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Abstract 

Ischaemic heart disease is considered as the single most frequent cause of death, provoking 

more than 7,000,000 deaths every year worldwide. A high percentage of patients experience sudden 

cardiac death, caused in most cases by tachyarrhythmic mechanisms associated to myocardial 

ischaemia and infarction. These diseases are difficult to study using solely experimental means due to 

their complex dynamics and unstable nature. In the past decades, integrative computational simulation 

techniques have become a powerful tool to complement experimental and clinical research when 

trying to elucidate the intimate mechanisms of ischaemic electrophysiological processes and to aid the 

clinician in the improvement and optimization of therapeutic procedures. The purpose of this paper is 

to briefly review some of the multiscale computational models of myocardial ischaemia and infarction 

developed in the past twenty years, ranging from the cellular level to whole-heart simulations. 
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INTRODUCTION 

Ischaemia and infarction 

Ischaemic heart disease is considered as the single most frequent cause of death, provoking 

more than 7,000,000 deaths every year worldwide.
1,2

 A high percentage of patients suffering 

ischaemic heart disease experience sudden cardiac death,
3
 with over to 450,000 cases being reported 5 

in the U.S. annually.
4
 Almost 70% of them were probably caused by tachyarrhythmias associated to 

myocardial ischaemia.
4,5

 It is therefore not surprising that an enormous body of research is being 

devoted to investigate the mechanisms underlying the relationship between myocardial 

ischaemia/infarction and arrhythmias. 

Myocardial ischaemia usually results from the occlusion of a coronary artery, and can be 10 

defined as a condition in which the blood supply to heart cells is insufficient to meet their metabolic 

demands.
6
 During the first 15 minutes after coronary artery occlusion (“phase 1A ischaemia”), the 

heart suffers profound metabolic and electrophysiological changes at different scales. At the 

subcellular level, electrolyte concentrations change, ATP and oxygen levels decline and pH 

decreases.
7
 At the cellular level, ion channel activity changes, resting potential becomes less negative, 15 

action potential duration (APD) shortens, upstroke velocity decreases and cells loose excitability.
7
 At 

the organ level, conduction velocity (CV) decreases and severe tachyarrhythmias may easily 

develop.
8,9

 During the period that follows (“phase 1B ischaemia”, 15-45 minutes post occlusion), 

cellular uncoupling develops,
10

 ischaemic tissue becomes inexcitable and arrhythmias may re-appear 

after a safe period of several minutes.
11,12

 20 

When the acute phase terminates, the infarcted tissue begins to heal
13

 (subacute phase of 

myocardial infarction, MI) and spontaneous ventricular arrhythmias can take place in this period.
14,15

 

Finally, complete healing and scar formation occurs after several days (or weeks). In this chronic 

phase of MI, reentrant ventricular tachycardias (VTs) are still inducible, indicating that the 

arrhythmogenic substrate is still present, albeit the mechanisms of these chronic-phase arrhythmias 25 

are different from those of the acute phase. 

Simulation of ischaemia and infarction 

In the past decades, integrative computational simulation has become a powerful tool to 

complement experimental and clinical research when trying to elucidate the intimate mechanisms of 

ischaemic electrophysiological processes.
16-22

 The heart is a particularly appropriate organ to be 30 
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computationally simulated on a multiscale basis because of the long history of cardiac cell modelling
23

 

and the continuous interaction between experiments and simulation. From the earliest Luo-Rudy 

models for guinea-pig ventricular cells
24

 to the most recent electrophysiological model of human 

ventricular myocytes,
25

 it has become possible to dynamically compute ionic currents through 

sarcolemmal channels and transporters, ion concentrations (including Ca
2+

 levels in the different 5 

subcellular compartments) and APs with great degree of electrophysiological detail. In parallel, 

medical imaging techniques have enabled us to reconstruct heart anatomy and structure “in silico”, 

allowing multiscale computational simulations in which genetic defects, for instance, can be linked to 

the whole organ behaviour. These “virtual hearts” are today a perfect example of how an integrative 

biology approach may aid in the understanding of cardiac arrhythmias and in the improvement of 10 

therapeutic techniques such as drug administration, electrical defibrillation or radio-frequency ablation. 

Acute myocardial ischaemia and MI are among the most successfully simulated cardiac 

pathologies.
17

 Experimental understanding of the intimate mechanisms of acute ischaemia is 

particularly difficult due to the complex dynamics and unstable nature of the phenomenon, and the fact 

that most lethal arrhythmias occur before hospital admission makes it almost impossible to carry out 15 

systematic clinical studies. Also, the potential immediacy of death associated to ischaemic arrhythmias 

poses insurmountable ethical and practical obstacles. Therefore, computer simulations are of special 

importance. In the subacute and chronic stages of MI, simulations are also of great interest to aid the 

clinician during ablation interventions. This therapeutic procedure has unsatisfactory rates ranging 

50% to 90%, and a consensus on the optimum approach does not exist.
26

 Thus, multiscale image-20 

based simulation is becoming a powerful tool which can provide guidance in defining the optimum 

ablation strategy. 

Outline 

The purpose of this paper is to briefly review some of the multiscale computational models of 

myocardial ischaemia and MI developed in the past twenty years. The review begins with a discussion 25 

of different models of acute ischaemia at the cellular level and then deals with the modelling of 

ischaemia-related tissue heterogeneities (i.e. the ischaemic border zone). Then, simulations of the 

electrical consequences of regional ischaemia (in the form of increased reentrant-type arrhythmia 

vulnerability) are discussed, both in phase 1A and phase 1B ischaemia. Next, models for the electrical 

and structural remodelling of infarcted tissue are presented. Finally, simulation of the electrical activity 30 
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in chronically infarcted tissue is discussed, including a very novel approach to myocardial ablation 

which uses image-based electrical simulations. 

SIMULATION OF ISCHAEMIA AT THE CELLULAR LEVEL 

It has been known for many years that acute ischaemia has three major components that 

result from cessation of blood flow: acidosis, hypoxia and hyperkalaemia.
27,28

 Intracellular and 5 

extracellular pH values can drop from 7.2-7.4 to 6.2-6.4 in the first 10-20 minutes of ischaemia.
29

 

Oxygen deprivation provokes a moderate decline in ATP levels and an increase in ADP concentration 

in the intracellular medium.
30

 Extracellular K
+
 concentration ([K

+
]o) can increase more than two-fold in 

the first 10-15 minutes post occlusion before plateauing for another 15-20 minutes.
31-34

 Each of these 

phenomena affects ion channels (and thereby APs) in a different manner
35

 and ultimately set the 10 

stage for reentrant activity.
7
 

Simulating acidosis in phase 1A ischaemia 

In almost all ischaemic cellular models, the effects of acidosis are mimicked by reducing the 

maximum conductance of the fast Na
+
 channels and the L-type Ca

2+
 channels.

36-38
 A direct 

consequence of these changes is a reduction in cell excitability and upstroke velocity.
39,40

 Very 15 

recently, Roberts and Christini included the Na
+
/H

+
 and other exchangers in the Luo-Rudy model

41
 in 

order to analyse reperfusion arrhythmogenesis,
42

 creating a new model which can accurately 

reproduce acidosis in acute ischaemia. 

Simulating hypoxia in phase 1A ischaemia 

Simulation of the electrophysiological effects of hypoxia has historically deserved much 20 

attention. The decline in ATP level reduces Na
+
/K

+
 pump (INaK) activity and activates the ATP-sensitive 

K
+
 current (IK(ATP)),

43
 which is almost dormant in normoxic myocardium. To assess the 

electrophysiological effects of IK(ATP) activation, Ferrero et al.
44

 proposed a model for IK(ATP) which 

included the modulation exerted by ATP and ADP,
30

 intracellular Mg
2+

 and Na
+
 
45

 and [K
+
]o.

45
 This 

model was incorporated into the Luo-Rudy ionic model
24,45

 and APs were simulated under hypoxic 25 

conditions to try to elucidate the role of IK(ATP) activation in the well-known APD shortening in acute 

ischaemia.
47

 The main results of the simulations, depicted in Figure 1A, showed that opening of very 

few (less than 1%) KATP channels may provoke a strong shortening in APD, with activation of only 

0.6% of KATP channels needed to account for a 50% reduction in APD. These results confirmed the 

validity of the “spare channel hypothesis”
48

 in the heart, something which was not completely clear in 30 
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view of some experimental results.
49

 According to the results by Ferrero et al., hyperkalaemia was 

only a secondary factor in explaining APD shortening during phase 1A ischaemia. Using a similar 

model for IK(ATP), Shaw and Rudy arrived to analogous results.
39,50

 

Recently, a new and more comprehensive model for IK(ATP) was developed. Using new 

experimental data on Mg
2+

, ATP and MgADP regulation of KATP channels and on the channel 5 

structure, Michailova et al.
51

 reformulated the current and incorporated it to an ionic-metabolic model 

appropriate for excitation-metabolic coupling simulations under ischaemic conditions in the transmural 

ventricular wall.
52

 The model was used to predict that KATP channels are activated transmurally with 

the smallest reduction in ATP in epicardial cells and largest in endocardial cells during phase 1A 

ischaemia and that inhomogeneous accumulation of metabolites in the transmural ventricular tissue 10 

may alter KATP channel opening in a very irregular manner, causing differential APD shortening across 

the ventricular wall.
52

 

Simulating hyperkalaemia in phase 1A ischaemia 

The causes and effects of hyperkalaemia have also deserved attention in computational 

simulation. Ischaemic elevation of [K
+
]o forces cellular resting potential to become less negative 15 

(diastolic depolarization) and thus reduces cell excitability and delays its recovery (inducing post-

repolarization refractoriness, PRR).
53

 These effects of hyperkalaemia have been reproduced by 

simulating APs of single myocytes subject to acutely ischaemic conditions in isolated myocytes
39

 and 

1D strands.
50

 Although these changes in cell excitability are strongly pro-arrhythmic because they 

promote unidirectional block (UDB) and reentry,
8,9,54,55

 the intimate causes of cellular K
+
 loss are still 20 

not well understood. 

In 2002, Rodriguez et al.
56

 used a single-cell model which dynamically calculated ion transfer 

and fluxes between three compartments (intracellular, interstitial cleft and bulk extracellular media) in 

ischaemic conditions. To simulate ionic currents and APs, the model used the Luo-Rudy membrane 

kinetics
24,46

 including the formulation of IK(ATP) by Ferrero et al.
44

 and an ischaemia-activated slow Na
+
 25 

current (INaS).
57

 Figure 1B depicts the main results obtained with the model. According to the 

simulations, the concurrence of three mechanisms is needed to explain the biphasic time-course of 

[K
+
]o in phase 1A ischaemia, namely IK(ATP) current activation,

58
 INaK partial inhibition

59
 and INaS 

activation.
57,58,60

 The participation of only one or two of these mechanisms cannot explain the 

experimentally observed [K
+
]o increase neither quantitatively nor qualitatively. Due to the non-linear 30 
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nature of the phenomenon, the algebraic addition of the separate effects of the three mechanisms 

(trace IV in Figure 1B) does not reproduce the time-course of [K
+
]o either. However, if the three 

mechanisms take place simultaneously, the non-linear interactions between them increases the rate of 

[K
+
]o rise, generates a plateau and the biphasic increase of [K

+
]o can be nicely reproduced (trace VIII in 

Figure 1B). Interestingly, the quantitative contribution of IK(ATP) to the rise in [K
+
]o is almost negligible 5 

(trace I), but its participation is essential to generate the plateau in [K
+
]o (compare traces VII and VIII). 

The simulations also show that K
+
 efflux mainly takes place through the time-independent K

+
 channels 

(IK1). Although these findings are difficult to be obtained using solely experimental means, further 

experiments should be undertaken in order to confirm the hypothesis suggested by the model. 

Incorporating the effects of acidosis, hypoxia and hyperkalaemia into an AP model, the 10 

electrical activity of the phase 1A ischaemic cell can be computed and explained.
39,50

 Figure 1C shows 

simulated APs of an isolated myocyte during four different stages of phase 1A ischaemia (0, 3, 7 and 

11 minutes post occlusion, respectively).
56

 The changes observed in APs are consistent with 

experimental findings.
30,32,35,61

 

Simulating phase 1B ischaemia 15 

In order to simulate phase 1B ischaemia, Pollard et al. proposed additional modifications in 

ionic currents and intracellular Ca
2+

 handling, including the acidotic inhibition of the Na
+
/Ca

2+
 

exchanger, an enhancement of the background Ca
2+

 current and the non-selective Ca
2+

-sensitive 

cation current, and a reduction in the sarcoplasmic reticulum Ca
2+

 release current and the SERCA 

pump.
62

 20 

THE BORDER ZONE IN ACUTE ISCHAEMIA 

Modelling border zone gradients 

In most cases, ischaemia is caused by the occlusion of a coronary artery and thus its nature is 

regional. A central ischemic zone (CIZ) is formed, constituted by cells directly affected by the lack of 

blood flow, while cells away from the CIZ are unaltered and form the normal zone (NZ). The transition 25 

between both zones is not abrupt but instead an ischaemic border zone (BZ) develops in which a 

gradient of ion and metabolite concentrations exists. This high degree of heterogeneity sets the stage 

for reentry.
63,64

 The width of the BZ for each species is variable and has been characterized 

experimentally for some ions (particularly K
+
)
65-68

, but the profile and extension of the BZ for other 

species remains unclear. 30 
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Potse et al. used a one-dimensional (1D) diffusive model for K
+
 ions to establish the spatial 

profile of [K
+
]o across the BZ.

69
 The results predict a non-linear [K

+
]o spatial evolution within the BZ, 

showing a steep rise in the BZ adjacent to the NZ and a more flattened behaviour near the CIZ. The 

authors demonstrate that the diffusion constant which would be needed to explain the experimentally 

observed profile of K
+
 in the BZ is too large, suggesting that physical diffusion is not the only 5 

mechanism that plays a role in the establishment of the BZ. Pulsative flow in the arterial and venous 

bed could be the other mechanism involved.
67

 

More recently, Niederer extended the model to other species (Na
+
, Ca

2+
, Cl

-
 and H

+
, among 

others).
70

 An experimental measurement of the gradients of these ions in ischaemia is hampered by 

low spatial and/or temporal resolutions.
67,71

 The model developed by Niederer is extremely 10 

comprehensive, as it includes dynamic descriptions of membrane kinetics, ionic currents, diffusive ion 

fluxes and Ca
2+

 regulation. The author was able to simulate the spatio-temporal profile of intracellular 

and extracellular concentrations. The results show that the ischaemic BZ is larger for extracellular K
+
 

(four times wider than the Na
+
 BZ, for instance), which can be explained by the voltage-dependent 

nature of K
+
 channels, and also that intracellular and extracellular K

+
 concentrations may decrease 15 

within the CIZ due to electrogenic drift. 

Simulating electrical activity in regional ischaemia 

When the NZ, BZ and CIZ are included in a tissue model coupled to an ischaemic AP model, 

the electrical activity of an acutely ischaemic tissue can be simulated. Ferrero et al.
72

 conducted 

simulations in an electrophysiologically detailed two-dimensional (2D) anisotropic tissue subject to 10-20 

minutes of ischaemia. The tissue comprised a circular CIZ surrounded by a ring-shaped BZ with a 

width of 1 cm for [K
+
]o and pH

65,73,74
 and 1 mm for ATP/ADP,

74
 enclosed in normal tissue (NZ). The 

results, shown in Figure 2, reveal profound electrophysiological changes within the BZ under normal 

pacing. First, CV slightly increases when entering the BZ (due to “supernormal conduction”),
50

 but 

decreases in the second half of the BZ, plateauing at approximately 1/3 of its normal value in the CIZ 25 

due to the combined effects of hyperkalaemia and acidosis (see Figure 2A). Second, an sharp 

reduction in APD and effective refractory period (ERP) is found in the normal side of the BZ (due to 

abrupt IK(ATP) activation in the first millimetre of the BZ), but ERP subsequently increases across the BZ 

reaching almost normal values in the CIZ, mainly due to hyperkalaemia (Figure 2B). Thus, the model 

predicts a strong gradient in ERP across the BZ and a high degree of PRR (>80 ms) in the CIZ, which 30 
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is consistent with experimental findings by Zaitsev et al. in regionally ischaemic pig hearts.
64

 Third, as 

shown in Figure 2C, acidosis and hyperkalaemia strongly reduce the inward Na
+
 current (INa) peak in 

the CIZ, reaching a value comparable to the L-type Ca
2+

 current (ICa(L)) peak. This can be further 

appreciated in Figure 2D, where the time-course of AP, INa and ICa(L) during the depolarization and 

early plateau phases is shown. The upstroke of the AP is divided into two distinct components (one 5 

supported by INa and the other by ICa(L)), something which has been observed experimentally.
7,53,75,76

 

The enhanced role of ICa(L) in ischaemic propagation favours conduction block and the appearance of 

alternans, which in turn may provoke reentry as demonstrated also by Shaw and Rudy
40

 and Bernus 

et al.
77

 This highly heterogeneous substrate favours reentrant arrhythmias. 

When phase 1B ischaemia is reached, the midmyocardial part of the CIZ becomes 10 

inexcitable,
78

 acting as a partially depolarized sink. Viable cell layers survive in the subepicardium and 

the subendocardium, with ischaemic damage increasing over time.79 Cellular uncoupling between the 

inexcitable midmyocardium and the survival layers begins to develop.
10

 This substrate was modelled 

by Jie et al. to study phase 1B ischaemia arrhythmogenesis.
80,81

 

VULNERABILITY TO REENTRY IN ISCHAEMIA 15 

Using the same tissue model for phase 1A ischaemia described previously, Ferrero et al. 

studied the inducibility of reentry
72

. When paced at the same site as the basic beat, a premature 

stimulus could induce figure-of-eight reentrant patterns which nicely resembled those obtained 

experimentally.
8,9,63,82

 

Similar reentrant patterns were obtained from simulations conducted in a three-dimensional 20 

(3D) reconstruction of the human ventricles with realistic anatomy and structure (obtained from 

diffusion tensor magnetic resonance imaging [DT-MRI]) and transmural heterogeneity (with different 

ionic computational models for epicardial, endocardial and midmyocardial cells).
83

 Figure 3 shows the 

transmembrane potential distribution in selected instants just after the delivery of a premature stimulus 

in the subendocardial BZ, where premature excitations (the trigger for arrhythmia induction) normally 25 

originate.
8,35,73,76

 An arc of functional conduction block develops in the innermost side of the BZ (third 

snapshot), caused by the prolonged refractoriness of the tissue (PRR is near its maximum at that site), 

giving rise to UDB and figure-of-eight reentry.
84

 

 

 30 
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The time-course of arrhythmia vulnerability 

According to different experimental and clinical observations, the likelihood of arrhythmic 

events reaches a maximum before the 10
th
 minute, decreases again giving rise to an arrhythmias-

scarce period at the end of phase 1A, and increases subsequently in phase 1B.
11,12,85

 The reasons for 

this triphasic behaviour are still not completely established. Using the same 2D model described 5 

above, Trenor et al. studied the time-evolution of reentry inducibility during the first 10 minutes of 

ischaemia.
86

 The authors quantified the “vulnerable window” (VW, defined as the time interval during 

which a premature stimulus - delivered after a conditioning stimulus - triggers reentry) at selected time 

points post occlusion. The results were consistent with experimental observations: the VW begins to 

increase 6.5 minutes after the onset of ischaemia, peaks at the 8
th
 minute and vanishes in the 9

th
 10 

minute. According to the simulation results, reentry needs the combination of severe hyperkalaemia 

with moderate hypoxia and acidosis to occur, and those conditions are met in the third quarter 

(minutes 5 to 7.5) of phase 1A ischaemia. Severe hyperkalaemia ([K
+
]o>12 mmol/L) is needed to 

generate enough PRR to create an arc of block, while strong acidosis (weak INa and ICa(L)) and/or 

hypoxia (strong IK(ATP)) would in turn block retrograde propagation in the CIZ creating a BDB that 15 

prevents reentry.
86

 

Using the same AP and tissue and model, the same group conducted simulations to assess 

the proarrhythmic or antiarrhythmic effects of two well-known drugs. According to their simulation 

results, pinacidil
87

 was shown to be proarrhythmic (incrementing the VW) at low concentrations but 

protective at concentrations higher than 10 mol/L,
88

 while lidocaine
89

 facilitates the onset of reentry in 20 

ischaemic ventricular tissue.
90

 

In a similar study using a 2D slice of virtual acutely ischaemic ventricular tissue, Tice et al. 

highlighted the importance of transmural heterogeneity in the development of phase 1A arrhythmias.
4
 

Experimental studies usually focus on epicardial manifestations of arrhythmias due to logical 

limitations related to the penetration depth of optical mapping techniques. In their simulation study, 25 

three BZs (lateral, endocardial and epicardial) of different widths were defined, and transmural 

heterogeneities in the ischaemic severity were included (with [K
+
]o rising at a faster rate in the 

subendocardium and hypoxia affecting more severely in the subepicardium). Their results suggest that 

transmural gradients of IK(ATP) activation strongly increase arrhythmogenesis, with almost no sustained 

reentrant activity observed in the absence of IK(ATP) heterogeneity. Reentrant likelihood also peaked in 30 
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the 8
th
 minute post occlusion. The importance of transmural ischaemic heterogeneity was also 

stressed in the work by Weiss et al. which used a 3D model of the human ventricles.
91

 

Dispersion of refractoriness and arrhythmia vulnerability 

According to different experimental
64,68,92

 and theoretical
93,94

 studies, spatial dispersion of 

repolarization and/or refractoriness increases reentry vulnerability. Romero et al. used a 2D ventricular 5 

model developed by Ferrero et al.
 72,86

 to test this hypothesis in the case of phase 1A ischaemia.
95

 

According to their results, summarized in Figure 4, ERP dispersion and arrhythmia vulnerability only 

correlate well in the first 8 minutes of ischaemia but diverge in the last part of phase 1A, when 

arrhythmias cease to occur but ERP dispersion keeps increasing. According to their results, UDB took 

place in cells completely recovered from refractoriness in almost 50% of reentries. The authors argue 10 

that local source-sink relationship determines the formation of UDB, and propose a modified version of 

the safety factor (which quantifies the sink-source mismatch in the propagation process)
96,97

 as a 

better tool to analyse the causes of UDB in ischaemia. 

The role of mechanoelectrical feedback 

In all the simulations mentioned above, the trigger for reentry was artificially applied in the 15 

form of a premature stimulus externally delivered at a certain site (normally the subendocardial 

BZ)
8,73,76

, so no inference can be made about the originating mechanism of reentry. Recent multiscale 

simulations by Jie et al. suggest that mechanoelectrical feedback may play a pivotal role.
98

 The 

simulations involved 3D anatomically and structurally accurate virtual rabbit ventricles in which 

occlusion of the LAD artery was simulated. The ionic model employed included a mathematical 20 

description of two distinct mechanosensitive channels,
99

 and it also included a novel bidomain electro-

mechanical model. According to their results, mechanosensitive ionic channels
100

 are recruited due to 

the non-uniformity of mechanical strain during acutely ischaemic contractions, resulting in 

suprathreshold depolarizations in the BZ which act as the trigger of the premature beat that, in turn, 

elicits reentry. Additionally, delayed after-depolarizations (DAD) also resulting from mechanoelectrical 25 

feedback in the ischaemic region can contribute to lower excitability, enhancing refractoriness in the 

CIZ and favouring reentry. 

Arrhythmias in phase 1B ischaemia 

Less attention has been paid to the mechanisms of arrhythmias in phase 1B ischaemia. In 

2003, Pollard et al. conducted simulations in a 1D strand comprising 1 cm of normal tissue coupled to 30 



10 
 

1 cm of cells affected by phase 1B ischaemia.
101

 The results indicated that suprathreshold DADs 

develop in the ischaemic zone and only propagate to normal tissue in the form of APs when 

intermediate uncoupling between the two zones is present. The fact that moderate uncoupling is an 

important contributor to phase 1B arrhythmogenesis was further stressed by the work of Jie et al.
80

 in 

which they coupled an inexcitable midmyocardial zone to a surviving subepicardial layer via a thin 5 

coupling layer. The results suggested that heterogeneous uncoupling between layers enhance ERP 

dispersion in the subepicardium, thus increasing reentry vulnerability. Complete uncoupling eliminated 

arrhythmias. In a more recent work, Jie and Trayanova improved the model by using 3D rabbit 

ventricle geometry and simulating a more complex substrate structure which comprised a CIZ with 

inexcitable midmyocardium and surviving subepicardial and subendocardial layers, as well as lateral 10 

BZs.
81

 According to their results, the degree of hyperkalaemia in the subepicardium was key, as it led 

to the induction of reentrant activity. Vulnerability to reentry was biphasic, with increased cellular 

uncoupling and reduction of the width of the lateral BZ increasing reentry inducibility. 

Simulating global ischaemia 

When ischaemia results from a coronary artery occlusion, it is regional by nature, but during 15 

ventricular fibrillation (VF) ischaemia becomes global as perfusion of the myocardium is interrupted. 

However, simulation works dealing with global ischaemia are not as abundant as those that model 

regional ischaemia. Among them, a recent paper
102

 simulates global ischaemia in a 2D virtual tissue to 

provide some insights into the effects of ischaemia on the organization of VF. With a different aim, 

Rodriguez et al. simulated global ischaemia in a 2D slice of myocardium
103

 and in 3D rabbit 20 

ventricles
104

 to study the effects of phase 1A global ischaemia on the upper limit of vulnerability to 

electric shocks in the context of electrical defibrillation.  

ELECTRICAL AND STRUCTURAL REMODELLING IN INFARCTED TISSUE 

Three to five days after the initial ischaemic event, electrical
13,14

 and structural
13

 remodelling of 

the epicardial BZ (EBZ) begins. These changes in the substrate can eventually generate arrhythmias 25 

in the subacute and chronic phases of MI
105

 and have received attention in the past 10 years from the 

computational simulation community.  

Electrical remodelling 

Within the EBZ, experimental studies have recorded shorter,
13

 similar
13,106

 or longer
107

 APD 

than in normal myocardium. However, the EBZ has a longer refractory period due to the existence of 30 
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PRR.
14,108

 Using experimental data from remodelled ionic currents, Cabo and Boyden formulated a 

computational model for EBZ cells.
109

 They modified the Luo-Rudy model to include alterations in the 

maximal conductance and kinetics of INa,
106

 ICa(L),
110

 IKr,
111

 IKs,
112

 and IK1.
112

 More recently, Decker and 

Rudy
113

 developed a new model of the remodelled EBZ by additionally altering the maximum 

conductance and kinetics of Ito2
114

 and Ito1.
106

 Applying these modifications to the basic Luo-Rudy 5 

model, the authors were able to reproduce the aforementioned features of APs of cells in the EBZ. 

Even more recently, McDowell et al. adapted a rabbit AP model in the same direction.
115

 

Structural remodelling 

In reference to structural remodelling, gap junctional changes and fibrotic remodelling have 

been observed in post-infarcted hearts
112,113

 with conduction disturbances observed in the healing 10 

infarct BZ being related to intercellular uncoupling.
117,118

 Marked alterations in the organization of 

intercellular connections occur in the EBZ, leading to non-uniform conduction, fractionated 

electrograms and reentry.
118

 Several theoretical investigations using computer simulations have 

addressed the role of altered cellular coupling on AP conduction.
119,120

 Cellular uncoupling not only 

decreases conduction velocity, but it may create a substrate that facilitates the propagation of ectopic 15 

activity.
121,122

 It is thus an important factor to consider when implementing realistic electrical models of 

the infarcted heart in the subacute and chronic phases. 

Experimental evidence exists according to which myofibroblasts proliferate following 

myocardial infarction, especially in the peri-infarct zone.
123,124

 Electrical coupling between 

myofibroblasts and myocytes is well established in cell culture
125

 and the presence of fibrotic areas in 20 

the ventricle leads to altered and discontinuous conduction and fractionated electrograms.
126,127

 

Several theoretical studies focusing on the electrotonic coupling between fibroblasts and myocytes 

use computational models of the passive and active electrical behaviour of fibroblasts.
128-130

 

Simulations reveal significant electrophysiological consequences of coupling fibroblasts to myocytes at 

the cellular level, such as partial diastolic depolarization of the myocyte and significant shortening of 25 

its APD.
128

 Also, the critical pacing cycle length at which alternans occur is changed by fibroblast-

myocyte coupling.
131

 In results obtained from 1D and 2D simulations, conduction disturbances arise in 

the presence of fibrosis
132,133

 and changes in electrical restitution properties occur, leading to spiral 

wave instability.
134,135

 Using 2D simulations, Xie et al. observed an increased vulnerability to reentry in 
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the presence of fibrosis.
131

 Fractionated electrograms were also obtained in 2D simulated ventricular 

tissues with different fibrosis densities.
136

 

SIMULATION OF MYOCARDIAL INFARCTION AT THE ORGAN LEVEL 

Three-dimensional ventricular simulations including fibrosis are very recent. McDowell et al. 

simulated the electrical activity of anatomically realistic rabbit ventricles in the presence of an 5 

infarction scar, a remodelled peri-infarct zone and different levels of fibrosis.
115

 The authors observed 

an increase in the vulnerability to reentry in the presence of intermediate fibrosis, while high densities 

of fibroblasts reduced the probability of reentry. To run the simulations, they developed a 3D 

computational model of the chronically infarcted rabbit ventricles based on MRI. Recent advances in 

MRI technologies have facilitated the imaging of geometry and tissue architecture at improved 10 

resolution, so image-based methods have been recently developed to construct computational 

models,
137

 and many of them focus on the arrhythmogenic behaviour of the infarcted heart.  

Rantner et al. analysed the mechanisms of decreased defibrillation efficacy in infarcted hearts 

using an improved model of the rabbit infarcted ventricle.
138

 Vigmond et al. analysed reentrant 

mechanisms in a canine infarction 3D model also using image-based modelling techniques.
139

 Their 15 

model included a scar and the BZ with electrical remodelling. Swine models of myocardial infarction 

have also been reconstructed based on MRI.
140-142

 Pop et al.
140

 showed that computer simulation 

based on ex-vivo DT-MRI could predict the VT circuit obtained in swine electrophysiological studies. 

Their 3D model included healthy tissue, scar and BZ using a two-variable model of the AP. Similarly, 

Ng et al.
142

 included electrically remodelled grey zones and infarct cores in swine hearts. VT was 20 

induced in different virtual models and showed that a combination of infarct scars and peri-infarct 

zones is needed for VT generation. Similar reentrant circuits were obtained in the electrophysiological 

studies and in the virtual ones, demonstrating that image-based modelling may be helpful when 

planning catheter ablation strategies. Indeed, very recently, Ashikaga et al. tested the feasibility of 

image-based simulation to estimate ablation targets in human VT, highlighting the effectiveness of this 25 

non-invasive tool.
143

 As shown in Figure 5, their model includes infarct zones, grey zones with 

electrical remodelling, and healthy zones. When ablation in the human patient was done within the 

zone predicted by the model, successful termination of reentry was accomplished. This model is state-

of-the-art in image-based simulation oriented to ablation strategy optimization. 

 30 
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SUMMARY 

This article provided a brief review of some of the multiscale computational models of 

myocardial ischaemia and MI developed in the past years. The models discussed here are examples 

of how computer simulations may help to understand the electrical consequences of ischaemia and MI 

and to improve treatments of subsequent cardiac arrhythmias. At the cellular level, simulations have 5 

contributed to elucidate the ionic mechanisms responsible for the ischaemia-induced changes in APs 

and ionic concentrations and have aided in better understanding how the ischaemic border zone is 

established. Regarding ischaemic arrhythmogenesis, the models have helped to clarify the role of 

acidosis, hypoxia and hyperkalaemia in the onset and maintenance of ischaemic reentry and to 

theoretically explain the biphasic nature of arrhythmia vulnerability in phase 1A ischaemia. Simulations 10 

have also shed new light on the role of dispersion of refractoriness, source-sink mismatch and 

mechanoelectrical feedback in arrhythmogenesis. 

Today, computational simulations are also helping to improve therapeutic techniques to stop 

and/or prevent arrhythmias in ischaemic patients. Modelling the interaction between different drugs 

(such as lidocaine or pinacidil) and their molecular targets has enabled us to explain (and, ideally, 15 

predict) the proarrhythmic or antiarrhythmic effects of these drugs in an ischaemic scenario. Also, 

recent works are beginning to show how computer simulations can be useful to improve electrical 

arrhythmia treatment. 

In the task of integrating computer simulation techniques in daily clinical practice in the context 

of ischaemia and MI, important limitations are yet to be addressed. At the cellular level, ionic models 20 

need to be improved using new patch-clamp data from human ischaemic hearts. At the tissue level, it 

is still impossible to visualize the actual fibre orientation of the in-vivo infarcted heart of a patient. 

When these and other limitations are overcome, the use of computational simulations to optimize 

myocardial ablation procedures in infarcted patients,
143

 for instance, will become a real possibility. 

 25 
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Figure legends 

 

Figure 1 Simulation of phase 1A ischaemia at the cellular level. (A) Hypoxic action potentials for 

different activation degrees of ATP-sensitive K
+
 channels. Numbers indicate percentage of open 

channels. Reproduced from Reference 44 with permission. (B) Time-course of extracellular K
+
 

concentration during acute ischaemia. Each trace corresponds to a different ionic event: progressive 

activation of ATP-sensitive K
+
 channels (IK(ATP), trace I), inhibition of the Na

+
/K

+
 pump (INaK, trace II), 

activation of an ischaemic slow-activated inward Na
+
 current (INaS, trace III), algebraic sum of the three 

traces (trace IV), combinations of two mechanisms (traces V to VII) and combination of the three 

mechanisms (trace VIII). (C) Action potentials from isolated ventricular myocytes at different minutes 

post occlusion. Panels (B) and (C) modified from Reference 56 with permission. 

 

Figure 2 Simulation of regional phase 1A ischaemia in a two-dimensional tissue. (A) Longitudinal 

conduction velocity in the normal zone (NZ), border zone (BZ) and central zone (CZ) along the vertical 

strand depicted in panel E. (B) Effective refractory period (ERP) and action potential duration (APD). 

(C) Peak Na
+
 and L-type Ca

2+
 currents (INa, ICa(L)). (D) Time-courses of transmembrane potential (Vm), 

INa and ICa(L) in the centre cell. (E) Schematic of the tissue. Reproduced from “Electrical activity and 

reentry during acute regional myocardial ischaemia: insights from simulations”, Ferrero JM, Trenor B, 

Rodriguez B & Saiz J, International Journal of Bifurcation and Chaos, Vol.13(12),  2003 World 

Scientific Publishing Company (Reference 72) with permission. 

 

Figure 3 Simulation of phase 1A ischaemia at the organ level. Panels show voltage snapshots 

(colour-coded membrane voltage) corresponding to the anterior epicardial wall at twelve different 

instants after the delivery of a premature stimulus. The approximate location of the normal zone (NZ), 

border zone (BZ) and central ischaemic zone (CIZ) is shown in the first panel. The black line in the 

third panel shows an arc of block. 

 

Figure 4 Time-course of the vulnerable window duration (VW, panel A) and dispersion of effective 

refractory period (ERP, panel B) during the first 10 minutes of ischaemia. Reproduced from 

Reference 95 with permission. 
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Figure 5 Comparison between image-based simulation of chronic myocardial infarction and standard 

(non-simulation) approach. (A) Activation map of a simulation of ventricular tachycardia (VT). Arrows 

indicate wave propagation of reentrant circuits, and lines indicate arcs of block. (B) 12-lead ECG of 

inducible VTs from the standard approach. (C) Three-dimensional CARTO map with colour-coded 

voltages (purple: normal myocardium; blue, green and yellow: infarct border zones; red: scar) from the 

standard approach. Circles represent ablation sites. (D) Pre-ablation magnetic resonance imaging 

showing infarct geometry (orange: scar; yellow: heterogeneous zone; grey: non-infarcted 

myocardium). The lines of conduction block from the image-based simulation and the ablation sites 

from the standard approach are co-registered on the heart geometry. (E) Potential target region for 

ablation (green area) estimated from the image-based simulation. The shortest possible line of 

ablation that spans the target region is indicated in cyan. The ablation sites that fell within the 

estimated ablation target (green area) are indicated by yellow circles. Modified from Reference 143 

with permission. 
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