CONTENTS

ABSTRACT	XIII
RIASSUNTO	XV
RESUMEN	XVII
RESUM	XIX
INTRODUCTION	1
1. PLANT BREEDING AND GENETIC RESOURCES	1
1.1 Plant genetic resources	1
1.2 Plant breeding	2
1.3 Breeding objectives and approaches: the case of some Mediterranean fruit trees	4
1.3.1 Almond (<i>Prunus dulcis</i> Mill.)	4
1.3.2 Mandarin (Citrus reticulata Blanco)	7
1.3.3 Loquat (Eriobotrya japonica (Thunb.) Lindl.)	10
2. HAPLOIDS AND DOUBLED HAPLOIDS IN BREEDING	12
2.1 The importance of Hs and DHs in plant breeding	13
2.2 Status of art of Hs and DHs technology	15
2.3 Methods to obtain Hs and DHs	16
2.4 Characterization of Hs and DHs	21
3. POLYPLOIDS IN BREEDING	22
3.1 Definition and types of polyploids	22
3.2 Modes of origin of polyploids	23
3.2.1 Natural polyploids	24
3.2.2 Artificial polyploids	25
3.3 Polyploidy detection	26
3.4 Application of polyploidy in plant breeding	26
3.5 Polyploidy in fruit trees	28
OBJECTIVES	31

EXPERIMENTS	33
ALMOND ANTHER CULTURE	35
Chapter 1 - Microspore embryogenesis induced through <i>in vitro</i> anther culture of almond (<i>Prunus dulcis</i> Mill.) 1.1 Abstract	39 39
1.2 Materials and methods	39
1.2.1 Plant material	39
1.2.2 Bud size and microspore stage correlation	40
1.2.3 Flower bud sterilization and anther culture	41
1.2.4 Experimental design	41
1.2.5 Characterization of regenerants	43
1.3 Results and discussion	44
1.4 Conclusions	52
1.4 Conclusions	52
Chapter 2 - Application of different BAP concentrations for <i>in vitro</i> callus induction in almond (<i>Prunus dulcis</i> Mill.) anther culture	53
2.1 Abstract	53
2.2 Materials and methods	53
2.2.1 Plant material	53
2.2.2 Bud size and microspore stage correlation	54
2.2.3 Flower bud sterilization and anther culture	54
2.2.4 Experimental design	54
2.3 Results and discussion	56
2.4 Conclusions	61
MANDARIN ISOLATED MICROSPORE CULTURE	63
Chapter 3 - Gametic embryogenesis through isolated microspore culture in mandarin (<i>Citrus reticulata</i> Blanco), 'Mandarino Tardivo di Ciaculli' 3.1 Abstract	65 65
3.2 Material and methods	65
3.2.1 Plant material and pollen developmental stage	65
3.2.2 Microspore isolation and culture	66
3.2.3 Evaluation of the microspore response	66
3.2.4 Allelic pattern detection by SSR analysis	67

3.3 Results and discussion	68
3.4 Conclusions	72
LOQUAT PLOIDY MANIPULATION	73
Chapter 4 - Morphogenic callus induction through <i>in vitro</i> anther culture of loquat (<i>Eriobotrya japonica</i> (Thunb.) Lindl.) 4.1 Abstract	75 75
4.2 Materials and methods	75
4.2.1 Plant material	75
4.2.2 Bud size and microspore stage correlation	76
4.2.3 Flower bud sterilization and anther culture	77
4.2.4 Culture media	77
4.2.5 Data collection and statistical analysis	77
4.2.6 Ploidy Analysis	78
4.3 Results and discussion	79
4.4 Conclusions	84
Chapter 5 - Induced mutagenesis using colchicine for polyploids production in loquat (<i>Eriobotrya japonica</i> (Thunb.) Lindl.), cultivars Cardona and Magdal 5.1 Abstract	85 85
5.2 Material and Methods	85
5.2.1 Plant Material	85
5.2.2 Seeds treatment	86
5.2.3 Determination of ploidy level	87
5.2.4 Statical analysis	87
5.3 Results and Discussion	87
5.3.1 Survival rate	87
5.3.2 Flow cytometric analysis	89
5.4 Conclusions	92
DISCUSSION	93
CONCLUSIONS	99

REFERENCES	101
LIST OF PAPERS AND WORKS	127

FIGURES INDEX

Fig. I.1 The different androgenic routes (Seguí-Simarro 2010 - modified)	19
Fig. I.2 Polyploids formation (Comai 2005 - modified)	23
Fig. 1.1 a Phenological stages of flower buds selected in relation to the microspore developmental stage *(best stage = vacuolated stage); b Anther of 'Ferragnes' containing vacuolated microspore; c Uninucleated-vacuolated microspore; d Microspore with two nuclei of equal size (symmetrical nucleus division) of 'Filippo Ceo'; e Multinucleated microspore of 'Filippo Ceo'	40
Fig. 1.2 a Not developed (left) and swollen (right) anthers of 'Filippo Ceo' after three months in culture; b Anther with friable white callus; c Anther with hard green callus; d Early embryos of 'Filippo Ceo' coming out from the anther; e Embryo of 'Filippo Ceo' developing the root axis; f Abnormal embryos of 'Lauranne' (<i>Bars</i> represent in a, b, c: 1 mm, in d: 0.75 mm, in e: 1.5 mm, in f: 1 cm)	46
Fig. 1.3 Characterization of anther culture regenerants. Microsatellite analysis: Pherograms of the microsatellite markers EPPCU-5990 profiles of the mother plant (top) and two 'Filippo Ceo' regenerants. The mother plant is heterozygous	

and carries two alleles, the regenerants show only one of the mother plant alleles. The presence of alternative alleles from the mother plant has been considered as support for the gametic origin of regenerants

Fig. 1.4 Characterization of anther culture regenerants. Microsatellite analysis: Pherograms of the microsatellite markers UDAP-468 profiles of the mother plant (top) and two 'Filippo Ceo' regenerants. The mother plant is heterozygous and carries two alleles, the regenerants show only one of the mother plant alleles. The presence of alternative alleles from the mother plant has been considered as support for the gametic origin of regenerants

Fig. 2.1 a Polarized-uninucleate microspore; b Bicellular pollen grains containing two different nuclei (asymmetrical division); c Microspore with two nuclei similar in size and chromatin condensation (symmetrical division) of 'Vayrò'; **d** Trinucleated microspore of 'Vayrò' (*Bars* represent 20 µm)

Fig. 2.2 a Anther with friable callus of 'Planeta'; b Hard callus of 'Tarraco' after three months of culture (*Bars* represent 0.5 cm)

Fig. 3.1 a Phenological stages of flower bud of MTC selected in relation to the microspore developmental stage (best stage = vacuolate stage); b Uninucleatevacuolate microspore of MTC; c Multinucleated structure of MTC (Bars represent 10 µm)

V

50

51

57

58

69

Fig. 3.2 a Miscrospore-derived calli and globular embryo of MTC; **b** Heart-shaped embryo of MTC (*Bars* represent 150 µm)

Fig. 3.3 Amplicons of the SSR loci CCSM147 (at left) and Ci08C05 (at right) in embryo (top) and in the parental genotype (bottom) of MTC. Values above each peak represent the allele size (bp). The allelic pattern of the embryo shows a single allele, shared with the parental genotype

Fig. 4.1 a Phenological stages of flower buds selected in relation to the microspore developmental stage *(best stage = polarized uninucleated stage); **b** Flower bud containing anthers with the correct microspore stage; **c** Uninucleated-vacuolated microspore (*Bars* represent in a: 3 mm, in b: 10 μ m)

Fig. 4.2 a Microspore with two equal nuclei (symmetrical division) of 'Peluche'; **b** Bicellular pollen grains (asymmetrical division) of 'Algerie' (*Bars* represent 25 μ m)

Fig. 4.3 a Anther producing white and friable callus after one month of culture; **b** Morphogenic callus showing organized tissues of 'Zaozhong-6' after three months of culture (*Bars* represent in a: 2 mm, in b: 5 mm)

Fig. 5.1 Loquat seedlings growing in pots under natural photoperiod and greenhouse conditions

Fig. 5.2 Flow cytometry histogram of 'Magdal' plants obtained from ungerminated seeds treated with colchicine (0.5%). **a** Diploid control plant (2x), **b** Triploid plant (3x)

Fig. 5.3 Flow cytometry histogram of 'Cardona' plants obtained from ungerminated seeds treated with colchicine (0.5%). **a** Diploid control plant (2x), **b** Triploid plant (3x), **c** Tetraploid plant (4x)

91

69

71

80

80

86

90

76

TABLES INDEX

Table 1.1 Media composition (in g L^{-1} or mg L^{-1})	42
Table 1.2 Microspore developmental responses of the seven almond genotypes after one month of culture	45
Table 1.3 In vitro anther culture response of the seven almond genotypes after three months of culture	48
Table 2.1 Media composition (in g L^{-1} or mg L^{-1})	55
Table 2.2 In vitro anther culture response of the eight almond cultivars tested after three months of culture	60
Table 3.1 Media composition (in g L^{-1} or mg L^{-1})	67
Table 3.2 In vitro isolated microspore culture response after 10 months of culture	70
Table 3.3 Allelic pattern in parental genotype and embryo. Allele size in bp	72
Table 4.1 Media composition (in g L^{-1} or mg L^{-1})	78
Table 4.2 Anthers culture responses to the seven genotypes tested	81
Table 4.3 Anthers culture responses to the four culture media tested three months after culture	83
Table 5.1 Effect of colchicine treatment and time of exposure on loquat un-germinated seed (Exp. 1)	88
Table 5.2 Effect of colchicine treatment and time of exposure on loquat un-germinated seed (Exp. 2)	88