

Appl. Gen. Topol. 18, no. 1 (2017), 23-30 doi:10.4995/agt.2017.4092 © AGT, UPV, 2017

A note on unibasic spaces and transitive quasi-proximities

Adalberto García-Máynez a and Adolfo Pimienta Acosta b,*

^a Instituto de Matemáticas, Universidad Nacional Autónoma de México; Area de la Investigación Científica Circuito Exterior, Ciudad Universitaria Coyoacán, 04510. México, D. F.

(agmaynez@matem.unam.mx)

 ^b Departamento de Matemáticas, Universidad Autónoma Metropolitana, prolongación canal de miramontes #3855, Col. Ex-Hacienda San Juan de Dios, Delegación Tlalpan, C.P. 14387, México, D.F-México (pimienta@xanum.uam.mx)

Communicated by M. Sanchis

Abstract

In this paper we prove there is a bijection between the set of all annular bases of a topological spaces (X, τ) and the set of all transitive quasiproximities on X inducing τ . We establish some properties of those topological spaces (X, τ) which imply that τ is the only annular basis

2010 MSC: Primary 54E05; 54E15; 54D35; Secondary 05C50.

KEYWORDS: annular basis; entourage; semi-block; quasi-proximity; transitive quasi-proximity-uniformity; unibasic spaces.

1. INTRODUCTION

W. J. Pervin showed in [9] that every topological spaces (X, τ) has a quasiproximity δ which induces the original topology. In this paper we give conditions for a topological space (X, τ) admits a unique compatible quasi-proximity in which the topology is the only annular basis.

^{*}The second author was supported in part by Universidad de la Costa (CUC-www.cuc.edu.co) under grant of Department of Exact and Natural Sciences, address street 58 # 55-66, Barranquilla, Colombia.

By a quasi-proximity (see [1]) on a set X we will mean a relation δ between the family of subsets of X satisfying the following axioms:

- a) $(X, \emptyset) \notin \delta$ and $(\emptyset, X) \notin \delta$;
- b) $(C, A \cup B) \in \delta$ if only if $(C, A) \in \delta$ or $(C, B) \in \delta$;
- c) $(A \cup B, C) \in \delta$ if only if $(A, C) \in \delta$ or $(B, C) \in \delta$;
- d) For every $x \in X$, $(\{x\}, \{x\}) \in \delta$;
- e) If $(A,B) \notin \delta$, there exists a set $C \subseteq X$ such that $(A,C) \notin \delta$ and $(X \setminus C, B) \notin \delta$.

A quasi-proximity δ on X is a *proximity* on X if $\delta = \delta^{-1}$, i.e., $(A, B) \in \delta$ iff $(B, A) \in \delta$.

For brevity, we write $A\delta B$ instead of $(A, B) \in \delta$ and $A\overline{\delta}B$ instead of $(A, B) \notin \delta$.

Let δ be a quasi-proximity on a set X. For each $A \subseteq X$, define $A = \{x \in X : \{x\}\delta A\}$. Then the assignment $A \to \widetilde{A}$ is a *Kuratowski-closure operator* on X and the corresponding topology on X is denoted as τ_{δ} (see [1]), 1.27).

H.-P. Künzi and M. J. Pérez-Peñalver in [6] prove some interesting results about the number of quasi-proximities that a topological spaces admits. H.-P. Künzi in [3] studies the number of quasi-uniformities belonging to the Pervin quasi-proximity class.

J. Ferrer in [2] trying to solve the question of whether every T_1 topological space with a unique compatible quasi-proximity should be hereditarily compact, he shows that it is true for product spaces as well as for locally hereditarily Lindelöf spaces.

H.-P. Künzi and S. Watson in [7] construct a T_1 -space X is not hereditarily compact, but each open subset of X is the intersection of two compact open sets. The construction is carried out in ZFC, but the cardinality of the space is very large.

2. UNIBASIC SPACES AND TRANSITIVE QUASI-PROXIMITIES

The main result of this section establishes a bijection between all annular bases of a topological space (X, τ) and all transitive quasi-proximities on X inducing τ .

A basis \mathcal{B} for a topological space (X, τ) is *annular* if it satisfies the following conditions:

- i) $\emptyset \in \mathcal{B} \text{ y } X \in \mathcal{B};$
- ii) $B_1, B_2 \in \mathcal{B}$ implies that $B_1 \cap B_2 \in \mathcal{B}$ and $B_1 \cup B_2 \in \mathcal{B}$.

Definition 2.1.

- (1) An open set V in (X, τ) is everywhere basic (e.b.) if V belongs to every annular basis of X.
- (2) A topological space (X, τ) is *unibasic* if τ is the only annular basis of X.
- (3) (X, τ) is minimally basic if X has annular basis \mathcal{B}_0 which is contained in every other annular basis \mathcal{B} of X.

Remark 2.2.

- i) Every element of a minimum annular basis \mathcal{B}_0 of X is *e.b.* and every unibasic space is minimally basic.
- ii) Every open and compact subset of a topological space X is e.b.. Hence, every hereditarily compact space is unibasic.

Lemma 2.3. Let \mathcal{B} be an annular basis of a topological space (X, τ) . Define $A\delta B$ iff $A \cap H \neq \emptyset$ for every $H \in C(\mathcal{B})$ which contains B. Then δ is a transitive quasi-proximity on X which induces τ .

Proof. Clearly $X\overline{\delta}\varnothing$ and $\varnothing\overline{\delta}X$. If $(A \cup B)\delta C$, we must have $A\delta C$ or $B\delta C$. Indeed, $A\overline{\delta}C$ and $B\overline{\delta}C$ imply the existence of $H_1, H_2 \in C(\mathcal{B})$ such that $H_1 \cap H_2 \supseteq C$, $A \cap H_1 = \varnothing = B \cap H_2$. Therefore $(A \cup B) \cap H_1 \cap H_2 = \varnothing$ and $H_1 \cap H_2$ is an element of $C(\mathcal{B})$ containing C, that, $(A \cup B)\overline{\delta}C$, a contradiction. In a similar way one may prove that $C\delta(A \cup B)$ implies that $C\delta A$ or $C\delta B$. It is obvious that $\{x\}\delta\{x\}$ for each $x \in X$. Finally, suppose that $A\overline{\delta}B$. Therefore, there exists an element $H \in C(\mathcal{B})$ such that $H \supseteq B$ and $A \cap H = \varnothing$. Therefore, $A\overline{\delta}H$ and $(X \setminus H)\overline{\delta}B$.

Observe now that $(X \setminus H)\overline{\delta}H$ for every $H \in C(\mathcal{B})$ and $T(X \setminus H, H) = X \times X \setminus [(X \setminus H) \times H] = (H \times X) \cup [X \times (X \setminus H)]$. Hence, if $A\overline{\delta}B$ and $H \in C(\mathcal{B})$ satisfies $B \subseteq H \subseteq X \setminus A$, we have $T(X \setminus H, H) \subseteq [(X \setminus A) \times X] \cup [X \times (X \setminus B)] = T(A, B)$. This proves that the quasi-uniformity \mathcal{U}_{δ} is transitive.

Finally, we must prove that $\tau_{\delta} = \tau$. For this, take any set $C \subseteq X$ and consider the set $C_1 = \{x \in X : \{x\}\delta C\}$. It is enough to prove that $C_1 = \overline{C}$. If $x \in X \setminus \overline{C}$, there exists a set $B \in \mathcal{B}$ such that $x \in B \subseteq X \setminus \overline{C}$. Therefore, $X \setminus B \in C(\mathcal{B})$ and $X \setminus B \supseteq C$, that is, $\{x\}\overline{\delta}C$ and $X \setminus \overline{C} \subseteq X \setminus C_1$. On the other hand, if $x \in X \setminus C_1$, i.e., if $\{x\}\overline{\delta}C$, there exists a set $H \in C(\mathcal{B})$ such that $H \supseteq C$ y $x \notin H$. Therefore, $x \in X \setminus \overline{C}$ and the proof is complete. \Box

A quasi-proximity δ on a set X is:

- (1) Point-symmetric if $A\delta\{x\}$ implies $\{x\}\delta A$. Equivalently, δ is point-symmetric if $\tau_{\delta} \subseteq \tau_{\delta^{-1}}$.
- (2) Locally-symmetric if $A\delta G$ for every τ -neighborhood G of x implies that $\{x\}\delta A$.

Notation 2.4. If \mathcal{G} is a family of subsets of X, we define: $C(\mathcal{G}) = \{H : X \setminus H \in \mathcal{G}\}.$

Let \mathcal{B} be an annular basis of a topological space (X, τ) is:

- i) Disjunctive (or a Wallman basis) if whenever $x \in B \in \mathcal{B}$, there exists an element $H_x \in C(\mathcal{B})$ such that $x \in H_x \subseteq B$.
- ii) Regular if whenever $x \in B \in \mathcal{B}$, there exists an element $D \in \mathcal{B}$ and an element $H \in C(\mathcal{B})$ such that $x \in D \subseteq H \subseteq B$.
- iii) Normal is for every pair H, K of disjoint elements of $C(\mathcal{B})$, there exists a pair B, D of disjoint elements of \mathcal{B} such that $H \subseteq B$ and $K \subseteq D$.

Theorem 2.5. Let \mathcal{B} be an annular basis of a topological space (X, τ) and let δ be the quasi-proximity on X associated to \mathcal{B} . Then:

- i) \mathcal{B} is disjunctive iff δ is point-symmetric.
- ii) \mathcal{B} is regular iff δ is locally symmetric.
- iii) \mathcal{B} is normal iff δ is of Wallman type¹.

Proof. We prove only *iii*). Suppose δ is of Wallman type and let $H, K \in C(\mathcal{B})$ be disjoint. Since H and K are δ - remote, there exists a neighborhood G of H such that $H\overline{\delta}(X \setminus G)$ and $K\overline{\delta}G$. This last condition implies the existence of an elements of $H_1 \in C(\mathcal{B})$ such that $K \subseteq X \setminus H_1 \subseteq X \setminus G$. The first condition implies the existence of an element $K_1 \in C(\mathcal{B})$ such that $X \setminus G \subseteq K_1 \subseteq X \setminus H$. Hence, $X \setminus K_1$ and $X \setminus H_1$ are disjoint elements of \mathcal{B} and \mathcal{B} is normal.

Assume now that \mathcal{B} is normal. Let A, B be δ -remote. Let $H, K \in C(\mathcal{B})$ be disjoint sets such that $A \subseteq H$ and $B \subseteq K$. Since \mathcal{B} is normal, there exist disjoint elements $C, D \in \mathcal{B}$ such that $H \subseteq C$ and $K \subseteq D$. Defining G = C, we have $H\overline{\delta}(X \setminus G)$ and $K\overline{\delta}G$, i.e., δ is of Wallman type.

Corollary 2.6. Every transitive point-symmetric quasi-proximity of Wallman type is locally symmetric and its induced topology is completely regular.

Lemma 2.7. Let δ be a transitive quasi-proximity on a topological space (X, τ) and suppose that $\tau_{\delta} = \tau$. Then $\mathcal{B} = \{V \in \tau : V\overline{\delta}(X \setminus V)\}$ is an annular basis of (X, τ) .

Proof. Clearly $\emptyset \in \mathcal{B}$ and $X \in \mathcal{B}$. Suppose now that B_1, B_2 both belong to \mathcal{B} . If $B_1 \cup B_2 \notin \mathcal{B}$, we would have $(B_1 \cup B_2)\delta(X \setminus B_1) \cap (X \setminus B_2)$. Therefore $B_1\delta(X \setminus B_1) \cap (X \setminus B_2)$ or $B_2\delta(X \setminus B_1) \cap (X \setminus B_2)$. This would imply that $B_1\delta(X \setminus B_1)$ or $B_2\delta(X \setminus B_2)$, a contradicition. Hence, $B_1 \cup B_2 \in \mathcal{B}$. In a similar fashion we prove that $B_1 \cap B_2 \in \mathcal{B}$. It remains to prove that \mathcal{B} is a basis of (X, τ) . Suppose then that $x \in V \in \tau$. Therefore $\{x\}\overline{\delta}(X \setminus V)$ (recall $\tau_{\delta} = \tau$). Let $R \in \mathcal{U}_{\delta}$ be a transitive entourage contained in $T(\{x\}, X \setminus V)$. Let us prove that $R(x) \subseteq V$. If $y \in R(x)$, we have $(x, y) \in R \subseteq T(\{x\}, X \setminus V) = [(X \setminus \{x\}) \times X] \cup [\{x\} \times V]$. Therefore, $(x, y) \in \{x\} \times V$, that is, $y \in V$. Besides, $R(x)\overline{\delta}(X \setminus R(x))$ because $R(x)\delta(X \setminus R(x))$ would imply that $[R(x) \times (X \setminus R(x))] \cap S \neq \emptyset$ for every $S \in \mathcal{U}_{\delta}$, and, in particular, $[R(x) \times (X \setminus R(x))] \cap R \neq \emptyset$. But since R is transitive, this last statement is clearly false. Hence, we must have that $R(x)\overline{\delta}(X \setminus R(x))$. Since this implies that $R(x) \cap (\overline{X \setminus R(x)}) = \emptyset$, we deduce that R(x) is open. Therefore, $R(x) \in \mathcal{B}$ and \mathcal{B} is an annular basis of (X, τ) .

Let (X, τ) be a topological space with topology τ . for $G \in \tau$ let $S_G = (G \times G) \cup ((X \setminus G) \times X)$. The filter generated by $\{S_G : G \in \tau\}$ is a quasiuniformity \mathcal{P} for X called *Pervin quasi-uniformity* (see [8]).

¹Two sets $A, B \subseteq X$ are said to be δ -remote if there exist disjoint sets $H, K \subseteq X$ such that $A \subseteq H$, $B \subseteq K$, $(X \setminus H)\overline{\delta}H$ and $(X \setminus K)\overline{\delta}K$. A quasi-proximity δ on a set X is of Wallman type if for every pair of δ -remote sets A, B, there exists a neighborhood G of A such that $A\overline{\delta}(X \setminus G)$ and $B\overline{\delta}G$.

Theorem 2.8. Let (X, τ) be a topological space. Then there exists a bijective correspondence between the collection of annular bases of (X, τ) and the collection of totally bounded transitive quasi-proximities on X which induce τ . Hence, (X, τ) is minimally basic iff the family of totally bounded transitive quasi-uniformities on X inducing τ has a minimum element and (X, τ) is unibasic iff $\mathcal{P} = \mathcal{U}_{\delta_0}$ is the only totally bounded transitive quasi-uniformity inducing τ .

Theorem 2.9. Let B be an everywhere-basic set on a topological space (X, τ) and suppose that $B \neq X$. If $K \subseteq X$ is closed and $K \subseteq B$, then K is compact.

Proof. Suppose that K is not compact. Then there exists a family $\mathcal{G} = \{B_i : i \in J\} \subseteq \tau$ such that $K \subseteq \cup \{B_i : i \in J\} \subseteq B$, but for each finite subset $J_0 \subseteq J$, we have $K \setminus \cup \{B_i : i \in J_0\} \neq \emptyset$. If $\mathcal{B}' = \{L \in \tau : L \subseteq \cup \{B_i : i \in J_0\}$ for some $J_0 \subseteq J$, finite} and let $\mathcal{B}'' = \{L \in \tau : L \cap K = \emptyset\} \cup \{X\}$, it is easy to check that $\mathcal{B} = \{L_1 \cup L_2 : L_1 \in \mathcal{B}' \text{ and } L_2 \in \mathcal{B}''\}$ is an annular basis of (X, τ) .But $B \notin \mathcal{B}$, contradicting the fact that \mathcal{B} is everywhere basic. Hence, K must be compact.

Definition 2.10. A topological space (X, τ) is \mathcal{R}_0 if whenever $x \in V \in \tau$ there exists a closed set H_x such that $x \in H_x \subseteq V$ and (X, τ) is \mathcal{R}_1 if whenever $x, y \in X$ and $\overline{\{x\}} \neq \overline{\{y\}}$, there exist disjoint open sets V, W such that $x \in V$ and $y \in W$.

A topological space (X, τ) is \mathcal{R}_0 if only if τ is a Wallman basis of (X, τ) . Also (X, τ) is regular if only if τ admits a regular Wallman basis. It is also clear that every \mathcal{R}_1 space is \mathcal{R}_0 and every regular or Hausdorff space is \mathcal{R}_1 .

Theorem 2.11. Let \mathcal{B} be an everywhere basic subset of an \mathcal{R}_1 topological space (X, τ) such that $B \neq X$. Then B is compact.

Proof. According to Theorem (2.9), it is enough to prove that $Fr(B) = \emptyset$. Assume, on the contrary, there exists a point $p \in Fr(B)$. Define $\mathcal{B}_1 = \{V \in \tau : p \notin \overline{V}\}$ and $\mathcal{B}_2 = \{W \in \tau : p \in W\}$. If $\mathcal{B} = \{V \cup W : V \in \mathcal{B}_1 \text{ and } W \in \mathcal{B}_2\}$ it is clear that \mathcal{B} is an annular basis of (X, τ) . Observe that for every $T = V \cup W \in \mathcal{B}$, we have $p \notin Fr(T)$ (because $Fr(T) \subseteq Fr(V) \cup Fr(W) \subseteq X \setminus \{p\}$). This implies that $B \notin \mathcal{B}$, contradicting the fact that B is everywhere basic. \Box

Definition 2.12. A topological space (X, τ) is *irreducible* if every non-empty open set $V \in \tau$ is dense in X. Equivalently, (X, τ) is irreducible if every pair of non-empty open subsets of X have a non-empty intersection.

Theorem 2.13. Let $B \neq X$ be an everywhere basic subset of a topological space (X, τ) . If $X \setminus B$ is irreducible, then B is compact.

Proof. Let \mathcal{U} be an open cover of \mathcal{B} . Let \mathcal{B}' be the family of open sets $L \in \tau$ which are contained in a finite union of members of \mathcal{U} and let $\mathcal{B}'' = \{\emptyset\} \cup \{M \in \tau : M \setminus B \neq \emptyset\}$. Clearly $\mathcal{B} = \{L \cup M : L \in \mathcal{B}' \ y \ M \in \mathcal{B}''\}$ is an annular basis of (X, τ) . However, $B \notin \mathcal{B}$, a contradiction.

A. García-Máynez and A. Pimienta Acosta

Theorems (2.11) and (2.13) have the following consequences:

Corollary 2.14. An \mathcal{R}_1 topological spaces (X, τ) is minimally basic iff (X, τ) is locally compact and 0-dimensional.

Corollary 2.15. Let (X, τ) be an unibasic space and let $x \in X$. Then $X \setminus \{x\}$ is compact. Therefore, if X has a compact, closed and non-empty subspace, then X itself is compact.

Corollary 2.16. Every \mathcal{R}_1 unibasic space (X, τ) has a finite topology. In fact, for every $x \in X$, $\overline{\{x\}}$ is open and X is a finite union of point-closures.

Definition 2.17. Let (X, τ) be an \mathcal{R}_0 topological space.

- a) (X, τ) is \mathcal{R}'_1 if every compact open subset of X is closed.
- b) (X, τ) is \mathcal{R}''_1 every intersection of compact open subspaces of X is compact.

Remark 2.18. $\mathcal{R}_1 \Rightarrow \mathcal{R}'_1 \Rightarrow \mathcal{R}''_1 \Rightarrow \mathcal{R}_0.$

Proof. $(\mathcal{R}_1 \Rightarrow \mathcal{R}'_1)$ It enough to observe that if (X, τ) is $\mathcal{R}_1, K \subseteq X$ is compact, $V \subseteq X$ is open and $K \subseteq V$, then $\overline{K} \subseteq V$.

A subset S of X is a *semi-block* of a entourage E of X if $S \times S \subseteq E$.

Lemma 2.19. Let R be a transitive entourage of a set X; let $x \in X$ and let $A \subseteq X$ be a semi-block of R intersecting R(x). Then $A \subseteq R(x)$.

Proof. Select a point $y \in A \cap R(x)$ and let $z \in A$. Therefore, $(x, y) \in R$ and $(y, z) \in A \times A \subseteq R$. Since R is transitive, we deduce that $(x, z) \in R$, i.e., $z \in R(x)$.

Definition 2.20. Let α be a cover of a set X. For $x \in X$, define $Cost(x, \alpha) = \bigcap \{L: x \in L \in \alpha\}$. The indexed cover $\{Cost(x, \alpha): x \in X\}$ is denoted as α^{∇} and is called the *cobaricentric cover* of α . Let α be any cover of a set X. Then the entourage $E(\alpha^{\nabla})$ of the cobaricentric cover α^{∇} is a transitive entourage of X.

A cover α of a topological space (X, τ) is *interior-preserving* if for each $x \in X$, $Cost(x, \alpha)$ is a τ -neighborhood of x.

Lemma 2.21. Let R be a totally bounded transitive entourage on a set X. Then the family $\{L: L = R(x) \text{ for some } x \in X\}$ is finite.

Proof. Let $\{A_1, A_2, \ldots, A_n\}$ be a finite cover of X consisting of semi-blocks of R. By Lemma (2.19), each R(x) is the union of the sets A_i which intersect R(x). Hence the family $\{L: L = R(x) \text{ for some } x \in X\}$ has at most 2^n elements. \Box

Theorem 2.22. Let (X, τ) be a topological space. Consider the following properties:

- (1) τ is finite.
- (2) \mathcal{P} is the only quasi-uniformity on X which induces τ .
- (3) Every interior-preserving cover of X is finite.

A note on unibasic spaces and transitive quasi-proximities

- (4) (X, τ) is hereditarily compact.
- (5) $\delta_{\mathcal{P}}$ is the only quasi-proximity on X which induces τ .
- (6) $\delta_{\mathcal{P}}$ is the only transitive quasi-proximity on X which induces τ .
- (7) (X, τ) is unibasic.

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4) \Rightarrow (5) \Rightarrow (6) \Rightarrow (7)$; if (X, τ) is $\mathcal{R}''_1, (7) \Rightarrow (4)$ and if (X, τ) is $\mathcal{R}'_1, (7) \Rightarrow (1)$.

Proof. The proofs of the implications $1) \Rightarrow 2 \Rightarrow 3 \Rightarrow 4 \Rightarrow 5$ appear in ([1]). However, using Lemma (2.21) we obtain a quick proof of the implication 2) \Rightarrow 3). Assuming 2), we deduce that $\mathcal{P} = \mathcal{FT}$. Hence, if α is an interiorpreserving cover of X, the entourage $R = E(\alpha^{\nabla})$ is totally bounded and transitive. Therefore, by Lemma (2.21), the family $\{L: L = R(x) \text{ for some } x \in X\}$ is finite. This, in turn, implies that α is finite. Indeed, consider the topology of X whose closed sets are arbitrary unions of arbitrary intersections of elements of α . The point-closures in this topology are precisely the sets $Cost(x, \alpha)$, where $x \in X$. Since every closed set in this topology is finite we conclude that this topology is finite and hence, α is finite. The implication $5 \Rightarrow 6$ is evident and 6) \Rightarrow 7) is a consequence of Theorem (2.8). If (X, τ) is \mathcal{R}''_1 and $V \in \tau$, $V \neq X$, clearly V is the intersection of all the compact open sets $X \setminus \overline{\{x\}}$, where $x \in X \setminus V$. By hypothesis, V must be compact. We have proved then that $(7) \Rightarrow 4$ when (X, τ) is \mathcal{R}''_1 -space. Finally, if (X, τ) is \mathcal{R}'_1 , each set $X \setminus \overline{\{x\}}$ is compact and open and, hence, it is also closed. Therefore, each point-closure is open. Since X is compact, X is the closure of a finite subset of X. Since (X, τ) is \mathcal{R}_0 , the topology τ must be finite.

H.-P. Künzi has proved that properties 3, 4, 5, 6, 7) and

2') \mathcal{P} is the only totally bounded quasi-uniformity on X which induces τ are equivalent (see [4]).

The validity of the implication $7) \Rightarrow 2$ is still open.

Typical examples of topological spaces admitting a unique totally bounded quasi-uniformity are the hereditarily compact spaces and set ω_0 equipped with the lower topology $\{[0,n]: n \in \omega_0\} \cup \{\emptyset, \omega_0\}$.

The space with carrier set $\omega_0 + 2$ and topology $\{[0,n]: n \in \omega_0\} \cup \{(\omega_0 + 2) \setminus \{\omega_0 + 1\}, \omega_0 + 2, (\omega_0 + 2) \setminus \{\omega_0\}, \emptyset\}$ admits a unique totally bounded quasiuniformity, while this is not true for its subspace $(\omega_0 + 2) \setminus \{\omega_0\}$ (see example page 148 [4]).

Example 2.23 (see example 1 in [5]). Let N be the set of the positive integers equipped with the topology $\tau = \{\{1, \ldots, n\} : n \in N\} \cup \{\emptyset, N\}$. Obviously, every proper open subset of N is compact, but N is not compact. This example shows that a topological space that admits a unique compatible quasi-proximity need not be compact.

Question: If (X, τ) is an unibasic space is equivalently to say the \mathcal{P} is the only compatible quasi-uniformity?

A. García-Máynez and A. Pimienta Acosta

References

- P. Fletcher and W. Lindgren, Quasi-uniformity spaces, vol 77, Marcel Dekker, Inc., New York, First edition, 1982.
- [2] J. Ferrer, On topological spaces with a unique quasi-proximity, Quaest. Math 17 (1994), 479–486.
- [3] H.-P. Künzi, Nontransitive quasi-uniformities in the Pervin quasi-proximity class, Proc. Amer. Math. Soc. 130 (2002), 3725–3730.
- [4] H.-P. Künzi, Quasi-uniform spaces-eleven years later, Topology Proceedings 18 (1993), 143–171.
- [5] H.-P. Künzi, Topological spaces with a unique compatible quasi-proximity, Arch. Math. 43 (1984), 559–561.
- [6] H.-P. Künzi and M. J. Pérez-Peñalver, The number of compatible totally bounded quasiuniformities, Act. Math. Hung. 88 (2000), 15–23.
- [7] H.-P. Künzi and S. Watson, A nontrivial T₁-spaces admitting a unique quasi-proximity, Glasg. Math. J. 38 (1996), 207–213.
- [8] W. J. Pervin. Quasi-uniformization of topological spaces, Math. Annalen 147 (1962), 116-117.
- [9] W. J. Pervin, Quasi-proximities for topological spaces, Math. Annalen 150 (1963), 325– 326.