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Abstract 5 

This paper examines the extent to which engineers can influence the competitive behavior of 6 

bidders in Best Value or multi-attribute construction auctions, where both the (dollar) bid and 7 

technical non-price criteria are scored according to a scoring rule. From a sample of Spanish 8 

construction auctions with a variety of bid scoring rules, it is found that bidders are 9 

influenced by the auction rules in significant and predictable ways. The bid score weighting, 10 

bid scoring formula and abnormally low bid criterion are variables likely to influence the 11 

competitiveness of bidders in terms of both their aggressive/conservative bidding and 12 

concentration/dispersion of bids. Revealing the influence of the bid scoring rules and their 13 

magnitude on bidders’ competitive behavior opens the door for the engineer to condition 14 

bidder competitive behavior in such a way as to provide the balance needed to achieve the 15 

owner’s desired strategic outcomes. 16 
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Introduction 22 

Competitive bidding is the regular procurement method for many goods and services. 23 

Moreover, the requirement to ensure transparency, publicity and equality of opportunity in 24 

public procurement, means that clear procedures have to be followed by bidders (de Boer et 25 

al. 2001; Falagario et al. 2012; Panayiotou et al. 2004) to minimize the risk of unfair bias or 26 

corruption (Auriol 2006; Celentani and Ganuza 2002; Csáki and Gelléri 2005). 27 

The traditional means of doing this is by the lowest bid auction, which assumes that the 28 

lowest (most competitive) bid is the best for the owner and therefore wins the auction 29 

(Ioannou and Leu 1993; Waara and Bröchner 2006; Wang et al. 2006). The lowest bid 30 

auction method provides the best incentive for cost reduction (Bajari and Tadelis 2001) and 31 

dominates both the public and private sectors in the United States (e.g. Art Chaovalitwongse 32 

et al. 2012; Shrestha and Pradhananga 2010), European Union (e.g. Bergman and Lundberg 33 

2013; Rocha de Gouveia 2002) and many countries worldwide. 34 

However, despite of its common use, the lowest bid auction method is considered by 35 

many to be a recipe for trouble (e.g. Holt et al. 1994; Latham 1994; Williams 2003), 36 

especially when there is little work around and bidders are shaving their bids (Hatush and 37 

Skitmore 1998; Ioannou and Leu 1993; Oviedo-Haito et al. 2014). In fact, many previous 38 

studies point to the lowest bid often not being best bid in terms of final cost (Dawood 1994; 39 

Hatush and Skitmore 1998; Wong et al. 2001), time (Lambropoulos 2007; Shen et al. 2004; 40 

Shr and Chen 2003), quality (Asker and Cantillon 2008; Choi and Hartley 1996; Molenaar 41 

and Johnson 2003), or risk (Finch 2007). 42 

In the construction sector, selection of the best price-quality bid in the form of Best Value 43 

auctions, also known as multi-attribute, multi-dimensional or two-envelope auctions (David 44 

et al. 2006; Karakaya and Köksalan 2011), has been promoted for a long time (Erickson 45 

1968; Simmonds 1968). In Best Value auctions, bidders' proposals comprise two parts or 46 
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envelopes: the economic (dollar) bid and the technical proposal, which contains purely non-47 

price features. This way an optimum outcome (Choi and Hartley 1996; Wang et al. 2013) or 48 

the best value for money (Holt et al. 1995) is obtained for the owner, as the engineer seeks to 49 

maximize benefits for a certain dollar budget. 50 

Traditionally in many countries, the engineer is both the auctioner (the agent who designs 51 

the auction rules and decides how the contract is to be awarded) and the auctioneer (the agent 52 

that implements the auction rules and awarding process) (Chen 2013). Therefore, the 53 

engineer is usually in charge of designing the scoring rules, which enable both the bids and 54 

technical proposals to be rated and ranked in order to select the best bidder (Ballesteros-Pérez 55 

et al. 2012a, 2012b). The term ‘Bid Scoring Formula (BSF)’ (also named Economic Scoring 56 

Formula) is used here to refer to the set of scoring rules that transform a bid into a bid score 57 

(Ballesteros-Pérez et al. 2012a; 2015a; 2015b), while ‘Technical Scoring Formula (TSF)’ 58 

denotes the set of scoring rules that transform a bidder’s technical proposal into a technical 59 

score. Each are then weighted by a respective weighting factor and the sum of the weighted 60 

bid score and weighted technical score provides the final overall score that determines the 61 

best bidder. 62 

Having clarified this, the aim of this paper is to analyze the relationship between the BSF 63 

and competitive bidding behavior by means of a BSF dataset gathered in the Spanish 64 

construction industry. This is done by monitoring variations of the BSF subcomponents, 65 

called Scoring Parameters, in multiple auctions with similar characteristics. 66 

The paper is divided into six remaining sections. The next section presents a literature 67 

review. This is followed by a section detailing the methodological elements needed to 68 

analyze the changes in bidding behavior associated with different BSF configurations. The 69 

fourth, fifth and sixth sections provide the calculations, results and validation tests. The last 70 
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section, entitled “Discussion and Conclusions”, closes the paper in providing further insights 71 

into the problem analyzed. 72 

 73 

Literature Review 74 

The Bid Scoring Formula (BSF) is a mathematical expression that translates bids for an 75 

auction into scores. The BSF can also encompass another mathematical expression that 76 

determines which bids are abnormal or risky (Abnormally Low Bids Criterion, ALBC) when 77 

the engineer wants to set an approximate threshold beyond which bids will be disqualified 78 

(Ballesteros-Pérez et al. 2012a, 2012b). 79 

However, despite extensive research on competitive bidding over the years (see Holt  80 

(2010) for a recent review), BSF selection remains a relatively poorly researched area. With 81 

very few exceptions, such as Dini et al. (2006) and Asker and Cantillon (2008, 2010), little 82 

has been done to bridge the gap between the theoretical analysis of scoring rules and their 83 

practical application in procurement practice (Bergman and Lundberg 2013). Likewise, 84 

abnormal (or unrealistically aggressive bidding) has also received very little attention in the 85 

literature to date (Ballesteros-Pérez et al. 2013b, 2015b; Chao and Liou 2007; Hidvégi et al. 86 

2007; Skitmore 2002). 87 

Therefore, very little is known of the relationship between BSFs and bidder behavior. As 88 

a result, BSF selection by auctioneers in practice is invariably a highly intuitive and 89 

subjective process (Holt et al. 1994a, 1994b) involving few theoretical or empirical 90 

considerations. This produces scoring rules that are often poorly designed (Bergman and 91 

Lundberg 2013) and affected by internal consistency and validity problems (Borcherding et 92 

al. 1991). Likewise, the allocation of weights to the bid and technical components of a 93 

proposal (which must be disclosed in the Request For Proposals) are generally based on 94 

subjective judgments (Lorentziadis 2010). Fixed criterion weights are often used, therefore, 95 
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to ensure objectivity and reduce the risk of unfairness and corruption in the evaluation of 96 

proposals, providing they accurately reflect the relative importance of the evaluation factors 97 

of the engineer (Falagario et al. 2012). However, it is still possible to create an unfair 98 

evaluation system in which too much emphasis is placed on particular evaluation factors 99 

(Rapcsák et al. 2000) thus favoring, intentionally or otherwise, those bidders that score highly 100 

in these corresponding factors (Vickrey 1961). 101 

Hence, at present, there is increasing attention paid to the criteria and weightings used to 102 

assess the dollar bids and associated technical proposals (Jennings and Holt 1998; 103 

Palaneeswaran and Kumaraswamy 2000). Nevertheless, there is as yet no regular prevailing 104 

method for assessing dollar bids or technical proposals for Best Value. Engineers frequently 105 

use the same BSF for all projects, but different engineers generally favor different BSFs 106 

(Ioannou and Leu 1993; Rocha de Gouveia 2002). 107 

The European Union has addressed this issue (Bergman and Lundberg 2013; Rocha de 108 

Gouveia 2002),  and the dubious actions taken by overly aggressive bidders to recover their 109 

subsequent losses – a recurring theme in the theoretical literature from as long ago as 1971 110 

(Capen et al. 1971). In 1993, the European Union stated that quality was as important as price 111 

(European Union 2002), incorporating this into Directive 93/97/EEC which, for the first time, 112 

allowed an auction to be awarded to the Best Value bidder (Rocha de Gouveia 2002). 113 

Nevertheless, only since 1999 have clear recommendations been made for a more methodical, 114 

consistent and auditable appraisal of auctions to meet the Best Value criterion (Carter and 115 

Stevens 2007; Rocha de Gouveia 2002). These aim to remedy the shortcomings of the 116 

traditional lowest bid criterion by discouraging the undesirable effects of unrealistic or 117 

abnormally aggressive bids on the industry (Conti and Naldi 2008; Crowley and Hancher 118 

1995). 119 
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However, the difficulty for researchers is that longitudinal data concerning bids and profit 120 

from individual bidders are limited due to confidentiality and competitive issues. Therefore, 121 

empirical analysis has been severely restricted to a small number of cases (Vanpoucke et al. 122 

2014), the main conclusion to date being that the decision to bid aggressively or 123 

conservatively is very “complex” (Carter and Stevens 2007). 124 

Hence, despite the current number of theoretical models from the economic theory of 125 

auctions, there is still a lack of fieldwork concerning the extent to which engineers are able to 126 

influence bidder competitiveness. The difficulties in obtaining appropriate data generally 127 

prevent any convincing conclusions to be reached. However, the use of Best Value auctions 128 

calls for the implementation of scoring rules in which both bid and technical criteria are 129 

involved. This situation provides an opportunity to examine how the responses of bidders 130 

change under a variety of scoring auction rule configurations. This is the point of departure of 131 

this research, which aimed to shed more light on this complex issue by examining evidence 132 

of the effect of different BSFs on bidder competitiveness. 133 

 134 

Materials and Methods 135 

Methodology Outline 136 

Before studying how economic auction rules affect bidding competitiveness, it is necessary to 137 

state the problem in a way that will allow an effective analysis. First, an auction X is taken to 138 

exhibit a higher level of bidding aggressiveness compared to an auction Y when these two 139 

conditions occur simultaneously: 140 

1. The average bid for auction X is proportionally lower than its estimated cost than for 141 

auction Y. 142 

2. The lowest bid for auction X is proportionally lower than its average bid than for 143 

auction Y. 144 
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This means that, when comparing the results of two auctions X and Y of different 145 

economic sizes (e.g., different average bid values), the only way to be certain that X is more 146 

competitive than Y (i.e., X evidences more aggressive bidding) is by knowing that the ratio of 147 

their respective bid average and estimated cost is lower for auction X and the ratio between 148 

the lowest bid and the average bid is also lower for X. Fulfilling only one of the conditions – 149 

such as one auction having a proportionally lower average bid with the other having a 150 

proportionally lower lowest bid - makes it uncertain which is more competitive. 151 

On the other hand, an auction X is defined as having a higher level of bid dispersion 152 

compared to auction Y if the following three conditions occur simultaneously: 153 

1. the lowest bid is proportionally lower in auction X than in auction Y, 154 

2. the highest bid is proportionally higher in auction X than in auction Y, and 155 

3. the bid standard deviation is proportionally higher in auction X than in auction Y. 156 

This case is easier to understand, since an auction X will inevitably have a higher bid 157 

dispersion – equivalent to a lower bid concentration – compared to an auction Y, which might 158 

also have a different economic size, when the relative proportional distances between the 159 

highest bid/average bid, the average bid/lowest bid and the bid standard deviation/average bid 160 

are simultaneously higher in auction X. 161 

Therefore, the variations of the relative values of estimated cost, bid average, lowest bid, 162 

highest bid and bid standard deviation are the key variables to be monitored. These are named 163 

here Scoring Parameters, since they coincide with the variables usually found in BSFs. For 164 

instance, examples of BSFs commonly found in practice are: 165 

minmax

max

bb

bb
S i

i





 
   

i

i
b

b
S min    

s

bsb
S im

i
6

3 
  166 

Where iS  is the bid score (expressed on a scale of 0 to 1) produced by bidder i’s bid ( ib ) 167 

in an auction, where minb , mb , maxb  and s  are the minimum bid (lowest bid), the average 168 
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(mean) bid, the maximum (highest) bid and the bid standard deviation respectively of an 169 

auction (see “Notation List”). 170 

 171 

Scoring Rules Dataset 172 

The dataset analyzed comprises 124 auction specification documents with 47 different groups 173 

of BSFs and ALBC for different Spanish owners, and enough auction data to enable a first 174 

quantitative analysis to be made. This is displayed in Table 1 and the terminology used will 175 

be explained later. The data are quite representative of the Spanish bidding system, as they 176 

comprise auctions from public authorities (city councils, local councils, semi-public entities, 177 

universities, ministries, etc.) and private companies. 178 

The dataset spans 5 years. Ideally, a good dataset should comprise as many auctions as 179 

possible within the shortest time. However, in order to be representative of the wide variety 180 

of scoring rules applied by many organizations, many of which are national bodies and do not 181 

regularly conduct construction auctions, it has been necessary to extend this time to 5 years 182 

(2003-2008). The period chosen seems to be in line with other similar auction datasets; for 183 

example, a very recent study making use of twelve international auction datasets for 184 

modeling the number of bidders in construction auctions (Ballesteros-Pérez et al. 2015c) 185 

spanning from 2 to 10 years, making our 5-year scoring rule dataset length quite reasonable. 186 

Spain enjoyed a period of economic prosperity from approximately 1997 to 2008 and hence 187 

the dataset is not expected to be influenced by a volatile market. As is seen later in the “Test 188 

of the Model” section, as soon as market conditions change, the bidders’ behavior also 189 

gradually changes too. Seven more Spanish auctions from 2009 and 2010 – a period in which 190 

the European Union and Spanish economic recession began – are compared to the model 191 

developed for the first 124 auctions, showing that bidders in an economic downturn tend to 192 

be more aggressive in situation of work scarcity. 193 
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The 124-auction dataset comprises a wide range of civil works (irrigation systems, 194 

desalination and waste water treatment plants, drinking water treatment stations and water 195 

supply systems, sewage lines and pumping stations, libraries, landfill sites, and small road 196 

networks) together with operation and maintenance services (dams, airports, touristic 197 

beaches, waste management, cinema studios, hospitals, seaports, amusement parks, university 198 

technological equipment) all involving construction or reconstruction activities to some 199 

extent. The more recent seven-auction dataset comprises buildings and hydraulic civil work 200 

auctions. 201 

 202 

Terminology 203 

For the sake of clarity, several terms used later are defined first. Each group of n auctions 204 

under the 47 different combinations of BSFs and ALBC in the 124 dataset is classified as 205 

what are called ‘capped tenders’ (in British English) or ‘capped auctions’ (in American 206 

English). In this form of auction, the engineer sets an upper bid limit (A) (sometimes also 207 

called ceiling price), which is stated in the auction specifications and against which bidders 208 

must underbid. That is, in capped auctions, bidders offer a ‘drop’ ( id ) from the bid limit (A). 209 

The relationship between the monetary bids ( ib ) and drops ( id ) in these auctions is 210 

straightforward as 211 

 
A

b
d i

i 1  (1) 212 

Therefore, in capped auctions, bids can be equally analyzed as monetary bids ( ib ranging 213 

from 0 to A) or as drops ( id  ranging from 0 to 1 or, equally, from 0% to 100%). In uncapped 214 

auctions – auctions in which the engineer does not set a maximum or a minimum price and in 215 

which bidders can freely submit the bids they want – the bids can only be expressed as 216 

monetary bids ( ib ), since there is no set limit from which calculate the drop. 217 
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It is quite usual that some countries use the capped bidding approach while others resort 218 

to the uncapped approach. However there is a large number of countries that adopt both 219 

approaches depending on their respective traditions, preferences or specific needs 220 

(Ballesteros-Pérez et al. 2010). In this case, capped bidding is used more frequently whenever 221 

there is a previous and well-developed project that clearly defines the scope of the works to 222 

be carried out. On the other hand, when the request for proposals invites the bidders to submit 223 

a bid for the design, build and sometimes the operation of the works auctioned, it is often 224 

more convenient to resort to uncapped bidding since the scope of work is less defined. 225 

Here, for the comparison of bids in different auctions with different initial upper limits 226 

(A), it is preferable to use drops rather than monetary-based bids, although the results are not 227 

expected to be different for uncapped auctions. Using drops always also has the advantage of 228 

involving the same 0 to 1 scale for analyzing the scoring parameter variations and therefore 229 

also range from 0 to 1 when expressed in drops, since the bidders’ drops ( id ) themselves also 230 

range within that interval of variation (Ballesteros-Pérez et al. 2014). Therefore, the Scoring 231 

Parameters of mean bid, maximum bid, minimum bid and bid standard deviation can be 232 

expressed either in monetary-based values (bm, bmax, bmin and s, ranging from 0 to A) or in 233 

their respective drop-based version in capped auctions (dm, dmin, dmax and σ, ranging from 0 to 234 

1 and obtained replacing the bm, bmin, bmax and s values respectively in Equation 1 when the 235 

auction maximum price limit A has been set). 236 

Furthermore, there are four aspects of scoring methods that can be analyzed (Ballesteros-237 

Pérez et al. 2015a): (a) the way the bid score is calculated (BSF); (b) the way the technical 238 

score is calculated (TSF); (c) the way the weights the bid and the technical scores are set; and 239 

(d) how the ALBC is defined. Since this paper only focuses the on the bid score, (b) is ruled 240 

out, and the three main variables become the BSF, bid score weighting and ALBC. Table 1 241 

shows these three variables for the dataset under study. From right to left these are the Bid 242 
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Scoring Formulas (BSF), ALBC width (tk), and bid weighting (wk). The latter represents the 243 

weight of the bid score (with 10  kw ) versus the technical score (which generally equals 244 

kw1 ) in a multi-attribute or Best Value auction. The former is related to the unique generic 245 

mathematical expression of ALBC found in the dataset, which is   mkabn btb  1  (in 246 

monetary bids) or, alternatively,   mkabn dtd  111  (when expressed in drops by means 247 

of replacing in the former variables bm and babn by  Adm1  and  Adabn1  respectively 248 

according to Equation 1). This is the most common mathematical expression in use in 249 

European Union countries for setting a cut-off limit beyond which all bids are ineligible. The 250 

variable abnb  (dabn) denotes the abnormal bid (drop) threshold value below (above) which 251 

every bid ib  (di) is disqualified; whereas variable tk (ALBC width) is a parameter set by the 252 

engineer for a BSF in many ways –Belgium, France, Italy and Spain, for example, use ranges 253 

mostly varying between tk=0.10 and 0.15) (European Union 1999). As will be seen later, both 254 

wk and tk variables are important parameters for promoting bidding competitiveness. 255 

<Table 1> 256 

 257 

Scoring Parameter Relationships 258 

The bid scoring rules comprise, in addition to the weighting factor, two mathematical 259 

expressions: (1) the Bid Scoring Formula (BSF), which are expressions similar to the ones 260 

shown in Table 1 formulated as a function of bidder i’s bid bi (or di when expressed in drops) 261 

and generally with at least one or more Scoring Parameters (bm, bmax, bmin and s, in monetary 262 

bids, or, analogously, in drops, dm, dmin, dmax and σ, respectively); and (2) the Abnormally 263 

Low Bids Criteria (ALBC) which are the mathematical expression of a cut-off limit beyond 264 

which, any bid bi, or its equivalent drop di, are no longer eligible. The first converts the bids 265 
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bi (or di) into scores, whereas the ALBC determines which bids are ex-ante ineligible as being 266 

too cheap or too expensive. 267 

Now, the mathematical expressions of almost all BSFs and ALBC are defined by a 268 

combination of one or more Scoring Parameters (SP): bm, bmax, bmin and s, or dm, dmin, dmax and 269 

σ (Ballesteros-Pérez et al. 2015a), which are variables that are only known after the auction 270 

has taken place and the price bids are known. Hence, these SP constitute, at the same time, a 271 

descriptive set of auction bid statistics (average, minimum, maximum and standard deviation) 272 

to calculate the bidders’ scores. 273 

Therefore, if the variations of these individual SP can be traced with respect to the BSF 274 

and ALBC settings, it is possible to identify when an auction is more aggressive/conservative 275 

and more concentrated/dispersed. For example, translating what was said in the 276 

“Methodology Outline”, an auction X is more aggressive than another auction Y when the 277 

ratios bo/bm (equivalent to dm/do) and bmin/bm (equivalent to dmax/dm) are lower for auction X, 278 

where bo and do are the estimated cost of the auction expressed in money or drops, 279 

respectively. Analogously, an auction X evidences a higher level of bid dispersion when 280 

these three ratios: bmin/bm, bmax/bm and s/bm (or equivalently in drops dmax/dm, dmin/dm and σ/dm) 281 

are larger in auction X compared to auction Y. 282 

The problem is that these SP ratios do not follow a linear relationship, because the SP 283 

variation itself is not generally linear either; thus, its relative variations must be carefully 284 

measured and compared. This is the aim of the present section, describing the major features 285 

of the SP and how they are interconnected with each other, so their relative variations can be 286 

properly registered and used later for linking them to more aggressive/conservative bidding 287 

behavior and to a higher concentration/dispersion of bids. 288 

Therefore, as noted above, in both uncapped and capped auctions, the Scoring Parameters 289 

have particular mathematical relationships with each other; however, from now on, only SP 290 
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relationships expressed in drops will be considered. These relationships are described and 291 

justified in Ballesteros-Pérez et al. (2012b, 2013a, 2015a) and, when they are expressed as a 292 

function of the scoring parameter mean drop (dm), they are as described in the first column of 293 

Figure 1. As can be seen, each of these expressions is known when the respective ‘regression 294 

coefficients’ (, ,  and , respectively by rows) is determined. 295 

<Figure 1> 296 

Specifically, these four regression coefficients have the following meanings: 297 

  relates the estimated cost (do) to the mean bid (dm) when expressed in drops. The larger 298 

this coefficient is, the larger the mean drop will be compared to the estimated cost 299 

(aggressive bidding); whereas the smaller is , the mean drop will also be smaller (more 300 

conservative bidding). 301 

   relates the mean bid (dm) to the maximum drop (dmax). The larger this coefficient is in a 302 

particular auction, the closer is dmax to dm , meaning more conservative bidding. We 303 

therefore use ‘  ’ instead of ‘  ’, because ‘  ’ will be read the same way as  is read 304 

(the larger   denoting more aggressive bidding). This coefficient also indirectly means 305 

the concentration/dispersion of bids, since the distance between the lowest and the 306 

average value of bids indicates how dispersed the bids are. 307 

   is a very similar coefficient to ‘  ’, sharing the same mathematical expression, but 308 

relating the highest bid (lowest or minimum drop dmin) to dm. The larger   is, the further 309 

dmin will be located from dm and vice versa. Thus, this coefficient allows analysis of the 310 

concentration (with small   values) or dispersion (with large   values) of a bids in the 311 

same way as coefficient  . 312 

  connects the bids standard deviation ( ) with the mean bid (dm), but is expressed in 313 

drops. Again, the bigger is  , the greater is the dispersion of bids. 314 
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The expressions for calculating the ‘regression coefficient averages’ ( , ,   and  ) are 315 

shown in the second column of Figure 1; further details and justification of the regression 316 

coefficient mathematical expressions can be found in Ballesteros-Pérez et al (2015a). These 317 

expressions are formulated as a function of the scoring parameter values obtained for the 318 

number of n auctions in Table 1 (the complete auction data having not been displayed for the 319 

sake of brevity), which share the same BSF description (coded as ID in Table 1). The 320 

‘regression coefficient averages’, however, are presented in the last four columns of Table 3, 321 

while a numerical example is also given in Table 2. 322 

The third and last column in Figure 1 displays how each regression coefficient average 323 

potential value is associated with different levels of bidding aggressiveness and/or dispersion. 324 

In particular, each graph represents how different intervals of the regression coefficient 325 

values produce different curves. These indicate how the relative distances or ratios between 326 

do, dmax, dmin or σ, respectively, to dm, evolve. Table 2 shows a numerical example detailing 327 

how the four average regression coefficients are calculated according to the second column of 328 

Figure 1 for a particular BSF (BSF ID=1 from Table 1) with two auctions (n=2). 329 

<Table 2> 330 

All the variables used in Table 2 have been introduced above with, as noted earlier, do 331 

corresponding to the estimated cost for each auction expressed in drops. This value was given 332 

by the same bidder for each of the 124 auctions, i.e., unlike dmax, dm, dmin and σ, it cannot be 333 

derived from the list of bids submitted by the bidders in each auction. 334 

In short, these ‘regression coefficient averages’ are important as they are the variables 335 

whose variations allow the comparisons between pairs of scoring parameters, which allows 336 

us to compare more aggressive with more conservative bidding (and more dispersed bids 337 

with more concentrated bids), for different auctions with different BSFs as stated in the 338 

“Methodology Outline” sub-section. 339 
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 340 

Hypotheses 341 

The strategy is to study how different BSF features affect the ‘regression coefficient average’ 342 

values of  ,  ,   and  . In doing this, coefficient   will be replaced by  , since this 343 

better aligns its direction of variation with the rest of scoring parameters. 344 

The central block in Table 3 (second to fourth columns) presents the three variables most 345 

influential on the regression coefficient averages: the bid weighting ( kw ), ALBC width ( kt ) 346 

and the BSF (simplified by its gradient kg ) (Ballesteros-Pérez et al. 2015a). As explained 347 

earlier, the value of kw indicates the importance of the bid (Si) relative to the technical 348 

proposal (Ti). It ranges from 0 (when the engineer is only interested in the technical proposal) 349 

to 1 (when the engineer is only interested in the bid value: an auction where the only 350 

selection mechanism is the highest drop or lowest bid). When 10  kw , the proposals are 351 

evaluated according to a mixture of economic (bid) and technical criteria.  352 

<Table 3> 353 

The ALBC width is a measurement of how narrow the cut-off for unrealistic ineligible 354 

bids is in terms of relative distance, kt , from the mean drop dm. Usual values found for this 355 

variable in European Union countries range from 0.04 to 0.25 whenever an ALBC is 356 

implemented. Otherwise, when there is no ALBC (∄ tk), kt  is considered as 1 (cut-off always 357 

at zero). 358 

Finally, the BSF gradient is concerned with the bidders' perception of how quickly they 359 

score reduces as a function of how far apart they are from the best-scored bid (theoretically 360 

from the first ranked bidder, see last column of Figure 2). This is easily visualized by plotting 361 

the Si curve for an auction. However, the interest is really in the shape of the curve: (1) a 362 

concave curve indicating the bid score reduction is larger near the best bid; (2) a convex 363 
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curve indicating the bid score reduction is smaller near the best bid; and (3) a linear curve 364 

indicating the bid score reduction is constant no matter what the distance to the best bid. 365 

<Figure 2> 366 

The expectation now is that, with a higher bid score weighting ( kw ), bidders will bid 367 

lower (with bigger drops) in order to win the auction as they have less possibility of gaining 368 

any advantage through having a superior technical proposal. Similarly, when the ALBC 369 

width is wide (larger values of kt ) and excludes very few bidders, bidder behavior is expected 370 

to be more aggressive since there is less chance of being disqualified for bidding too low. 371 

Analogously, concerning the BSF gradient, bidders whose di values are close to the 372 

maximum drop dmax, are more likely to compete strongly whenever they feel that their score 373 

will be reduced even though their bids are quite similar; this only happens with concave BSF 374 

gradients. This increased bidding aggressiveness for auctions with a specific combination of 375 

kw , kt  and kg  values will therefore be demonstrated for a set of auctions if the   and   376 

values are larger than for auctions with different kw , kt  and kg  values. 377 

 378 

Calculations 379 

In order to validate and measure the extent to which conservative-aggressive bidding is 380 

actually influenced by the three independent variables of bid score weighting kw  (now X1), 381 

ALBC width kt  (now X2), and BSF gradient (now X3), that is, to what extent different values 382 

of X1, X2 and X3 can alter the values of  ,  ,   and  , four multiple linear regression 383 

analyses are carried out (one for each ‘regression coefficient average’:  ,  ,   and  , as 384 

a function of the three independent variables X1, X2 and X3 identified above). The aim of this 385 

approach is to determine if the regression coefficient averages ( ,  ,   and  , now 386 

dependent variables Y1, Y2, Y3 and Y4, respectively) are actually conditioned by the three 387 
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variables X1, X2 and X3, whose test results of their interdependence will be presented later in 388 

Figure 3 as Covariation and Correlation matrices. 389 

To do this, we use a simple trichotomic scoring (-1, 0, +1) as in Figure 2, according to 390 

particular pre-set levels by rows of the three independent variables involved. In particular, 391 

possible values of  independent variable X1 ( kw ) are divided into three equally wide 392 

intervals each of which depicts the situation of a bid up to 33.3%, 66.7% and 100.0% 393 

respectively of the overall score (technical + bid) since this variable can range from 0 to 394 

100%. Independent variable X2 ( kt ) variation is divided again into three intervals. In this case 395 

however, despite kt  also theoretically ranging from 0 to 1, the usual values implemented in 396 

European Union countries range from 0.00 to 0.25 as noted above, so it was found preferable 397 

to adapt the three intervals to the most common range of actual kt  values found in practice ( kt  398 

up to 0.05, 0.15 and 1.00). Finally, independent variable X3 ( kg ) was directly classified 399 

according to the three only possible shapes the BSF curve can have: concave, convex or 400 

constant (linear). 401 

This way, according to the three main column values shown in the second and central 402 

block of Table 3, the trichotomic scoring for variables X1, X2 and X3 can be assigned 403 

according to the three levels from Figure 2, whereas the results of this assignment to the three 404 

independent variables kw , kt  and kg  is shown on the right block of Table 3 in columns ‘X1’, 405 

‘X2’ and ‘X3’, respectively. 406 

Analogously, the regression coefficient average values for  ,  ,   and  , are 407 

shown on the right block of Table 3 in columns Y1, Y2, Y3 and Y4, respectively. These are 408 

calculated according to the expressions shown in Figure 1 (column ‘Calculation’) and as 409 

exemplified in Table 2 for each different set of n auctions with the same ID from Table 1. 410 
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Independent variables kw  and kt  are ratios from 0 to 1 and, therefore, they could be used 411 

as continuous variables. However, the four multivariate analyses performed here opted 412 

instead for three-level categorical variables. The reason is that preliminary analyses (not 413 

included here due to lack of space) indicated non-linear contributions of kw  and kt . 414 

Unfortunately, non-linear analyses usually require far more data when the contribution of 415 

each independent variable is still to be researched, and the present dataset is not extensive 416 

enough to allow such an extensive analysis. However, the adopted three-level system equally 417 

allows two important aspects to be analyzed: the degree of contribution of each independent 418 

variable ( kw , kt  and kg ) as well as the direction in which each variable influences bidding 419 

behavior. Both facets are of primary importance in providing the first set of results and 420 

concluding where future research is still required. 421 

 422 

Results 423 

The results of the four regression analyses performed – one for each dependent variable, that 424 

is, Y1 (coefficient  ), Y2 (coefficient  ), Y3 (coefficient  ) and Y4 (coefficient  ) – are 425 

shown in Figure 3 arrayed horizontally, along with other intermediate calculations. However, 426 

the most representative results are the coefficients of determination (R2) and significance tests 427 

for each Yi’s multiple linear regression coefficient (Mi), both checked as a group (M0 to M3 428 

together passing the F-Fisher test) and individually (each Mi  passing the Student t-test). The 429 

covariance and correlation matrices are also provided at the bottom of Figure 3. 430 

< Figure 3> 431 

Summarizing the results of Figure 3, four major conclusions can be stated. First, all the 432 

coefficients of determination (R2) in Figure 3 are large enough to indicate that there is a 433 

moderate or high degree of correlation between the independent variables selected (X1= kw , 434 
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X2= kt and X3= kg ) and each of the dependent variables (Y1= , Y2=  , Y3=  and Y4=435 

 ). This means that the bid score weighting ( kw ), ALBC width ( kt ) and BSF gradient ( kg ) 436 

are correctly identified as significant and influential variables. 437 

Second, the multiple linear regression coefficient values M1, M2 and M3 (but for the 438 

coefficient M3 when relating ‘Y3= ’) are positive, meaning that Figure 2 is therefore 439 

correctly ordered, i.e., from the scenario where bidders’ bid more aggressively and more 440 

dispersed in the top row (row with scoring +1), to more conservative bidding with more 441 

concentration in the bid values in the bottom row (row with scoring -1). 442 

Third, the covariance and correlation factors found in the covariance and correlation 443 

matrices outside the diagonal between the independent variables (X1= kw , X2= kt  and X3= kg444 

) themselves are generally small. The only exception is the comparatively larger 0.271 445 

correlation between independent variables X1 and X3. This significant, but still moderately 446 

weak, correlation originates when auctioners implement BSF for a Best Value or multi-447 

attribute auction and they have the common habit of using high bid score weightings (X1=+1) 448 

along with concave BSF gradients (X3=+1), as well as low bid score weightings (X1=-1) with 449 

convex BSF gradients (X3=+1); the first combination promotes bidding aggressiveness, 450 

whereas the second promotes bidding conservativeness. Nevertheless, the relatively small 451 

correlation factors suggests that, even though there is some combined effect of the three 452 

independent variables, they are expected to be minor, i.e., every variable depicts a relatively 453 

independent single component that affects bidding behavior. 454 

Conversely, it is worth highlighting that the regression analysis found the linearity 455 

assumption to be reasonably satisfied. However, as noted above, this was not necessarily 456 

because the correlations among variables analyzed behave linearly. The data has been 457 

organized into a three-level ordinal scale that does not provide any information for the 458 

possible development of underlying mathematical functions that might have been identified 459 
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by working with continuous variables in a larger BSF database. This issue remains in need of 460 

further research. 461 

Fourth, Figure 4 shows the Q-Q plots of the standardized residuals for the four multiple 462 

linear regression analyses. As can be easily seen, most data fit a straight line, indicating that 463 

the residuals follow approximately a Normal distribution. 464 

 <Figure 4> 465 

Finally, the last step was to carry out an Analysis of Variance (ANOVA) – summarized in 466 

Figure 5 – to test if the multiple regression linear coefficients ‘Mi’ values were significantly 467 

different from each other in order to rank the three independent variables (X1= kw , X2= kt  468 

and X3= kg ) by decreasing the order of importance. Initially, inspection of the coefficients 469 

M1’s, M2’s and M3’s values in Figure 3 revealed that M1> M2> M3 for Y1 and Y2, and that 470 

M2> M1> M3 for Y3 and Y4, so the bid score weighting and ALBC width may be equally 471 

important, but both having more influence when compared to the BSF gradient. 472 

In particular, an ANOVA was carried out by studying the Fisher’s Least Significant 473 

Difference (LSD) intervals, which is a statistical method for comparing the means of several 474 

variables and does not require correction for multiple comparisons. The main results of this 475 

analysis are shown in Figure 5. 476 

<Figure 5> 477 

The major results from the ANOVA also indicated that both the bid score weighting and 478 

ALBC width are almost always more important than the BSF gradient (their Fisher LSD 479 

intervals rarely intersect), whereas the bid score weighting was not always more influential 480 

than the ALBC width (since their Fisher’s LSD intervals are partially overlapped for most Y 481 

variables). Therefore, the results of this latter analysis confirm that the variables bid score 482 

weighting, ALBC width and BSF gradient are already ranked in decreasing order of 483 

importance, but the first two almost always have a quite similar influence on bidder behavior. 484 
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Summarizing, as said in the “Hypotheses”, the expectation was that the higher the bid 485 

scoring weighting (X1= kw ), the lower the bidders would bid, as they would have had less 486 

possibility of gaining any advantage through having a superior technical proposal. Similarly, 487 

when the ALBC is lenient (because it excludes very few bidders by a very large or even non-488 

existent X2= kt  value), bidder behavior was expected to be more aggressive since there is less 489 

chance of being disqualified for bidding too low. Analogously, it was claimed that bidders 490 

who are close to the lowest (maximum drop) would be more likely to compete strongly with 491 

concave BSF curves as they would feel that their score might be reduced even though their 492 

bids are quite similar. 493 

Hence, for example, it can be seen that BSF ID=6 from Table 1, with all the trichotomic 494 

variables set at -1 (low wk, narrow tk and convex gk), causes a higher level of bidding 495 

conservativeness and bid concentration as demonstrated by its small Y values from Table 3. 496 

Conversely, the traditional lowest-wins auction with no ALBC (∄ tk), which is perfectly 497 

concave and is actually represented by BSF ID=36 in Table 1, produces on average the 498 

largest  ,  ,   and  values in Table 3. That is, it generates the highest bidding 499 

aggressiveness and bid dispersion. This accords well with the literature concerning traditional 500 

bidding and the very raison d'être for the introduction of BSF and non-price features in 501 

general. 502 

 503 

Test of the Model 504 

For an additional check, several more recent auctions were gathered from the same country 505 

(Spain) where the original auctions for developing the Multiple Linear Regression Analysis 506 

were collected. This new sub-dataset comprises a total of seven buildings and hydraulic civil 507 

work auctions from years 2009 and 2010 grouped under three sets of auctions with common 508 

BSF features in each of the three groups. Results of actual versus estimated  ,  ,   and 509 
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 values by using M0, M1, M2 and M3 values according to Figure 3 (left column) are 510 

presented in Table 4. 511 

<Table 4> 512 

As can be seen, per-unit deviations between actual and estimated values generally remain 513 

below 10%. However, there are two exceptions for   (the regression parameter that specifies 514 

the linear relationship between do and dm) with deviations up to 20%. It must be noted 515 

however, that years 2009 and 2010 were the first officially considered in the economic 516 

recession in Spain; hence, it is expected that with equivalent cost estimates (do) the bidders 517 

bid more aggressively (lower mean bids, dm) compared to the previous period of 2003-2008. 518 

However, these deviations were found only for the dependent variable Y1 ( ) , not for the 519 

other three (  ,   and  ). Therefore, overall, it can be considered as a highly satisfactory 520 

result. 521 

 522 

Discussion and Conclusions 523 

There are many scoring formulas currently in use for evaluating bid proposals in Best 524 

Value auctions. These affect bidder conservativeness-aggressiveness in profound ways but 525 

their design in practice is invariably a highly intuitive process, involving few theoretical or 526 

empirical considerations. To date, the vast literature of theoretical competitive models has 527 

relied almost exclusively on a combination of the foundational axioms of economics and 528 

intuition together with scarce experimental results that many perceive as being of uncertain 529 

veracity. The contribution here adds to the relatively tiny amount of complementary field 530 

studies in this area, providing some confidence in the theoretical developments so far. 531 

In this paper, an analysis aimed at bridging this gap through the empirical study of a 532 

sample of 131 Spanish procurement auctions is provided in order to establish the changes in 533 

bidding competitiveness that occur, at least partially, in response to the mathematical scoring 534 
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rule chosen by the engineer in the auction specifications. In doing this, three major variables 535 

are hypothesized as being likely to influence the competitiveness of bidders in terms of both 536 

their aggressive/conservative bidding and concentration/dispersion of their bids. These 537 

variables are the bid score weighting (how relatively important is the bid in contrast with the 538 

technical proposal), the ALBC measured by its width (how narrow is the cut-off that sets a 539 

threshold beyond which a bid is disqualified), and the BSF measured by its gradient (the 540 

concavity, linearity or convexity of the scoring curve that makes bidders realize how quickly 541 

their score decreases the more they exceed the lowest bid). For example, aggressive bidding 542 

is expected to occur with a high bid score weighting (hardly any non-price features allowed), 543 

no abnormal bid detection and a concave scoring curve. From this, it is easy to show that the 544 

traditional lowest-wins auction prompts the most aggressive behavior from bidders and, 545 

hence, all the negative outcomes associated with aggressive bidding. 546 

In terms of industry practice, the findings concern both the bidders and the entities that 547 

design and/or eventually award the auctions. On one hand, bidders can benefit from 548 

understanding how different BSF and ALBC mathematical configurations force them to 549 

submit more competitive price bids, that is, to renounce to higher profits for the sake of 550 

obtaining higher scores. Indeed, bidders who understand these effects even before their first 551 

bidding experience might gain a clear competitive edge over their rivals. 552 

On the other hand, the findings of the research indicate the potential for individual 553 

engineers or owners to control the aggressiveness of bidders’ bids to a level that strikes a 554 

desired balance between the monetary costs of under-competitiveness and the increased risk 555 

of problems associated with over-competitiveness. Previous research into optimal auction 556 

design is far from incorporating such practical issues as non-price features, unrealistic bid 557 

detection and actual individual auctioneer risk preferences. The conceptual framework 558 

developed in this paper, therefore, offers a potential means of doing this through the design of 559 
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enhanced scoring formulas for individual engineers. In its present form, however, the analysis 560 

is restricted to providing a general qualitative configuration. The next logical step is the 561 

development of a quantitative means of determining how small variations in the BSF 562 

mathematical expressions might affect the level of bidder aggressiveness and bid dispersion 563 

for a future Best Value auction. This could be done, for example, by unbalancing the 564 

importance of the bid versus the technical proposal, adjusting the ALBC width or just by 565 

implementing BSF curves with different levels of concavity/convexity. All this is with the 566 

intention of promoting an equilibrium between competitiveness and risk among bidders’ bids, 567 

since in public construction contract auctions, for instance, both practitioners and researchers 568 

are aware that overly conservative bidding tends to waste public funds (i.e., a situation in 569 

which bidders make unreasonably high profits when winning the auction), whereas overly 570 

aggressive bidding causes problems such as poor quality, prolonged construction duration 571 

and ‘false economy’, that are said to ruin the health of the entire industry in the long run 572 

(Drew and Skitmore 1997; Flanagan et al. 2007). 573 

For future empirical research, the analysis needs to be repeated in other contexts in order 574 

to study whether the importance, and the order of importance, of the three variables identified 575 

influence bidder behavior to the same extent, regardless of other uncontrolled variables. Also 576 

needed is an examination of the indirect effects of scoring technical proposals. For instance, 577 

recent empirical studies have found that, whenever the score for technical proposals is 578 

increased, bidders are encouraged to be more innovative and hence more focused on cost 579 

savings (Pellicer et al. 2014), an issue that may also eventually be reflected in the monetary 580 

component of the auction. In addition, analysis of a much larger dataset would help measure 581 

quantitatively, and with higher accuracy, how the particular configuration of scoring rules 582 

influences bidder behavior in other industries. 583 

 584 
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Notation List 585 

The following variables are used in this paper. 586 

A   Maximum price possible to be submitted in a capped tender/auction 587 

babn  Abnormal bid threshold (expressed in money) 588 

bi  Bidder i’s bid (expressed in money) 589 

bm  Mean (average) bid (expressed in money) 590 

bmax  Maximum (highest) bid (expressed in money) 591 

bmin  Minimum (lowest) bid (expressed in money) 592 

bo  Estimated cost, expressed in bid (in money) 593 

dabn  Abnormal drop threshold (expressed in /1) 594 

di  Bidder i’s drop (expressed in /1) 595 

dm  Mean drop (average bid) (expressed in /1) 596 

dmax  Maximum drop (lowest bid) (expressed in /1) 597 

dmin  Minimum drop (highest bid) (expressed in /1) 598 

do  Estimated cost, expressed in drop (in /1) 599 

gk  Bid Scoring Formula curve gradient in auctions with the same BSF ID and 600 

converted into a X3 later (in trichotomic score) 601 

M0…M3 Multiple linear regression coefficients relating X1, X2 and X3 with each of the 602 

four Y1, Y2, Y3 and Y4 independent variables. 603 

n  Number of auctions with the same combination with the same BSF and ALBC 604 

and engineer 605 

s  Bid standard deviation (expressed in money) 606 

Si  Score awarded to bidder i as a function of bi or di (expressed in /1) 607 

Ti  Score awarded to bidder i as a function of its Technical proposal (in /1) 608 
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tk  Abnormally low bids criterion (ALBC) width in auctions with the same BSF 609 

ID (expressed in /1) and converted into a X2 later (in trichotomic score) 610 

wk  Bid score weighting in auctions with the same BSF ID (expressed in /1) and 611 

converted into a X1 later (in trichotomic score) 612 

α  Regression parameter that specifies the parabolic relationship between dmax 613 

and dm in drops (or bmin and bm in bids) 614 

   Average of the n values of α with the same ID (k value), renamed later as -Y2 615 

β  Regression parameter that specifies the parabolic relationship between dmin and 616 

dm in drops (or bmax and bm in bids) 617 

   Average of the n values of β with the same ID (k value), renamed later as Y3 618 

γ  Regression parameter that specifies the mathematical relationship between σ 619 

and dm in drops (or s and bm in bids) 620 

   Average of the n values of γ with the same ID (k value), renamed later as Y4 621 

λ  Regression parameter that specifies the linear relationship between do and dm 622 

in drops (or bo and bm in bids) 623 

   Average of the n values of λ with the same ID (k value), renamed later as Y1 624 

σ Drop standard deviation (expressed in /1) 625 

Standard statistical variables, such the ones used in Figures 3 and 5 (e.g. R2, SE, F, t, df), are 626 

not displayed. 627 
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Table 1: BSFs and ALBCs dataset 
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1 

BSF ID 

(k) 
Auction ID 

Upper Price 

limit (A) 
Auction ID 

Upper Price 

limit (A) 
n 

(∑Auction IDs) 

1 1 320,032.00 € 2 1,585,015.00 € 2 

Bidder 

(i) 

Bid (monetary 

value) (bi) 

Drop (/1 

value) (di) 

Bid (monetary 

value) (bi) 

Drop (/1 

value) (di) 

Lowest = 1 173,361.33 € 0.458 683,152.58 € 0.569 

2 198,419.84 € 0.380 767,798.23 € 0.516 

3 201,620.16 € 0.370 810,121.06 € 0.489 

4 204,820.48 € 0.360 852,443.89 € 0.462 

5 208,020.80 € 0.350 871,758.25 € 0.450 

6 211,221.12 € 0.340 871,758.25 € 0.450 

7 216,021.60 € 0.325 894,766.72 € 0.435 

8 217,621.76 € 0.320 935,158.85 € 0.410 

9 221,587.19 € 0.308 937,089.54 € 0.409 

10 224,022.40 € 0.300 951,009.00 € 0.400 

11 230,423.04 € 0.280 979,412.37 € 0.382 

12 279,227.92 € 0.128 1,014,409.60 € 0.360 

13 1,021,735.20 € 0.355 

Highest =14 1,233,349.34 € 0.222 

Scoring Parameters (SP) 

do 0.235 0.358 

dmax 0.458 0.569 

dm 0.327 0.422 

dmin 0.128 0.222 

σ 0.066 0.072 

Regression coefficients 

(calculated according to Figure 1, 2nd column) 
Averages 

λ 1.136 1.111  = 1.123 

α 0.599 0.602   = 0.601 

β 0.905 0.821   = 0.863 

γ 0.182 0.221   = 0.202

Table 2: Example of BSF ID=1’s Regression Coefficient (, ,  and ) calculations 

http://www.editorialmanager.com/jrncoeng/download.aspx?id=186200&guid=4978c717-2487-4e64-b2a3-03ac5fab4b64&scheme=1
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ID 

(k) 

BS Weigh. 

(wk) 
ALBC width 

(tk ) 
BSF Gradient 

(gk) 

X1 

f(wk) 
X2 

f(tk) 
X3 

f(gk) 
Y1 

( )

Y2 

(- ) 

Y3 

( ) 

Y4 

( ) 

1 0.50 ∄ tk Convex 0 1 -1 1.123 0.601 0.863 0.202 

2 0.40 0.10 Convex 0 0 -1 1.070 0.589 0.561 0.140 

3 0.45 0.05 Constant 0 0 0 1.070 0.590 0.630 0.130 

4 0.50 0.05 Convex 0 0 -1 0.990 0.551 0.693 0.159 

5 0.30 0.06 Convex -1 0 -1 0.835 0.327 0.422 0.134 

6 0.30 0.04 Convex -1 -1 -1 0.641 0.227 0.291 0.104 

7 0.28 0.04 Constant -1 -1 0 0.703 0.278 0.329 0.076 

8 0.55 0.10 Constant 0 0 0 1.078 0.564 0.693 0.149 

9 0.40 0.10 Convex 0 0 -1 1.060 0.524 0.706 0.165 

10 0.40 0.10 Constant 0 0 0 1.100 0.651 0.634 0.140 

11 0.40 0.10 Constant 0 0 0 1.045 0.620 0.660 0.177 

12 0.30 0.10 Convex -1 0 -1 0.764 0.323 0.432 0.134 

13 0.30 ∄ tk Constant -1 1 0 1.082 0.541 0.728 0.131 

14 0.40 ∄ tk Constant 0 1 0 1.283 0.777 0.789 0.187 

15 0.50 ∄ tk Convex 0 1 -1 1.088 0.653 0.780 0.169 

16 1.00 0.10 Concave 1 0 1 1.448 0.892 0.865 0.191 

17 0.20 ∄ tk Convex -1 1 -1 0.884 0.459 0.644 0.165 

18 0.50 ∄ tk Convex 0 1 -1 1.088 0.614 0.764 0.173 

19 0.13 ∄ tk Constant -1 1 0 1.113 0.551 0.553 0.158 

20 0.40 ∄ tk Constant 0 1 0 1.170 0.706 0.780 0.205 

21 0.40 0.20 Constant 0 1 0 1.321 0.733 0.913 0.144 

22 0.45 ∄ tk Constant 0 1 0 1.346 0.696 0.913 0.153 

23 0.45 0.10 Convex 0 0 -1 0.940 0.551 0.620 0.150 

24 0.50 0.10 Constant 0 0 0 1.100 0.577 0.574 0.143 

25 0.35 0.10 Convex 0 0 -1 1.010 0.535 0.640 0.134 

26 0.50 ∄ tk Constant 0 1 0 1.346 0.696 0.888 0.189 

27 0.40 0.20 Constant 0 1 0 1.207 0.777 0.747 0.191 

28 0.30 ∄ tk Constant -1 1 0 1.050 0.530 0.585 0.129 

29 0.40 0.15 Convex 0 1 -1 1.100 0.700 0.730 0.180 

30 0.30 0.10 Constant -1 0 0 0.924 0.398 0.494 0.136 

31 0.35 0.10 Convex 0 0 -1 0.980 0.578 0.713 0.131 

32 0.40 0.10 Constant 0 0 0 1.034 0.632 0.667 0.167 

33 0.35 ∄ tk Convex 0 1 -1 1.229 0.719 0.706 0.178 

34 0.30 0.18 Constant -1 1 0 1.124 0.562 0.741 0.123 

35 0.40 ∄ tk Constant 0 1 0 1.283 0.681 0.822 0.158 

36 1.00 ∄ tk Concave 1 1 1 1.701 1.102 1.091 0.204 

37 0.51 0.10 Convex 0 0 -1 1.050 0.556 0.581 0.126 

38 0.35 0.10 Constant 0 0 0 1.034 0.651 0.693 0.155 

39 0.20 ∄ tk Convex -1 1 -1 0.941 0.464 0.592 0.173 

40 0.50 0.10 Constant 0 0 0 1.177 0.670 0.581 0.179 

41 0.40 ∄ tk Constant 0 1 0 1.245 0.733 0.813 0.178 

42 0.70 0.04 Constant 0 -1 0 0.930 0.535 0.500 0.114 

43 0.55 0.10 Constant 0 0 0 1.144 0.583 0.739 0.135 

44 0.70 0.10 Constant 1 0 0 1.081 0.667 0.623 0.128 

45 0.33 0.20 Constant -1 1 0 1.008 0.498 0.605 0.152 

46 0.30 ∄ tk Constant -1 1 0 1.040 0.498 0.676 0.128 

47 0.60 0.25 Constant 0 1 0 1.219 0.681 0.772 0.148 

Table 3: Analysis of BSFs 
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ID 

(k) 

Nº auctions 

(n) 

BSF description Bid Score Weighting 

(wk) 
ALBC width 

(tk ) 
BSF Gradient 

(gk) 
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Estimated Actual Deviations (/1) 

ID 

(k) 

X1 

f(wk) 
X2 

f(tk) 
X3 

f(gk) 
Y1 

( )

Y2 

(- ) 

Y3 

(  ) 

Y4 

( ) 

Y1 

( )

Y2 

(- ) 

Y3 

(  ) 

Y4 

( ) 

Y1 

( )

Y2 

(- ) 

Y3 

(  ) 

Y4 

( ) 

1 0 0 -1 0.977 0.539 0.616 0.150 1.092 0.549 0.677 0.154 0.12 0.02 0.10 0.03 

2 -1 -1 0 0.740 0.296 0.326 0.093 0.888 0.287 0.334 0.087 0.20 0.03 0.02 0.07 

3 1 0 1 1.413 0.887 0.852 0.176 1.425 0.965 0.902 0.186 0.01 0.09 0.06 0.06 

Table 4: Validation of the Multiple Linear Regression expressions with a 

recent sub-set of auctions 
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1 

Figure 1: Scoring Parameter relationships in capped auctions 1 

Figure 2: Trichotomic scoring of the three independent BSF variables kw , 
kt  and 

kg2 

Figure 3: Multiple linear regression analysis 3 

Figure 4: Normality test of Residuals (Q-Q plots) 4 

Figure 5: Least Significant Difference intervals analysis 5 
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Coefficient λ 's Multiple Linear regression Y 1 = λ = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

M 0  = 1.099 SE M 0  = 0.013 F Y -value = 116.523 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.193 SE M 1  = 0.018 t M 1 -value = 10.910 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.166 SE M 2  = 0.015 t M 2 -value = 10.910 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = 0.122 SE M 3  = 0.018 t M 3 -value = 6.959 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? OK

R² = 0.890 SE Y  = 0.063 n = 47 df 1 = 3 df 2  = 43

Coefficient -α 's Multiple Linear regression Y 2 = -α = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

M 0  = 0.613 SE M 0  = 0.009 F Y -value = 182.709 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.200 SE M 1  = 0.012 t M 1 -value = 16.976 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.117 SE M 2  = 0.010 t M 2 -value = 11.526 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = 0.074 SE M 3  = 0.012 t M 3 -value = 6.317 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? OK

R² = 0.927 SE Y  = 0.042 n = 47 df 1 = 3 df 2  = 43

Coefficient β 's Multiple Linear regression Y 3 = β = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

M 0  = 0.653 SE M 0  = 0.013 F Y -value = 72.100 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.162 SE M 1  = 0.018 t M 1 -value = 9.032 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.166 SE M 2  = 0.015 t M 2 -value = 10.750 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = 0.038 SE M 3  = 0.018 t M 3 -value = 2.117 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? OK

R² = 0.834 SE Y  = 0.064 n = 47 df 1 = 3 df 2  = 43

Coefficient γ 's Multiple Linear regression Y 4 = γ = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3 →    Y 4 = γ = M 0  + M 1 *X 1 + M 2 *X 2

M 0  = 0.146 SE M 0  = 0.004 F Y -value = 19.202 F fisher  (α=5%) 3.438 F Y -value  > F fisher (α=5%)  ? OK
M 1  = 0.025 SE M 1  = 0.005 t M 1 -value = 4.830 ( with df 1 and df 2 ) t M 1 -value  > t student (α=5%)  ? OK
M 2  = 0.027 SE M 2  = 0.004 t M 2 -value = 6.091 t student  (α=5%) 2.017 t M 2 -value  > t student (α=5%)  ? OK
M 3  = -0.004 SE M 3  = 0.005 t M 3 -value = -0.749 ( with df=df 2 ) t M 3 -value  > t student (α=5%)  ? No

R² = 0.573 SE Y  = 0.019 n = 47 df 1 = 3 df 2  = 43

Covariance Matrix (CvM) Correlation Matrix (CrM)
X 1 X 2 X 3 X 1 X 2 X 3

X 1 0.302 -0.016 0.083 X 1 1.000 -0.048 0.271
X 2 -0.016 0.380 0.030 X 2 -0.048 1.000 0.088
X 3 0.083 0.030 0.309 X 3 0.271 0.088 1.000

Figure 3
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Coefficient λ 's M 1 , M 2  and M 3 's LSDs Y 1 = λ = M0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.193 SE M 1  = 0.018 s M 1  = 0.019 0.166 0.220 M 1 's and M 2 's LSD intervals intersect, as
M 2  = 0.166 SE M 2  = 0.015 s M 2  = 0.018 0.141 0.191 M 2 's with M 3 's. Hence, X 1 's M 1  value seems
M 3  = 0.122 SE M 3  = 0.018 s M 3  = 0.019 0.095 0.149 more important than X 3 's M 3  value.

n = 47 N = 141 N-1 (α=5%)  = 1.977

Coefficient -α 's M 1 , M 2  and M 3 's LSDs Y 2 = -α = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.200 SE M 1  = 0.012 s M 1  = 0.016 0.178 0.222 No LSD intervals intersect,
M 2  = 0.117 SE M 2  = 0.010 s M 2  = 0.015 0.0964 0.138 then, X 1  is more important than X 2

M 3  = 0.074 SE M 3  = 0.012 s M 3  = 0.016 0.052 0.0958 and, X 2  is more important than X 3 .
n = 47 N = 141 N-1 (α=5%)  = 1.977

Coefficient β 's M 1  and M 2 's LSDs Y3 = β = M 0 + M1 *X 1 + M2 *X 2 + M 3 *X 3

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.162 SE M 1  = 0.018 s M 1  = 0.020 0.134 0.189 M 1 's and M 2 's LSD intervals intersect,
M 2  = 0.166 SE M 2  = 0.015 s M 2  = 0.018 0.140 0.191 then, X 1  and X 2  are equally important.
M 3  = 0.038 SE M 3  = 0.018 s M 3  = 0.019 0.010 0.065 Both are more important than X 3 .

n = 47 N = 141 N-1 (α=5%)  = 1.977

Coefficient γ 's M 1  and M 2 's LSDs Y4 = γ = M 0 + M 1 *X 1 + M 2 *X 2 + M 3 *X 3 →   Y 4 = γ = M0  +  M 1 *X 1  + M2 *X 2

LB LSD intervals UP LSD intervals Observations:
M 1  = 0.025 SE M 1  = 0.005 s M 1  = 0.011 0.010 0.040 M 1 's and M 2 's LSD intervals intersect,
M 2  = 0.027 SE M 2  = 0.004 s M 2  = 0.010 0.014 0.041 then, X 1  and X 2  are equally important.
M 3  = -0.004 SE M 3  = 0.005 s M 3  = 0.010 -0.019 0.011 X 3 was deemed meaningless.

n = 47 N = 141 N-1 (α=5%)  = 1.977

Cell Formulae
LB LSD intervals: Lower Bound of Fisher's Least Significant Difference Intervals LB = M i - 0.707*t N-1 *s Mi

UB LSD intervals: Upper Bound of Fisher's Least Significant Difference Intervals UB = M i + 0.707*t N-1 *s Mi

Figure 5
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