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Abstract

In this paper, by using the concept of the α-Garaghty contraction, we
introduce the new notion of the α-Θ-Garaghty type contraction and
prove some fixed point results for this contraction in partial metric
spaces. Also, we give some examples and applications to illustrate the
main results.
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1. Introduction

In 1922, Banach [4] proved a theorem, which is called Banach’s fixed point
theorem, to show the existence of a solution for an integral equation. In fact,
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Banach’s fixed point theorem plays an important role in several branches of
mathematics and applied sciences because of its importance and usefulness
to show the existence and uniqueness of solutions of many kinds of nonlinear
problems.

Especially, in 1973, Geraghty [9] generalized Banach’s fixed point theorem
as follows:

Theorem G. Let (X, d) be a metric space and T : X → X be a mapping.
Suppose that there exists β ∈ F such that, for all x, y ∈ X,

d(Tx, Ty) ≤ β(d(x, y))d(x, y),

where F denotes the family of all functions β : [0,∞) → [0, 1) which satisfies
the following condition:

lim
n→∞

β(tn) = 1 =⇒ lim
n→∞

tn = 0.

Then T has a unique fixed point z ∈ X and {Tnx} converges to the point z for
each x ∈ X.

Since Geraghty’s fixed point theorem, some authors have studied this the-
orem in several ways (see [11, 23, 21, 8, 25, 7]). On the other hand, in 2012
and 2013, Samet et al. [27] and Hussain et al. [13] introduced the concept of
α-admissible mappings in metric spaces and proved some fixed point theorems
for these mappings. Subsequently, in 2013, Abdeljawad [1] introduced a pair of
α-admissible mappings satisfying new sufficient contractive conditions, which
are different from those in [27, 13], and obtained fixed point and common fixed
point theorems. Afterward, some authors have obtained fixed point theorems
for some kinds of α-admissible mappings (see [27, 8, 13, 24, 2, 3, 10]).

On the other hand, in 2014, Jleli et al. [17] introduced a class Θ of all the
functions satisfying the following conditions:

(Θ1) θ is nondecreasing;
(Θ2) for any sequence {tn} in (0,∞), limn→∞ θ(tn) = 1 if and only if

limn→∞ tn = 0;

(Θ3) there exist r ∈ (0, 1) and l ∈ (0,∞] such that limt→0+
θ(t)−1
tr = l;

(Θ4) θ is continuous.

Also, they generalized Banach’s fixed point theorem in generalized metric
spaces (see Branciari [6], sometime, a generalized metric space is called a Bran-
ciari metric space) as follows:

Theorem JS. Let (X, d) be a complete generalized metric space and T : X →
X be a mapping. Suppose that there exist θ ∈ Θ and k ∈ (0, 1) such that

d(Tx, Ty) 6= 0 =⇒ θ(d(Tx, Ty)) ≤ [θ(d(x, y))]k

for all x, y ∈ X. Then T has a unique fixed point in X.

Also, in 2014, Jleli et al. [16] established a new fixed point theorem, which
is an extension of their recent result, Theorem JS. Recently, in 2016, Liu et
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al. [20] introduced the notion of a Θ-type contraction and a Θ-type Suzuki
contraction and established some new fixed point theorems for such kinds of
contractions in complete metric spaces.

Motivated by the above results, in this paper, we introduce the notion of an
α-Θ-Geraghty type contraction and prove some common fixed point theorems
for this contraction in complete partial metric spaces. Moreover, we give some
examples and applications to illustrate our main results.

2. Preliminaries

In this section, we give some definitions, examples and fundamental results.

Definition 2.1 ([22]). Let X be a nonempty set and p : X × X → R+ be a
mapping satisfying following conditions: for all x, y, z ∈ X,

(PM1) x = y ⇐⇒ p(x, x) = p(x, y) = p(y, y);
(PM2) p(x, x) ≤ p(x, y);
(PM3) p(x, y) = p(y, x);
(PM4) p(x, y) ≤ p(x, z) + p(z, y)− p(z, z).

Then p is called a partial metric on X and the pair (X, p) is called a partial
metric space.

In 1995, Matthews [22] proved that every partial metric p on X induces a
metric dp : X ×X → R+ defined by

dp(x, y) = 2p(x, y)− p(x, x)− p(y, y)

for all x, y ∈ X. Notice that a metric on a set X is a partial metric d such that
d(x, x) = 0 for all x ∈ X.

Definition 2.2 ([22]). Let (X, p) be a partial metric space.

(1) A sequence {xn}n∈N in (X, p) is said to be convergent to a point x ∈ X
if p(x, x) = limn→∞ p(x, xn).

(2) A sequence {xn}n∈N in (X, p) is called a Cauchy sequence in X if
limn,m→∞ p(xn, xm) exists and is finite.

(3) A partial metric space (X, p) is said to be complete if every Cauchy
sequence {xn} in X converges, with respect to τ(p), to a point x ∈ X
such that p(x, x) = limn,m→∞ p(xn, xm).

Definition 2.3 ([27]). Let S : X → X and α : X × X → [0,∞) be two
mappings. S is said to be α-admissible if

α(x, y) ≥ 1 =⇒ α(Sx, Sy) ≥ 1

for all x, y ∈ X.

Example 2.4 ([19]). Consider X = [0,∞) and define two mappings S : X →
X, α : X ×X → [0,∞) by Sx = 2x for all x, y ∈ X and

α(x, y) =

{
ey/x, if x ≥ y, x 6= 0,

0, if x < y.
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Then S is α-admissible.

Definition 2.5 ([1]). Let S, T : X → X and α : X × X → [0,∞) be two
mappings. The pair (S, T ) is said to be α-admissible if

α(x, y) ≥ 1 =⇒ α(Sx, Ty) ≥ 1, α(Tx, Sy) ≥ 1

for all x, y ∈ X.

Example 2.6. Let X = [0,∞) and define the mappings S, T : X → X and
α : X ×X → [0,∞) by Sx = 2x, Tx = x2 for all x, y ∈ X and

α(x, y) =

{
exy, if x, y ≥ 0,

0, otherwise.

Then the pair (S, T ) is α-admissible.

Definition 2.7 ([12]). Let S : X → X and α : X × X → [0,∞) be two
mappings. S is called a triangular α-admissible mapping if

(T1) α(x, y) ≥ 1 implies α(Sx, Sy) ≥ 1 for all x, y ∈ X;

(T2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1 for all x, y, z ∈ X.

Example 2.8 ([12]). Let X = R and define the mappings S : X → X and
α : X×X → [0,∞) by Sx = 3

√
x and α(x, y) = ex−y for all x, y ∈ X. Then S is

a triangular α-admissible mapping. Indeed, if α(x, y) = ex−y ≥ 1, then x ≥ y,
which implies Sx ≥ Sy, that is, α(Sx, Sy) = eSx−Sy ≥ 1. Also, if α(x, z) ≥ 1
and α(z, y) ≥ 1, then x − z ≥ 0 and z − y ≥ 0, that is, x − y ≥ 0 and so
α(x, y) = ex−y ≥ 1.

Definition 2.9. [1] Let S, T : X × X and α : X × X → [0,∞) be three
mappings. The pair (S, T ) is said to be triangular α-admissible if

(T1) α(x, y) ≥ 1 implies α(Sx, Ty) ≥ 1 and α(Tx, Sy) ≥ 1 for all x, y ∈ X;

(T2) α(x, z) ≥ 1 and α(z, y) ≥ 1 imply α(x, y) ≥ 1 for all x, y, z ∈ X.

Example 2.10. Let X = R and define the mappings S, T : X → X and
α : X ×X → [0,∞) by Sx =

√
x, Tx = x2 and α(x, y) = exy for all x, y ∈ X.

Then the pair (S, T ) is triangular α-admissible.

Definition 2.11 ([26]). Let S : X → X and α, η : X ×X → [0,∞) be three
mappings. S is called an α-admissible mapping with respect to η if

α(x, y) ≥ η(x, y) =⇒ α(Sx, Sy) ≥ η(Sx,Xy)

for all x, y ∈ X.

Note that, if we take η(x, y) = 1, then Definition 2.11 reduces to Definition
2.7 (see [27]). Also, if we take α(x, y) = 1, then we say that S is an η-
subadmissible mapping.

Example 2.12. Let X = [0,∞) and S : X → X be a mapping defined by
Sx = x

2 for all x ∈ X. Also, define the mappings α, η : X × X → [0,∞) by
α(x, y) = 3 and η(x, y) = 1 for all x, y ∈ X. Then S is α-admissible mapping
with respect to η.
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Lemma 2.13 ([22]).

(1) A partial metric space (X, p) is complete if and only if the metric space
(X, dp) is complete.

(2) A sequence {xn} in X converges to a point x ∈ X with respect to τ(dp)
if and only if

lim
n→∞

p(x, xn) = p(x, x) = lim
n,m→∞

p(xn, xm).

(3) If limn→∞ xn = v such that p(v, v) = 0, then limn→∞ p(xn, y) = p(v, y)
for all y ∈ X.

Lemma 2.14 ([18, 7]). Let (X, d) be a metric space and S : X → X be a
triangular α-admissible mapping. Assume that there exists x0 ∈ X such that
α(x0, Sx0) ≥ 1. Define a sequence {xn} by xn+1 = Sxn for each n ≥ 0. Then
we have α(xn, xm) ≥ 1 for all m,n ≥ 0 with n < m.

Lemma 2.15 ([1]). Let (X, d) be a metric space and S, T : X → X be
triangular α-admissible mappings. Assume that there exists x0 ∈ X such
that α(x0, Sx0) ≥ 1. Define a sequence {xn} in X by x2n+1 = Sx2n and
x2n+2 = Tx2n+1 for each n ≥ 0. Then we have α(xn, xm) ≥ 1 for all m,n ≥ 0
with n < m.

In the sequel, we denote by Θ̃ the set of all the functions θ : (0,∞)→ (1,∞)
satisfying the following conditions:

(Θ1)′ θ is non-decreasing and continuous;
(Θ2)′ inft∈(0,∞) θ(t) = 1.

Example 2.16. It is obvious that the following functions belong to Θ̃:

(1) θ1(t) := ee
− 1
tp for all p > 0;

(2) θ2(t) := 1 + t for all t > 0;

(3) θ3(t) := e
√
t for all t > 0;

(4) θ4(t) := 2− 2
π arctan( 1

tα ) for all 0 < α < 1 and t > 0.

3. Main results

In this section, we prove some fixed point theorems for α-Θ-Geraghty type
contractions in complete partial metric spaces.

First, we begin with the following definition:

Definition 3.1. Let (X, p) be a partial metric space and S, T : X → X,
α : X ×X → [0,∞) be three mappings.

(1) The pair (S, T ) is called the modified α-Θ-Geraghty type contraction if

there exist θ ∈ Θ̃, k ∈ (0, 1) and β ∈ F such that

(3.1) α(x, y)θ(p(Sx, Ty)) ≤ [θ(β(M(x, y))M(x, y))]k
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for all x, y ∈ X, where

M(x, y) = max {p(x, y), p(x, Sx), p(y, Ty)} .

(2) If S = T in (1), then T is called a generalized α-Θ-Geraghty type

contraction if there exist θ ∈ Θ̃, k ∈ (0, 1) and β ∈ F such that

(3.2) α(x, y)θ(p(Tx, Ty)) ≤ [θ(β(N(x, y))N(x, y))]k,

for all x, y ∈ X, where

N(x, y) = max {p(x, y), p(x, Tx), p(y, Ty)} .

The following theorem is our main result in this paper:

Theorem 3.2. Let (X, p) be a complete partial metric space and α : X×X →
[0,∞) be a mapping. Suppose that S, T : X ×X are two continuous mappings
satisfying the following conditions:

(i) the pair (S, T ) is the modified α-Θ-Geraghty type contraction;

(ii) the pair (S, T ) is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

Then S and T have a unique common fixed point z ∈ X.

Proof. First, we prove that M(x, y) = 0 if and only if x = y is a common fixed
point of the mappings S and T . In fact, if x = y is a common fixed point of
(S, T ), then Ty = Tx = x = y = Sy = Sx and

M(x, y) = max {p(x, x), p(x, x), p(x, x)} = p(x, x).

From the condition (3.1), it follows that

θ(p(x, x)) = θ(p(Sx, Ty)) ≤ α(x, y)θ(p(Sx, Ty)) ≤ [θ(β(M(x, y))M(x, y))]k.

It is only possible if p(x, x) = 0, which implies that M(x, y) = 0. Conversely,
if M(x, y) = 0, then, using (PM1) and (PM2), it is easy to prove that x = y is
a fixed point of S and T .

On the other hand, if M(x, y) > 0, we construct an iterative sequence {xn}
in X such that

x2n+1 = Sx2n, x2n+2 = Tx2n+1

for each n ≥ 0. We observe that, if xn = xn+1, then xn is a common fixed
point of the mappings S and T . So, assume that xn 6= xn+1 for each n ≥ 0.
Since α(x0, x1) ≥ 1 and (S, T ) is triangular α-admissible, using Lemma 2.15,
we obtain

(3.3) α(xn, xn+1) ≥ 1

for each n ≥ 0. Thus we have
(3.4)
θ(p(x2n+1, x2n+2)) = θ(p(Sx2n, Tx2n+1)) ≤ α(x2n, x2n+1)θ(p(Sx2n, Tx2n+1))

≤ [θ(β(M(x2n, x2n+1))M(x2n, x2n+1))]k
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for each n ≥ 0. Now, also, we have

M(x2n, x2n+1) = max {p(x2n, x2n+1), p(x2n, Sx2n), p(x2n+1, Tx2n+1)}
= max {p(x2n, x2n+1), p(x2n, x2n+1), p(x2n+1, x2n+2)}
= max{p(x2n, x2n+1), p(x2n+1, x2n+2)}

for each n ≥ 0.
If M(x2n, x2n+1) = p(x2n+1, x2n+2) for each n ≥ 0, then it follows from (3.4)

that

θ(p(x2n+1, x2n+2)) ≤ [θ(β(p(x2n+1, x2n+2))p(x2n+1, x2n+2))]k,

which implies that

ln[θ(p(x2n+1, x2n+2))] ≤ k ln[θ(β(p(x2n+1, x2n+2))p(x2n+1, x2n+2))].

This is a contradiction to k ∈ (0, 1). Thus we haveM(x2n, x2n+1) = p(x2n, x2n+1)
for each n ≥ 0 and so it follows from (3.4) that

(3.5)

θ(p(x2n+1, x2n+2)) ≤ [θ(β(p(x2n, x2n+1))p(x2n, x2n+1))]k

< [θ(p(x2n, x2n+1))]k

< θ(p(x2n, x2n+1))

and so

(3.6) θ(p(x2n+1, x2n+2)) < θ(p(x2n, x2n+1)).

This implies that

(3.7) θ(p(xn+1, xn+2)) < θ(p(xn, xn+1))

for each n ≥ 0. Taking n→∞ in (3.7), we have

(3.8) θ(p(xn, xn+1))→ 1.

Thus, from (Θ2), it follows that

(3.9) lim
n→∞

p(xn, xn+1) = 0.

Now, we show that {xn} is a Cauchy sequence in X. Suppose that {xn}
is not a Cauchy sequence in X, that is, there exists ε > 0, we can find the
sequences {xmk} and {xnk} such that, for all k ≥ 1, if mk > nk > k, then

p(xmk , xnk) ≥ ε, p(xmk , xnk−1
) < ε.

So, we have

ε ≤ p(xmk , xnk)

≤ p(xmk , xnk−1
) + p(xnk−1

, xnk)− p(xnk−1
, xnk−1

)

≤ p(xmk , xnk−1
) + p(xnk−1

, xnk)

< ε+ p(xnk−1
, xnk),

that is,

ε < ε+ p(xnk−1
, xnk).
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Thus, from (3.9) and the above inequality, it follows that

(3.10) lim
k→∞

p(xmk , xnk) = ε.

By the triangle inequality, we have

p(xmk , xnk) ≤ p(xmk , xmk+1
) + p(xmk+1

, xnk)− p(xmk+1
, xmk+1

)

≤ p(xmk , xmk+1
) + p(xmk+1

, xnk)

≤ p(xmk , xmk+1
) + p(xmk+1

, xnk+1
) + p(xnk+1

, xnk)− p(xnk+1
, xnk+1

)

≤ p(xmk , xmk+1
) + p(xmk+1

, xnk+1
) + p(xnk+1

, xnk)

and

p(xmk+1
, xnk+1

) ≤ p(xmk+1
, xmk) + p(xmk , xnk+1

)− p(xmk , xmk)

≤ p(xmk+1
, xmk) + p(xmk , xnk+1

)

≤ p(xmk+1
, xmk) + p(xmk , xnk) + p(xnk , xnk+1

)− p(xnk , xnk)

≤ p(xmk+1
, xmk) + p(xmk , xnk) + p(xnk , xnk+1

).

Taking k →∞, it follows from (3.9) and (3.10) that

lim
k→∞

p(xmk+1
, xnk+1

) = ε.

By Lemma 2.15, since α(xnk , xmk+1
) ≥ 1, we obtain

θ(p(xnk+1
, xmk+2

)) = θ(p(Sxnk , Txmk+1
))

≤ α(xnk , xmk+1
)θ(p(Sxnk , Txmk+1

))

≤ [θ(β(M(xnk , xmk+1
))M(xnk , xmk+1

))]k

< [θ(M(xnk , xmk+1
))]k

< θ(M(xnk , xmk+1
)).

By using (3.8) and taking k →∞, we conclude that

lim
k→∞

θ(p(xnk , xmk+1
)) = 1

and so limk→∞ p(xnk , xmk+1
) = 0 < ε, which is a contradiction. Therefore, we

have

lim
n,m→∞

p(xn, xm) = 0,

which implies that {xn} is a Cauchy sequence in (X, p). Since X is complete,
there exists z ∈ X such that xn → z as n→∞ and so x2n+1 → z and x2n+2 →
z. Since S and T are continuous, we have Tx2n+1 → Tz and Sx2n+2 → Sz.
Hence, from the definition of the sequence {xn}, we have z = Sz. Similarly,
we have z = Tz, that is, Sz = Tz = z. Therefore, z is a common fixed point
of S and T .

Now, we show that z is the unique common fixed point of the mappings S
and T . Assume the contrary, that is, there exists w ∈ X such that z 6= w and
w = Tw. From (3.1), we have

θ(p(z, w)) ≤ [θ(β(M(z, w))M(z, w))]k < [θ(M(z, w))]k < θ(M(z, w)),

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 1 160



Fixed points of α-Θ-Geraghty type contractions

that is,

p(z, w) < M(z, w).

But, we have

M(z, w) = max{p(z, w), p(z, Sz), p(w, Tw)}
= p(z, w).

This means that p(z, w) < p(z, w), which is a contradiction and so p(z, w) = 0.
Therefore, z is a unique common fixed point of S and T . This completes the
proof. �

In Theorem 3.2, it is possible to remove the continuity of the mappings S
and T by replacing the following condition:

(A) If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ≥ 0 and
xn → z ∈ X as n → ∞, then there exists a subsequence {xnk} of {xn} such
that α(xnk , z) ≥ 1 for all k ≥ 0.

Theorem 3.3. Let (X, p) be a complete partial metric space, α : X × X →
[0,∞) be a function. Suppose that S, T : X × X are two mappings satisfying
the following conditions:

(i) the pair (S, T ) is the modified α-Θ-Geraghty type contraction;

(ii) the pair (S, T ) is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) (A) holds.

Then S and T have a unique common fixed point z ∈ X.

Proof. Following the proof lines of Theorem 3.2, we know that x2n+1 → z and
x2n+2 → z as n→∞.

Now, we show that z is a common fixed point of S and T . Due to the
condition (iv), there exists a subsequence {xnk} of {xn} such that α(x2nk , z) ≥
1 for all k ≥ 1. Using (3.1), we have

θ(p(x2nk+1, T z)) = θ(p(Sx2nk , T z))

≤ α(x2nk , z)θ(p(Sx2nk , T z))

≤ [θ(β(M(x2nk , z))M(x2nk , z))]
k

and so

(3.11) θ(p(x2nk+1, T z)) ≤ [θ(β(M(x2nk , z))M(x2nk , z))]
k,

where

M(x2nk , z) = max{p(x2nk , z), p(x2nk , Sx2nk), p(z, Tz)}.
Taking k →∞, we have

(3.12) lim
k→∞

M(x2nk , z) = max{p(z, Sz), p(z, Tz)}.
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Case I. Suppose that limk→∞M(x2nk , z) = p(z, Tz) and p(z, Tz) > 0.
From (3.12), for sufficiently large k, we have M(x2nk , z) > 0, which implies
that

β(M(x2nk , z)) < M(x2nk , z)

and so

[θ(β(M(x2nk , z))M(x2nk , z))]
k < [θ(M(x2nk , z))]

k < θ(M(x2nk , z)).

Then we have

θ(p(x2nk+1, T z)) < θ(M(x2nk , z)),

which implies that

p(x2nk+1, T z) < M(x2nk , z).

Taking k →∞ in the above inequality, we obtain

p(z, Tz) < p(z, Tz),

which is a contradiction. So we obtain that p(z, Tz) = 0. By (PM1) and
(PM2), we have z = Tz.

Case II. Suppose that limk→∞M(x2nk , z) = p(z, Sz). Similarly, from Case
I, we obtain z = Sz. Thus, from two cases, we have z = Tz = Sz. Therefore,
z is a common fixed point of S and T .

�

If S = T and M(x, y) = max {p(x, y), p(x, Sx), p(y, Sy)} in Theorem 3.2 and
3.3, then we have the following corollaries:

Corollary 3.4. Let (X, p) be a complete partial metric space and α : X×X →
[0,∞) be a function. Suppose that S : X×X is a continuous mapping satisfying
the following conditions:

(i) S is a generalized α-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

Then S has a unique fixed point z ∈ X.

Corollary 3.5. Let (X, p) be a complete partial metric space and α : X×X →
[0,∞) be a function. Suppose that S : X × X is a mapping satisfying the
following conditions:

(i) S is a generalized α-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) (A) holds.

Then S has a unique fixed point z ∈ X.

If M(x, y) = max {p(x, y), p(x, Sx), p(y, Sy)} and p(x, x) = 0 for all x ∈ X
in Theorem 3.2 and 3.3, then we have the following corollaries:

c© AGT, UPV, 2017 Appl. Gen. Topol. 18, no. 1 162



Fixed points of α-Θ-Geraghty type contractions

Corollary 3.6. Let (X, p) be a complete metric space and α : X×X → [0,∞)
be a function. Suppose that S : X ×X is a continuous mapping satisfying the
following conditions:

(i) S is a generalized α-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1.

Then S has a unique fixed point z ∈ X.

Corollary 3.7. Let (X, p) be a complete metric space and α : X×X → [0,∞)
be a function. Suppose that S : X × X is a mapping satisfying the following
conditions:

(i) S is a generalized α-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ 1;

(iv) (A) holds.

Then S has a unique fixed point z ∈ X.

Definition 3.8. Let (X, p) be a partial metric space, S, T : X → X be two
mappings and α, η : X ×X → [0,∞) be two functions.

(1) The pair (S, T ) is called the modified (α, η)-Θ-Geraghty type contraction

if there exist θ ∈ Θ̃, k ∈ (0, 1) and β ∈ F such that

(3.13) α(x, y) ≥ η(x, y) =⇒ θ(p(Sx, Ty)) ≤ [θ(β(M(x, y))M(x, y))]k

for all x, y ∈ X, where

M(x, y) = max {p(x, y), p(x, Sx), p(y, Ty)} .
(2) If S = T in (1), then S is called a generalized (α, η)-Θ-Geraghty type

contraction if there exist θ ∈ Θ̃, k ∈ (0, 1) and β ∈ F such that

(3.14) α(x, y) ≥ η(x, y) =⇒ θ(p(Sx, Sy)) ≤ [θ(β(N(x, y))N(x, y))]k

for all x, y ∈ X, where

N(x, y) = max {p(x, y), p(x, Sx), p(y, Sy)} .

Theorem 3.9. Let (X, p) be a complete partial metric space and α, η : X×X →
[0,∞) be two functions. Suppose that S, T : X×X are two continuous mappings
satisfying the following conditions:

(i) the pair (S, T ) is the improved (α, η)-Θ-Geraghty type contraction;

(ii) the pair (S, T ) is triangular α-admissible with respect to η;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0).

Then S and T have a unique common fixed point z ∈ X.

Proof. Let x1 ∈ X be such that x1 = Sx0 and x2 = Tx1. Then, iteratively, we
can construct a sequence {xn} in X such that

(3.15) x2n+1 = Sx2n, x2n+2 = Tx2n+1
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for each n ≥ 0. By the conditions (ii) and (iii), we have α(Sx0, Tx1) ≥
η(Sx0, Tx1) and so α(x1, x2) ≥ η(x1, x2), which implies that α(Sx1, Tx2) ≥
η(Sx1, Tx2). By induction, we have α(xn, xn+1) ≥ η(xn, xn+1) for all n ≥ 0
and so, by (i), we have

(3.16)

θ(p(x2n+1, x2n+2)) = θ(p(Sx2n, Tx2n+1))

≤ α(x2n, x2n+1)θ(p(Sx2n, Tx2n+1))

≤ [θ(β(M(x2n, x2n+1))M(x2n, x2n+1))]k

for all n ≥ 0. Now, we have

M(x2n, x2n+1) = max {p(x2n, x2n+1), p(x2n, Sx2n), p(x2n+1, Tx2n+1)}
= max {p(x2n, x2n+1), p(x2n, x2n+1), p(x2n+1, x2n+2)}
= max{p(x2n, x2n+1), p(x2n+1, x2n+2)}.

If M(x2n, x2n+1) = p(x2n+1, x2n+2) for all n ≥ 0, then, from (3.16), we have

θ(p(x2n+1, x2n+2)) ≤ [θ(β(p(x2n+1, x2n+2))p(x2n+1, x2n+2))]k,

which implies that

ln[θ(p(x2n+1, x2n+2))] ≤ k ln[θ(β(p(x2n+1, x2n+2))p(x2n+1, x2n+2))].

This is a contradiction to k ∈ (0, 1). So, we haveM(x2n, x2n+1) = p(x2n, x2n+1)
for all n ≥ 0. Thus it follows from (3.4) that

(3.17)

θ(p(x2n+1, x2n+2)) ≤ [θ(β(p(x2n, x2n+1))p(x2n, x2n+1))]k

< [θ(p(x2n, x2n+1))]k

< θ(p(x2n, x2n+1))

and so

(3.18) θ(p(x2n+1, x2n+2)) < θ(p(x2n, x2n+1)).

This implies that

(3.19) θ(p(xn+1, xn+2)) < θ(p(xn, xn+1))

for all n ≥ 0. Taking n→∞ in (3.19), we have

(3.20) θ(p(xn, xn+1))→ 1

and so, from (Θ2),

(3.21) lim
n→∞

p(xn, xn+1) = 0.

Therefore, as in the proof lines of Theorem 3.2, we can get the conclusion. This
completes the proof. �

It is possible to remove the continuity of the mappings S and T in Theorem
3.9 by replacing the following condition:
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(B) If {xn} is a sequence inX such that α(xn, xn+1) ≥ η(xn, xn+1)
for all n ≥ 0 and xn → z ∈ X as n → ∞, then there exists a
subsequence {xnk} of {xn} such that α(xnk , z) ≥ η(xnk , z) for
all k ≥ 0.

Theorem 3.10. Let (X, p) be a complete partial metric space and α, η : X ×
X → [0,∞) be two functions. Suppose that S, T : X × X are two mappings
satisfying the following conditions:

(i) the pair (S, T ) is the modified (α, η)-Θ-Geraghty type contraction;

(ii) the pair (S, T ) is triangular α-admissible with respect to η;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) (B) holds.

Then (S, T ) has a unique common fixed point z ∈ X.

Proof. Following the proof lines of Theorem 3.3 and 3.9, we can get the con-
clusion. �

If S = T and M(x, y) = max {p(x, y), p(x, Sx), p(y, Sy)} in Theorem 3.9 and
3.10, then we have the following corollaries:

Corollary 3.11. Let (X, p) be a complete partial metric space and α, η : X ×
X → [0,∞) be two functions. Suppose that S : X×X is a continuous mapping
satisfying the following conditions:

(i) S is a generalized (α, η)-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible with respect to η;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0).

Then S has a unique fixed point z ∈ X.

Corollary 3.12. Let (X, p) be a complete partial metric space and α, η : X ×
X → [0,∞) be two functions. Suppose that S : X ×X is a mapping satisfying
the following conditions:

(i) S is a generalized (α, η)-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible with respect to η;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) (B) holds.

Then S has a unique fixed point z ∈ X.

If M(x, y) = max {p(x, y), p(x, Sx), p(y, Sy)} and p(x, x) = 0 for all x ∈ X
in Theorem 3.9 and 3.10, then we have the following corollaries:

Corollary 3.13. Let (X, p) be a complete metric space and α, η : X × X →
[0,∞) be two functions. Suppose that S : X × X is a continuous mapping
satisfying the following conditions:

(i) S is a generalized (α, η)-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible with respect to η;
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(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0).

Then S has a unique fixed point z ∈ X.

Corollary 3.14. Let (X, p) be a complete metric space and α, η : X × X →
[0,∞) be two functions. Suppose that S : X × X is a mapping satisfying the
following conditions:

(i) S is a generalized (α, η)-Θ-Geraghty type contraction;

(ii) S is triangular α-admissible with respect to η;

(iii) there exists x0 ∈ X such that α(x0, Sx0) ≥ η(x0, Sx0);

(iv) (B) holds.

Then S has a unique fixed point z ∈ X.

Now, we give an example to illustrate Theorem 3.2 as follows:

Example 3.15. Let X = {1, 2, 3} and define a mapping p : X ×X → [0,∞)
by

p(1, 2) = p(2, 1) =
3

7
, p(2, 3) = p(3, 2) =

4

7
,

p(1, 3) = p(3, 1) =
5

7
, p(1, 1) =

1

10
, p(2, 2) =

2

10
, p(3, 3) =

3

10
.

Define a function θ : (0,∞)→ (1,∞) by

θ(x) = 1 + x

for all x ∈ X. It is easy to check that p is a partial metric. Define a function
α : X ×X → [0,∞) by

α(x, y) =

{
1, if x, y ∈ X,
0, otherwise,

define two mappings S, T : X → X by

S(x) = 1, T (1) = T (3) = 1, T (2) = 3

for all x ∈ X and define a function β : [0,∞)→ [0, 1) by

β(M(x, y)) =
9

10

for all x, y ∈ X. Since α(x, y) = 1 and α(Sx, Ty) = 1 for all x, y ∈ X, the pair
(S, T ) is α-admissible.

Now, we show that the condition (3.1) holds. If x = 2 and y = 3, then
α(2, 3) = 1 and

M(2, 3) = max{p(2, 3), p(2, S(2)), p(3, T (3))}
= max{p(2, 3), p(2, 1)), p(3, 1)}

= max

{
4

7
,

3

7
,

5

7

}
=

5

7
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and so

α(2, 3)θ(p(S(2), T (3)) = 1 · θ(p(1, 1)) = θ

(
1

10

)
= 1 +

1

10
=

11

10
.

Now, if we choose k = 1
2 ∈ (0, 1), then we have

[θ(β(M(2, 3))M(2, 3)]k =

[
θ

(
9

10
· 5

7

)]1/2

=

[
θ

(
9

14

)]1/2

=

(
1 +

9

14

)1/2

=

(
23

14

)1/2

.

Therefore, we have

11

10
= α(2, 3)θ(p(S(2), T (3)) ≤ [θ(β(M(2, 3))M(2, 3)]k =

(
23

14

)1/2

.

Similarly, for other cases, it is easy to check that the condition (3.1) holds.
Therefore, all the conditions (i)-(iii) of Theorem 3.2) are satisfied. Further, S
and T have a unique common fixed point and 1 is a unique common fixed point
of S and T .

4. Applications

Following the results of Jachymski [15], let (X, p) be a partial metric space
and ∆ denotes the diagonal of the Cartesian productX×X. Consider a directed
graph G such that V (G) the set of vertices coincides with X and E(G) the set
of edges contains all loops. Suppose that G has no parallel edges. Then we
can analyze G with the pair (V (G), E(G)). If x and y are vertices in G, then a
path in G from x to y of length l is a sequence {xn}li=0 of (l + 1) vertices such
that x0 = x, xl = y and (xi−1, xi) ∈ E(G) for each i = 1, 2, . . . , l. A graph G is
said to be connected if there exists a path between any two vertices.

Definition 4.1 ([15]). A mapping T : X → X is called the Banach G-
contraction or, simply, G-contraction if T preserves edge of G, i.e., for all
x, y ∈ X,

(4.1) (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G)

and T decreases weights of edges of G in the following way: there exists α ∈
(0, 1) such that, for all x, y ∈ X,

(4.2) (x, y) ∈ E(G) =⇒ d(Tx, Ty) ≤ αd(x, y).

Definition 4.2 ([15]). A mapping T : X×X is said to be G-continuous if, for
any x ∈ X and a sequence {xn} with xn → x as n → ∞, (xn, xn+1) ∈ E(G)
for all n ∈ N implies Txn → Tx as n→∞.
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Definition 4.3. Let (X, p) be a partial metric space endowed with a graph G
and T : X → X be a self-mapping. T is called the Θ-Geraghty graphic type
contraction if there exist θ ∈ Θ̃, k ∈ (0, 1) and β ∈ F such that

(4.3) θ(pG(Tx, Ty)) ≤ [θ(β(M(x, y))M(x, y)]k

for all x, y ∈ X, where,

M(x, y) = max{pG(x, y), pG(x, Tx), pG(y, Ty)}.

From Theorem 3.2, we have the following:

Theorem 4.4. Let (X, p) be a complete partial metric space endowed with a
graph G. T : X → X is self-mapping satisfying the following conditions:

(i) (x, y) ∈ E(G) =⇒ (Tx, Ty) ∈ E(G) for all (x, y) ∈ X;

(ii) there exists x0 ∈ X such that (x0, Tx0) ∈ E(G);

(iii) T is G-continuous on (X, p);

(iv) T is Θ-Geraghty graphic type contraction.

Then T has a unique fixed point z ∈ X.

Proof. Define a function α : X ×X → [0,∞) by

α(x, y) =

{
1, if (x, y) ∈ E(G),

0, otherwise

for all x, y ∈ X. Now, we prove that T is α-admissible. Let x, y ∈ X such
that α(x, y) ≥ 1. Then, by the definition of α and the condition (i), we have
(x, y) ∈ E(G) and (Tx, Tx) ∈ E(G). So, we have α(Tx, Ty) ≥ 1. Therefore,
T is α-admissible. From the condition (ii), there exists x0 ∈ X such that
(x0, Tx0) ∈ E(G), that is, α(x0, Tx0) ≥ 1 and, from the condition (iv), T is
Θ-Geraghty graphic type contraction. Since α(x, y) ≥ 1, we have

α(x, y)θ(pG(Tx, Ty)) ≤ [θ(β(M(x, y))M(x, y)]k.

Thus all the conditions of Theorem 3.2 are satisfied and so T has a unique fixed
point in X. This completes the proof. �

Now, we give an example to illustrate Theorem 4.4 as follows:

Example 4.5. Let x = {1, 2, 3} be endowed with the function p : X ×X →
[0,∞) defined by

p(1, 2) = p(2, 1) =
3

7
, p(2, 3) = p(3, 2) =

4

7
,

p(1, 3) = p(3, 1) =
1

7
, p(1, 1) =

1

20
, p(2, 2) =

2

20
, p(3, 3) =

3

20
.

Define a function θ : (0,∞)→ (1,∞) by θ(x) = 1 + x for all x ∈ X. It is easy
to check that p is a partial metric. Define a mapping T : X → X by

T (1) = T (3) = 1, T (2) = 3

and define a function β : [0,∞)→ [0, 1) by β(M(x, y)) = 9
10 for all x, y ∈ X.
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Let G be a direct graph such that V (G) = X and E(G) = {(x, y) : x, y ∈
{1, 2, 3}}. It is easy to show that T preserves edges in G and T is G-continuous.
Also, there exists x0 = 1 ∈ X such that (1, T1) = (1, 1) ∈ E(G). With out loss
of generality, let x, y ∈ X such that x 6= y.

Now, we show that the condition (4.3) holds. Consider the following cases:
Case I. If x = 1 and y = 2, then we have

θ(p(T (1), T (2)) ≤ [θ(β(M(1, 2))M(1, 2)]1/2

θ(p(1, 3)) ≤
[
θ

(
9

10
· 4

7

)]1/2

θ

(
1

7

)
≤
[
θ

(
18

35

)]1/2

8

7
≤
(

53

35

)1/2

.

Case II. If x = 2 and y = 3, then we have

θ(p(T (2), T (3)) ≤ [θ(β(M(2, 3))M(2, 3)]1/2

θ(p(3, 1)) ≤
[
θ

(
9

10
· 4

7

)]1/2

θ

(
1

7

)
≤
[
θ

(
18

35

)]1/2

8

7
≤
(

53

35

)1/2

.

Case III. If x = 3 and y = 1, then we have

θ(p(T (3), T (1)) ≤ [θ(β(M(3, 1))M(3, 1)]1/2

θ(p(1, 1)) ≤
[
θ

(
9

10
· 1

7

)]1/2

θ

(
1

20

)
≤
[
θ

(
9

70

)]1/2

21

20
≤
(

79

70

)1/2

.

The following figure represents the graph with all the possible cases. Therefore,
all the conditions of Theorem 4.4 are satisfied and z = 1 is a fixed point of T .
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1

2

3

p(1, 2) = 3/7

p(2, 3) = 4/7

p(3, 1) = 1/7

Figure : Graph G defined in Example 4.5
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