
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://doi.org/10.1016/j.tifs.2016.10.014

http://hdl.handle.net/10251/80088

Elsevier

Peris Tortajada, M.; Escuder Gilabert, L. (2016). Electronic noses and tongues to assess
food authenticity and adulteration. Trends in Food Science and Technology. 58:40-54.
doi:10.106/j.tifs.2016.10.014.



Electronic noses and tongues to assess food authenticity and 1 

adulteration 2 

 3 

Miguel Peris a*, Laura Escuder-Gilabert b 4 
a Department of Chemistry, Universitat Politècnica de València, 46071 Valencia, 5 

Spain 6 
b Departamento de Química Analítica, Universitat de Valencia, C/ Vicente Andrés 7 

Estellés s/n, 46100 Burjasot, Valencia, Spain 8 

 9 

 10 

ABSTRACT 11 

 12 

Background 13 

There is a growing concern for the problem of food authenticity assessment (and 14 

hence the detection of food adulteration), since it cheats the consumer and can pose 15 

serious risk to health in some instances. Unfortunately, food safety/integrity incidents 16 

occur with worrying regularity, and therefore there is clearly a need for the 17 

development of new analytical techniques. 18 

Scope and Approach 19 

In this review, after briefly commenting the principles behind the design of electronic 20 

noses and electronic tongues, the most relevant contributions of these sensor 21 

systems in food adulteration control and authenticity assessment over the past ten 22 

years are discussed. It is also remarked that future developments in the utilization of 23 

advanced sensors arrays will lead to superior electronic senses with more 24 

capabilities, thus making the authenticity and falsification assessment of food 25 

products a faster and more reliable process. 26 

Key Findings and Conclusions 27 

The use of both types of e-devices in this field has been steadily increasing along the 28 

present century, mainly due to the fact that their efficiency has been significantly 29 

improved as important developments are taking place in the area of data handling 30 

and multivariate data analysis methods. 31 
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1. Introduction 41 

 42 

 The rigorous, objective assessment of food authenticity has become of 43 

paramount importance, mainly due to the problem of adulteration (a legal term 44 

meaning that a food product fails to meet legal standards, i.e. noncompliance with 45 

health or safety regulations). Unfortunately, major food adulteration events seem to 46 

occur with worrying regularity, and there is no doubt that the concern for this fact will 47 

increase concurrent with population pressures. Therefore, there is a growing need for 48 

nonstop vigilance, which means research and development of rapid analytical and 49 

detection techniques in the field of food authenticity assessment. In this sense, two 50 

approaches are emerging as promising tools in the attempt to efficiently address this 51 

issue (Borrás et al., 2015), namely: electronic noses (e-noses) and electronic 52 

tongues (e-tongues). Both are sensor systems, but they do not look at the same 53 

features when applied to a given liquid sample; the former are in contact with its 54 

headspace, whereas the latter are immersed in the sample (Cosio et al., 2015). 55 

Electronic noses are devices which mimic the sense of smell. These 56 

instruments generally consist of an array of sensors utilized to detect and distinguish 57 

odors in complex samples and at low cost. These characteristics make them very 58 

useful for different applications in many areas, including food industry. In this context, 59 

a lot of papers have appeared in the present century in the literature describing the 60 

use of e-noses in food analysis processes. 61 

On the other hand, e-tongues are analytical devices (groups of sensors) 62 

mainly employed to identify and classify the tastes of several chemical substances in 63 

beverages or liquid phase food samples, their mode of operation “imitating” the 64 

human sense of taste. E-tongues can be utilized to characterize multicomponent 65 

mixtures for both qualitative and quantitative purposes, hence the increasing 66 

attention they are receiving in the field of food analysis, as shown in recent surveys in 67 

the literature. 68 

In the last years, many reviews on e-noses and/or e-tongues fundamentals 69 

and applications in several research areas have been published in the literature, 70 

mainly in the field of food analysis (e.g., Boeker, 2014; Ciosek and Wróblewski, 2011; 71 

del Valle., 2012, Escuder-Gilabert and Peris, 2010; Kiani et al., 2016; Loutfi et al., 72 

2015; Peris and Escuder-Gilabert, 2009; Rodríguez-Méndez, 2016; Śliwińska et al., 73 

2014; Tahara and Toko, 2013; Vlasov et al., 2005). This paper will then focus on the 74 

employment of both e-noses and e-tongues in food authenticity assessment (and 75 



hence the detection of food adulteration). After briefly commenting the fundamentals 76 

of this type of devices, the most relevant contributions in this field over the past ten 77 

years will be dealt with. In this sense, and as a general overview, in a recent chapter 78 

of a book (Karoui, 2012) devoted to food authenticity and fraud, Karoui discusses the 79 

relative potential and ease of application of different technologies for the confirmation 80 

of food quality and adulteration. Special emphasis is put on e-nose technology 81 

(combined with chemometric tools) as a promising technique in this field. Some 82 

examples clearly show that there has always been a risk of fraud, since food became 83 

a trade object. The chapter also describes the different kinds of food adulteration and 84 

related fraudulent practices, with details of detection methods, including the use of e-85 

noses. In a similar way, Cappozzo (2013) has presented recent analytical 86 

innovations for quality assurance in the detection of food adulteration through the 87 

utilization of e-noses. Panchariya et al. (2013) have reported an overview of the 88 

applications of e-noses and e-tongues for classification and authentication of 89 

beverages. As far as e-tongues are concerned, Sliwinska et al. (2014) have also 90 

dealt with their potential in the authenticity and falsification assessment of foodstuffs. 91 

 92 

2. General concepts 93 

 94 

Major components of both electronic devices are widely described in the 95 

literature and their details are therefore omitted in this paper. Nevertheless, in this 96 

section the general concepts of the electrochemical methods applied in these e-97 

systems are briefly mentioned in order to help potential readers to better understand 98 

the principles behind these techniques. 99 

 100 

2.1. Fundamentals of e-noses 101 

 102 

 E-noses are designed to detect and distinguish among complex odors (from 103 

food samples) making use of a sensor array, which is composed of broadly tuned 104 

(non-specific) sensors that are treated with different odor-sensitive (bio)chemical 105 

substances. An odor stimulus now yields a characteristic fingerprint (or smellprint) 106 

from the group of sensors. These patterns from known odors are then utilized to 107 

generate a database that is subjected to multivariate analysis, so that unknown odors 108 

can therefore be identified and classified. Nevertheless, it should be remarked that, in 109 

recent years, the usual sensor types used for e-nose instruments have been 110 



considerably improved by new technologies developed in this field, and either a set 111 

of gas sensors or mass spectrometry (or their combination) are commonly utilized for 112 

this purpose. Anyway, and in a broader sense, electronic noses basically consist of 113 

three elements (Fig. 1a), namely: (i) a sample handling system, (ii) a detection 114 

system, and (iii) a data processing system.  115 

The basis of electrochemical gas sensor operation involves interactions 116 

between gaseous molecules and sensor-coating materials which modulate electrical 117 

current passing through the sensor, detectable by a transducer that converts the 118 

modulation into a recordable electronic signal (Rodríguez-Méndez, 2016), which is 119 

then amplified and conditioned. Thereafter, a digital converter transforms the signal 120 

from electrical (analog) to digital, and finally a computer microprocessor reads the 121 

digital signal and displays the output after which the statistical analysis for sample 122 

classification or recognition is performed. 123 

There are many different types of electrochemical sensors (e.g. metal-oxide 124 

gas sensors, metal-oxide semiconductor field effect transistors, acoustic wave gas 125 

sensors, electrochemical gas sensors, quartz crystal microbalance sensors, 126 

conducting polymer gas sensors, surface acoustic wave devices, field-effect gas 127 

sensors, fiber-optic gas sensors, and others) and many different types of sensor-128 

coating materials which are classified according to additive doping materials, the type 129 

and nature of the chemical interactions, the reversibility of the chemical reactions and 130 

running temperature. A summary of the types and mechanisms involved with some 131 

common gas sensor technologies is contained in the work of Wilson and Baietto 132 

(2009). 133 

Transducer recording devices of various types in electronic-nose sensors are 134 

ranked according to the nature of the physical signal they measure. The most 135 

common methods make use of transduction principles based on electrical 136 

measurements, including changes in current, voltage, resistance or impedance, 137 

electrical fields and oscillation frequency. Others involve measurements of mass 138 

changes, temperature changes or heat generation. Last but not least, optical sensors 139 

measure the modulation of light properties or characteristics such as changes in light 140 

absorbance, polarization, fluorescence, optical layer thickness, color or wavelength 141 

(colorimetric) and other optical properties. 142 



 143 

2.2. Fundamentals of e-tongues 144 

 145 

E-tongues can be considered the wet counterparts of e-noses. The output of a 146 

non-specific array of sensors shows different patterns for the different taste-causing 147 

chemical substances and the resulting data are statistically treated. A wide variety of 148 

chemical sensors are currently used in the design of e-tongues, the selection of the 149 

sensor group being carried out taking into account the chemical nature of the food 150 

samples analyzed. Regardless of the type of sensors utilized, an e-tongue is 151 

essentially composed of three elements (Fig. 1b): (i) automatic sampler (although not 152 

a necessary component), (ii) a set of chemical sensors with different selectivity, and 153 

(iii) software with the suitable algorithm to process the signal and get the 154 

corresponding results. 155 

The electronic tongue system relies on sensors with only moderate selectivity 156 

and having the so-called cross-sensitivity. In this way, each sensor in the array, in 157 

principle, delivers information on the concentrations of a number of analytes, the next 158 

step being to decode the signals obtained from the sensor array. The sensors in the 159 

array can be of different nature, although Ion Selective Electrodes (ISEs) 160 

predominate among the various types of sensors utilized, electrodes with 161 

chalcogenide glass membranes (Mikhelson, 2013) being particularly suitable for 162 

these devices. An ISE generates a difference in electrical potential between itself and 163 

a reference electrode, and this output potential is proportional to the activity of the 164 

selected analyte in the sample solution according to the well-known Nernst equation 165 

(Skoog et al., 2013), although a calibration of the working electrode should be 166 

previously carried out using a series of standard solutions with known composition.  167 

The number of sensors in the array can vary, but most typical number is about 10–168 

20. Unlike in the classical measurements with ISEs, the electronic tongue system can 169 

work without a reference electrode. In such a setup, the potential difference is 170 

measured for all pairs of the electrodes in the array. This is advantageous since 171 

reference electrodes often cause problems with the measurements. 172 

The signals obtained from the sensor array are processed using different 173 

chemometrical methods, whereas the interpretation and representation of the data is 174 

often based on the principal component analysis method. This allows for the 175 

characterization of the samples not only in terms of the concentrations (activities) of 176 



the particular analytes, but also for the recognition of the nature of the sample, since 177 

different types of samples fall into different places in the principal components plot.  178 

 179 

3. E-noses in food authenticity/adulteration assessment 180 

 181 

 Major applications of e-noses in food authenticity assessment (and/or 182 

detection of potential food adulteration) found in the literature are summarized in 183 

Table 1 and described in this section.  184 

 To begin with, of great importance is the report on the effectiveness of 3 fast 185 

procedures for the analysis of volatile substances using principal component analysis 186 

(PCA) treatment of data in order to discriminate between virgin olive oil (VOO) 187 

samples adulterated with hazelnut oil (Mildner-Szkudlarz and Jeleń, 2008). Evaluated 188 

methods involved comparison of chromatograms of volatile compounds obtained 189 

utilizing solid-phase microextraction fast gas chromatography-flame ionization 190 

detector (SPME-fast GC-FID), analysis of volatiles by means of (a) a metal oxide 191 

semiconductor (MOS) based electronic nose (HS-EnoseTM), and (b) SPME-GC/MS, 192 

and determination using SPME-MS. The three tested methods permitted the 193 

detection of VOO adulteration with several amounts of hazelnut oil in the range 194 

between 5 and 50 % (v/v). 195 

 Two different e-noses have been employed to detect adulteration of extra 196 

virgin olive oil (EVOO) samples with sunflower and rapeseed oils (Mildner-Szkudlarz 197 

and Jeleń, 2010). As in the previously commented work, the proposed methods 198 

included determination of volatiles with HS-EnoseTM and solid-phase microextraction 199 

coupled to mass spectrometry, as well as SPME-GC/MS. EVOO samples were 200 

adulterated with different contents (between 5 and 50 % v/v) of several seed oils, 201 

patterns of volatile profiles of all samples being then obtained. Two goals were to be 202 

achieved: to get as much chemical information as possible and to find a volatile 203 

marker to detect EVOO adulterations; bearing them in mind, PCA and partial least 204 

square (PLS) analyses were applied to the corresponding data. This was enough to 205 

distinguish the adulterated samples from pure EVOO. Highly satisfactory results were 206 

achieved in the prediction of the adulteration degree using PLS analysis. They are 207 

even better than those provided by SPME-GC/MS analysis, and with the additional 208 

advantage of saving time. Therefore, and as a concluding remark, the two e-noses 209 

are straightforward with reliability and rapidity, and enable detection of extra virgin 210 

olive oil adulteration.  211 



 The evaluation of possible adulterations of sesame oil has also been the 212 

subject of study by means of an e-nose (Hai and Wang, 2006a). An array of 10 MOS 213 

sensors was utilized to obtain a smellprint of the volatile compounds occurring in the 214 

samples. Prior to several supervised chemometric analyses (linear discriminant 215 

analysis (LDA), probabilistic neural network (PNN), back-propagation artificial neural 216 

network (BP-ANN), and general regression neural network (GRNN)) of the data 217 

provided by the electronic nose, the following feature extraction techniques were 218 

employed to select a group of optimal discriminant variables: PCA, Fisher linear 219 

transformation (FLT), stepwise linear discriminant analysis (SLDA), and selection by 220 

Fisher weights (SFW). As for LDA and PNN, FLT turned out to be the best extraction 221 

method, whereas SLDA was more suitable for BP-ANN and FLT was more effective 222 

for GRNN. Outstanding results were achieved in the prediction of adulteration level in 223 

sesame oil by GRNN and BP-ANN, the latter being more precise in quantitative 224 

terms after an iterative training.  225 

 Another application field of the e-nose was the detection of maize oil 226 

adulteration in camellia seed oil and sesame oil (Hai and Wang, 2006b). Multivariate 227 

analysis of variance (MANOVA) was carried out and the results obtained showed that 228 

there are significant differences among the sensor signals of various types of oil. 229 

PCA could be applied to discriminate the adulteration of sesame oil, unlike in the 230 

discrimination of adulteration in camellia seed oil. Instead, LDA could be utilized to 231 

distinguish the adulteration of both types of oil. Canonical discriminant analysis 232 

(CDA) was also performed to test the discrimination ability of LDA, acceptable results 233 

being obtained (83.6 % accuracy prediction for camellia seed oil and 94.5 % for 234 

sesame oil). The artificial neural network (ANN) model was then utilized to determine 235 

the adulteration level in both types of oil, results being satisfactory for sesame oil but 236 

not for camellia seed oil.  237 

 Continuing with the field of edible oils, the zNose™ electronic nose was used 238 

to evaluate the adulteration levels of virgin coconut oil (Marina et al., 2009). This 239 

device was utilized to obtain a fingerprint of volatile compounds occurring in the oil 240 

samples. Virgin coconut oil was adulterated with different contents (ranging from 1 to 241 

20 % w/w) of refined, bleached and deodorized palm kernel olein, the corresponding 242 

peaks being identified in the chromatogram and fitted to a curve using linear 243 

regression. The relationship between the peak initially identified as methyl 244 

dodecanoate and the percentage of palm kernel olein added gave rise to the best 245 

result (r = 0.95). On the other hand, correlation coefficient values of r = 0.92 and r = 246 



0.89 were achieved between adulterant peak methyl dodecanoate and of the iodine 247 

and peroxide values, respectively. PCA was employed to discriminate between 248 

adulterated and pure samples; the results obtained were satisfactory, with 74 % of 249 

the variation accounted for by the first principal component and 17 % by the second 250 

principal component.  251 

 The literature clearly shows that microbial contamination can easily affect 252 

processed tomato; that is why there is a need for the determination of organoleptic 253 

adulterations in order to prevent potential health risks for consumers. Therefore, a 254 

fast and reliable detection of spoilage, for instance by using e-noses, is required to 255 

ensure food safety. In this context, in the work of (Concina et al., 2009), canned 256 

peeled tomato samples were adulterated with several types of microbial flora and 257 

later analyzed using a MOS-based electronic nose. Previous analyses carried out by 258 

dynamic-headspace GC/MS demonstrated the existence of significant differences in 259 

the semi-quantitative volatile compounds profile of adulterated tomatoes just after 260 

few hours from spoilage, which opens the windows to the possibility of utilizing the e-261 

nose for an early detection of microbial presence (always depending on the kind of 262 

contaminant) as well as for recognizing spoiled tomato samples. 263 

 The detection of adulteration levels in tomato juices by means of e-noses has 264 

also been dealt with in a recent paper (Hong et al., 2014a), in which spectral 265 

clustering (a recent clustering method) is described and compared with six 266 

conventional clustering methods. Three external validation criteria – mutual 267 

information criteria (MI), precision, and rand index (RI) – were employed to evaluate 268 

clustering performances on three independent e-nose datasets (obtained from 269 

tomato juice analyses). The spectral clustering outperformed with statistical 270 

significance (alpha = 0.05) the performance of other methods, and the single linkage 271 

exhibited the worst (really unacceptable) clustering result. Furthermore, the proposed 272 

procedure (cluster validation criteria combined with majority voting) somewhat makes 273 

clustering a semi-supervised classification technique. This method enables the 274 

comparison clustering-based semi-supervised methods with classification methods to 275 

find which procedure is better for discrimination of a given e-nose dataset.  276 

 A common adulteration of honey takes place when sugar concentrate is added 277 

to this product; unfortunately, laboratory tests have proved so far to be ineffective in 278 

the detection of this fraud. A Chinese research team (Pei et al., 2015) has developed 279 

a method for rapid detection of Acacia honey adulteration using a FOX 4000TM e-280 

nose. Samples were spiked with different amounts of rape honey and rice syrup, and 281 



the information (from the e-nose) on both natural and adulterated honey was 282 

analyzed by PCA. LDA was employed to study the ability of qualitative recognition of 283 

the e-nose for adulterated honey. The results showed that there was a linear 284 

relationship between e-nose signals and the adulteration level. On the other hand, 285 

the minimum amount of rape honey and rice syrup added leading to honey aroma 286 

system changes was 2 % and 1 %, respectively. Therefore, honey aroma system can 287 

easily be changed by adulterant compounds. This also demonstrated that the e-nose 288 

had a strong discriminable ability for honey adulteration. The results concluded that 289 

pure honey and adulterated honey can be distinguished by LDA pattern recognition 290 

algorithms, this fact resulting in a fast and accurate identification of honey 291 

adulteration. 292 

 An e-nose was also proposed for the detection and differentiation of lard from 293 

other kinds of animal fats as well as from foodstuffs containing lard (Nurjuliana et al., 294 

2011). The results obtained are displayed in the form of the so-called VaporPrint. In 295 

this two-dimensional olfactory image, the radial angles representing the sensor yield 296 

individual patterns (smellprints) of the odor of different animal body fats. PCA was 297 

utilized to interpret the results achieved and gave rise to a satisfactory grouping of 298 

samples (61 % of the variation corresponded to the first principal component, and 29 299 

% to the second principal component). All of the lard-containing samples formed a 300 

separate group from those having no lard. On the other hand, the ability to detect the 301 

presence of lard in food products helps Halal authentication (compliance with Islamic 302 

law). 303 

 The detection of potential adulteration in spices can be carried out by applying 304 

two different portable multi gas sensors (ion mobility spectrometer (IMS) and 305 

electronic nose) and multivariate data analysis (Banach et al., 2012). Headspace 306 

above spice mixtures for sausages and saveloy and product falsifications was 307 

analyzed making use of a MOS-based e-nose, discrimination being carried out by 308 

means of LDA of sensor resistivity data. Simultaneously, an IMS was coupled to the 309 

emission chamber to enable the detection of gaseous substances above the spice 310 

mixtures. PCA was then utilized to discuss the differences (between the two spice 311 

mixtures) provided by the obtained spectra. Both IMS and e-nose permitted to 312 

differentiate between the types of spice mixtures and subsequently to highlight 313 

product adulteration. Moreover, a headspace gas analysis (using gas 314 

chromatography) was carried out to identify major volatiles as well as to lay the 315 

chemical basis for the existing differences in the multi gas sensors. 316 



 The high cost of saffron inevitably (and unfortunately) leads to frequent 317 

attempts to adulterate it. That is why in a recent work (Heidarbeigi et al., 2014) the 318 

odor smellprints of saffron, saffron with yellow styles, safflower, and dyed corn stigma 319 

were recognized by an electronic nose. The characteristics of the obtained results 320 

were extracted and analyzed, PCA being used for this purpose. The corresponding 321 

data were then confirmed by BP-ANN, and showed that the e-nose is able to detect 322 

the saffron adulteration with excellent results. The authors conclude that this e-nose-323 

based system could yield a good differentiation of the saffron and the adulterated one 324 

(100 and 86.9 % classification accuracy respectively) at adulteration levels over 10 % 325 

using ANN. 326 

 The determination of wine traceability and authenticity is also a critical issue to 327 

try to avoid illegal adulteration practices, namely: (i) addition of ethanol, flavoring and 328 

coloring compounds, (ii) dilution of wines with water, and (iii) mixing with, or 329 

replacement by, cheaper wine. In this sense, the utilization of e-noses along with 330 

multivariate statistical methods (mainly PCA, cluster analysis (CA), and SLDA) has 331 

led to better means for wine traceability, as well as discrimination and classification of 332 

grapes and wines (mainly in terms of grape varieties and geographical origin). Some 333 

of the recent advances on wine typification and authentication have been recently 334 

reviewed by (Versari et al., 2014), who also remark that several challenges need to 335 

be solved in order to improve the assessment of wine authenticity and confirm 336 

potential adulteration. 337 

 The remarkable popularity of whisky frequently involves a certain risk of 338 

adulteration. Therefore, authenticity assessment is a critical issue, and is usually 339 

carried out by comparing the composition of this alcoholic beverage with other spirits. 340 

The paper of (Wiśniewska et al., 2014) summarizes all information related to both the 341 

identification of and quality evaluation of whisky, and finally the detection of possible 342 

adulterations. In this field, the e-nose turns out to be one of the most promising 343 

analytical techniques in combination with the application of chemometric tools such 344 

as PCA, DFA, LDA, analysis of variance (ANOVA), soft independent modelling of 345 

class analogy (SIMCA), PNN, k-nearest neighbors (k-NN) and CA. 346 

 Yu et al. (2007) performed a study with a view of monitoring the adulteration of 347 

milk with water or reconstituted milk powder utilizing the PEN 2TM electronic nose 348 

with ten different MOS sensors. For this purpose, a series of experiments were 349 

conducted over 7 days of storage using three types of samples: whole fluid milk, 350 

reconstituted milk powder, and whole fluid milk adulterated with several amounts of 351 



water. The data obtained were a consequence of applying two chemometric 352 

techniques: PCA and LDA. According to the authors, the corresponding results 353 

proved that the artificial sense used (the e-nose) was able to differentiate the purity of 354 

milk samples when skimmed milk is diluted with variable amounts of water, and both 355 

LDA and PCA show a regular distribution of the results for the aforementioned three 356 

samples analyzed. Finally, with these two chemometric methods, the electronic nose 357 

could also differentiate between milk samples that had been storaged for different 358 

numbers of days. 359 

 The detection of the adulteration of mutton was achieved using classical 360 

procedures (pH and color evaluation) as well as an electronic nose to develop a 361 

model capable of detecting and estimating the adulteration of minced mutton with 362 

pork (Tian et al., 2013). An MOS-based e-nose was utilized to collect volatile 363 

compounds occurring in the samples. Feature extraction methods, PCA, loading 364 

analysis, and SLDA were used to obtain the optimum data matrix. Among the 365 

discriminant analysis methods employed to evaluate the results achieved, SLDA 366 

turned out to be the most effective procedure. Then CDA was utilized as PR 367 

technique for the authentication of meat. BP-ANN, PLS, and multiple linear 368 

regression (MLR) were used to build a model for estimation of the amount of pork in 369 

minced mutton, the best results being obtained with the model constructed by BP-370 

ANN. 371 

 Li et al. (2014) developed a procedure for the fast identification of poultry meat 372 

species and detection of meat adulteration. For this purpose, they carefully examined 373 

the relationship between the heating temperature and the volatiles of duck, chicken, 374 

and goose meats. An electronic nose was then utilized for the detection of the 375 

different heating temperature of those poultry meats, with the help of LDA and DFA. 376 

The results obtained clearly show that this electronic device is able to distinguish 377 

between the different kinds of poultry meat, what leads the way in detecting the  378 

adulteration of meat products. 379 

 Two food adulteration cases (a pure variety of green coffee beans and pure 380 

cayenne with bell pepper powder) were studied by (Rodríguez et al., 2014) with the 381 

goal of reporting the improvements achieved in the discrimination of complex aroma 382 

samples with very small differences in odor pattern. For this purpose, they utilized a 383 

portable e-nose consisting of a sensor array which records changes in conductivity 384 

as a function of time when aroma molecules reach the sensors. The proposed 385 

method is then based on the application of unfolded cluster analysis to selected time 386 



windows within the temporal evolution of the aroma profile (recorded by the sensor 387 

array), providing an efficient, rapid, and reliable data analysis tool. The results 388 

obtained showed that this procedure enables to discriminate highly similar samples, 389 

thus decreasing the probability of a wrong grouping due to the use of doubtful data. 390 

The automation of this type of analysis is easy and enhances the efficiency of the e-391 

nose in a significant way, what implies reducing the time of sensor’s signal recording 392 

that is required for a reliable assessment of the studied system. The results were 393 

validated by clustering the sample component scores that are obtained by applying 394 

parallel factor analysis to the original three-dimensional data array. 395 

 It is quite clear to everyone that rice is the staple food for most Southeast 396 

Asian countries. In this sense, Jasmine rice is produced from varieties Khao Dowk 397 

Mali 105 and Kor Kho 15. Unfortunately, adulteration of Jasmine rice with other 398 

varieties such as Pathum Tani 1 and Chai Nat 1 is a common practice, as well as a 399 

major problem regarding Thailand rice export. To solve this problem, a Thai 400 

researcher (Masiri, 2006) has evaluated potential indices to adulteration of Jasmine 401 

rice with Pathum Tani 1 by using an e-nose consisting of two standard arrays of six 402 

MOS sensors. He found that PCA could classify adulteration of Jasmine rice 403 

efficiently, excellent results being obtained. 404 

 Tea (currently produced in nearly 50 countries around the world) is also an 405 

important target for fraudulent activities. Thus, methodologies to authenticate the 406 

geographical origin of tea and avoid incorrect labeling are becoming important tools 407 

to monitor illegal practices. On the other hand, the quality of the tea depends on the 408 

climate of the planting geographical areas as well as on the processing technique. In 409 

recent years there have been some attempts in the development of reliable methods 410 

for evaluating the quality of tea by chemical analysis (Cubero-Leon et al., 2014). 411 

 Kovács et al. (2010) used an electronic tongue, an electronic nose, and 412 

sensory panel assessment for geographical origin identification of Sri Lanka black 413 

teas. Five black tea samples from different regions and latitudes were studied. The 414 

electronic devices used were: the commercial α-AstreeTM e-tongue and the 415 

commercial e-nose NST3320TM consisting of an array of twelve metal MOS sensors 416 

and ten MOSFET (MOS field effect transistor). It should be remarked that -in order to 417 

get a representative sample of the average tea consumer- panelists for sensory 418 

analysis were not specifically trained to tea. The corresponding data were analyzed 419 

by means of SLDA, PCA, and one-way ANOVA (in the case of sensory analysis). 420 

PLS regression was utilized to estimate the sensory attributes by the e-devices. 421 



SLDA and PCA results obtained from e-nose data demonstrated that the device used 422 

did not perform very well in the discrimination of samples according to their 423 

geographical origin (success rates over 75 % and 37 % in training and cross-424 

validation steps, respectively). Nevertheless, the e-nose exhibited an excellent ability 425 

to classify samples according to their growing altitude (100 % success rates in both 426 

calibration and cross-validation steps). On the other hand, e-nose data provided poor 427 

to moderate prediction of sensory attributes by PLS modeling (0.59 ≤ r ≤ 0.89 and 428 

0.45 ≤ r ≤ 0.72, in training and cross-validation steps, respectively). Finally, sensory 429 

analysis proved that an average tea consumer (without specialized and intensive 430 

training) can hardly differentiate Sri Lanka teas from different geographical origins. 431 

As regards the results obtained from the e-tongue data, they are described in the 432 

next section. 433 

 434 

4. E-tongues in food authenticity/adulteration assessment 435 

  436 

E-tongues are also emerging as promising supplemental techniques to 437 

classical analytical methods for a fast and low cost detection of malpractices. As 438 

shown in Table 2, e-tongues have shown their capability in the detection of food 439 

adulteration as well as in the authenticity assessment of different types of foodstuffs, 440 

such as honeys (Dias et al., 2008; Escriche et al., 2012; Garcia-Breijo et al., 2013; 441 

Major et al., 2011; Sousa et al., 2014; Wei and Wang, 2011; Wei et al., 2009), milk 442 

and dairy products (Dias et al., 2009; Paixão and Bertotti, 2009), alcoholic beverages 443 

(Gutiérrez et al., 2010; Gutiérrez-Capitán et al., 2013; Moreno-Codinachs et al., 444 

2008; Novakowski et al., 2011; Parra et al., 2004; Parra et al., 2006; Pigani et al., 445 

2008; Rodríguez-Méndez et al., 2008a; Rudnitskaya et al., 2007; Rudnitskaya et al., 446 

2010), edible oils (Apetrei and Apetrei, 2013; Apetrei and Apetrei, 2014; Apetrei et 447 

al., 2005; Apetrei et al., 2007; Apetrei, 2012; Dias et al., 2014; Oliveri et al., 2009; 448 

Rodríguez-Méndez et al., 2008b), and teas (Chen et al., 2008; He et al., 2009; 449 

Kovács et al., 2010). 450 

 In the last years, several papers have been published dealing with honey 451 

authentication by applying multivariate chemometric techniques to e-tongues data. 452 

These studies clearly point out that e-tongues can be utilized as efficient and 453 

practical tools to classify honeys according to their botanical (Dias et al., 2008; 454 

Escriche et al., 2012; Garcia-Breijo et al., 2013; Major et al., 2011; Sousa et al., 455 



2014; Wei and Wang, 2011; Wei et al., 2009) and geographical origin (Wei et al., 456 

2009).  457 

 A potentiometric e-tongue comprising 20 all-solid-state electrodes with 458 

polymeric membranes was developed for the discrimination of 52 honey samples 459 

with different pollen profiles by Dias et al. (2008). LDA and PCA were used for 460 

multivariate analysis of e-tongue data. Results indicated that the electronic device 461 

exhibited a good ability (84 % and 72 % classification accuracies in calibration and 462 

cross-validation, respectively) for classification of honeys as a function of the primary 463 

pollen type. 464 

 Wei et al. (2009) employed a commercial potentiometric e-tongue (α-AstreeTM) 465 

to classify honeys from different floral and geographical origins. PCA on e-tongue 466 

data obtained from 192 samples (same geographical origin) yielded full differentiation 467 

of all the eight monofloral origins studied; additionally, the position of the samples on 468 

the PCA score plots was related to the degree of ‘‘sweetness”. ANN and CA gave 469 

rise to satisfactory results as well (94 % and 90 % classification rates, respectively). 470 

On the other hand, PCA did not lead to complete differentiation of the five 471 

geographical origins of Acacia honeys tested, but the position of the samples on the 472 

PCA score plot could also be related to conductance. In this last case, CA and ANN 473 

provided good results (92 % and 95 % classification rates, respectively). 474 

 In a further work, the same research group (Wei and Wang, 2011) developed 475 

a voltammetric e-tongue -based on multifrequency large amplitude pulse voltammetry 476 

(MLAPV)- composed of six metallic working electrodes. The purpose was to 477 

discriminate 42 certified monofloral honeys of seven different floral origins. It was 478 

found that all honey samples were correctly classified by DFA, PCA, and CA on 479 

voltammetric data. Furthermore, the efficient working sensors and frequencies were 480 

selected for the further study. It must be noticed that the use of combined data from 481 

different working electrodes and different frequencies gave rise to much better 482 

classification ability of samples than that observed using data from an individual 483 

working electrode with a single frequency. 484 

 The aforementioned commercial e-tongue α-AstreeTM has also been applied 485 

for botanical classification and prediction of physicochemical properties of 12 486 

samples from three botanical origins (Major et al., 2011). PCA analysis of e-tongue 487 

data showed a very good clustering of samples according to their botanical origin. On 488 

the other hand, a 100 % accuracy was obtained in the botanical classification of 489 

honey samples using ANN. Satisfactory (r = 0.979 - 0.999) ANN models for the 490 



prediction of studied physicochemical properties (electrical conductivity) and content 491 

of different chemical parameters (acidity, water content, invert sugar, and total sugar) 492 

from the sensors outputs were obtained, which clearly highlights the potential of the 493 

e-tongue for a fast honey analysis.  494 

 Escriche et al. (2012) used another potentiometric e-tongue, comprising seven 495 

metals and metallic compounds, for quality control and authenticity assessment of 496 

honey. They resorted to PCA and ANN based on a Fuzzy ARTMAP algorithm and 497 

leave-one-out cross-validation to show the usefulness of the proposed e-tongue for 498 

discriminating samples according to their four botanical origins (ANN classification 499 

success exceeding 93 %), although it was not able to clearly differentiate among the 500 

three thermal treatments used. On the other hand, acceptable to good (r = 0.74 - 501 

0.96) PLS correlations between the e-tongue data and seven physicochemical 502 

parameters were obtained. Nevertheless, poor (r = 0.49 - 0.73) PLS correlations 503 

between e-tongue data and volatiles concentrations were observed. In a further work 504 

(Garcia-Breijo et al., 2013), data were dealt with using ANN based on a simplified 505 

Fuzzy ARTMAP (SFA) and graphical user interface (GUI) for MATLAB® cross-506 

validation. For botanical origin classification, 100 % recognition rates were obtained 507 

in the supervised phase, as well as when utilizing data of four selected electrodes. 508 

For thermal treatment of samples, up to 83 % recognition rate was achieved. In the 509 

non-supervised phase, a recognition rate of 69 % was obtained for four new test 510 

samples. This rate was increased up to 75 % by reducing the number of electrodes 511 

to four. 512 

 Another successful application of e-tongues for ensuring monofloral honey 513 

authenticity is the study reported by Sousa et al. (2014). A specifically designed 514 

potentiometric e-tongue consisting of two replicated groups of 20 all-solid-state 515 

sensors with different cross-sensitivity membranes was used. 65 Portuguese 516 

monofloral honey samples (harvested in different years) were studied. LDA based on 517 

the e-tongue signal profiles from 13 sensors -selected with a simulated annealing 518 

(SA) variable selection algorithm- resulted in the fact that 91 % (for both original data 519 

and leave-one-out cross-validation) of the honey samples were correctly classified 520 

according to three main color groups. For each of these color groups, all honeys 521 

were correctly classified according to their floral origin using a variable selection of e-522 

tongue data combined with a LDA leave-one-out cross-validation strategy. However, 523 

LDA model using all samples data gave rise to a poor classification (in cross-524 

validation) of honey samples according to their floral origin. The authors pointed out 525 



that the use of selected variables increased the accuracy performance of the LDA 526 

models, hence the importance of using variable selection algorithms in this type of 527 

studies. More recently, authors from this research group have published a book 528 

chapter focused on the applications of electrochemical sensors to evaluate 529 

antioxidant capacity of bee hives products (Peres et al., 2016). 530 

 Dairy products (especially milk) are frequently also subject to adulterations. In 531 

the paper by Dias et al. (2009), a potentiometric e-tongue with two units of all-solid-532 

state polymeric membranes electrodes is proposed to detect raw goat milk 533 

adulterations with raw cow milk. LDA results showed that this e-tongue had an 534 

adequate ability (97% and 87 % classification rates in calibration and cross-535 

validation, respectively) to evaluate the potential adulterations. Nevertheless, the 536 

authors claim that the sensitivity of the sensor array towards milk composition 537 

changes has to be improved before this device can be used as a routine tool. 538 

 Detection of milk adulteration has also been addressed by Paixão and Bertotti 539 

(2009). The authors developed disposable integrated voltammetric e-tongues 540 

composed of bare and Prussian Blue modified electrodes. PCA inspection of Au and 541 

Prussian Blue-modified gold electrodes data allowed to discriminate milk samples 542 

adulterated with H2O2 as well as to differentiate several pasteurization processes of 543 

samples. Disposable electrodes are of particular interest in milk analysis since 544 

adsorption onto the sensor surface of substances present in high concentrations in 545 

the sample matrix can alter the voltammetric signal. 546 

 Fraudulent practices are increasingly performed in several alcoholic 547 

beverages, most notably in wines. Both the quality control of wines and grape juices 548 

and the quantitation of different compounds have a paramount significance in wine 549 

production. The stages in the wine-making process have to be carefully monitored to 550 

control potential adulterations as well as to determine the concentration of some key 551 

components for the final quality of the product. In this context, e-tongues have proven 552 

their usefulness to authenticate geographical origin (Parra et al., 2004; Pigani et al., 553 

2008), grape variety (Gutiérrez et al., 2010; Gutiérrez-Capitán et al., 2013; Moreno-554 

Codinachs et al., 2008; Pigani et al., 2008; Rodríguez-Méndez et al., 2008a), vintage 555 

(Moreno-Codinachs et al., 2008) and age (Parra et al., 2004; Rudnitskaya et al., 556 

2007; Rudnitskaya et al., 2010) of wines or grape juices, and to detect adulterated 557 

wines and whiskeys (Novakowski et al., 2011; Parra et al., 2006). 558 

 In this framework, Parra et al. (2004) developed a voltammetric sensor array 559 

composed of rare-earth bisphthalocyanine carbon paste electrodes (CPEs) for the 560 



discrimination of six Spanish red wines from the same variety of grape but from three 561 

different origin designations and ageing stages. PCA applied to e-tongue data 562 

showed a good discrimination of the tested samples. The discrimination ability of the 563 

e-tongue was similar to that obtained using eight chemical variables coming from 564 

chemical analysis. In a further work (Rodríguez-Mendez et al., 2008a), some authors 565 

from the same research group built an e-tongue consisting of CPEs modified with 566 

rare-earth bisphthalocyanines and perylenes. PCA study of data obtained for six 567 

white wines demonstrated the e-tongue ability to discriminate among the grape 568 

varieties utilized for sample preparation. 569 

 The effectiveness of three different poly(3,4-ethylenedioxythiophene) (PEDOT) 570 

conducting polymer modified electrodes to analyze similar matrices (six white wines 571 

of different grape varieties and geographical areas) was tested by Pigani et al. 572 

(2008). Voltammetric responses of each sensor separately and the combined 573 

responses of two or three sensors were used in the chemometric analysis. Partial 574 

least square-discriminant analysis (PLS-DA) on voltammetric data proved that all the 575 

electrodes could successfully classify (nearly 100 % correct classifications) samples 576 

according to their variety.  577 

 An integrated potentiometric multisensor composed of six ion-selective field 578 

effect transistors (ISFETs) and a flow injection analysis (FIA) system has been 579 

applied to grape juice and wine analysis (Moreno-Codinachs et al., 2008). PCA and 580 

SIMCA results demonstrated the ability of the e-tongue under batch conditions for 581 

differentiating four grape varieties in grape juices. Furthermore, PCA and SIMCA on 582 

FIA/e-tongue data allowed for the discrimination of wine samples (two different 583 

groups of wines) according to the grape variety and the vintage year. Finally, PLS 584 

regression of grape juice and wine samples data showed that those devices were 585 

able to quantify diverse physicochemical parameters and concentrations of different 586 

sample components (prediction errors under 10 %) with good correlations with 587 

traditional analytical methods (r > 0.99). The miniaturization of the flow cell is 588 

possible due to the use of an integrated multisensor built with the help of 589 

microelectronic technology. 590 

 In the paper by Gutiérrez et al. (2010), the capability of a hybrid e-tongue for 591 

the classification of wines according to the grape varieties and vintage as well as for 592 

the prediction of some chemical and optical parameters of interest in wine quality 593 

control is demonstrated. The proposed e-tongue included an array of electrochemical 594 

microsensors and a colorimetric optofluidic system. Both of them can be integrated 595 



into the same platform, thus providing portable, rapid, and feasible equipment for in-596 

situ measurements. E-tongue data obtained for red (samples from the same vintage 597 

but different grape varieties) and white (two vintages and four grape varieties) wines 598 

were processed by means of PLS and PCA. In spite of the small number of samples, 599 

the potential of the developed e-tongue in this kind of studies is clearly demonstrated. 600 

 In a later work (Gutiérrez-Capitán et al., 2013), some authors from the 601 

aforementioned research group used a similar hybrid e-tongue for the analysis of 602 

white grape juices (different white Vitis genotypes with comparable characteristics). A 603 

PCA model from e-tongue data of samples belonging to three reference genotypes 604 

was used to estimate some basic properties of the other varieties. On the other hand, 605 

SIMCA method on the reference genotypes allowed these reference varieties and the 606 

other samples to be differentiated. The authors claimed that this e-tongue could be 607 

used for adulteration detection in wines since the results for a non-vinifera genotype 608 

(a hybrid prohibited in several European countries for wine production) appeared as 609 

outliers in the PCA and SIMCA models. Moreover, this electronic device could also 610 

be of great utility in the wine production process to estimate grape juice properties. 611 

 In the same way as other wines with controlled origin, the Portuguese Port and 612 

Madeira wines are affected by frauds, so they require strict quality and authenticity 613 

control. There is a considerable interest in the development of fast methods for the 614 

age estimation of these wines, since their quality and price are directly proportional to 615 

their age. In this sense, a potentiometric e-tongue has shown similar ability to 616 

conventional analytical techniques to predict the age of a great deal of Port wine 617 

samples of different types and ages (PLS prediction accuracy under 6 years) 618 

(Rutnitskaya et al., 2007). Orthogonal signal correction (OSC) was utilized as data 619 

pre-processing strategy to eliminate the temporary drift in e-tongue responses. An 620 

analogous e-tongue has also been applied in the case of Madeira wine age 621 

estimation and determination of the concentration of several components, mainly 622 

phenolic compounds and organic acids (Rutnitskaya et al., 2010). 623 

 With respect to the use of e-tongues to detect adulteration of alcoholic drinks, 624 

Parra et al. (2006) proposed a voltammetric e-tongue composed of two kinds of 625 

sensors (phthalocyanine-based CPEs and conducting polypyrrole polymers based 626 

electrodes) for the detection of the most common adulterants of red wines. The e-627 

tongue data (PLS regression) yielded good estimations (prediction errors between 1 628 

and 15 %) of the concentrations of seven chemical compounds (common 629 

adulterants) added to the samples. Additionally, PCA on e-tongue data exhibited a 630 



good performance for distinguishing the different kinds of adulterations. The inclusion 631 

of those two types of sensors in the e-tongue increased their discrimination ability. 632 

 Nowakowski et al. (2011) made use of a disposable, integrated voltammetric 633 

e-tongue fabricated using gold and copper substrates to classify wine and whisky 634 

samples. In case of wines, PCA inspection of e-tongue data revealed that this 635 

electronic instrument was able to differentiate four types of wine from the same 636 

brand. When different types and brands of wines were included in the study, PCA 637 

score plot of e-tongue data showed an almost complete clustering of the different 638 

samples. On the other hand, PCA models applied to data obtained from a single 639 

copper electrode allowed to distinguish not only several whisky brands but also 640 

different adulteration processes of the whiskies. The authors highlight the fact that 641 

the combination of an extensive database of whiskies and wines coupled with the 642 

developed disposable system could be helpful in forensic analysis to detect 643 

unidentified or adulterated samples. 644 

 Authenticity assessment of vegetable oils is another research area of interest 645 

for e-tongues (Apetrei and Apetrei, 2013; Apetrei and Apetrei, 2014; Apetrei et al., 646 

2005; Apetrei et al., 2007; Apetrei, 2012; Dias et al., 2014; Oliveri et al., 2009; 647 

Rodríguez-Méndez et al., 2008b). The high price of EVOOs and VOOs make them 648 

ideal “candidates” for adulteration, be it mislabeling or blending with cheaper olive 649 

and seed oils. Some VOOs and EVOOs are certified as protected designation of 650 

origin, which are partly related to olive oil production and processing made in a 651 

specific geographical origin. Furthermore, label authentication of olive cultivar is of 652 

paramount importance due to marketing of high-quality (and high-price) monovarietal 653 

EVOOs. Label information about the geographical origin affects consumers’ 654 

acceptability, while information about cultivar significantly impacts on the expectation 655 

of pungency and bitterness for olive oils. As shown in Table 2, papers reported in the 656 

literature on this topic have demonstrated the effectiveness of e-tongues for the 657 

discrimination among different vegetable oils (Apetrei et al., 2005; Apetrei and 658 

Apetrei, 2014; Oliveri et al., 2009), quality grades of olive oils (Apetrei et al., 2005), 659 

olive cultivars (Dias et al., 2014) and geographical origin of EVOOs (Oliveri et al., 660 

2009). E-tongues have also shown their ability for quantitative prediction of different 661 

physicochemical parameters utilized for EVOOs characterization (Apetrei and 662 

Apetrei, 2013; Apetrei and Apetrei, 2014; Apetrei et al., 2007; Apetrei, 2012; 663 

Rodríguez-Méndez et al., 2008b), as well as to detect EVOOs adulterations with 664 

seed oils (Apetrei and Apetrei, 2014). Finally, Rodríguez-Méndez et al. (2010) have 665 



authored a chapter book including some applications of e-tongues purposely 666 

designed for the characterization of olive oils. 667 

 The analysis of oils using electrochemical methods is rather troublesome due 668 

to the lack of conductivity, the viscosity, and the low solubility in the standard 669 

solvents employed for oil samples. To overcome this difficulty, the research group of 670 

Apetrei and co-workers has tested the usefulness of chemically modified CPEs with 671 

the oil sample (Apetrei et al., 2005; Apetrei et al., 2007; Apetrei and Apetrei, 2014). In 672 

this case, voltammetric data obtained when immersing the oil-based electrodes in 673 

different electrolytic solutions are used in the chemometric analyses. In the first work 674 

of the series (Apetrei et al., 2005), the study of the electrochemical data by means of 675 

PCA provided a clear discrimination among vegetable oils of three diverse origins 676 

and among olive oils of five different quality grades. A further paper has proven the 677 

usefulness of these oil modified CPEs for the evaluation of bitterness of EVOOs 678 

(Apetrei et al., 2007). 679 

 In a more recent work (Apetrei and Apetrei, 2014), the usefulness of this type 680 

of e-tongues to detect EVOOs adulteration is demonstrated. PCA, PLS-DA and PLS 681 

applied to e-tongue data showed the capability of this device (a) to discriminate pure 682 

oils (an EVOO and three seed oils) according to their botanical origins; (b) to predict 683 

total polyphenolic content of binary mixtures of EVOO and seed oils (r values near 684 

0.99, in both PLS calibration and validation); (c) to classify the adulterated EVOOs 685 

when the concentration of adulterant oil was over 5 %; and (d) to estimate the 686 

composition of EVOO and seed oil mixtures within the range 2 – 25 % range (r > 0.99 687 

in both PLS calibration and validation).  688 

 The research group of Rodríguez-Méndez et al. (2008b) developed a 689 

voltammetric e-tongue consisting of chemically modified electrodes with several 690 

electroactive materials (phthalocyanine derivatives and polypyrroles doped with 691 

different doping substances) to evaluate the phenolic content of six EVOOs. Sample 692 

pretreatment involved dissolution in hexane, extraction of the phenolic fraction with a 693 

methanol-water mixture and drying and redissolution of the extract in potassium 694 

chloride aqueous solution. High correlation coefficient values (r > 0.99) for the PLS 695 

regression models between the e-tongue data and several parameters (bitterness 696 

index, polyphenol content, and bitterness degree) were achieved. 697 

 Voltammetric e-tongues based on polypyrrole sensors have also been 698 

proposed for the authenticity assessment of EVOOs (Apetrei, 2012; Apetrei and 699 

Apetrei, 2013), with a previous preparation of oil emulsions in surfactants. PCA and 700 



PLS-DA exploration of the data obtained from such systems demonstrated their 701 

ability to discriminate six Spanish EVOOs according to their sensorial and chemical 702 

bitterness, as well as to predict bitterness degree and chemical parameters such as 703 

peroxide value, free acidity, bitterness index, and K indexes (r > 0.87 in both, 704 

calibration and validation of the PLS models) (Apetrei, 2012). On the other hand, 705 

classification of 18 EVOOs according to their total polyphenolic content was 706 

successfully accomplished using PCA, PLS-DA and SIMCA (Apetrei and Apetrei, 707 

2013). A good PLS model for the quantification of this chemical parameter was 708 

obtained (r > 0.98 for both the training and the test set). Furthermore, e-tongue data 709 

for spiked EVOO emulsion samples having different individual phenolic compounds 710 

permitted PCA discrimination and an error-free PLS-DA classification of these 711 

substances. 712 

 In another attempt to solve the aforementioned problem of electrochemical 713 

analysis of oils, Oliveri et al., (2009) recommended the use of suitable room 714 

temperature ionic liquids, added to oils as supporting electrolytes to provide these 715 

low-polarity samples with conductivity. The following step consisted of voltammetric 716 

measurements with a platinum microelectrode, which were carried out directly in 717 

those edible oil/ionic liquid mixtures. Voltammetric data were then processed by 718 

means of PCA and a k-NN classification method, and showed that EVOOs having 719 

different nature (maize and olive) or geographical origin (from different Italian and 720 

Spanish regions) can be differentiated. 721 

 As commented on previously, label authentication of monovarietal EVOOs is 722 

of primary importance. In the paper by Dias et al. (2014), a potentiometric e-tongue 723 

with different cross-sensitivity membrane sensors was fabricated to discriminate 18 724 

Portuguese and Spanish monovarietal EVOOs according to the olive cultivar. The e-725 

tongue is analogous to that used for honey classification (Sousa et al., 2014). In a 726 

similar way to that paper, the most informative potentiometric sensor signal profiles 727 

were selected using an SA algorithm to establish LDA models with the best leave-728 

one-out cross-validation predictive performance. Hydro-ethanolic extracts of EVOOs 729 

were utilized to solve the problem of electrochemical assays in oils. E-tongue data 730 

gave rise to outstanding classification results according to the olive cultivar for 731 

EVOOs of each country (100 % and 97.5-100 % correct classification for the original 732 

data and for cross-validation, respectively). Notwithstanding, no simultaneous 733 

discrimination of all the six Spanish and Portuguese cultivars could be achieved (92 734 

% and 43 % correct classification for original data and cross-validation, respectively). 735 



The performance of the e-device to differentiate each Spanish cultivar from the three 736 

Portuguese cultivars was satisfactory to poor (89–100 % and 61-98 % of correct 737 

classifications for the original data and cross-validation, respectively). The 738 

discriminant ability was related to the polar compound contents of EVOOs and 739 

therefore, indirectly, to organoleptic properties. This last issue was addressed in a 740 

further work (Veloso et al., 2016), a similar e-tongue being then used for analyzing 741 

the hydro-ethanolic extracts of a great number of EVOOS from eleven different 742 

cultivars and two crop years. LDA-SA applied to e-tongue data yielded a good 743 

discrimination of samples of each crop year according to their overall intensity 744 

perception levels (100 %, 91 % and ~ 80 % of correct classifications for the original 745 

data, leave-one-out and K-fold cross-validation, respectively). Consequently, the 746 

authors of this paper proposed their e-tongue as an auxiliary tool for trained sensory 747 

panels. 748 

 As previously remarked in section 3, new methodologies to authenticate the 749 

geographical origin and quality of tea as well as to avoid incorrect labeling are 750 

becoming important tools to monitor frauds and other illegal practices. In this 751 

framework, e-tongues have been employed for the recognition of tea grade level 752 

(Chen et al., 2008; He et al., 2009) and for geographical origin authentication of tea 753 

samples (Kovács et al., 2010; He et al., 2009). 754 

 Chen et al. (2008) utilized the commercial α-AstreeTM e-tongue to identify 755 

Chinese green tea grade level. A large group of samples belonging to four different 756 

grades were investigated and divided into training and test sets to build identification 757 

models. BP-ANN modeling resulted in higher identification rates (100 % in both the 758 

training and the test set) than k-NN modeling (97.5 % and 100 % for the training and 759 

the test set, respectively). 760 

 The α-AstreeTM e-tongue was also used by He et al. (2009) for the 761 

differentiation of Chinese tea. Eight samples of green tea and eight samples of black 762 

tea were studied. Different PCA models demonstrated the ability of the e-tongue data 763 

to discriminate between black and green teas, as well as the geographical origins of 764 

green or black teas. Moreover, the e-tongue sensors that were best correlated with 765 

ten sensory attributes in tea taste were determined. 766 

 As commented in section 3, the research goal of Kovács et al. (2010) was to 767 

evaluate the possible application of both the NST3320TM e-nose and the α-AstreeTM 768 

e-tongue for geographical origin identification of Sri Lanka black tea. PCA and SLDA 769 

results indicated that the e-tongue showed a much better performance (100 % 770 



success rates in both training and cross-validation steps) than the e-nose for sample 771 

discrimination according to their geographical origin. Nevertheless, the e-nose 772 

exhibited a slightly better ability to classify samples according to their growing altitude 773 

(e-tongue success did not reach 100 % in both training and cross-validation steps). 774 

On the other hand, these two e-devices provided poor to acceptable PLS prediction 775 

of sensory attributes, although the e-tongue performance was slightly better (0.65 ≤ r 776 

≤ 0.92 and 0.47 ≤ r ≤ 0.86, in training and cross-validation steps, respectively) than 777 

that of the e-nose. 778 

 Finally, another important issue in which e-tongues have proven their 779 

usefulness is the detection of possible contaminations of foodstuffs with gliandins, 780 

proteins primarily responsible for gluten intolerance (Peres et al., 2011). In this work, 781 

a potentiometric e-tongue comprising 36 polymeric membranes was used. This 782 

device is similar to that previously commented in Peres et al., 2009. 15 samples from 783 

five different kinds of foodstuffs and two different gluten levels (gluten-free and 784 

gluten-containing samples) as well as a gluten-free sample contaminated with 785 

different amounts of gliandins (gluten-free, low-gluten content and gluten-containing 786 

samples) were analyzed by means of the e-tongue system. A stepwise multivariate 787 

technique and LDA were used for variables/sensors selection/reduction and for 788 

samples classification into the studied gluten levels, respectively. Leave-one-out 789 

cross-validation classification results of LDA models on selected sensors data were 790 

satisfactory (84 % and 77 % success rates of uncontaminated and contaminated 791 

samples, respectively). 792 

 793 

5. E-noses and e-tongues data fusion in food authenticity/adulteration 794 

assessment 795 

 796 

 In some applications, and due to the high complexity of food samples, the 797 

employment of just e-nose or e-tongue data is insufficient, and multisensor data 798 

fusion techniques, e.g. combination of e-nose with e-tongue and/or spectroscopic 799 

data, have been utilized as efficient characterization methodologies. Nevertheless, in 800 

most cases, a variable selection seems to be imperative for the application of sensor 801 

array data -particularly when a data fusion strategy is used- in order to remove 802 

response variables or sensors that are redundant, noisy, or irrelevant for qualitative 803 

or quantitative purposes. In this sense, a very interesting review about analytical 804 

techniques and strategies employed in data fusion methodologies for food and 805 



beverage authentication and quality assessment has recently been published (Borràs 806 

et al., 2015). The present section is then just focused on applications based on the 807 

joint use of e-noses and e-tongues. The main features of such studies are 808 

summarized in Table 3 and are briefly described below. 809 

 In the literature there are some examples in which multisensor data fusion 810 

techniques have given rise to enhanced results for honey analysis (Maamor et al., 811 

2014; Subari et al., 2012; Ulloa et al., 2013; Zakaria et al., 2011). The combination of 812 

data obtained from both an e-nose and an e-tongue to discriminate between different 813 

honeys, sugar syrups, and sugar adulterated honey samples has also been proposed 814 

(Zakaria et al., 2011). Samples were analyzed by means of the Cyranose320TM e-815 

nose (32 non-selective sensors of different types of polymer matrix, blended with 816 

carbon black), as well as by a potentiometric e-tongue consisting of seven 817 

chalcogenide-based ion selective electrodes (ISEs). By combining the data obtained 818 

from both e-systems, the discrimination ability for all the analyzed samples was 819 

significantly enhanced. The best results turned out to be those using LDA (100 % 820 

success rates in both training and cross-validation steps). 821 

 It is also worth reporting the comparison between data obtained from single 822 

modality and fusion methods in the classification of pure or adulterated Tualang 823 

honeys (Subari et al., 2012). Ten different brands of certified pure Tualang honey 824 

from Malaysia and Sumatra were blended with different concentrations of cane and 825 

beet sugar solutions and analyzed by means of the Cyranose320TM e-nose and 826 

Fourier transform infrared spectroscopy (FTIR). The best classification rate (92.2 % 827 

in validation) was obtained when using normalized low-level FTIR and e-nose fusion 828 

data by means of SLDA. In a further work Maamor et al. (2014) (authors from the 829 

same research group) demonstrated that the discrimination ability between pure and 830 

sugar-adulterated Tualang honeys could be improved by utilizing combined data from 831 

FTIR, an e-nose, and a potentiometric e-tongue. PCA was then used to reduce high 832 

dimensional features of these three techniques. Among the different classification 833 

methods studied, k-NN provided the best performance for the training and test sets 834 

(100 and 96.4 % correct classification, respectively). 835 

 Ulloa et al. (2013) have tried to classify four commercial brands of Portuguese 836 

honey according to their botanical origin by means of sensor fusion of an impedance 837 

e-tongue and visible–near infrared (Vis–NIR) and ultraviolet–visible (UV–Vis) 838 

spectroscopies assisted by PCA and CA. 13 heterogeneous Portuguese honey 839 

nectar samples were analyzed. Different chemometric tools showed that fusion of the 840 



corresponding data obtained yielded a better discrimination ability than that achieved 841 

with the three individual techniques. In this sense, multi-way PCA (MPCA) proved to 842 

be an excellent (100 % classification success) alternative for data fusion, unlike 843 

simple concatenation of all matrices. Last but not least, a variable selection method 844 

based on one-dimensional clustering was developed to define two new strategies, 845 

both of them giving rise to even better defined sample clusters. Notwithstanding, the 846 

authors make it clear that the aim of the work was the demonstration of the proposed 847 

methods and there is clearly a need for further research work with a larger number of 848 

samples. 849 

 Multisensor data fusion techniques have also demonstrated to be of great 850 

utility for the analysis of some types of olive oils (Apetrei et al., 2010; Haddi et al., 851 

2013). In the paper of Apetrei et al. (2010), the so-called electronic panel (data fusion 852 

of three systems, namely: an e-nose, an e-tongue, and an e-eye) was employed to 853 

characterize the organoleptic properties of 25 EVOOs from three different olive 854 

varieties. The e-nose consisted of a set of 13 MOS sensors whereas the e-tongue 855 

was based on modified CPE voltammetric sensors. PCA and PLS-DA of data 856 

showed that the combined system had a higher capability of sample discrimination 857 

according to the olive variety than that obtained with the three instruments used 858 

separately. Finally, PLS regression models provided good correlation coefficients 859 

between e-tongue data and bitterness scores (PLS1, r > 0.97 in both model 860 

calibration and cross-validation) as well as between the electronic panel data and the 861 

concentrations of 20 polyphenolic compounds (PLS2, r > 0.9 in calibration and cross-862 

validation). 863 

 E-tongue and e-nose data fusion also gave rise to a better performance than 864 

the independent e-devices in the characterization of Moroccan VOOs (Haddi et al., 865 

2013). A certain number of VOOs (from the same variety and harvested in the same 866 

year) from five different regions of Morocco were analyzed using a voltammetric e-867 

tongue and a MOS-based e-nose. PCA and CA applied to a reduced subset 868 

containing optimal variables (selected with the help of a recently developed variable 869 

selection strategy based on ANOVA) improved the classification of the VOOs with 870 

respect to the use of all the variables. Support vector machines (SVM) performed on 871 

the reduced subset confirmed the correct identification of all VOOs. 872 

 The so-called biosensor-based multisensorial system for mimicking nose, 873 

tongue and eyes (BIONOTE) developed by Santonico et al. (2015) has proven 874 

excellent results for detecting EVOOs adulteration. This device includes gas and 875 



liquid sensors based on anthocyanins sensing interfaces. Quartz micro balances 876 

(QMBs) were used as transducers for the gas sensor array, while the sensor liquid 877 

array was composed of screen-printed gold voltammetric electrodes. Data fusion of 878 

sensors data allowed the discrimination of twelve EVOOs from different cultivars and 879 

geographical origins, the detection of adulteration of EVOOs with other four 880 

vegetable oils up to concentrations lower than 5 % as well as the prediction of 881 

common chemical parameters related to the quality of the EVOOs. 882 

 It should also be remarked that, according to Cosio et al. (2006), data from 883 

four selected e-nose sensors provided better results in the verification of the 884 

geographical origin of EVOOs than those from the fusion of chemical variables or an 885 

e-tongue. In this study, a commercial e-nose (model 3320 Applied Sensor Lab 886 

Emission Analyzer) based on 22 MOS and MOSFET sensors was utilized for the 887 

analyses, along with an amperometric e-tongue. The group of analyzed samples 888 

included 36 Garda (Italy) oils and 17 oils from other regions. 889 

 To conclude, in the literature there are also some examples in which 890 

multisensor data fusion techniques have proved to be useful for recognition and 891 

quantitative analysis of fresh cherry tomato juices adulterated with different levels of 892 

overripe tomato juices (Hong et al., 2014b; Hong and Wang, 2014). In these papers, 893 

the PEN 2TM commercial e-nose and the α-AstreeTM commercial e-tongue were 894 

utilized for sample analysis. Two e-nose measurements (with and without desiccant) 895 

were carried out, and the corresponding results indicated that there is no need to use 896 

a desiccant prior to e-nose measurement. Several fusion procedures of e-nose and 897 

e-tongue data were tested. This work showed that simultaneous utilization of both 898 

instruments could guarantee a better performance provided that proper data fusion 899 

approaches are used. 900 

 901 

6. Conclusions 902 

 903 

 In this review, the most relevant applications of e-noses and e-tongues in food 904 

authenticity assessment –in many cases leading to the detection of food adulteration- 905 

have been examined. This subject area is particularly (and increasingly) important in 906 

these last years, since it not only concerns the constant fight with food adulterers, but 907 

also relatively new aspects such as bioterrorism or food security. All these problems 908 

clearly highlight the need for further development and refinement of the existing 909 

analytical techniques. In this sense, the use of “artificial senses” such as those 910 



discussed in the present paper will undoubtedly contribute to overcome the 911 

shortcomings of other analytical techniques still in use. Furthermore, future 912 

developments in the use of advanced sensors arrays will lead to superior electronic 913 

senses with more capabilities, thus making the authenticity and falsification 914 

assessment of food products a faster and more reliable process. 915 
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• ANN: artificial neural network 924 

• ANOVA: analysis of variance 925 

• ASCA: ANOVA-simultaneous component analysis 926 

• BIONOTE: biosensor-based multisensorial system 927 

• BP-ANN: back propagation-artificial neural network 928 

• CA: cluster analysis 929 

• CCA: canonical correlation analysis 930 

• CDA: canonical discriminant analysis 931 

• CPE: carbon paste electrode 932 

• DFA: discriminant function analysis 933 

• EDA: exploratory data analysis 934 

• e-nose: electronic nose 935 

• e-tongue: electronic tongue 936 

• EVOO: extra virgin olive oil 937 

• FIA: flow injection analysis 938 

• FID: flame ionization detector 939 

• FLT: Fisher linear transformation 940 

• FTIR: Fourier transform infrared spectroscopy 941 

• GC/MS: gas chromatography-mass spectrometry 942 

• GC: gas chromatography 943 

• GRNN: general regression neural network 944 

• GUI: graphical user interface 945 

• IMS: ion mobility spectrometer 946 

• ISE: ion-selective electrode 947 

• ISFET: ion-selective field effect transistor 948 

• k-NN: k-nearest neighbors 949 

• LDA: linear discriminant analysis 950 

• LDA-SA: linear discriminant analysis-simulated annealing 951 

• Lib-SVM: support Vector Machines 952 

• MANOVA: multivariate analysis of variance 953 

• MI: mutual information criteria  954 

• MLAPV: multifrequency large amplitude pulse voltammetry 955 

• MLR: multiple linear regression 956 



• MOS: metal oxide semiconductors 957 

• MOSFET: metal oxide semiconductor field effect transistor 958 

• MPCA: Multi-way PCA 959 

• MS: mass spectrometry 960 

• OSC: orthogonal signal correction 961 

• PCA: principal component analysis 962 

• PCR: principal component regression 963 

• PEDOT: poly(3,4-ethylenedioxythiophene) 964 

• PLS: partial least square 965 

• PLS-DA: partial least square-discriminant analysis 966 

• PNN: probabilistic neural network 967 

• PVC: poly(vinyl chloride) 968 

• QMB: quartz micro balance 969 

• RI: rand index 970 

• SA: simulated annealing 971 

• SAW: surface acoustic wave 972 

• SFA: simplified Fuzzy ARTMAP 973 

• SFA-ANN: simplified Fuzzy ARTMAP-artificial neural network 974 

• SFW: selection by Fisher weights 975 

• SIMCA: soft independent modelling of class analogy 976 

• SLDA: stepwise linear discriminant analysis 977 

• SPME: solid-phase microextraction 978 

• SPME-fast GC-FID: solid-phase microextraction fast gas chromatography-flame 979 

ionization detector 980 

• SPME-GC/MS: solid-phase microextraction - gas chromatography/mass 981 

spectrometry 982 

• SPME-MS: solid-phase microextraction-mass spectrometry. 983 

• SVM: support vector machine 984 

• UV–Vis: ultraviolet–visible 985 

• Vis–NIR: visible-near infrared 986 

• VOO: virgin olive oil  987 



Table 1 988 
Applications of e-noses in food authenticity/adulteration assessment. 989 

 990 
Sample Type of study Chemical sensors Data processing algorithm Ref. 
Virgin olive oil Detection of adulteration with hazelnut oil MOS sensors PCA Mildner-Szkudlarz and 

Jeleń (2008) 

Extra virgin olive oil Detection of adulteration with rapeseed and sunflower oils  MOS sensors 
and SPME-MS 

PCA, PLS Mildner-Szkudlarz and 
Jeleń (2010) 

Sesame oil Detection of adulteration 10 MOS sensors LDA, PNN, BP-ANN, GRNN Hai and Wang (2006a) 

Camelia seed and 
sesame oil 

Detection of adulteration with maize oil MOS sensors LDA, ANN, CDA Hai and Wang (2006b) 

Virgin coconut oil Detection of adulteration zNoseTM (SAW) PCA Marina et al. (2010) 

Canned tomato Detection of adulteration EOS835TM e-nose PCA, EDA, k-NN Concina et al. (2009) 

Tomato juice Detection of adulteration MOS sensors Spectral clustering Hong et al. (2014a) 

Acacia honey Detection of adulteration with rape honey and rice syrup FOX 4000TM e-nose PCA, LDA Pei et al. (2015) 

Palm olein Detection of adulteration with lard zNoseTM (SAW) PCA Nurjuliana et al. (2011) 

Spices Detection of adulteration Portable multi gas sensors PCA, LDA Banach et al. (2012) 

Saffron Detection of adulteration with yellow styles, safflower, and dyed 
corn 

MOS sensors PCA, BP-ANN, ANN Heidarbeigi et al. (2015) 

Wine Authenticity assessment MOS sensors PCA, CA, SLDA Versari et al. (2014) 

Whisky Authenticity assessment Predominantly MOS sensors PCA, DFA, LDA, ANOVA, 
SIMCA, PNN, k-NN, CA 

Wiśniewska et al. (2014) 

Milk Detection of adulteration with water and milk powder PEN 2TM e-nose (10 MOS sensors) PCA, LDA Yu et al. (2007) 

Mutton Detection of adulteration with pork MOS sensors PCA, SLDA, CDA Tian et al. (2013) 

Poultry meats Detection of adulteration MOS sensors LDA, DFA Li et al. (2014) 

Coffee and pepper Detection of adulteration Portable e-nose Unfolded CA Rodríguez et al. (2014) 

Jasmine rice Detection of adulteration with other varieties Two standard arrays of six MOS 
sensors 

PCA Masiri (2006) 

Black tea infusions Discrimination between geographical origins. Discrimination 
between growing altitudes. Prediction of sensory attributes 

NST3320TM e-nose (10 MOSFET and 
12 MOS sensors) 

PCA, SLDA, ANOVA, PLS Kovács et al. (2010) 

Acronyms used: ANOVA, Analysis of variance; ANN, Artificial neural network; BP-ANN, Back propagation-artificial neural network; CA, Cluster analysis; CDA, Canonical discriminant analysis; 991 
DFA, Discriminant function analysis; EDA, Exploratory data analysis; GRNN, General regression neural network; k-NN, k-Nearest neighbor; LDA, Linear discriminant analysis; MOS, Metal 992 
oxide semiconductor; MOSFET, metal oxide semiconductor field effect transistor; PCA, Principal component analysis; PCR, Principal component regression; PLS, Partial least square; PNN, 993 
Probabilistic neural network; SAW, surface acoustic wave; SIMCA, Soft independent modelling class analogy; SLDA, Stepwise linear discriminant analysis.  994 
  995 



Table 2 996 
Applications of e-tongues in food authenticity/adulteration assessment. 997 
 998 
Sample Type of study Chemical sensors Data processing algorithm Ref. 
Honey Discrimination between samples accordingly to the most 

predominant pollen type 
20 all-solid-state electrodes with PVC polymeric 
membranes applied on solid conducting silver-
epoxy supports 

PCA, LDA Dias et al.  
(2008) 

Honey Discrimination between samples from different monofloral origin. 
Discrimination between samples from different geographical 
origin 

α-AstreeTM e-tongue (7 ISFETs based on polymer 
membranes) 

PCA, ANN, CA Wei et al.  
(2009) 

Honey Discrimination between samples from different monofloral origin 6 metal wires electrodes (Au, Ag, Pt, Pd, W and Ti) PCA, DFA, CA Wei and  
Wang (2011) 

Honey Discrimination between samples from different botanical origin. 
Prediction of physicochemical parameters 

α-AstreeTM e-tongue (see further details in Wei et al. 
(2009)) 

PCA, CCA, ANN Major et al.  
(2011) 

Honey Discrimination between samples from different botanical origin. 
Prediction of physicochemical parameters 

7 metallic wire electrodes (Au, Ag, Cu, Ag2O, AgCl, 
Ag2CO3 and Cu2O) 

PCA, ANN, PLS Escriche et  
al. (2012) 

Honey Discrimination between samples from different botanical origin 
and with different thermal treatments 

The same as in Escriche et al. (2012) SFA-ANN Garcia-Breijo 
et al. (2013) 

Honey Discrimination between colors of monofloral honey samples. For 
honeys of the same color group: discrimination of monofloral 
honeys according to their floral origin 

2 units of 20 all-solid-state electrodes with different 
pre-established mass combinations of 4 lipidic, 5 
plasticizers and PVC high molecular weight 
polymers 

LDA-SA Sousa et al.  
(2014) 

Goat milk Detection of adulteration of samples with cow milk 2 units of 20 all-solid-state electrodes with PVC 
polymeric membranes, applied on solid conducting 
silver-epoxy supports 

LDA Dias et al.  
(2009) 

Milk Discrimination of samples adulterated with hydrogen peroxide. 
Discrimination between samples with different pasteurization 
process 

Au and Prussian Blue-modified gold electrodes PCA Paixão and  
Bertotti 
(2009) 

Red wine Discrimination between origin denominations and between 
ageing stages 

CPEs modified with 3 rare-earth bisphthalocyanines PCA, kernel variable 
reduction 

Parra et al.  
(2004) 

White wine Discrimination between grape varieties CPEs modified with 3 rare-earth bisphthalocyanines 
and 3 perylenes 

PCA, kernel variable 
reduction 

Rodríguez-
Méndez  
et al. (2008a) 

White wine Discrimination of grape varieties and geographical origins 1 PEDOT conducting polymer, composite materials 
of Au and Pt nanoparticles embedded in a PEDOT 
layer 

PCA, PLS-DA Pigani et  
al. (2008) 

Grape juice and 
wine 

Discrimination between grape varieties. Discrimination between 
vintages. Determination of different parameters and components 

6 ISFETs based on polymeric membranes and 
chalcogenide glass membranes 

PCA, SIMCA, PLS Moreno-
Codinachs  
et al. (2008) 

 
 
White and red 
wine 

 
 
Discrimination between grape varieties. Prediction of chemical 
and optical parameters 

 
 
Hybrid electrochemical-optical e-tongue: 
- Electrochemical sensors: 6 ISFET potentiometric 

 
 
PCA, PLS 

 
 
Gutiérrez  
et al. (2010) 



Sample Type of study Chemical sensors Data processing algorithm Ref. 
sensors, 1 conductivity sensor, a redox potential 
sensor and 2 amperometric sensors  

- Colorimetric optofluidic system: MIR configuration, 
the optical fiber was connected to a 
spectrophotometer that covered the 200-1100 nm 
range 

White grape juice Discrimination between grape varieties Hybrid electrochemical-optical e-tongue similar to 
those used in Gutiérrez et al. (2010) but including 7 
ISFET sensors 

PCA, SIMCA Gutiérrez-
Capitán  
et al. (2013) 

Wine Prediction of wine age 27 plasticized PVC and chalcogenide glass sensors 
and 1 glass pH electrode 

PCA, OSC, PLS Rudnitskaya  
et al. (2007) 

Wine Prediction of wine age. Determination of organic acids and 
phenolic compounds 

25 plasticized PVC and chalcogenide glass sensors 
and 1 glass pH electrode 

PCA, PLS, ASCA Rudnitskaya  
et al. (2010) 

Red wine Correlation with chemical parameters. Discrimination between 
chemical adulterants 

3 CPEs modified with phthalocyanines, 6 
polypyrrole conducting polymers and 1 bare CPE 

PLS, PCA Parra et  
al. (2006) 

Wine and whisky Discrimination between different brands and types of wines. 
Discrimination between different brands of whisky. Discrimination 
between non-adulterated and adulterated whiskies 

Au and Cu electrodes PCA Novakowski 
et  
al. (2011) 

Vegetable oils Discrimination between olive oils of different qualities and 
discrimination between different vegetable oils 

CPEs modified with 6 vegetable oils PCA, kernell variable 
reduction 

Apetrei et  
al. (2005) 

Extra virgin olive 
oil 

Discrimination between samples of different bitterness degree. 
Prediction of sensorial bitterness degree obtained by a panel of 
experts. Prediction of chemical parameters (bitterness index, 
peroxide index, K indexes and stability)  

CPEs modified with 9 olive oils PCA, PLS-DA, PLS, kernell 
variable reduction 

Apetrei et  
al. (2007) 

Vegetable oils Discrimination between different vegetable oils of different nature. 
Prediction of total polyphenolic content. Discrimination between 
pure and adulterated oils. Prediction of the composition of seed 
oils and extra virgin olive oil mixtures 

CPEs modified with each edible oil studied PCA, PLS-DA, PLS, kernel 
variable reduction 

Apetrei and  
Apetrei 
(2014) 

Extra virgin olive 
oil 

Discrimination of samples according to their phenolic content and 
bitterness index. Correlation with the polyphenol content, the 
bitterness index (analyzed by chemical methods) and the 
bitterness degree (determined by a panel of experts) 

5 CPEs modified with lanthanide 
bisphthalocyanines, 6 polypirroles conducting 
polymers and 1 unmodified CPE 

PCA, PLS-DA, PLS, kernel 
variable reduction 

Rodríguez-
Méndez  
et al. (2008b) 

Extra virgin olive 
oil 

Discrimination between samples of different bitterness degree. 
Prediction of sensorial bitterness degree obtained by a panel of 
experts. Prediction of chemical parameters (bitterness index, free 
acidity, peroxide index and K indexes) 

6 polypyrrole based electrodes PCA, PLS-DA, PLS, kernel 
variable reduction 

Apetrei  
(2012) 

 
 
 
 
Extra virgin olive 
oil 

 
 
 
 
Discrimination between samples of different total polyphenolic 
content. Prediction of total polyphenolic content. Discrimination 
between samples with different individual polyphenolic 

 
 
 
 
6 polypyrrole based electrodes with different doping 
agents 

 
 
 
 
PCA, PLS-DA, SIMCA, PLS, 
kernel variable reduction 

 
 
 
 
Apetrei and  
Apetrei 
(2013) 



Sample Type of study Chemical sensors Data processing algorithm Ref. 
compounds 

Maize and extra 
virgin olive oils 

Discrimination between different vegetable oils of different nature. 
Discrimination between geographical origins of extra virgin olive 
oils 

Pt microelectrodes PCA, k-NN Oliveri et al.  
(2009) 

Extra virgin olive 
oil 

Discrimination between olive cultivars 2 units of 20 all-solid-state electrodes with different 
pre-established mass combinations of 4 lipidic, 5 
plasticizers and PVC high molecular weight polymer 

LDA-SA Dias et al.  
(2014) 

Extra virgin olive 
oils 

Discrimination between intensity sensory perception levels 2 units of 20 all-solid-state electrodes with different 
pre-established mass combinations of 4 lipidic, 5 
plasticizers and PVC high molecular weight polymer 

LDA-SA Veloso et al.  
(2016) 

Green tea 
infusions 

Discrimination between quality grades α-AstreeTM e-tongue (see further details in Wei et al. 
(2009)) 

PCA, BP-ANN Chen et al.  
(2008) 

Black and green 
tea infusions 

Discrimination between black and green teas. Discrimination 
between geographical origins. Discrimination between quality 
grades 

α-AstreeTM e-tongue (see further details in Wei et al. 
(2009)) 

PCA He et al.  
(2009) 

Black tea 
infusions 

Discrimination between geographical origins. Discrimination 
between growing altitudes. Prediction of sensory attributes 

α-AstreeTM e-tongue (see further details in Wei et al. 
(2009)) 

PCA, SLDA, ANOVA, PLS Kovács et al.  
(2010) 

Gluten-free and 
gluten-containing 
foodstuffs 

Classification of samples according their gluten (or gliandins) 
level 

2 units of 36 all-solid-state electrodes with PVC lipid 
polymeric membranes 

LDA Peres et al. 
(2011) 

 999 
Acronyms used: ANOVA, Analysis of variance; ANN, Artificial neural network; ASCA, ANOVA-Simultaneous component analysis; BP-ANN, Back propagation-artificial neural network; CA, 1000 
Cluster analysis; CCA, Canonical correlation analysis; CPE, Carbon paste electrode; DFA, Discriminant function analysis; FTIR, Fourier transform infrared spectroscopy; ISE, Ion-selective 1001 
electrode; ISFET, Ion-selective field effect transistor; k-NN, k-Nearest neighbor; LDA, Linear discriminant analysis; LDA-SA, Linear discriminant analysis simulated annealing; MIR, Multiple 1002 
internal reflection; MLR, Multiple linear regression; MOS, Metal oxide semiconductor; MOSFET, Metal oxide semiconductor field effect transistor; MPCA: Multi-way PCA; OSC, Orthogonal 1003 
signal correction; PCA, Principal component analysis; PCR, Principal component regression; PEDOT, Poly(3,4-ethylenedioxythiophene); PLS, Partial least square; PLS-DA, Partial least 1004 
square–discriminant analysis; PNN, Probabilistic neural network, PVC, poly(vinyl chloride); SFA, Simplified Fuzzy ARTMAP; SIMCA, Soft independent modelling class analogy; SLDA, 1005 
Stepwise linear discriminant analysis.  1006 
 1007 
  1008 



Table 3 1009 
Applications of e-noses and e-tongues data fusion techniques in food authenticity/adulteration assessment. 1010 
Sample Type of study Chemical sensors Data processing algorithm Ref. 
Honey Discrimination between monofloral, polyfloral 

honeys, sugar-syrups and honeys adulterated 
with sugar-syrups 

Combination of data from an e-nose and an e-tongue: 
- Cyranose320TM e-nose (32 non-selective polymer sensors blended with carbon 

black) 
- E-tongue (7 chalcogenide-based ISEs) 

PCA, LDA, PNN Zakaria et 
al. (2011) 

Tualang honey Detection of adulteration with beet and cane 
sugar 

Combination of data from FTIR and an e-nose: 
- Cyranose320TM e-nose (see further details in Zakaria et al. (2011)) 

PCA, LDA, SLDA Subari et 
al. (2012) 

Honey Discrimination between pure and sugar-
adulterated honeys 

Combination of data from FTIR, an e-nose and an e-tongue: 
- No details are provided about the e-nose device. 
- E-tongue (8 chalcogenide-based metallic electrodes and 1 a pH electrode) 

PCA, LDA, PNN, SVM, k-
NN 

Maamor et 
al. (2014) 

Honey Discrimination between samples from 
different botanical origin 

Combination of data from an e-tongue and Vis-NIR and UV-Vis spectroscopies: 
- E-tongue (Al, Au, Pt and indium thin oxide impedance sensors) 

PCA, CA, MPCA combined 
with variable selection 
algorithms 

Ulloa et 
al. (2013) 

Extra virgin 
olive oil 

Discrimination between samples from 
different olive cultivars. Prediction of sensorial 
bitterness degree obtained by a panel of 
experts. Prediction of the concentration of 20 
polyphenolic compounds  

Combination of data from an e-nose, an e-tongue and an e-eye (electronic 
panel): 
- E-nose (13 MOS sensors) 
- E-tongue (CPEs modified with 25 olive oils) 
- E-eye (transmittance spectra recorded by LEDs in the 780-380 nm for 

calculation of color coordinates) 

PCA, PLS-DA, PLS, kernell 
variable reduction 

Apetrei et 
al. (2010) 

Virgin olive oil Discrimination between geographical origins Combination of data from an e-nose and an e-tongue: 
- E-nose (5 different tin-dioxide gas sensors) 
- E-tongue (Pt, Au, glassy carbon and indium tin oxide voltammetric sensors) 

PCA, CA, SVM, ANOVA 
variable selection algorithm 

Haddi et 
al. (2013) 

Extra virgin 
olive oil 

Discrimination between samples from 
different cultivars and geographical origins. 
Prediction of percentage of adulteration. 
Prediction of chemical parameters 

Combination of gas and liquid anthocyanins based sensors (BIONOTE): 
- Gas sensors (6 QMBs) 
- Liquid sensors (screen-printed Au voltammetric electrodes) 

PCA, PLS-DA Santonico 
et al. 
(2015) 

Extra virgin 
olive oil 

Discrimination between geographical origins Combination of data from an e-nose, an e-tongue and chemical variables: 
- Model 3320 Applied Sensor Lab Emission AnalyserTM e-nose (10 MOS and 10 

MOSFET sensors) 
- E-tongue (a dual and a single glassy carbon amperometric sensors) 

PCA, ANN Cosio et 
al. (2006) 

Cherry tomato 
juice 

Discrimination between non-adulterated and 
adulterated samples 

Combination of data from an e-nose and an e-tongue: 
- PEN 2TM e-nose (10 different MOS sensors) 
- α-AstreeTM e-tongue (7 ISFETs based on polymer membranes) 

PCA, CA, PCR, MLR 
(ANOVA or stepwise 
variable selection 
algorithms) 

Hong et al. 
(2014b) 

Cherry tomato 
juice 

Detection of adulteration with overripe tomato 
juices 

Combination of data from an e-nose and an e-tongue: 
- PEN 2TM e-nose (see further details in Hong et al. (2014b)) 
- α-AstreeTM e-tongue (see further details in Hong et al. (2014b)) 

PCA, CDA, Lib-SVM, PCR 
combined with variable 
selection algorithms 

Hong and 
Wang 
(2014) 

Acronyms used: ANOVA, Analysis of variance; ANN, Artificial neural network; BIONOTE, biosensor-based multisensorial system for mimicking nose, tongue and eyes; CA, Cluster analysis; 1011 
CPE, Carbon paste electrode; FTIR, Fourier transform infrared spectroscopy; ISE, Ion-selective electrode; ISFET, Ion-selective field effect transistor; k-NN, k-Nearest neighbor; LDA, Linear 1012 
discriminant analysis; Lib-SVM, Library Support Vector Machines; MLR, Multiple linear regression; MOS, Metal oxide semiconductors; MOSFET, Metal oxide semiconductors field effect 1013 
transistor; MPCA: Multi-way PCA; PCA, Principal component analysis; PCR, Principal component regression; PLS, Partial least square; PLS-DA, Partial least square–discriminant analysis; 1014 
PNN, Probabilistic neural network; QMBs, quartz micro balances; SLDA, Stepwise linear discriminant analysis; SVM, support vector machine, UV-Vis, Ultraviolet-visible, Vis-NIR, Visible-near 1015 
infrared. 1016 



Figure Captions: 1017 

 1018 

Fig. 1 – Schematic representation of (a) an electronic nose, and (b) an electronic 1019 

tongue. 1020 

 1021 


