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Abstract

The sequencing market has increased steadily over the last years, with different
approaches to read DNA information, prone to different types of errors. Multiple
studies demonstrated the impact of sequencing errors on different applications
of Next Generation Sequencing (NGS), making error correction a fundamental
initial step. Different methods in the literature use different approaches and fit
different types of problems. We analysed a number of 50 methods divided into
five main approaches (k-spectrum, suffix arrays, multiple sequence alignment,
read clustering and probabilistic models). They are not published as a part of
a suite (stand-alone) and target raw, unprocessed data without an existing ref-
erence genome (de Novo). These correctors handle one or more sequencing
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technologies using the same or different approaches. They face general chal-
lenges (sometimes with specific traits for specific technologies) such as repet-
itive regions, uncalled bases and ploidy. Even assessing their performance is
a challenge in itself because of the approach taken by various authors, the
unknown factor (de Novo) and the behaviour of the third party tools employed
in the benchmarks. This work aims at helping the researcher in the field to
advance the state-of-the-art, the educator to have a brief but comprehensive
companion and the bioinformatician to choose the right tool for the right job.

The Next Generation Sequencing (NGS) appeared in 2005 and since then its
market has increased steadily, with various technologies being developed. The
NGS has evolved faster than the the Moore’s law in Computer Science, allow-
ing us to sequence and assemble large genomes like the Loblolly Pine with
22 Gb1 or the Norway Spruce with 20 Gb2 for a reasonable cost in time and
resources. However, there are many other species (e.g. the Amoeba Dubia
with a 670 Gb estimated genome size3, 200x human genome’s size) that are
still challenging to assemble. The errors introduced by the sequencing process
are one of the main reasons NGS data has to be corrected before any fur-
ther use. Multiple studies have demonstrated the impact of sequencing errors
on different applications of NGS, making error correction a fundamental initial
step.4–7 There are many error correction tools in the literature that cope with
different technologies and error types. However, to our knowledge, there is no
complete, objective review of the modern methods that could help researchers,
educators and users at the same time. There are benchmarks summarizing a
number of methods, but there is none extensively focusing on the implementa-
tion, features and the overall domain (including challenges). Our work synthe-
sises 50 de Novo stand-alone error-correction software. The Supplementary
Material includes the description of the approach used to search the literature
along with the inclusion criteria.

The article continues with the motivation (also containing a brief description of
the sequencing technologies and various error sources), followed by a presen-
tation of the correctors. Next, section ”Discussion” presents some important
points related to challenges faced by correctors and how their performance is
assessed in the literature. Finally, we conclude our paper with some general
remarks about the current state of the field of the error correction of NGS data.

We also introduce the concept of gradual recommendations. The recommen-
dations are gradual, because they progress with the text and each one is based
on the previous information. Section ”Error Correction Software” includes gen-
eral recommendations based on the features presented in table ”Software Cat-
egories”. The recommendations from section ”Error correction in real projects”
use as foundation the previous ones and extend the suggestions now that the
reader has read about some real-world examples. Subsection ”Recommendations”
from section ”Challenges” focuses on proposals taking into account the chal-
lenges that the correctors must address. Finally, subsection ”Recommendations”
from section ”Testing” offers advice (now that the reader knows the methods,
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where these have been used and what the challenges are) based on real-world
performance using different metrics.

Motivation

The market size of the next generation sequencing was estimated at $2.5 billion in
2014.8 Furthermore, Illumina managed to lower the cost of sequencing with its HiSEQ
X to ∼$1000 (in 2015) for the human genome.9,10 This price is quite an achievement
when considering that not so long ago (2000-2003) the draft of the human genome
costed about $300 million.11 Overall, NGS has become widely used by the medical
and scientific community not only for the basic biological research, but also in numer-
ous applied fields such as medical diagnosis, forensic biology, virology and biotech-
nology. These are just a few clear proofs of the increasing importance of NGS in the
world (not mentioning the increase in size of the segments, faster sequencing machines
and improved quality of the generated data). This quickly evolving and advancing
environment facilitated the development of a myriad of methods with different ap-
plications for the NGS data. One of the most important steps (usually the first) is the
correction of errors, yielding many benefits for the ulterior ones as demonstrated in sub-
section ”Benefits of Error Correction”. Our reader may assume that an easy way to deal
with the errors is to increase the coverage (i.e. add more sequencing data). While the
increase in coverage indeed helps the correction process, there are still many challenges
that the correctors must address (especially in de Novo sequencing). Furthermore, an
increase in coverage comes with an increase in costs, sequencing/processing time and
storage requirements.

After an extensive literature search (see approach and details in the Supplementary Ma-
terial), we selected a number of 50 correctors. As one may expect, there is a tremen-
dous amount of information scattered across these papers. We strive to summarize
the deluge of information for an audience from many fields such as bioinformatics,
biology, chemistry, computer science and others with an interest in NGS. Our aim is
to help the researcher in the field of error correction by grouping the information and
synthesizing the existing work. Secondly, our work also comes in handy for educators
because it summarizes and presents the key points of the information found in the se-
lected articles. We tried to present the information gradually, without an abrupt and
direct presentation of the correctors (our readers are not expected to have an apriori
deep knowledge of the domain). Finally, the actual users of the correction software
can find Table 5 useful to choose the right tool for their specific requirements. The
Supplementary Material contains an additional table with all the testing results from
the reviewed articles.

Sequencing Technologies

The DNA sequencing was born in 1977 with the publication of the Sanger method12.
This method implies a large amount of DNA as template for each read and needs an
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independent PCR for each possible nucleotide. The PCRs are produced in presence
of four deoxynucleotides and a single dideoxynucleotide, which stops the elongation.
Once synthesized, the truncated DNAs are resolved by electrophoresis. During the
synthesis reaction, a radioactive nucleotide (usually dATP - Deoxyadenosine triphos-
phate) is incorporated into the elongating strands that simplifies the determination of
the sequence.

NGS methods are more efficient than Sanger sequencing in two different ways. On
the one hand, in Sanger sequencing only 1 Kb (max) can be sequenced in a single
experiment, whereas NGS is parallel by definition, allowing a throughput of hun-
dreds/thousands of gigabases per run. Note that in this article Kb, Mb and Gb are
the acronyms for kilobases, megabases and gigabases. On the other hand, the chemi-
cal reactions are usually combined with the signal detection in some versions of NGS,
whereas in Sanger sequencing they are two separate processes. Factors like the reduc-
tion of time, manpower and reagents in NGS lead to lower costs making it possible to
do more repeats than with the Sanger method. This results in a more accurate, reliable
sequencing and better coverage. In NGS, the first step is the DNA cleavage into short
segments (or reads) with lengths depending on the particular sequencer used.

In this review we focus on NGS technologies based on sequencing by synthesis (SBS),
using DNA polymerase/ligase enzymes to generate a complementary strand. As de-
fined by13, Pacific Biosciences is the only SBS approach which has a real time se-
quencing strategy. All the others are synchronously controlled as we shall see in the
following sub-sections where we present a brief but comprehensive description of the
sequencing chemistries of the five aforementioned technologies. Fuller et al. also di-
vide the methods in single molecule based (Pacific Biosciences and Oxford Nanopore
- not specified in13) and ensemble based (Illumina, Roche 454, Ion Torrent - not spec-
ified in13 and SOLiD). The former sequences single molecules of DNA as they are
obtained from the source, while the latter relies on the amplification (cloning) of DNA
segments before starting the actual sequencing process.

The sequencing technologies explicitly supported by the methods from our review (or-
dered by the number of correctors supporting them) are: Illumina, Roche 454, Pacific
Biosciences, Ion Torrent, Oxford Nanopore and SOLiD. Note that we put a strong ac-
cent on the actual DNA ”reading” step, because this is the main step where sequencing
errors are generated. For further and detailed information regarding the platforms and
the entire sequencing process, please, check the Further Reading section where we
listed some resources which cover the themes more in depth. Additionally, the inter-
ested reader can find more details about chemistry of SBS sequencing in13.

Table 1 offers some information about a number of well-known sequencers.
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Illumina/Solexa

Figure 1: Main sequencing steps for Illumina.

The Illumina reads receive adapters at their ends. These adapters attach themselves to
the respective complementary adapters, with the latter hooked on a board with many
variants of (complementary) adapters placed on a solid surface. Next, a segment is
cloned by PCR amplification, creating a spot with many copies of the same initial read.
The last step before the actual sequencing splits each read in the two complemen-
tary strands. Once the board contains only the single stranded reads held in place by
adapters, fluorescent labelled, terminated nucleotides and DNA polymerase are added
as a mix on the board (Fig. 1, Step 1). Fluorescent bases produce unique colours for
each matching base. A polymerase is a protein that rebuilds the double helix starting
from a single stranded template. It adds the complementary base for each of the tem-
plate’s composing nucleotides. Due to the terminated property of the free nucleotides
added earlier in the mix, the polymerase attach to one and only one base per cycle
(Fig. 1, Step 2). The sequencer registers the colour of the latest incorporated nucleotide
for each read by taking a snapshot of the board (Fig. 1, Step 3). The process continues
with the elimination of the terminator with the fluorescent label and the starting of a
new cycle. The number of cycles gives the length of the read, with all reads normally
having the same length. Using the snapshots, the sequencer determines the nucleotides
composing a read (Fig. 1, Step 4).

Roche 454

As in Illumina’s method, the 454 reads pass through a PCR amplification step and bind
to adapters for which the complementaries lay hooked on a bead. Roche 454 uses the
same fluorescent signalling to read the attached nucleotides. Therefore, the addition of
each nucleotide releases a light signal. The main difference consists in the approach
taken at each cycle. Instead of adding a solution containing all four fluorescent and
terminated bases, the sequencer adds the solution with one and only one type of bases
without the terminator. As a result, a variable number of bases can bind on the read at
each cycle. The intensity of the signal represents the number of nucleotides added in
each cycle. Roche tries to reconstruct entire homopolymers (runs of identical bases)
at each cycle to save time. As an example, at Step 2 from Fig. 1, the sequencer adds
two Cytosines (instead of one like in Illumina’s case) in the depicted cycle. Generally,
the sequences generated by 454 instruments have different lengths, because different
numbers of bases are incorporated at each cycle.

Ion Torrent/PGM

Unlike Illumina and 454, Ion torrent sequencing is not based on the detection of optical
signals. Instead, it takes advantage of the release of protons (H+) following the addition
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of deoxynucleotides to the DNA strands by the DNA polymerases. The fluctuation
in the pH of the solution can be easily measured and, using its level of acidity, the
instrument can determine how many bases have been attached in each cycle. The bases
are identified as in the case of 454.

Abi SOLiD

In this case, the reads are used to prepare clonal bead populations.36 Instead of bind-
ing one nucleotide or a homopolymer per cycle (like the previously described se-
quencers), ABi uses fluorescently labelled di-nucleotide probes. Instead of individual
bases, SOLiD encodes the transition between bases. At each ligation step, four DNA
primers attached to different fluorescent dyes (out of the 16 DNA possibilities) are
added to the reads that match to the complementary DNA primers on the bead. Next,
the fluorescent part is read and afterwards cleaved from the probe. The sequencer re-
peats this cycle of ligation/reading/cleavage as many times as needed in order to obtain
a read of a certain length. In each cycle two positions of every five are determined.
Once the sequencer has executed enough cycles, it resets the template with the primer
going one position backward by removing one base of the primer. In order to deter-
mine the complete sequence of the read SOLiD sequencers perform this resetting step
five times. As the primer is moved one base backward, the sequencer reads each base
twice, improving the robustness.

Pacific Biosciences

Pacific Biosciences uses a single-molecule real time (SMRT) sequencing approach.37

It employs the same fluorescent labelling as the previous technologies, but instead of
executing cycles of incorporating nucleotides and taking snapshots, it detects the sig-
nals in real time, as they are emitted when the incorporations occur (using a zero-mode
waveguide system38). Like Illumina, Pacific Biosciences uses all four bases at the same
time floating in the mix. It has a bead with many wells having a diameter between 70
and 100 nm, lower than the wavelength of the visible light. Due to the physical prop-
erties of the fluorescent additives, light is needed in order to make the fluorescent dye
glow. Owing to this requirement, the bottom of the wells is illuminated, but due to their
very small diameter, the light intensity decays exponentially along the wells, creating
a shadow zone. The wells have a DNA polymerase attached to their bottoms (the il-
luminated zone) which rebuilds the DNA complementary strand of the DNA segments
floating in the mix. Each time a nucleotide is added, the fluorescent dye is cleaved.
As a result, two consecutive signals do not overlap because the sensors only record
the non-cleaved fluorescent dyes as the previous ones move up in the well into the
shadow zone. This approach does not require cycles, because each polymerase works
independently of the others.
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Oxford Nanopore

As its name suggests, this sequencing technology uses very small nanopores (allowing
one nucleotide at a time) to read the DNA sequences.39 The idea of using nanopores to
decipher the DNA’s code has been around since 1989, but it was not viable, until 2010
when a DNA polymerase capable of attracting the DNA to the nanopore was discov-
ered40. The main components of this technology are the protein nanopores, resembling
those found on the cellular membrane. These structures are inserted into an electrical
resistant artificial membrane onto which an electrical potential is applied. Owing to
the flowing of the potential only through the aperture of the nanopore, any molecule
passing through generates a variation in the current, resulting in a specific signature.
Using the previously described process, the sequencer is able to decode the DNA (or
RNA or proteins). In order to get the DNA segments to pass through the hole, the
segments are mixed with copies of a carrier enzyme. These carrier enzymes attach to
the DNA strands. They are pulled to a nanopore where the DNA is unzipped (if neces-
sary) and the resulting single strand passes through the aperture, producing variations
in the potential. One interesting feature is the capability to sequence both strands of the
DNA segment using the same nanopore, generating the so-called 2D reads (5’-3’ and
its complementary 3’-5’ strands linked together). In order to do this, the DNA must
have a hairpin structure at the end to keep the two templates together after unzipping.
This way, once the first strand has passed through the hole, the complementary one is
pulled through.

Errors in NGS

There are four types of basic sequencing errors: insertion, deletions, mismatches and
uncalled/unknown bases (or Ns).41 The differences in the sequencing process of the
aforementioned technologies lead to different types of errors. Table 1 lists the pre-
dominant error type for each NGS technology. This constitutes an important factor
when choosing the values of the parameters for the correctors. Mismatches are preva-
lent in Illumina and SoLID, while indels constitute the main error type in Roche 454,
Ion Torrent, Pacific Biosciences and Oxford Nanopore.5,42–46 More details about the
types of errors in the aforementioned technologies and practical experiments appear
in5,44,47. The ensemble-based methods are prone to pre-sequencing errors (generated
by the library preparation method and the choice of primers)48, unless PCR-free kits
are used49–51.

Owing to its one nucleotide incorporation per cycle, the Illumina sequencers avoid in-
sertions and deletions almost entirely.5,44 Sleep et al.52 describe the substitution errors
for various Illumina sequencers. They found that the percentage of error increases to-
wards the 3’ end of the reads7,53 because of a phenomenon called dephasing/phasing.
It is caused by the fact that an error generated at one cycle affects the next cycles, hence
the increased number of errors towards the end.52 This same phenomenon is the main
cause for the limited length of the reads in all ensemble-based SBS methods where
some strands in a group of clones may fall behind resulting in a de-synchronization
of the emissions of each clone in a group.13 Another important cause of sequencing
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errors is the crosstalk arising due to the overlap of dye emission frequencies. The Il-
lumina Genome Analyzer R© uses a red laser to read A and C and a green laser to read
G and T. As a result, the Genome Analyzer R© produces many substitution G→ T and
C→ A.7,54 Related to the previous cause for the MiSeq R© sequencer, Schirmer et al.
determined that A←→ C substitution errors appeared more often than G←→ T (red
laser/filtering problem). They also studied the relation between the position of bases
in a read and the quality scores for Illumina MiSeq data. Generally, errors occurring
between the start and the middle of the reads had much higher quality scores, than
those in the second half of a read. Furthermore, the authors found several 3-mer mo-
tifs usually preceding substitutions and indels, resulting from the selection of primers
and library design. The estimated error rate for Illumina sequencers is between 1 and
2.5%.7,55,56

Following the brief description of the Roche 454’s sequencing approach, it becomes
clear that, analogous to Illumina, some nucleotides are misclassified. Furthermore, the
exact length of the homopolymers cannot be exactly determined each time43,57, with
the sequencer introducing:

• insertions (when recorded homopolymers are longer than real ones)

• deletions (when recorded homopolymers are shorter than the real ones)

Luo et al.58 demonstrate the relation between homopolymers and their length, where
pyrosequencing (Roche 454 FLX Titanium R©) loses accuracy as the length of the ho-
mopolymer increases. Gilles et al.59 found a chemistry-related source of errors termed
the CAFIE effect (carry forward and incomplete extension). Carry forward is generated
by the inability to fully clean a well (unincorporated nucleotides are not removed) after
a cycle. As a result, during the next base flow nucleotides are prematurely incorporated
to specific sequence combinations, hence generating noise. The incomplete extension
effect appears when some DNA strands on a bead miss the nucleotides incorporation
at a certain flow cycle. They must wait for the next flow cycles, but they are already
out-of-phase with the other strands. The Roche 454 GS Junior R© has an indel error rate
of 0.38 per 100 bases.6 Gilles et al. report a mean error rate of 1.07%.

The Ion Torrent sequencing approach has indels as dominant error type.46 Bragg et
al. also observe that insertions appear more often than deletions and that (in contrast
to Illumina) indels are an order of magnitude more likely to be generated. Due to the
similarity in the sequencing idea between Ion Torrent and 454, it becomes clear that
homopolymers pose a problem for this technology too.6 The sequencing accuracy of
the reads steadily decreased from their start to their end.6,46 Loman et al. observed
that in comparison to 454 GS Junior R©, the Ion Torrent PGM R© is less accurate when
dealing with homopolymers (accuracy of 60% for homopolymers with six or more
bases). Furthermore, for homopolymers shorter than two bases, insertion is the main
error type, but the situation changes with the increase in length of the homopolymers
where deletions become the norm.46 For long homopolymers (more than 14 bases), Ion
Torrent does not generate reads at all.60 The same study reinforces the problem with
homopolymers by mentioning the inability to predict the correct number of bases for
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homopolymers longer than eight bases. The observed error rate is 1.78% (all types of
errors) in60, between 1.68% and 4.86% (all types of errors, depending on the used kit)
with 96-97% of them being homopolymers errors in46 and 1.5 indels per 100 bases in6.

Pacific Biosciences generates longer reads than other sequencing technologies, but the
error rate is still high.61 The errors seem to be uniformly distributed and independent
of the sequence context.62 The same authors and63 suggest that Pacific Biosciences is
more susceptible to insertions than to deletions. Currently, the error rate for Pacific
Biosciences is between 15% and 20%.63,64

Oxford Nanopore is an emergent technology, generating long reads with a small and
portable device (the MinION R©65). It is still in development, but there are some publi-
cations studying the sequencing results66,67. The accuracy is still low, with insertion as
the predominant type of error42. Goodwin et al. report a very high error rate, between
25% and 40%.

GC Content

It is widely accepted that extreme base composition of some regions poses a problem
for sequencing technologies.5 For example the GC content (rich and poor regions)
is often a source of bias and unevenness in coverage. The coverage is an extremely
important aspect of the NGS, as it is needed to successfully process the output data as
we discuss in section ”Low-Coverage Regions and Uniformity”. The problem is even
more important as the bias can be introduced during the library preparation step, before
the actual sequencing process.5 This holds true for ensemble-based SBS technologies
where the amplification step (emulsion PCR or bridge amplification) generates (much)
lower coverage on the very GC-rich and GC-poor regions5. Quail et al. consider that
this problem appears for Ion Torrent due to its double amplification step (library and
template). They managed to lower the bias by using the Kapa HiFi enzyme for the
fragment amplification. Furthermore, the bias can be eliminated by using PCR-free
preparation kits for Illumina49, Ion Torrent50 and 45451.

Ross et al.5 provide an excellent measurement of the biased caused by the GC regions.
They use the genomes of four species as the correct and trusted source and compare it
with the data generated by Illumina MiSeq R©, Ion Torrent PGM R©, Pacific Biosciences
RS R© and Complete Genomics R©. Fig. 3 and fig. 4 from the aforementioned article
depict the strong variation introduced by the these GC extreme zones. Pacific Bio-
sciences sequencing seems to obtain better sequencing results, because of its lack of
amplification before sequencing5, but bias still plagues this technology (slight but no-
ticeable) when faced with genomes with GC-rich regions like S. Aureus.60 The Pacific
Biosciences RS R©, like the Illumina MiSeq R© and Ion Torrent PGM R©, is also suscep-
tible to dissociation of fragment ends in adapter ligation.5 High and low GC content
seems to influence Oxford Nanopore too as the coverage is more variable than in zones
with a 20%-60% GC content. As a result, this extreme GC content partially motivates
the lack of coverage for certain regions in the genome.68
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Benefits of Error Correction

The most important application of error correction is in the field of genome assembly
where the input data is corrected before the actual assembly. Many error correction
publications include tests with assemblers and real data. Various assembly metrics
demonstrate the need of error correction to generate meaningful assembly output (see
subsection ”Assembly” from section ”Testing”).69

A second application is re-sequencing, where multiple samples from an organism with
an already known genome are sequenced. The main purpose of this operation is to com-
pare the variability among different genomes from the same species. Another purpose
is the comparison of datasets from the same organism sequenced using different tech-
nologies or sample preparation procedures. Re-sequencing indirectly uses the same
metrics like gain and accuracy which compare the corrected reads against a reference
genome.4,70

Thirdly, the authors in71–74 stress the impact of error correction on short reads aligners.
Errors are dangerous because they can cause an aligner to miss the real locus of a read
in the reference genome. Furthermore, in the case of repetitive regions, a faulty read
from a unique path in the genome can end up in multiple locations, provided it matches
the repetitive region due to the errors.

Another affected application of NGS is the detection of SNPs. Normally, an aligner
maps the reads against a reference genome to search for variants, but the errors in the
reads can be misleading, increasing the total number of differences.7 Furthermore, as
the distribution of SNPs is not uniform, a region can have a high density of SNPs.
Errors have a higher impact in these areas.

Additionally, there are other steps following sequencing that can benefit from error cor-
rection (e.g. identification of copy number variation or chromosomal rearrangement).4

In conclusion almost any possible operation on NGS data benefit from the corrected
input. Section ”Error correction in real projects” lists a many real studies that used the
correctors included in this review.

Error Correction Software

The following subsections deal with the correctors included in this review. The exact
target of a corrector is not specified in most papers, the authors normally specifying
DNA reads. The benchmarks performed in the same articles contain only datasets from
whole genome sequencing (WGS) projects. One exception is PAGANtec75 which
works with transcriptome assemblies.

Technology support

Illumina is the market leader, with a 70% market share.8 The majority of software in
our review support Illumina (and in some cases other technologies at the same time),
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fact that reinforces the status of the aforementioned company. The second major player
is Roche with its 454 line of sequencers which, despite its shutdown of its technology
in 2013, is still widely used (officially supported until 2016).76 As a matter of fact,
Karect, one of the most recent error correctors (2015), handles indels errors from 454.
We can see an increase on the support of Pacific Biosciences, but all the current correc-
tors rely on an additional dataset on a different technology to perform the correction.
Ion Torrent is not widely supported as of now, but since the prevalent errors for this
technology are indels5, the tools handling indels should also work with it. Finally,
there is only one program that targets SOLiD color-space data, namely HSHREC.

In our review, we have found programs supporting more than one technology. Table 2
enumerates the technologies supported by all correctors (column ”Tech”). Fig. 2 de-
picts the categories in which the correctors fall. All but one of the tools supporting
only one technology work with Illumina and only target mismatch errors. Hector is
the exception to the above rule, designed only for 454 reads, supporting indels. All Pa-
cific Biosciences software focus only on Pacific Biosciences, but they use Illumina/454
reads for the cross-correction, therefore they are classified in a separate group.

There are several software tools handling multiple technologies which can tackle all
types of errors. Our reader can determine the support for different types of errors by
consulting table 2, columns ”N” and ”Indel”. All programs support mismatches, there-
fore it is not mentioned in the aforementioned table. Some programs like HSHREC
treat all datasets in the same manner with no special handling for different technolo-
gies (albeit HSHREC) has a special version which can correct colour space reads, as
a different executable program). We included it in the first category because the base
space version does not have a target technology.

The software with different profiles can be further divided in software using the same
correction method for all technologies, but setting different values for parameters, and
software with internal algorithmic modifications for a certain technology. For the first
group, Coral is a perfect example since it uses the same algorithm to correct both Il-
lumina and 454, but in case of Illumina the algorithm sets very high values for gaps,
forcing mismatches only. Blue on the other hand has a flag for 454 to enable searching
for homopolymers errors. Karect has generic support for multiple sequencing tech-
nologies, running in two modes, with indels or without.

A new approach is the cross-correction using a high-quality short reads dataset to cor-
rect a dataset having (much) longer, lower-quality reads. There are correctors targeting
the very long reads (LoRDEC, proovread, Jabba and LSC) produced by Pacific Bio-
sciences, 454 (Blue) and Oxford Nanopore (Nanocorr).

Figure 2: Classification using the technology support among correctors; Letters be-
tween paranthesises on the leaves used to group the algorithms in Table 2.

The latest review including software supporting indels is from 201377 and it does
not include the latest additions to indel-aware software, like Blue, Fiona, Pollux or
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Karect. The authors of the review stressed the need for better software solutions with
indels support, as the results of the existing algorithms at that time (HSHREC and
Coral) were not comparable to the Illumina-specific solutions.

Software Categories

We clustered the algorithms according to their core functionality, extending the work
in77,78. Due to the length limitation of the article, the individual description of the cor-
rectors is located in the Supplementary Material. Table 2 summarizes some important
features of the analysed software. We explain the information on the columns in the
following sections.

The K-Spectrum Based (ksb) software corrects the reads employing the k-mer spec-
trum.79 A k-mer is a segment from a read with k-bases. The set of all k-mers of a read
is generated by using a sliding window of dimension k. At each step, the window is
shifted by one element and ”the visible” segment of the read is added to the spectrum
set. This is by far the most popular approach, used by 28 out of 50 correctors. Gen-
erally, the applications use the k-mer spectrum (Fig. 3) to decide whether a k-mer is
correct or not. The error-free k-mers are those appearing in a number of reads entering
a predefined distribution (a Gaussian in our example). Roughly speaking, k-mers ap-
pearing in a small number of reads are considered erroneous, since the coverage is not
uniform, the k-mers in the low coverage areas are under-represented (more information
about k-mers in section ”K-mer”)

Figure 3: Typical distribution of k-mers used by ksb correctors; Vertical axis shows the
number of k-mers which appear in the number of reads displayed on the horizontal axis;
First peak corresponds to erroneous k-mers which appear only in a few reads; Correct
k-mers typically exist in a number of reads close to the coverage; K-mers found in
many reads (right part of the spectrum) typically correspond to repetitive regions.

Suffix Trie/Array Based (stab) generally build a suffix structure with the common parts
of the reads. These correctors try to locate inconsistencies in their path, while exploring
the trie/array. Fig. 4 depicts an example where a low frequency of a divergent suffix
signals a possible error case. Normally the reads on a trie follow the same path, but
it happens to diverge at some point. A corrector has to decide if the split is an error
or not. Fig. 4 a) depicts a divergence point (different nucleotide) where the frequency
of one of the resulting paths is very low (<< k/2) and the bases of this path after the
divergence point till the leaves are exactly the same as for the path with the frequency
. k/2, hence it is an error. For the other case where the frequencies are the same
(k/4), a SNP (Single Nucleotide Polymorphism) causes the divergence. Otherwise, the
common path till the divergence point is a repetitive region in the genome, followed
by the unique region for each path. The trie in Fig. 4 b) with the erroneous base in
bold and italic exemplifies the branching caused by an error. The $ symbol marks the
end of a suffix (a standard way of depicting suffix tries). It is crystal clear that due
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to the low frequency of the suffixes containing the bad base, a corrector can isolate
the error and can take a valid decision given enough coverage. Given the shortness of
the reads in our example we consider one base to be sufficient proof of inclusion on
one branch or another. As a result, for the suffix AAA$ the third base will match with
its counterpart from the suffix AGA$ (the first base is the same since we are talking
about the same family of suffixes), therefore A should be G. Next, the branch TAAA$
triggers a warning for the corrector due to its low frequency of its sub-branch AA$. The
problematic base is again surrounded by bases that match a sibling path (i.e. TAAA
can be converted to TAGA, with the latter having a higher frequency), therefore it is
safe to assume that A is in fact G. Finally, after analysing these cases, a corrector can
support its decision by detecting the relation between the suffixes AAA$ and TAAA$
where the former is in fact included in the latter and the corrections on both sides have
an even higher degree of validity when taken together.

Figure 4: Suffix trie example; a) An error on the rightmost path results in branch having
a very low frequency (<< k/2) compared with its sibling branch (. k/2); b) Example
of a trie for a very short genome with read TAAA having an error on its third position

Multiple Sequence Alignment Based (msab) software focuses on aligning the reads
to identify the overlap between them (see Fig. 5). The methods use different algo-
rithms (like Needleman-Wunsch in Coral73) to build a consensus from a set of reads
that are likely to fit together. Generally, these methods cluster together a number of
related reads (e.g. those having at least one k-mer in common, like Coral), which may
belong to (as the corrector may wrongly include reads from other regions) the same ge-
nomic locus. Reads containing k-mers appearing in multiple loci or erroneous k-mers
matching wrong locations will normally fail in the alignment process. Being part of
the same region, a msab corrector can generate a multiple sequence alignment and try
to determine and fix the anomalies in the resulting consensus. The example Fig. 4 b)
demonstrates that given sufficient coverage, a corrector is able to group a number of
reads, isolate the erroneous bases and make a decision if possible. In the above exam-
ple, we are able to take a decision in every case. On the contrary, if we have a mismatch
between the first position of the first read and the fifth position of the third read, the de-
cision is not straightforward any more (if possible altogether). For instance, if instead
of (A,A) - the correct version - the pair would be (A,N), the corrector would have to
either ignore it or apply some kind of heuristic. An example of approach would be to
convert N to A, since A is a valid nucleotide. On the other hand, this approach could be
rendered useless by the use of quality scores where N has a very high score compared
to A (the previously considered valid base may not be so valid after all). In this case it
is up to the corrector to take the appropriate action using different approaches and the
context of the problem.

Read Clustering Based (rcb) methods use different clustering methods to group reads
which fit together. This group resembles the msab one, but the algorithms in it do
not generate an alignment, but search for reads that are similar and choose a consensus
which is the correct form for all these similar reads. Fig. 6 shows a central read (having
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Figure 5: a) Multiple sequence alignment of reads versus the (prospective) reference
genome; b) Example of four read with the common k-mer ”TTACGAA” and the four
basic types of errors.

the most common part with all the others) and its satellites. For simplicity, we only
exemplify the one difference case. In our example all four satellites have one distinct
nucleotide each. A corrector should group them together as they present a high degree
of similarity, hence they are in fact clones of the same read, but with errors. Fig. 6
b) is an example (extracted from the bibliography74) where the consensus read is the
one with the highest frequency. The other reads differ from the main read by just
one nucleotide and also have much lower frequencies. Please keep in mind that the
algorithms included here do not perform a multiple sequence alignment to determine
the correct read, they just group them by differences and search for a valid consensus,
the error-free existing read.

Figure 6: a) Clustering approach for one reference read and four related having one
difference each; b) Real example with the main read market in bold and the satellites
aligned and with the different locus market with bold and italic.

Probabilistic Models Based (pmb) methods use the Expectation Maximization (EM)
algorithm to determine the correct base at each position by calculating the likelihood of
the existing variants at that specific position. Basically, the problem of error correction
boils down to selecting the right nucleotide at a certain position where two or more
reads overlap and there is more than one choice. The pmb software base their approach
on the fact that this problem has unknown parameters (unobserved component), in this
case the correct base. As a result, using the existing input data (observed component)
and maybe more information (like the error rate), they try to generate a model (after
multiple iterations over the same data). This model can say with a certain degree of
trustiness of the correction of a certain nucleotide. The EM alternates between two
steps, the E (guessing the probability) and the M (re-estimating the model parameters
using the new probability), until it converges to the desired model. Figure 7 presents
the basic algorithm. For an extensive explanation of the EM algorithm, the reader
should check the article of Do and Batzoglou from 80. Different algorithms in this
category use different position comparison methods (position part of k-mer or read)
and convergence points.

Figure 7: The EM algorithm initializes the probabilities of the bases before entering
the loop where it alternates between E-step and M-step; Once the convergence thresh-
old has been reached the method exits and enters the correction stage; The capital P
represents the probability for a base to be the real one;
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Please note that many methods can be included in more than one category. For instance,
Coral73 is listed in this review in the category of msb algorithms77,78,81, but it also
uses the k-mer spectrum to determine the related reads. The same case arises with
Premier82 and Premier Turbo83 which use k-mers to update the probabilities for the
variants on a position.
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Recommendations

From table 2, it is clear that depending on the nature of the project some programs are
better than others. For Illumina projects almost all correctors can be used. Although, as
we shall see in the coming sections (mostly in section ”Testing”, the Illumina-only cor-
rectors offer a better performance on Illumina data when compared to multi-technology
software.

From a computational resources point of view, the correctors written in a low-level lan-
guage like C++ should be used. One must take this last advice with a grain of salt as
the performance is highly dependent on the quality of the code and the algorithms used.
Another very important aspect is the multi-core and multi-computer support. Nowa-
days, even the mobile phones are multi-core and the speed of CPUs has hit a hard limit,
therefore any piece of software capable of scaling on multiple cores should be preferred
over the others. This scalable applications are very useful when the time frame is very
short. Furthermore, the same programs win when testing multiple combinations of pa-
rameters at the same time and running multiple instances of a single threaded program
is not an option (e.g. when the user has to run the next instance of the program with
a combination of parameters based on a previous run). Lastly, the multi-threaded pro-
grams would normally consume less memory than multiple single-threaded instances
running at the same time. The best example for this last observation is an OpenMP
corrector creating a k-mer spectrum. An optimized multi-threaded program would cre-
ate just one structure to keep the k-mers and their count and it would allow thread-safe
access to the structure. An optimized single-threaded program using the same mech-
anism would avoid the locks but for multiple instances, the same structure would be
replicated as many times as instances are running.

Error correction in real projects

The software presented so far was used in many research projects. This section is the
extension of the motivation, where we present instances where scientist successfully
employed error correctors. Hopefully, this section opens the door for further usage in
comparable or new cases. We concerted our efforts to find real life biological projects
where the utility of correctors is demonstrated by practical use. In contradiction to
what we found in the articles accompanying each corrector, some real life projects use
the correctors for additional applications like mithocondrial genome correction114 and
RNA-seq115–118

Table 3: Work using the correctors included in the current review

Year Study Description Where

Quake/Illumina

2012 Exomes comparison of C. Carpio & D. Rerio 119

2012 GAGE, evaluation of genome assemblies/algorithms 69
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2013 Salinarchaeum HArcht-Bsk1T genome 120

2013 L. Arenae draft genome 121

2013 C. Sinensis draft genome 122

2013 Genetic variants in C. Sinensis 123

2013 Genome-wide mutations in diploid yeast 124

2014 Results of correction of heterozygous NGS 125

2014 O. Sativa de novo assemblies, novel gene space aus/indica 126

2014 Study of hydrocarbons production from fatty acids in Cyanobacteria 127

2014 Genetic diversity in P. Pacificus from population-scale resequencing 128

2014 Genetic parameters estimation and response to selection in breeding
program of M. Galloprovincialis

129

2014 Metagenomic characterization of C. Defluviicoccus tetraformis 130

2014 Prediction of antibiotic resistance by gene expression profiles 131

2014 Methicillin resistance in S. Aureus 132

2014 De novo creation of repeat libraries from whole-genome NGS reads 133

2014 Aerobic fungal degradation of cellulose 134

2014 B. Tryoni draft genome 135

2014 Genome reorganization 136

2015 P. Vulgata/P. Lamarcki draft genomes 137

2015 The domestic dromedary genome 138

2015 The brown kiwi genome 139

2015 Comparative Genomics of S. Pyogenes M1 140

2015 Approach for Identification and Characterization of Foodborne
Pathogens

141

2015 P. Glaucus complete mitochondrial genome 114

2015 Mechanisms for Speciation and Caterpillar Chemical Defense 142

BayesHammer/Illumina
Year Study Description Where

2014 GABenchToB, assembly benchmark for bacteria genomes 143

2014 C. Burnetii genome 144

2014 P. Atrosepticum genome 145

2014 Hidden diversity in honey bee gut symbionts 146

2014 S. Lemnae draft genome 147

2015 Discovering Natural Products from Cyanobacteria 148

2015 Characterize the metabolism of M. Thiooxydans L4 in the marine
environment

149

2015 Utilization of alginate and other algal polysaccharides by marine Al-
teromonas macleodii ecotypes

150

2015 Genome-Wide Re-distribution in Active Yeast Genes 151

2015 Study of the metabolome of M. Producens JHB 152

Reptile/Illumina
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2014 Decrypting cryptobiosis-analyzing anhydrobiosis using transcrip-
tome sequencing

115

2015 SNP genotyping and population genomics from expressed sequences 153

HSHREC/Illumina,454

2014 Decrypting cryptobiosis-analyzing anhydrobiosis using transcrip-
tome sequencing

115

BLESS/Illumina

2014 Transcriptome, sequence polymorphism, and natural selection in P.
Eremicus

116

Blue/Illumina

2014 S. Scitamineum genome 154

Coral/Ion Torrent(a), Illumina(b), 454(c)

2014 GABenchToB, assembly benchmark for bacteria genomes(a) 143

2014 Global gene expression in the exocarp of developing P. Avium L.(b) 117

2015 Comparative genomics/gene expression applied on P. Xuthus and P.
Machaon genomes(c)

155

DecGPU/Illumina

2013 Genomic analysis of S. Dulcamara 156

Echo/Illumina

2012 Pipeline for small RNA-seq data analysis 118

2014 Results of correction of heterozygous NGS 125

2014 Assembly/annotation for T. Pratense 157

Freclu/Illumina

2011 MicroRNA-mediated gene regulation role 158

2011 Purification of monocyte subsets from H. Sapiens blood and their
transcriptomes analysis

159

2013 Identification of functional cis-regulatory elements 160

Hector/454

2015 Triple-negative breast cancers in patients with no BRCA1 or BRCA2
mutation

161

Lordec/PacBio,Illumina
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2015 De novo tandem repeat detection using short&long reads 162

LSC/PacBio,Illumina

2014 D. Officinale genome and genes analysis 163

2015 Detect fusion genes, determine fusion sites and identify and quantify
fusion isoforms

164

2015 S. Miltiorrhiza transcriptome and tanshinone biosynthesis insights 164

proovread/PacBio,Illumina

2015 Characterization of venom toxin-encoding genes in E. Coloratus 165

QuorUM/Illumina

2014 P. Taeda reference genome 1

RECOUNT/Illumina

2012 Brain tumor glioblastoma-derived neural stem cells transcriptome
analysis

166

Recommendations

Continuing the discussion from subsection ”Recommendations”, section ”Error Cor-
rection Software”, we can now see the role of correctors in real projects. Quake7 is
the most used corrector as it targets the sequencing technology with the largest market
share. Furthermore, as we shall see in section ”Testing”, it has a good level of correc-
tion. As a general rule, Illumina data should be handled by Illumina-only correctors
since they should be better tuned for the technology than their general counterparts.
There are exceptions like Coral73 that is used for both Illumina and 454. The same
software is utilized with Ion Torrent for which there is a generic support. Generally,
the software supporting all types of errors can be used with unsupported technolo-
gies, but the user must understand that the result might not be what expected. In the
above case, Ion Torrent is somewhat similar to 454, hence Coral works. In the case
of datasets from multiple technologies, one can use more than one corrector for each
technology as Wang et al. did115. Another possibility is to use a cross-corrector like
Blue, LorDEC, proovread and LSC where instead of stacking up all the reads from
multiple technologies, one can use one technology to correct the other. The correctors
are used in many types of projects with the obviously most targeted being assembly.
Variant calling and different transcriptome studies are also very common in the exist-
ing projects. A very important fact emerging from table 3 is the range of genomes data
tackled with the stand-alone correctors. The size and complexity ranges from bacteria
(S. Pyogenes) to mammals (Dromedary) and plants (Loblolly Pine).
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Discussion

In this section of the paper, we discuss the most important topics for the error correction
state of the art. It starts with the general problem of errors in NGS data, followed by
the key features of the methods and ending with the main testing approaches.

Challenges

Data Preparation and Post-processing Steps

There are cases in which the input data must pass through some additional pre-pro-
cessing steps like the conversion to a certain format. Blue performs a preparation
step to generate the k-mer spectrum. Reptile has a pre-processing step, to separate
the reads from their quality scores and to filter reads containing ambiguous characters.
CloudRS converts the FASTQ input file to a specific format. Furthermore, it must
upload the converted input to the Hadoop cluster and download the result locally when
the job has finished. HSHREC generates the corrected output files without the initial
descriptions of the reads. Some tools may need this information for further processing
like SolexaQA++167 which generates statistics from multiple technologies. The dataset
requires a post-processing step (that the user must implement) to restore the initial
information. Secondly, HSHREC generate two files, one containing all corrected reads
and the other the skipped reads. Generally, the output of the error correction tools is
FASTA/FASTQ and it does not require any explicit processing.

K-mer

K-mers Handling: Many methods base their decision on k-mers and apply differ-
ent techniques to deal with the memory limitation and CPU requirements. BLESS
uses the hard-drive to store the k-mers during the counting.168,169 RACER encodes the
bases in a k-mer as a 2-bit representation to save memory. A newer version of Quake
integrates Jellyfish170 to count k-mers instead of its own implementation to stay com-
petitive against the more recent algorithms. It also provides a distributed approach for
those cases in which the local memory is not enough to handle the k-mers. To speed
up the k-mer spectrum generation,90 implements a parallel counter.88 use GPGPUs
to generate the k-mer spectrum. A rare feature is the support for variable k-mers for
grouping reads as in110, where the corrector uses a wildcard based k-mer.

K-mer Size Selection: The value of k is extremely important.7,82 A too low value
for k would result in many k-mers appearing in most reads, thus joining in groups
reads without any real relation. On the contrary, very large values would generate too
many unique k-mers, which also have a higher probability of including more errors,
therefore introducing noise into the grouping. Long k-mers may also require more
RAM memory.
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The analysed methods set the size of the k-mer by: accepting a user value, having a
fixed default value and/or performing automatic selection. Hammer requires the user
to set it. Quake and ECHO define a formula to determine the optimum value as pre-
sented in Table 4. Reptile considers 10≤ k≤ 16 enough for microbial genomes, fitting
the spectrum in less than 4 GB of RAM. Coral uses a default value of 21 for the k-mer.
Hector and Musket require both the k-mer length and the total estimated number of
k-mers from all reads. HiTEC and Fiona automatically identify the optimum k-mer
length at each step. CloudRS stacks reads using a wildcard based 25-mer and, later
in the correction procedure, a fixed 24-mer. The k-mer size should be odd in order to
avoid palindromic k-mers.171 The software using k-mers in their pipeline are market in
table 2, column ”k”.

Table 4 Formulas to deter-
mine the k-mer size for non-
automatic k-mer determination;
N = Genome length, l = read
length; p = probability that a ran-
dom k-mer appears in a random
string of length N, using the al-
phabet {A, C, G, T}; Ns = num-
ber of unique solid k-mers as re-
ported by BLESS

Formula Where

k = log4200N 7,70

k ≥ dlog4Ne 73

4k >N 84

k = bl/6c 109

k = log42Np-1; p = 10-4 95

Ns/4k ≤ 0.0001 97

K-mer Distribution: Software relying on correct and erroneous k-mers tries to fit the
k-mer spectrum on a certain distribution. The correctors compute the histogram with
the frequencies for each k-mer in the set of reads. A valid estimation tries to model
the initial, complex distribution as a combination of multiple, simpler distributions.7

Quake divides the solid k-mer distribution in a combination of a normal and a Zeta dis-
tribution and it considers (like BLESS) the weak k-mers to follow a Gamma distribu-
tion. Lighter assumes a Poisson distribution, like Fiona. REDEEM models the k-mer
distribution as a Multinomial one. For 454, Hector encodes homopolymers using the
base and the multiplicity. The authors observe that the distribution of the original reads
tends to be unimodal. With the encoding applied in the homopolymers space, the dis-
tribution of the homopolymers spectrum is analogous to the one (bimodal) obtained by
Musket in base space. The same authors conclude that, generally, the homopolymers
spectra are bimodal.
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Coverage Cut-off and K-mer Distance: K-mer based error correction methods can
cut the k-mer histogram to remove k-mers with too high or too low frequencies, which
normally reduces the noise caused by highly-repetitive regions or singular errors. Some
algorithms automatically compute the best cut-off value, allowing users to override
this value. Quake uses the Broyden-Fletcher-Goldfarb-Shanno method to calculate
the histogram cut-off, but this method fails when the curve of the distribution is not
smooth enough.71 The authors of Musket empirically determined that the lowest count
for a k-mer around the valley can be a good cut point. Musket also has an option to
use a user-provided value. Trowel uses a different approach by using the contiguity
of high-quality-scores bases instead of the coverage. It also expands the trusted k-mer
set, adding new k-mers after they are corrected. QuorUM bases its decision on the
quality of bases from k-mers, therefore all bases in a solid k-mer must have a quality
greater than a threshold. RACER uses an internal threshold to deem a k-mer followed
or preceded by a certain base, either as solid or weak. Hammer and Reptile create a
Hamming graph for the array of all k-mers, locating groups of similar k-mers that only
differ in a few positions, and then collapsing all those k-mers into a consensus k-mer.
To improve memory consumption, Lighter uses a random method to decide whether to
store or not a k-mer, assuming that a correct k-mer appears multiple time in a dataset,
thus the chance of being selected is high.

Repetitive Regions

In general, the problem of repetitive regions cannot be tackled by considering indi-
vidual reads or k-mers in isolation. Some argue that in the case of highly repetitive
genomes, a sequencing error has a greater probability to change a solid k-mer to an-
other solid k-mer.7 They calculated the percentage of all one base mutations for a
k-mer k that will convert k into a sequence which also exists in the genome. The results
show a 2.25% for E. Coli and 13.8% for human chromosome 1, with a 15-mer and a
18-mer respectively. Increasing the k-mer length up to 19 did not significantly change
the result, dropping the percentage to 11.1% for the H. Sapiens’ first chromosome.
The different percentages obtained for the two organisms result from the higher com-
plexity of the human genome. REDEEM was specifically designed to handle repeats.
The main problem with repetitive regions is the similarity of two sequences which are
reside on different loci of the genome. A corrector may try to convert them to a con-
sensus, hence destroying the existing valid zones. These wrongly fixed reads would
prevent an assembler from correctly composing the real genome (or make it generate
chimeric assemblies). It is a real problem for highly-repetitive genomes (plants).77

Furthermore, misreads in repetitive regions can cause an abnormal high frequency of a
k-mer172 which could result in an erroneous classification as solid by some correctors.
The methods based on multiple sequence alignment are more resilient to challenges
posed by repeats, although they do not totally solve the problem.109 The relationships
between reads can tackle to some extent some small repetitive regions because of the
higher length of the analysed strings compared to k-mers. Moreover, a read from a
repetitive region has a higher probability to enter the right group provided it shows
enough dissimilarity with other repetitive regions. Fiona implements a filter to remove
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suffixes with an unreasonable high frequency and supports tandem repeats. Blue ad-
dresses the problem of repeats by evaluating alternative fixes for a read (it works in
the case of significant differences among reads). proovread takes into account the loci
on the long reads where large blocks of short reads map, collecting many reads. In
contrast, non-repetitive regions may not even participate in alignments, because of the
uniqueness resulted from the Pacific Biosciences’s high error rate.110 makes use of a
high frequency k-mer filter to avoid stacking reads from repetitive regions. Column
”Rep” from table 2 contains the support for repetitive regions in the correctors.

Ploidy

A corrector must distinguish between errors and variants. Since most error correctors
where tested on bacterial genomes, the information on the behaviour of most tools
are restricted to the haploid case. The support for heterozygosity is stated on column
”Hzy.” on table 2. Authors of52 apply a smoothing technique to avoid removing zones
with only biological variants. They build a tree using the frequency of reads, and
consider a true variant as a sequence appearing with a high enough frequency compared
with the parent sequence. Their decision is based on the fact that the frequencies of a
variant should be much higher than the ones from the sequencing errors. The authors
of ECHO explain a modification to support a diploid genome with homozygous and
heterozygous genotypes. Their approach is to consider a uniform distribution over all
possible genotypes. They skip a correction if the estimated coverage is much greater
than the expected coverage at an analysed locus.

Read Trimming and Splitting

To avoid the propagation of errors to the next steps, the correctors may eliminate bases
from both ends of a read, which can be considered a complementary method to reduce
errors.106 Users should take great care in using trimming, because it can heavily influ-
ence the next steps like assembly, where the final result may become fragmented92 as
the assembler is not able to find proper overlaps among reads. However, not trimming
faulty bases may result in erroneous assemblies.69 Some authors56,88,173 try to fix the
read first and when this is not possible, they trim it. If the result remains unsatisfactory,
they discard the read. Another approach is to pre-process the reads and cleave the suf-
fixes and prefixes having low quality scores to decrease the number of false positives
in the k-mer spectrum.89 One must be careful with the quality scores and take into ac-
count that the accuracy of the quality scores depend upon library preparation method as
demonstrated for Illumina MiSeq data48. When dealing with very long reads like Pa-
cific Biosciences with a high percentage of errors62, along with considering trimming
their ends, an additional approach is to split the long reads into smaller, high quality
segments. The authors of85 do not correct the spurious bases, opting instead to split
the read at the locus of the error and to remove the faulty base. They argue that for a
further assembly step based on k-mers such as Velvet171, their method should not pose
any problems.
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Unknown/Uncalled Bases

The unknown bases (denoted by N in Illumina and Roche 454 sequencing) are one of
the four basic types of errors. Schirmer et al. concludes that this type of error does
not occur randomly as supported by their non-uniform distribution. Column ”N” from
table 2 indicate whether the correctors support Ns or not. In some cases4,52,55,106, the
authors prefer to exclude all reads which contain one or more uncalled bases. Other
programs (such as LSC) eliminate the reads that have a frequency of Ns above a thresh-
old. A different strategy is to convert each unknown to a real base, like RACER, Rep-
tile and Parallel Reptile. Tools such as73,98 tackle the unknown bases in the correction
process. Some authors fail to mention the support for uncalled bases in their papers,
therefore it is up to the user to experiment. Since the unknown bases are a type of
error41, the authors should make it clear whether their software supports them or not.
In98, the authors put together a table with a selection of correcting software and their
features including handling of uncalled bases.

Low-Coverage Regions and Uniformity

Illumina sequencing generally has a higher average coverage than other platforms174,
but their short size may not be suited for phylogenetic profiling when a high resolution
is required. However, many studies54,175–177 have found that GC-poor and GC-rich
regions have low coverage or even no coverage at all. An error corrector must consider
these platform-specific shortcomings to increase sensitivity and specificity.7

The authors of MyHybrid and Coral state that correction methods expects the cover-
age to be relatively high and use that multiplicity for a meaningful decision. Therefore,
they cannot do much for reads from low-coverage regions. The methods that use a
threshold for weak/solid k-mers will work if the coverage is high enough or uniform,
but they will end up destroying the low-coverage regions (QuorUM tries to avoid this
problem). Edar takes into account the bias introduced by GC regions when calculating
the k-mer coverage, by actively considering the GC content of the k-mer. For a reli-
able result, the authors recommend using a reference genome to accurately calculate
the coverage. While many authors do not state the minimum required coverage for a
successful correction, ECHO’s paper specifies a coverage of 15 or higher. Hammer
and BayesHammer are specifically designed for error correction without uniformity
assumptions. Due to uniformity, some authors admit their algorithm’s limit like in case
of Reptile where a non-uniform coverage and the existence of more than one accept-
able tile force the algorithm to skip a correction decision. The authors of Blue mention
the caveat of a simple k-mer cut-off due to uniformity which can result in the rejec-
tion of correct k-mers in low-coverage regions and the acceptance of erroneous k-mers
in very high-coverage regions. Fiona detects erroneous k-mers by calculating the ex-
pected coverage for each k-mer, given a uniform sampling of genomic positions. It
uses a hierarchical statistical model to describe the expected coverage distribution of
k-mers based on library preparation and sequencing.
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Parameters

All the methods rely on specific thresholds, lengths, ratios or probabilities to drive their
correction. As the methods evolve, they tend to move the burden of choosing the best
suited values for their parameter from the user to the program itself.

Generally, the k-mer size has a default (user adjustable) value. However, some correc-
tors like Quake require an explicit value from the user, but offer a formula to determine
it. Coral has a default value, but it also proposes a formula in order to obtain the best
results.

The technology flag can explicitly set the source technology. For example, Coral has
a flag for ”Illumina/454” and Fiona another one for ”Illumina/Ion Torrent/454”, which
helps the software to decide the best approach for correction. Others have a flag which
enable targeting the errors specific to a specific platform, i.e. homopolymers errors in
454 with the ”hp” flag in98. Karect can run with indels support (Ion Torrent, Roche
454) or without (Illumina).

Parameter selection automatic/manual: A manual method to select parameters re-
quires the user to try different values for different parameters to obtain the best results.
On the other hand, an automatic method would prevent the user to provide additional
valuable information to infer the best actions the algorithm has to take during the cor-
rection process. We must distinguish between automatic determination of the best
value for the dataset/ analysed case and the default value of a parameter (deemed by
the authors to be an acceptable value). The two programs supporting full automatic
parameter value selection are HiTEC and Fiona. Note that HiTEC needs the length
of the genome and the percentage of errors as input, but these two parameters remain
the same for a certain dataset.

Single Threaded vs Parallel

Generally, the programs tested in this review support parallel processing using multiple
threads. There are methods, like BLESS, that can compete against multi-threaded
software due to their approach, despite being single threaded . Other methods like
Reptile have been updated to run on multiple CPUs90, using the same initial correction
mechanism. The parallel implementations are a normal trend as both the NGS data size
and the length of the reads increase.

A distinction must be made between those programs being natively parallel (they inter-
nally split the jobs between multiple workers) like Coral and HSHREC and those that
have no parallel implementation but their input can be divided in chunks and multiple
processes can be launched on different fragments of the initial dataset like in the case
of proovread.

Parallel Technology: The reader can check the parallel technology used by a correc-
tor on column ”Par. Tech.” from table 2. Most of the parallel implementations use
OpenMP to distribute the workload among the threads. DecGPU and Parallel Reptile
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support distributed-memory computing by MPI. The distributed-memory model re-
quires a more complex programming and configuration, but enables gathering a larger
number of RAM memory. This advantage may enable tackling larger-scale correction
problems which cannot be addressed on a single node. Other methods, such as Quake,
use parallelism only for counting k-mers. Furthermore, proovread and Nanocorr can
run on multi-core desktops and distributed clusters using queuing engines like SGE
(commercial2) and SLURM178. As of now, there are two fully distributed methods us-
ing the Map-Reduce (Hadoop) paradigm.110,111 An interesting addition to the field is
FADE102, the FPGA error corrector which unleashes the massive parallelism available
on FPGA devices to tackle the error correction.

Operating System and Programming Language

The resource consumption is a problem because of the continuous growth of the size of
the NGS data. Owing to this, we observe that the majority of authors chose a low-level
language like C or C++ to implement their solution. An interesting trend is the use of of
C++ over C in writing the software, with just one program (from those being available
online for us to analyse), Coral, being implemented in pure C. The C# implementa-
tion of Blue obtains the best performance when compared against other algorithms on
Illumina and Roche 454. Even though C# is not considered to be a high performance
language, Blue performs really well against the rest of the algorithms. Some correctors
appear to be implemented in Perl and/or Python. These are often scripts that are used
to execute third party software. In case of LCS, the authors offer a software wrapper
written in Perl that uses an external aligner to map the short reads against the long
ones. Nanocorr is a python wrapper for BLAST and pbdagcon 3. For the reader’s
convenience, we list in table 2 the programming language of choice for each corrector.

Overall, the correctors should work on the three most important desktop/server oper-
ating systems: Windows, Linux and Mac OS. Some authors94 mention the supported
platform in their papers. Generally, the authors prefer to support Unix flavours and to
distribute the source code and the instructions to build it. Furthermore, the tests for
the majority of the works were done under Linux, with some authors also using Win-
dows.52 Besides PC based methods, we included a corrector which runs on FPGAs -
FADE - (even though with the help of a computer that handles the data transfer and
storage).

Recommendations

Depending upon the preprocessing type, a corrector that can separate the steps of the
correction can save a lot of time when processing big datasets. For instance, Blue
can generate the k-mer table in a separate process. In its case, the advantage is twofold.
Firstly, it can use the same k-mer table for multiple runs with the different combinations

2Available at http://www.univa.com/products/grid-engine.php
3Available at https://github.com/PacificBiosciences/pbdagcon
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of values for the majority of parameters that are not involved in the histogram’s gener-
ation. Secondly, it makes cross-correction possible since the k-mer table can be gener-
ated from one technology that can be used to correct data from a different one. Another
important aspect is the k-mer size selection. Any program able to determine the size
of k-mers automatically (HiTEC) or use variable sizes (Fiona) is recommended over
those with user-defined only k-mer size selection. Next recommendation is to select a
software like Fiona or Blue that consider repetitive regions as they may avoid altering
similar zones with SNPs. The unknown bases support depends upon the used sequenc-
ing technology as some technologies do not produce this type of error. Furthermore, in
case of extreme necessity, one can easily write a script that can convert the unknowns
into random or specific nucleotides. The low-coverage issue must always be a top pri-
ority since some algorithms can skip those zones because of the limited information.
Finally, the user must be careful with the trimming and the splitting of the reads. In the
former case, a corrector (like Quake and DecGPU) may trim a read if the correction is
not possible. If result is then fed to an assembler, the correction may negatively influ-
ence the overlap detection. Edar applies a distinct correction mechanism by cleaving
the reads. This approach may be detrimental for any further step because a lot of infor-
mation is lost. The reads become much smaller and the relation between segments part
of the same read is lost forever.

Testing

This section focuses on the testing part included on the analysed papers. We extracted
all datasets which we could identify in the papers along with the results provided by
the authors. Due to space limitation, we split the datasets in two categories. Table 5
lists all those datasets appearing in77,78. The rest of the datasets (second category)
along with the benchmark information are located in the Supplementary Material. The
gain metric for both categories is calculated (by the authors or by the reviewers) using
the formula from77. The reader must be careful though, because there is no standard
way to count TP, FP and FN. As a result, the numbers given by the authors and the
reviewers must be taken with a grain of salt. The reliable gain appears on the same
column (same review, the authors used the same testing approach for all software).
The hardware configurations used by the correctors’ authors and in78 as more sections
related to testing are located in the Supplementary Material.

Methods

Some metrics are general and do not focus on certain type of error correction mecha-
nism. For instance, the sensitivity and specificity appear in k-mer-spectrum methods
like Reptile, suffix trie/array methods like SHREC and MSA methods like Coral.
Sensitivity, specificity, gain and genome assembly statistics are the most widespread
metrics.

Simply counting the mapping reads that did not map before the correction and do so
after it, can prove the effectiveness of a corrector.53,64,106 However, the differences
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obtained heavily depend on the aligner’s parameters. For example, the authors of77

test with different values for the aligner, albeit only for datasets with indels, given the
complexity introduced by these types of errors.

In the case of artificial datasets, it is possible to report quite reasonable the error rate
before and after correction.85,109 On the other hand, the exact error rate for real data
can only be estimated.44
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Gain/Specificity/Sensitivity

The gain (G), specificity (SP) and sensitivity (SE) metrics (for formulae see Equation 1)
seem to become the de-facto on error correction. SP and SE first appeared in55. The
gain84, represents the percentage of eliminated errors. They are all based on counting:

• TP (true positives) existing errors that are corrected.

• TN (true negatives) correct bases left unmodified.

• FP (false positives) correct bases that are wrongly considered being faulty.

• FN (false negatives) erroneous bases left unmodified.

G =
TP − FP

TP + FN
,SE =

TP

TP + FN
,SP =

TN

TN + FP
. (1)

There are differences in how the authors of each tool compute TP/TN/FP/FN. For Rep-
tile, they compute the errors at base level, while for SHREC and RACER, they count
the errors at reads level (a read is either error-free or erroneous, without considering
the number bad base). The lack of a standard approach on counting the errors leads to
some serious inconsistencies in the results published in the literature by the same tool
in different benchmarks even using the same dataset and formula. For example, in77,
Coral obtains a score of 0.002 for an Illumina dataset (SRR022918), while with the
same dataset, it scores 0.97 in its own paper. There is no doubt that Coral is a good cor-
rector (as demonstrated by41) and even in the aforementioned survey it performs really
good on datasets with indels. The problem lies in the different approach in perform-
ing the tests, which is not infallible. Moreover, the previous difference in score may
arise just by changing the way to prepare the datasets before correction. Even though
the approach is the same (filter non and multi mapping reads), the aligner can make a
difference too. Salmela et al.73 use Soap, while Yang et al.77 use BWA.179,180 Table 5
contains the results obtained by some correctors in77,78 on a number of datasets. The
different results obtained in the original article versus the surveys can be explained
by the difference in dataset preparation, FP/TP/FN/TN counting and maybe different
versions of the tested programs. The Supplementary Material contains the results

Assembly

The majority of the recent publications include some information about the assembly
performance. Many list the N50 metric and the contigs count, but there are variations.
Salzberg et al.69 define N50 value as ”the size of the smallest contig (or scaffold) such
that 50% of the genome is contained in contigs of size N50 or larger”. A contig is a
multiple sequence alignment of reads represented as a consensus while the scaffold is
a list of contigs that defines their order, orientation and the length of the gaps between
them.181 Pluribus’ paper provides the number of nodes in the Bruijn graph generated

40



by Velvet, which give a measure of the fragmentation of the assembly. For QuorUM,
the E-size statistics69 complements the N50 value.

While N50 and the maximum contig length measure the quality of error correction and
give valuable feedback over the correction, the authors of98 state that these metrics
are not always accurate. This mainly happens because the assemblers can generate
chimeric contigs in overcorrected datasets. In any case, the correctness of an assembly
is hard to verify.182 As a consequence, more refined assembly evaluation approaches
are considered (e.g. the Mauve Assembly Metrics183 for Blue). BLESS uses several
assemblers from two different categories (de Bruijn and string-graph based). This ap-
proach increases the reliability of the capability to produce valid results that do not fit
a certain type of assembler (or worse, a certain assembler) and to prove the corrector’s
generality. Furthermore, the same authors do not just provide the value of N50, they
also assess the quality of the assembly, using GAGE69, as the authors of Musket.

For BLESS, the authors chose only artificial datasets to demonstrate the capabilities of
their implementation. DecGPU contains the assembly information only for their cor-
rector, not the other correctors in their benchmark. Salmela73 eliminates the trimmed
reads generated by Quake, because the Illumina-only assembler Edena184 can only
handle reads with the same length.

Our reader can find the assembly results (where available in the original paper) in the
table with the performance assessment from the Supplementary Material.

Genomes Used for Testing

A recent review81 tests seven correctors on three large genomes (H. Sapiens, D. Me-
lanogaster and C. Elegans) among others. The datasets for the aforementioned species
are very large, between 31 million and 1.7 billion reads. As discussed in109, the more
complex, diploid genomes bring up the problem of heterozygosity and how to discrim-
inate between true variants and sequencing errors. The repetitive regions also pose a
problem to the corrector as mentioned by the authors of Musket and HiTEC. We can
see a clear focus on the human genome, as the largest and most complex datasets for
benchmarking come from this organism (for BLESS, Blue and Fiona).

Real vs. Artificial Datasets

We discern three situations for the datasets used in benchmarks: correctors tested only
on simulated datasets, only on real data or both types of datasets. The main reasons
stated to avoid artificial datasets are the lack of simulators capable of producing mean-
ingful data and the non-existence of some real challenges that only appear in already
existing real data73,84. To generate the artificial data, the authors of BLESS used simLi-
brary and simNGS185, for Lighter and Hector - Mason186 and for Pluribus - ART187.
Pbsim188 is cited in63, but the authors did not use it, as they preferred to perform their
tests on real data only. Correction software from 2013 onwards are tested mainly on
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data generated with dedicated software, opposed to previous use of in-house mecha-
nisms. Some authors test their work on existing artificial datasets, e.g.172 for Edar
and189 for Qamar.

Resource Consumption

Despite that early methods were not explicitly targeting a reduction in the requirements
on CPU and memory consumption, currently all the methods try to address this aspect.
Some of the first stand alone error correction methods were developed in Java, whilst
the latest prefer C/C++. On the other side, Blue (2014) runs on the Microsoft .Net R©
platform while offering a very good performance. Many authors do not specify the
exact method of determining the resource consumption. The authors of62,73 use the
Unix time command.

There are multiple approaches to measure memory consumption. This is especially
troublesome when testing programs in C/C++ against the ones in Java. For the latter,
the simplest way is to measure the memory used by a process, but one must be careful
with the memory allocation of the VM. In case of very small datasets, the overhead
added by the VM can give a skewed view of the real behaviour. Even the memory
usage of native programs is hard to assess under Linux given the fact that there are two
main memory types: virtual memory and Resident Set Size. Most of the papers do
not state how memory is measured, making comparisons difficult. We also observed a
lack of information regarding the number of threads used to asses the performance in
some cases. For example,55 state the use of multi-cores, but do to mention how many
threads were actually used in their test. The scalability of the program, i.e. how the
software behaves with an increasing number of threads is often not evaluated. Some
authors like98 present additional test cases in which they only asses their program,
usually for very large datasets. Table 5 contains the results for a number of correctors.
For reader’s convenience, we also included the results obtained in the original articles.
One can see some differences in the memory and time obtained on the same dataset.
This is not necessarily a sign of overinflated results in the original work, but more of a
difference in the testing system and how the authors prepared the data for correction.
Furthermore, there is no clear indication of the version of the program used in the
original benchmark and survey benchmark respectively. The aforementioned table is
a guideline for the interested user that can help him/her choose the right toll given the
target hardware.

Recommendations

Using the three benchmark reviews cited earlier, we can see some correctors that
emerge as the winners. Molnar and Ilie81 consider BLESS, Musket, RACER and
SGA the best choices for HiSeq data. The last three were also able to handle H. Sapi-
ens datasets with over 1.3 billion reads of 100-103bp on a Dell computer with 32 cores
and 1TB RAM. For MiSeq, RACER wins in three from a total of four tests. Tahir et
al.78 recommend HiTEC, ECHO and DecGPU. In their opinion, the first two have
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a plus with their automatic parameter selection that can optimize performance. Fi-
nally, Yang et al.77 obtain good results with Reptile and HiTEC for Illumina data.
Unfortunately, HiTEC fails to run for three of seven datasets. This review also in-
cludes datasets from Roche 454 and Ion Torrent, where Coral wins in all cases against
HSHREC. The two aforementioned correctors supporting indels do not obtain a high
gain for Illumina datasets, making them inferior to Illumina-only correctors.

An important advice for the reader is to consider more than one metric when select-
ing a program. We recommend that (s)he should consider not only gain, sensitivity
and specificity, but also other metrics like genome assembly and short read alignment.
Another important aspect is the type of datasets used in testing. A corrector able to
handle heterozygous organisms such as H. Sapiens (like Blue, Fiona and BFC) should
perform pretty well with other complex organisms. From a resource consumption per-
spective, BLESS uses the least memory, but it is single threaded and quite slow since
it uses the disk. Blue on the other hand obtains some very good results in its own
publication, offering a trade-off between memory and CPU consumption.

Conclusion
As the sequencing market share suggests, Illumina has become an important
player in the industry. Our review strongly supports this claim based upon
the general support for this technology, with almost all programs supporting
either only Illumina or Illumina plus additional sequencing technologies. Pacific
Biosciences and Oxford Nanopore technologies with their (very) long reads
gave birth to a new trend. This trend requires the evolution of error correction
techniques to support longer reads and to deal with the high error rate these
technologies currently have. Overall we can see improvements in the area
of error correction for different technologies as the newest methods are both
resource efficient and offer a very good correction. A reliable and structured
way to measure the accuracy is also very important.

There is room for further improvement especially on the biological aspects of
the correction. Here, we refer to concepts from biology like ploidy, heterozy-
gosity and repetitive regions not the more computer science oriented concepts
like the memory consumption, genome representation on two bits per base and
multi-core support. Now that the error correction field has been sufficiently ex-
plored, the newer methods improve over the existing ones. A not so favourable
trend is the non-existence of some mature-enough methods that are constantly
enriched with new features, as in other related fields like assembly (Mira190) or
short sequence alignment (BWA180).

Acknowledgement

We want to thank our colleague Eloy Romero Alcale who has provided valuable advice
regarding the structure of the document.

43



Funding

This work was supported by Generalitat Valenciana [GRISOLIA/2013/013 to A.A.].

References

1. Zimin A, Stevens KA, Crepeau MW, Holtz-Morris A, Koriabine M, Marçais G,
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137. Kenny NJ, Namigai EK, Marlétaz F, Hui JH, Shimeld SM. Draft genome assem-
blies and predicted microRNA complements of the intertidal lophotrochozoans
Patella vulgata (Mollusca, Patellogastropoda) and Spirobranchus (Pomato-
ceros) lamarcki (Annelida, Serpulida). Marine genomics. 2015;.

138. Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome as-
sembly and annotation of a female domestic dromedary of North African origin.
Molecular ecology resources. 2015;.

54



139. Le Duc D, Renaud G, Krishnan A, Almén MS, Huynen L, Prohaska SJ, et al.
Kiwi genome provides insights into evolution of a nocturnal lifestyle. Genome
biology. 2015;16(1):1–15.

140. Fiebig A, Loof TG, Babbar A, Itzek A, Koehorst JJ, Schaap PJ, et al. Compar-
ative Genomics of Streptococcus pyogenes M1 isolates differing in virulence
and propensity to cause systemic infection in mice. International Journal of
Medical Microbiology. 2015;305(6):532–543.

141. Lambert D, Carrillo CD, Koziol AG, Manninger P, Blais BW. GeneSippr: A
Rapid Whole-Genome Approach for the Identification and Characterization
of Foodborne Pathogens such as Priority Shiga Toxigenic ¡italic¿Escherichia
coli¡/italic¿. PLoS ONE. 2015 04;10(4).

142. Cong Q, Borek D, Otwinowski Z, Grishin NV. Tiger Swallowtail Genome Re-
veals Mechanisms for Speciation and Caterpillar Chemical Defense. Cell re-
ports. 2015;10(6):910–919.

143. Jnemann S, Prior K, Albersmeier A, Albaum S, Kalinowski J, Goesmann A,
et al. GABenchToB: A Genome Assembly Benchmark Tuned on Bacteria and
Benchtop Sequencers. PLoS ONE. 2014 09;9(9).

144. Walter MC, Öhrman C, Myrtennäs K, Sjödin A, Byström M, Larsson P, et al.
Genome sequence of Coxiella burnetii strain Namibia. Standards in genomic
sciences. 2014;9:22.

145. Nikolaichik Y, Gorshkov V, Gogolev Y, Valentovich L, Evtushenkov A. Genome
sequence of Pectobacterium atrosepticum strain 21A. Genome announce-
ments. 2014;2(5).

146. Engel P, Stepanauskas R, Moran NA. Hidden Diversity in Honey Bee Gut Sym-
bionts Detected by Single-Cell Genomics. PLoS Genet. 2014 09;10(9).

147. Aeschlimann SH, Jönsson F, Postberg J, Stover NA, Petera RL, Lipps HJ, et al.
The draft assembly of the radically organized Stylonychia lemnae macronu-
clear genome. Genome biology and evolution. 2014;6(7):1707–1723.

148. Kleigrewe K, Almaliti J, Tian IY, Kinnel RB, Korobeynikov A, Monroe EA, et al.
Combining Mass Spectrometric Metabolic Profiling with Genomic Analysis: A
Powerful Approach for Discovering Natural Products from Cyanobacteria. Jour-
nal of natural products. 2015;78(7):1671–1682.

149. Grob C, Taubert M, Howat AM, Burns OJ, Dixon JL, Richnow HH, et al. Com-
bining metagenomics with metaproteomics and stable isotope probing reveals
metabolic pathways used by a naturally occurring marine methylotroph. Envi-
ronmental microbiology. 2015;.

150. Neumann AM, Balmonte JP, Berger M, Giebel HA, Arnosti C, Voget S, et al.
Different utilization of alginate and other algal polysaccharides by marine Al-
teromonas macleodii ecotypes. Environmental microbiology. 2015;.

55



151. Lada AG, Kliver SF, Dhar A, Polev DE, Masharsky AE, Rogozin IB, et al.
Disruption of Transcriptional Coactivator Sub1 Leads to Genome-Wide Re-
distribution of Clustered Mutations Induced by APOBEC in Active Yeast Genes.
PLoS Genet. 2015 05;11(5).

152. Boudreau PD, Monroe EA, Mehrotra S, Desfor S, Korobeynikov A, Sherman
DH, et al. Expanding the Described Metabolome of the Marine Cyanobac-
terium Moorea producens JHB through Orthogonal Natural Products Work-
flows. PloS one. 2015;10(7).

153. De Wit P, Pespeni MH, Palumbi SR. SNP genotyping and population genomics
from expressed sequences–current advances and future possibilities. Molecu-
lar ecology. 2015;24(10):2310–2323.

154. Taniguti LM, Schaker PD, Benevenuto J, Peters LP, Carvalho G, Palhares A,
et al. Complete genome sequence of Sporisorium scitamineum and biotrophic
interaction transcriptome with sugarcane. PloS one. 2015;10(6):e0129318.

155. Li X, Fan D, Zhang W, Liu G, Zhang L, Zhao L, et al. Outbred genome se-
quencing and CRISPR/Cas9 gene editing in butterflies. Nature communica-
tions. 2015;6.

156. DAgostino N, Golas T, Van de Geest H, Bombarely A, Dawood T, Zethof J,
et al. Genomic analysis of the native European Solanum species, S. dulca-
mara. BMC genomics. 2013;14(1):356.
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