,N)

| card[j]vaj,iM (l)|2
) 1

2

∥∥∥∥∥
r

Y

) 1
r

.

Let now µN denote the normalized Lebesgue measure on TN . By [2, Theorem 9] (see also [10,
Lemma 2]) for every P ∈ P(M`N∞,C), P (z) =

∑
α∈Λ(M,N) cαz

α we have

( ∑
α∈Λ(M,N)

|cα|2
) 1

2

≤
√

2
M
∫
TN

∣∣∣∣ ∑
α∈Λ(M,N)

cαz
α

∣∣∣∣dµN (z).

Applying Krivine’s calculus (as presented e.g. in [24, pp. 40-42]), this inequality also holds
in Banach lattices. Hence by Minkowski’s integral inequality,

(
N∑

iM=1

∥∥∥∥∥
( ∑

j∈J (M−1,N)

| card[j]vaj,iM (l)|2
) 1

2

∥∥∥∥∥
r

Y

) 1
r

≤
√

2
M−1

(
N∑

iM=1

∥∥∥∥∥
∫
TN

∣∣∣∣ ∑
j∈J (M−1,N)

card[j]vaj,iM (l)zj1 · · · zjM−1

∣∣∣∣dµN (z)

∥∥∥∥∥
r

Y

) 1
r

≤
√

2
M−1

∫
TN

(
N∑

iM=1

∥∥∥∥ ∑
j∈J (M−1,N)

card[j]vaj,iM zj1 · · · zjM−1

∥∥∥∥r
Y

) 1
r

dµN (z)

=
√

2
M−1

∫
TN

(
N∑

iM=1

∥∥∥∥ ∑
j∈M(M−1,N)

vaj,iM zj1 · · · zjM−1

∥∥∥∥r
Y

) 1
r

dµN (z).
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Finally we bound the integrand. We first apply that v is (r, 1)-summing and in the final
step [17, Theorem 1](

N∑
iM=1

∥∥∥∥ ∑
j∈M(M−1,N)

vaj,iM zj1 · · · zjM−1

∥∥∥∥r
Y

) 1
r

≤ πr,1(v) sup
x′∈BX′

N∑
iM=1

∣∣∣∣x′( ∑
j∈M(M−1,N)

aj,iM zj1 · · · zjM−1

)∣∣∣∣
= πr,1(v) sup

x′∈BX′
sup

y∈B
`N∞

∣∣∣∣ N∑
iM=1

x′
( ∑

j∈M(M−1,N)

aj,iM zj1 · · · zjM−1yiM

)∣∣∣∣
= πr,1(v) sup

x′∈BX′
sup

y∈B
`N∞

∣∣x′ (A(z, . . . , z, y))
∣∣

≤ πr,1(v)

(
1 +

1

M − 1

)M−1

sup
x′∈BX′

∥∥x′ ◦ P∥∥∞ = πr,1(v)

(
1 +

1

M − 1

)M−1

‖P‖∞ .

This gives the conclusion. �

Proof of Theorem 4.2. In order to keep the notation as simple as possible we define

ωM :=
(q − 1)M − q

(
1
r −

1
q

)
qM

.

Given N and an M -homogeneous Dirichlet series
∑
ann

−s, we define the M -homogeneous
polynomial

P : `N∞ → X, P (z) =
∑

j∈J (M,N)

bjzj1 · · · zjM ,

where

bj = bj1...jM :=

{
apj1 ···pjM if pj1 · · · pjM ≤ N.
0 else.

We begin by splitting the sum and then bounding it using Hölder’s inequality with q and q∗:

N∑
n=1

‖van‖Y
nωM

(log n)λ =
∑

j∈J (M,N)

‖vbj‖Y
(pj1 · · · pjM )ωM

(log pj1 · · · pjM )λ

≤
N∑

jM=1

(M log pjM )λ

pjM
ωM

∑
j1,...,jM−1
j1≤...≤jM

‖vbj‖Y(
pj1 · · · pjM−1

)ωM
≤Mλ

N∑
jM=1

(log pjM )λ

pjM
ωM

( ∑
j1,...,jM−1:
j1≤...≤jM

‖vbj‖qY

) 1
q
( ∑
j1,...,jM−1:
j1≤...≤jM

(
pj1 · · · pjM−1

)−q∗ωM) 1
q∗

≤Mλ
N∑

jM=1

(log pjM )λ

pjM
ωM

( ∑
j1,...,jM−1:
j1≤...≤jM

‖vbj‖qY

) 1
q
(∑
j≤jM

pj
−q∗ωM

)M−1
q∗

.
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Using the fact that for 0 < α < 1 ∑
p≤x

p−α x→∞
∼

x1−α

log x

(see e.g. [26, Satz 4.2, p.22] we get(∑
j≤jM

pj
−q∗ωM

)M−1
q∗

�
(
pjM

1−q∗ωM

log pjM

)M−1
q∗

.

Using this and again Hölder’s inequality (with r and r∗) we finally obtain the following bound:

N∑
n=1

‖van‖Y
nωM

(log n)λ �Mλ
N∑

jM=1

(log pjM )
λ−M−1

q∗

pjM
r−1
r

( ∑
j1,...,jM−1
j1≤...≤jM

‖vbj‖qY

) 1
q

≤Mλ

(
N∑

jM=1

(log pjM )
r∗
(
λ−M−1

q∗

)
pjM

) 1
r∗
(

N∑
jM=1

( ∑
j1,...,jM−1
j1≤...≤jM

‖vbj‖qY

) r
q

) 1
r

.

The left factor in the upper product converges for all λ < M−1
q∗ = q−1

q (M − 1) since, by the

prime number theorem, we have(
N∑

jM=1

(log pjM )
r∗
(
λ−M−1

q∗

)
pjM

) 1
r∗

�

(
N∑
n=1

(log(n log n))
r∗
(
λ−M−1

q∗

)
n log n

) 1
r∗

.

For the right factor Lemma 4.3 and (2.2) finally give(
N∑

jM=1

( ∑
j1,...,jM−1
j1≤...≤jM

‖vbj‖qY

) r
q

) 1
r

� sup
z∈B

`N∞

∥∥∥ ∑
j∈J (M,N)

bjzj1 · · · zjM
∥∥∥
X

= sup
t∈R

∥∥∥ N∑
n=1

ann
−it
∥∥∥
X
,

and this gives the conclusion. �

5. Lower estimates

Getting lower estimates requires to find M -homogeneous Dirichlet series satisfying certain
properties. We find them following the ideas of Maurizi and Queffélec in the scalar case
(see [25, Theorem 3.1]). In one case (Theorem 5.1) we use probabilistic techniques, whereas
in the other case (Theorem 5.4) we give a deterministic way through Schur matrices.

Theorem 5.1. Fix 1 ≤ p ≤ 2 and M,K ∈ N. Then for every N there exists an M -
homogeneous Dirichlet polynomial

∑N
n=1 cnn

−s in `Kp such that for every p < q we have (with
constants not depending on N)

(5.1)

N∑
n=1

‖cn‖q ∼ K
1
q

N

(logN)M

and

(5.2) sup
t∈R

∥∥∥ N∑
n=1

cnn
−it
∥∥∥
p
� N

1
2

(logN)
M
2

K
1
p .
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For the proof we need first two lemmas.

Lemma 5.2. Given M there exists a constant C > 0 such that for every finite I ⊂ {n ∈ N |
Ω(n) = M} and every choice of scalars (an)n∈I ⊂ C we have∫ ∥∥∥∑

n∈I
angn(ω)z

α1(n)
1 · · · zαr(n)

r

∥∥∥
P(M `r∞,C)

dω

≤ C

[
max
n∈I
|an|

√
1 + log card I +

(∑
n∈I
|an|2

) 1
2
√
r logM

]
,

where gn for n ∈ I are independent Gaussian random variables and r = max{π(n) | n ∈ I}.

Proof. We choose independent Gaussian random variables (gn)n∈I and consider for each ω
the M -homogeneous polynomial

Pω(z) =
∑
n∈I

angn(ω)z
α1(n)
1 · · · zαr(n)

r .

Then [19, Chapter 6, Theorem 3] implies that there is a constant C1 > 0 such that

(5.3) P

(
‖Pω‖∞ ≥ C1

(∑
n∈I
|an|2

) 1
2
√
r logM

)
≤ 1

M2er
.

Moreover, by [22, Proposition 6.8] we have∫
‖Pω‖∞dω ≤ 6

∫
max
n∈I

∥∥∥angn(ω)z
α1(n)
1 · · · zαr(n)

r

∥∥∥
∞
dω + 6t0 ,

where

t0 = inf

{
t > 0 | P (‖Pω‖∞ > t) ≤ 1

8, 3

}
.

Now, (5.3) and the fact thatM2er ≥ 8, 3 forM, r ≥ 2, give that t0 ≤ C2(
∑N

n=1 |an|2)
1
2
√
r logM

for some C2 > 0. On the other hand,∫
max
n∈I

∥∥∥angn(ω)z
α1(n)
1 · · · zαr(n)

r

∥∥∥
∞

=

∫
max
n∈I
|angn(ω)| sup

z∈B`r∞
|zα1(n)

1 · · · zαr(n)
r |dω

≤ max
n∈I
|an|

∫
max
n∈I
|gn(ω)|dω �

(
max
n∈I
|an|

)√
1 + log card I ,

where the last inequality follows from [28, Proposition 45.1]. This completes the proof. �

Lemma 5.3. Given M ∈ N there exists a constant C > 0 such that for every 1 ≤ p ≤ 2,
every K ∈ N, every finite I ⊂ {n ∈ N | Ω(n) = M} and every choice of scalars (an)n∈I in C
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we have

∫ ∥∥∥∑
n∈I

an

( K∑
k=1

εkn(ω)ek

)
z
α1(n)
1 · · · zαr(n)

r

∥∥∥
P(M `r∞,`

K
p )
dω

≤ C

[(
max
n∈I
|an|

√
1 + log card I +

(∑
n∈I
|an|2

) 1
2
√
r logM

)
K

1
p
− 1

2

+ max
n∈I

(
|an|

√
α(n)!

M !

)
r
M
2 K

1
p

]
,

where (εnk)n,k is a family of Rademacher random variables and r = max{π(n) | n ∈ I}.

Proof. We choose independent Gaussian random variables gnk for n ∈ I and k = 1, . . . ,K. It
is a well known fact that the Rademacher averages are dominated by the Gaussian averages
(see [16, Proposition 12.11]):

∫ ∥∥∥∑
n∈I

an

( K∑
k=1

εkn(ω)ek

)
z
α1(n)
1 · · · zαr(n)

r

∥∥∥
PM (`r∞,`

K
p )
dω

�
∫ ∥∥∥∑

n∈I
an

( K∑
k=1

gkn(ω)ek

)
z
α1(n)
1 · · · zαr(n)

r

∥∥∥
PM (`r∞,`

K
p )
dω

=

∫ ∥∥∥ ∑
n∈I

1≤k≤K

gkn(ω)
(
anz

α1(n)
1 · · · zαr(n)

r ⊗ ek
)∥∥∥
P(M `r∞)⊗ε`Kp

dω.

By Chevet’s inequality [28, Corollary 3.2] we have

∫ ∥∥∥ ∑
n∈I

1≤k≤K

gkn(ω)(anz
α1(n)
1 · · · zαr(n)

r ⊗ ek)
∥∥∥
P(M `r∞)⊗ε`Kp

dω

�
[

sup
y′∈P(M `r∞)′

‖y′‖≤1

(∑
n∈I
|y′(anzα1(n)

1 · · · zαr(n)
r )|2

) 1
2

∫ ∥∥∥ K∑
k=1

gk(ω)ek

∥∥∥
`Kp
dω

+ sup
y′∈B

`Kp
′

( K∑
k=1

|y′(ek)|2
) 1

2

∫ ∥∥∥∑
n∈I

gn(ω)z
α1(n)
1 · · · zαr(n)

r

∥∥∥
P(M `r∞)

dω
]

Note that for 1 ≤ p ≤ 2

sup
y′∈B

`Kp
′

( K∑
k=1

|y′(ek)|2
) 1

2
= sup

x∈B
`K
p′

( K∑
k=1

|xk|2
) 1

2
= ‖ id : `Kp′ → `K2 ‖ = K

1
p
− 1

2 ,
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and from the proof of [15, Lemma 4.2] we know that

sup
y′∈P(M `r∞)′

‖y′‖≤1

(∑
n∈I
|y′(anzα(n))|2

) 1
2 ≤ sup

n∈I

(
|an|

√
α(n)!

M !

)
‖id : `r∞ → `r2‖

M

= sup
n∈I

(
|an|

√
α(n)!

M !

)
r
M
2 .

Moreover, by [28, Proposition 45.1]∫ ∥∥∥ K∑
k=1

gk(ω)ek

∥∥∥
`Kp
dω � K

1
p .

Finally, Lemma 5.2 gives the conclusion. �

Proof of Theorem 5.1. We fix N and M and consider

r = π(N
1
M ) .

We define the set I = {n ∈ N | n = pi1 · · · piM , 1 ≤ i1 < i2 . . . < iM ≤ r}. Note that by the
definition of r for each n ∈ I we have n ≤ pMr ≤ N . Given K ∈ N and Rademacher random
variables (εnk)1≤n≤N

1≤k≤K
, we define the M -homogeneous Dirichlet polynomial Dω in `Kp by

Dω(s) =
N∑
n=1

cnn
−s :=

N∑
n=1

an

( K∑
k=1

εnk(ω)ek

)
n−s,

where

an =

{
1 if n ∈ I,
0 if n /∈ I.

Then we have

‖cn‖q =
( K∑
k=1

|anεnkek|q
) 1
q

= |an|K
1
q ,

and hence

N∑
n=1

‖cn‖q = K
1
q card I .

By the prime number theorem r = π(N
1
M ) ∼ N

1
M

logN , and hence card I =
(
r
M

)
∼ rM

M ! ∼
N

(logN)M
.

This gives (5.1).
We take now the M -homogeneous polynomial Pω = B−1(Dω). By Lemma 5.3 and (2.2) we
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have

∫
‖Dω‖∞dω =

∫
‖Pω‖∞dω

�
[(

max
n∈I
|an|

√
1 + log card I +

(∑
n∈I
|an|2

) 1
2
√
r logM

)
K

1
p
− 1

2

+ sup
n∈I

(
|an|

√
α(n)!

M !

)
r
M
2 K

1
p

]

Using again the estimate for card I and the fact that supα∈Λ(M,r)

√
α!
M ! ≤ 1 we easily get

that the second summand is the one that increases faster. This gives (5.2) and completes the
proof. �

Our second lower estimate will follow from the following result.

Theorem 5.4. Let 1 ≤ p ≤ 2. Then for each K there exists an M -homogeneous polynomial
P : `MK

∞ → `Kp , P (z) =
∑
|α|=M cαz

α, such that

(5.4)
∑

α∈Λ(M,MK)

‖cα‖2 = KM

and

(5.5) sup
z∈B

`MK∞

∥∥∥ ∑
α∈Λ(M,MK)

cαz
α
∥∥∥
p
≤ K

M
2

+ 1
p
− 1

2 .

Proof. Let (aij)i,j be a complex K ×K-matrix satisfying

K∑
k=1

aklākm = Kδlm and |alm| = 1 for all l,m ∈ N

(for example take aml = e
2πiml
K ). With this we define the M -homogeneous polynomial P :

`MK
∞ → `Kp by

P (z) =
∑

i∈M(M,MK)

a1iMaiM iM−1 · · · ai2i1zi1zK+i2 · · · z(M−1)K+iM eiM .
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Let us show that P satisfies (5.5). Indeed, if z ∈ B`MK
∞

, we have by the conditions of the

matrix (aij)i,j that

‖P (z)‖22 =
K∑

iM=1

∣∣∣ ∑
i∈M(M−1,K)

a1iMaiM iM−1 · · · ai2i1zi1 · · · z(M−1)K+iM

∣∣∣2
≤

K∑
iM=1

∣∣∣ ∑
i∈M(M−1,K)

aiM iM−1 · · · ai2i1zi1 · · · z(M−2)K+iM−1

∣∣∣2
=

K∑
iM=1

∑
i,j∈M(M−1,K)

aiM iM−1 āiM jM−1 · · · z(M−2)K+iM−1
z̄(M−2)K+jM−1

=

( ∑
i,j∈M(M−1,K)

aiM−1iM−2 ājM−1jM−2 · · · z(M−2)K+iM−1
z̄(M−2)K+jM−1

·
K∑

iM=1

aiM iM−1 āiM jM−1

)

=K
K∑

iM−1=1

|z(M−2)K+iM−1
|2
∣∣∣ ∑
i,j∈M(M−2,K)

aiM−1iM−2 · · · z(M−3)K+iM−2

∣∣∣2
≤K

K∑
iM−1=1

∣∣∣ ∑
i,j∈M(M−2,K)

aiM−1iM−2 · · · ai2i1zi1 · · · z(M−3)K+iM−2

∣∣∣2 .
Repeating this argument we finally end up in

‖P (z)‖22 ≤ KM−2
K∑
i2=1

∣∣∣ K∑
i1=1

ai2i1zi1

∣∣∣2 = KM−2
K∑

i1,j1=1

( K∑
i2=1

ai2i1 āi2j1

)
zi1 z̄j1

= KM−1
K∑
i1=1

|zi1 |2 ≤ KM .

Thus,

sup
z∈B

`KM∞

‖P (z)‖p ≤ ‖ id : `Kp ↪→ `K2 ‖ sup
z∈B

`KM∞

‖P (z)‖2 ≤ K
1
p
− 1

2K
M
2 .

On the other hand P satisfies (5.4) since∑
α∈Λ(M,MK)

‖cα‖2 =
∑

i∈M(M,K)

‖a1iMaiM iM−1 · · · ai2i1eiM ‖2

=
∑

i∈M(M,K)

( K∑
k=1

|a1iMaiM iM−1 · · · ai2i1eiM (k)|2
) 1

2

=
∑

i∈M(M,K)

1 = KM .

�
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6. Estimates for operators in `p spaces

We begin with an estimate of QN (v) when v is the inclusion from some `p to some other `q.
This gives a sort of quantified version of (1.8) and (1.9).

Theorem 6.1. Let 1 ≤ p < q ≤ ∞. Then with constants depending only on p, q we have:

(6.1) QN (id : `p ↪→ `q) ≤


√
N

e

(√
1
p
−max

{
1
2
, 1
q

}
+o(1)

)√
logN log logN

if 1 ≤ p < 2

N
1− 1

p if p ≥ 2.

For 1 ≤ p ≤ 2 and λ < M−1
2 we have

(6.2)
N

M−2( 1
p−max{ 1q ,

1
2 })

2M

(logN)
M−2( 1

p−max{ 1q ,
1
2 })

2

� QMN (id : `p ↪→ `q)�
N

M−2( 1
p−max{ 1q ,

1
2 })

2M

(logN)λ
,

and for 2 ≤ p < q <∞ and λ < q−1
q (M − 1)

(6.3) QMN (id : `p ↪→ `q)�
N

1− 1
p

(logN)λ
.

Proof. The estimate in (6.1) follows immediately from Theorem 4.1 and the Bennett-Carl
inequalities (see Section 2); indeed if 1 ≤ p < q ≤ 2, then `q has cotype 2 = 2-concave and
the inclusion `p ↪→ `q is (r, 1)-summing with 1

r = 1
2 + 1

p −
1
q . If 1 ≤ p < 2 ≤ q, we clearly

have that QN (`p ↪→ `q) ≤ QN (`p ↪→ `2) and hence this case follows from the preceding one.
Finally, for 2 ≤ p we have QN (`p ↪→ `q) ≤ QN (`p ↪→ `p) and the estimate is a consequence of
Remark 1.

The upper estimates in (6.2) and (6.3) follow easily from Theorem 4.2. For 1 ≤ p ≤ q ≤ 2
the space `q is 2–concave and the Bennett-Carl inequalities (see Section 2) imply that the
embedding `p ↪→ `q is (r, 1)-summing for 1

r = 1
2 + 1

p −
1
q . Then Theorem 4.2 implies that for

every M -homogeneous Dirichlet series
∑
ann

−s and λ < M−1
2 we have

N∑
n=1

‖an‖q ≤
N

M−2( 1
p−

1
q )

2M

(logN)λ

N∑
n=1

‖an‖q
(log n)λ

n
M−2( 1

p−
1
q )

2M

� N
M−2( 1

p−
1
q )

2M

(logN)λ
sup
t∈R

∥∥∥ N∑
n=1

ann
−it
∥∥∥
p
.

If q ≥ 2 we clearly have that QMN (`p ↪→ `q) ≤ QMN (`p ↪→ `2). The case 2 ≤ p follows in the
same way.

For the lower estimate in (6.2) let us first note that the case 1 ≤ p ≤ 2 < q follows
immediately from the case q = 2 since clearly QMN (id : `p ↪→ `2) ≤ QMN (id : `p ↪→ `q). We

choose K to be the biggest natural number smaller than π(N
1
M )

M and take the M -homogeneous
polynomial

∑
cαz

α from Theorem 5.4. Then for every α ∈ Λ(M,MK) we have that pα ≤
pMMK ≤ N . We define the M -homogeneous Dirichlet-polynomial

∑N
n=1 ann

−s by

apα =

{
cα if α ∈ Λ(M,MK)

0 else .
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Clearly,
N∑
n=1

‖an‖2 =
∑

α∈Λ(M,MK)

‖cα‖2 = KM ,

and by (2.2)

sup
t∈R

∥∥∥∥ N∑
n=1

ann
it

∥∥∥∥
p

= sup
z∈B

`MK∞

∥∥∥∥ ∑
α∈Λ(M,MK)

cαz
α

∥∥∥∥
p

≤ K
M
2

+ 1
p
− 1

2 .

Hence

QMN (id : `p ↪→ `2) ≥ K
M
2
−( 1

p
− 1

2
)

By the definition of K and the prime number theorem K � N
1
M

M log

(
N

1
M

) = N
1
M

logN , i.e.

QMN (id : `p ↪→ `2)�

(
N

1
M

logN

)M−2( 1p−
1
2 )

2

.

In this way we get a lower estimate for the case q = 2 using a deterministic argument. This
case follows also by a probabilistic argument, that is actually more reaching, since it also gives

the lower estimate for 1 ≤ p < q ≤ 2. Given N and M we take K = π(N
1
M ) in Theorem 5.1.

This gives

N
1+ 1

Mq

(logN)
M+ 1

q

� QMN (id : `q ↪→ `p)
N

1
2

+ 1
Mp

(logN)
M
2

+ 1
p

,

and this gives the conclusion. �

Finally, the quantified version of (1.10) is

Theorem 6.2. Given an v : `1 → `q, we have

(6.4) QN (v)�


√
N

e

(
1√
2

+o(1)
)√

logN log logN
for 1 < q ≤ 2

N
1
2

+ε for 2 ≤ q <∞

and

(6.5) QMN (v)�


N

1
2−

1
M

(1− 1
q )

(logN)λ
for 1 ≤ q ≤ 2 and 0 < λ < M−1

2

N
(1− 1

q )−
1

2M

(logN)λ
for 2 ≤ q ≤ 2M

M−1 and 0 < λ < q−1
q (M − 1)

N
1
2

+ε for 2M
M−1 < q <∞ .

Proof. Let us note first that for v : `1 → `q we can always do

N∑
n=1

‖van‖q ≤ ‖v‖
N∑
n=1

‖an‖1 ≤ ‖v‖QN (`1) sup
t∈R

∥∥∥ N∑
n=1

ann
it
∥∥∥

1
.

Then (3.3) gives that both QN (v) and QMN (v) are� N
1
2

+ε. If 1 ≤ q ≤ 2, then `q is 2-concave
and, by Kwapień’s theorem (see Section 2) every operator v : `1 → `q is (r, 1)-summing for
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1
r = 3

2 −
1
q . On the other hand `q for 2 ≤ q < ∞ is q-concave and every operator is (r, 1)-

summing for 1
r = 1

2 + 1
q . These facts, together with Theorem 4.1 and Theorem 4.2 give the

conclusion. Note that for 2M
M−1 < q <∞ we have (1− 1

q )− 1
2M > 1

2 . �

7. The width of the strips are attained

By the very definition of the number S(v) of an operator v : X → Y we have that for every
Dirchlet series in H∞(X),

∞∑
n=1

‖van‖Y
1

nS(v)+ε
<∞ .

The following vector valued analog of (1.1) (and also (1.5)) shows that in certain situations
this inequality even holds for ε = 0, and that we can even go a little bit further.

Proposition 7.1. Let Y be a q-concave Banach lattice, with 2 ≤ q <∞, and v : X → Y an
(r, 1)-summing operator with 1 ≤ r < q.

(1) For every D =
∑
ann

−s ∈ H∞(X) and every ε > 0,

∞∑
n=1

‖van‖Y
e

(2 q−1
q

√
1
r
− 1
q
−ε)
√

logn log logn

n
1− 1

q

<∞ .

(2) For every D =
∑
ann

−s ∈ H∞M (X) and every 0 < λ < q−1
q (M − 1)

∞∑
n=1

‖van‖Y
(log n)λ

n
(q−1)M−q( 1

r−
1
q )

qM

<∞ .

Proof. For the proof of (1) let us note first that combining [1, Theorem 1.1] with the Hahn-
Banach Theorem we have that there is a constant C > 0 such that for every Dirichlet series
in H∞(X) ∥∥∥ N∑

n=1

ann
−s
∥∥∥ ≤ C logN

∥∥∥ ∞∑
n=1

ann
−s
∥∥∥ .

Let τ := 2 q−1
q

√
1
r −

1
q . Since the sequence e(τ−ε)

√
logn log lognn

1
q
−1

is decreasing from some n0

on, we have, using Theorem 4.1,

∞∑
n=1

‖van‖Y
n
q−1
q

e(τ−ε)
√

logn log logn �
∞∑
k=0

e(τ−ε)
√

log 2k log log 2k

2
k q−1

q

2k+1∑
n=2k

‖van‖Y

�
∞∑
k=0

e(τ−ε)
√

log 2k log log 2k

e(τ+o(1))
√

log 2k+1 log log 2k+1
log 2k+1‖D‖∞ � ‖D‖∞

∞∑
k=0

k + 1

e
ε
2

√
k log k

<∞ .

On the other hand (2) follows from Theorem 4.1 proceeding as in [1, page 297]. �

Clearly this result applies to the embeddings id : `p ↪→ `q and for operators v : `1 → `q.
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