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Universitat Politècnica de València,
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Abstract

To simulate the behaviour of a nuclear power reactor it is necessary to be able to integrate the time-dependent neutron
diffusion equation inside the reactor core. Here the spatial discretization of this equation is done using a finite element
method that permits h-p refinements for different geometries. This means that the accuracy of the solution can be
improved refining the spatial mesh (h-refinement) and also increasing the degree of the polynomial expansions used
in the finite element method (p-refinement). Transients involving the movement of the control rod banks have the
problem known as the rod-cusping effect. Previous studies have usually approached the problem using a fixed mesh
scheme defining averaged material properties. The present work proposes the use of a moving mesh scheme that
uses spatial meshes that change with the movement of the control rods avoiding the necessity of using equivalent
material cross sections for the partially inserted cells. The performance of the moving mesh scheme is tested studying
one-dimensional and three-dimensional benchmark problems.
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1. Introduction

The neutron diffusion equation is an approximation of the neutron transport equation that states that the neutron current
is proportional to the gradient of the neutron flux by means of a diffusion coefficient. This approximation is analogous
to the Fick’s law in species diffusion and to the Fourier’s law in heat transfer. For a given transient, the balance of
neutrons inside a nuclear reactor core can be modelled using the time dependent neutron diffusion equation in the two
energy groups approximation assuming that fission neutrons are born in the fast group and there is no up-scattering
[1]. This model is of the form of

[v−1]
∂Φ

∂t
+LΦ = (1 − β)MΦ +

K∑
k=1

λkχCk , (1)

∂Ck

∂t
= βk[νΣ f 1 νΣ f 2]Φ − λkCk , k = 1, . . . ,K , (2)
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where, K is the number of delayed neutron precursors groups considered and the matrices are defined as

L =

 −~∇ · (D1~∇) + Σa1 + Σ12 0
−Σ12 −~∇ · (D2~∇) + Σa2

 , [v−1] =

( 1
v1

0
0 1

v2

)
,

M =

(
νΣ f 1 νΣ f 2

0 0

)
, Φ =

(
φ1
φ2

)
, χ =

(
1
0

)
,

where φ1 and φ2 are the fast and thermal neutron fluxes, respectively. The diffusion constants and cross-sections, Dg,
Σ12, Σag, νΣ f g, g = 1, 2, appearing in the equations depend on the reactor materials, that is, they are position and
time dependent functions. βk is the yield of delayed neutrons in the k-th precursors group and λk is the corresponding
decay constant. Both coefficient are related to the delayed neutron precursor decay.

For the spatial discretization of the neutron diffusion equation different methods have been proposed. Core-level codes
traditionally use nodal methods. In these methods, the neutron diffusion equation is integrated over large homogenized
regions, known as nodes, to obtain a balance with average surface currents and fluxes as unknowns. Modern nodal
methods usually rely on the nodal expansion method (NEM) [2] and the analytical nodal method (ANM) [3, 4] to
overcome the problem in the recalculation of coupling coefficients. Also, other methods as the nodal collocation
method [5, 6] and the high order finite element method [7] have been satisfactorily used.

In this work, for the spatial discretization of the neutron diffusion equation a high order hp-finite element method for
reactors with both rectangular and hexagonal geometry has been used [8]. The main characteristic of this method is
that allows to increase the accuracy of the solution refining the spatial mesh (h-adaptivity) and also increasing the
degree of the polynomial expansions used in the finite element method (p-adaptivity) allowing to obtain solutions to
the problem with high accuracy in a reasonable amount of time. The h-p finite element method used in this work
has been implemented using the open source finite elements library Deal.II [9]. With the help of the library, the code
proposed is dimension independent and can manage different cell sizes and different types of finite elements [10].
In order to solve the algebraic problems resulting from the discretizations, the numerical libraries PETSc [11], and
SLEPc [12], have been used.

Different methods have been proposed for the time discretization of the time-dependent neutron diffusion equation
[13]. Standard methods use backward difference formulas [14]. These methods, for each time step, need to solve a
system of linear equations, which is large and sparse. Preconditioned iterative methods are used to solve these systems
[15], [16]. Other kind of methods such as modal methods [17] or the quasi-static method [18] have been also used in
nuclear engineering.

Some transient calculations in reactor cores are based on dynamic changes in the reactor configuration due to the
movement of control rods, which are usual manoeuvres in the reactor operation. The simulation of these transients
presents what is known as the rod-cusping problem. This problem is a non-physical behaviour of different magnitudes
as the neutronic power and the k-effective of the reactor along the transient. This problem is caused by the use of
fixed mesh schemes and averaged material properties for the partially rodded node, as Figure 1 represents. When a
control rod is partially inserted in a node, this node is divided into two parts: the upper part of the node, where the
cross sections are modified due to the effect of the control rod, and the lower part of the node, which has the cross
sections without modifications and the cross sections of the whole node are calculated by means of an interpolation
procedure taking into account the position of the control rod tip. To avoid the rod-cusping effect on nodal methods,
different strategies have been developed [19] as, for example, a flux weighting method [20], [21], and an equivalence
method [20]. These methods have to solve a small one-dimensional eigenvalue problem for each one of the partially
rodded nodes. Then, different schemes are applied to obtain the new cross sections of the partially rodded node
using the old cross sections of the two parts of the node (the rodded and the unrodded) and the heterogeneous flux
for the small isolated problem with suitable boundary conditions. Usually, these solutions are improved using axial
assembly discontinuity factors in the top and bottom of the partially rodded node. These discontinuity factors can
be found by solving the two-group diffusion equations with flux-volume weighted cross sections and fixed current
boundary conditions at the top and bottom of the node. Also some approaches have been discussed to estimate the
flux distribution inside the partially rodded node [22]. Other strategy is based on interpolating the solution on refined
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meshes near the moving control rod [23].

Rodded 
Material

Volume 
Averaged
Material

Unrodded 
Material

Figure 1: Rod-cusping problem in a fixed mesh scheme.

In this work, a moving mesh strategy is developed to reduce the rod-cusping problem. This method is based on the
use of different spatial meshes for the different time steps following the movement of the control rod avoiding the
necessity of the use of averaged material properties, as it is observed in Figure 2. To avoid the hanging nodes problem
[24], the spatial mesh is moved in the same way for all the axial plane. The solutions obtained in each time step for
the physical quantities are interpolated to a new spatial mesh in each time step.

(a) Fixed Mesh (b) Moving mesh

Rod

Mesh

Rod

Mesh
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Mesh
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t2
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t4

...

...

Figure 2: 1D representation of fixed and moving mesh schemes.

The rest of the paper is organized as follows, in Section 2, the spatial discretization used for the neutron diffusion
equation is briefly presented. Then the time discretization of the problem is explained in Section 3, and the specific
interpolation used for the moving mesh scheme is presented in subsection 3.1. To test the performance of the method,
several benchmarks are analysed in Section 4, including the validation of the meothod for static conditions together
with dynamic results. Finally, the main conclusions of the paper are summarized in Section 5.
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2. Spatial Discretization

For a given transient analysis in a core reactor, usually, a static configuration of the reactor is considered as initial con-
dition. Associated with the time dependent neutron diffusion equation, (1) and (2), there is the generalized eigenvalue
problem

LΦ =
1
λ
MΦ . (3)

This problem is known as the Lambda Modes problem for a given configuration of the reactor core [6]. The fundamen-
tal eigenvalue (the largest one) is called the k-effective of the reactor core, and this eigenvalue and its corresponding
eigenfunction describe the steady state neutron distribution in the core. In this way, the calculation of the stationary
neutron flux distribution is the first step for any transient analysis. To solve both problems (1), (2) and (3), a spatial
discretization of the equations has to be selected. In this work, a high order Galerkin finite element method [25] is
used leading to an algebraic eigenvalue problem associated with the discretization of equation (3) with the following
block structure, (

L11 0
−L21 L22

)
Φ̃ =

1
λ

(
M11 M12

0 0

)
Φ̃ , (4)

where Φ̃ =
[
φ̃1, φ̃2

]T
are the algebraic vectors of weights associated with the fast and thermal neutron fluxes. The

matrices elements of the different blocks are given by

(L11)i j =

Nt∑
e=1

(
D1

∫
Ωe

~∇Ni~∇N j dV − D1

∫
Γe

Ni~∇N j d~S + (Σa1 + Σ12)
∫

Ωe

NiN j dV
)
, (5a)

(L21)i j =

Nt∑
e=1

Σ12

∫
Ωe

NiN j dV , (5b)

(L22)i j =

Nt∑
e=1

(
D2

∫
Ωe

~∇Ni~∇N j dV − D2

∫
Γe

Ni~∇N j d~S + Σa2

∫
Ωe

NiN j dV
)
, (5c)

(M11)i j =

Nt∑
e=1

νΣ f 1

∫
Ωe

NiN j dV , (5d)

(M12)i j =

Nt∑
e=1

νΣ f 2

∫
Ωe

NiN j dV , (5e)

where Ni is the prescribed shape function for the i-th node. For simplicity, the shape functions used are part of
Lagrange finite elements [25]. Ωe (e = 1, ...,Nt) are the reactor subdomains (cells) in which the reactor domain is
divided. In the same way, Γe are the corresponding subdomain surfaces which are part of the reactor frontier. More
details on the spatial discretization used can be found in [8].

To solve the algebraic eigenvalue problem (4) a Krylov-Schur method is used from the SLEPc library [12]. To
accelerate the computation, the generalized eigenvalue problem is reduced to an ordinary eigenvalue problem of the
form,

L−1
11

(
M11 + M12L−1

22 L21

)
φ̃1 = λφ̃1 , (6)

which is solved for the dominant eigenvalue (keff) and its corresponding eigenvector. In this way, for each matrix-
vector product it is necessary to solve two linear systems associated with L11 and L22, to avoid the calculation of their
inverse matrices. These systems are solved by means of an iterative scheme as the preconditioned Conjugate Gradient
method [26]. Particularly, a Cuthill-McKee reordering is performed to reduce the bandwidth of the matrices, together
with an incomplete Cholesky factorization is used for the preconditioning.

4



3. Time discretization

Once the spatial discretization has been selected, a discrete version of the time dependent neutron diffusion equation
is solved. Since the system of ordinary differential equations resulting from the discretization of the neutron diffusion
equations is stiff, implicit methods are necessary. Particularly, a first order backward method is used [14], needing
this method to solve a large system of linear equations for each time step.

Once the spatial discretization is performed, the semi-discrete two energy groups time dependent neutron diffusion
equation together with the neutron precursors concentration equations are of the form

[ṽ−1]
dΦ̃

dt
+ LΦ̃ = (1 − β)MΦ̃ +

K∑
k=1

λkXCk , (7)

P
dCk

dt
= βk (M11M21) Φ̃ − λkPCk , k = 1, . . . ,K , (8)

where L and M are the matrices obtained from the spatial discretization of operators L andM, whose elements are
given by equations (5). Matrix X and [ṽ−1] are defined as

X =

(
P
0

)
, [ṽ−1] =

(
P v−1

1 0
0 P v−1

2

)
,

where matrix P is the mass matrix of the spatial discretization, which appears due to the fact that the polynomial basis
used in the spatial discretization is not orthogonal. The matrix elements of P are given by

Pi j =

Nt∑
e=1

∫
Ωe

NiN jdV . (9)

The time discretization of the precursors equations (8), is done using a one-step implicit finite differences scheme. To
obtain this scheme, we make the change of function

PCk = e−λk tBk , (10)

obtaining
dBk

dt
= eλk tβk (M11M12) Φ̃(t) . (11)

Integrating between tn and t,

Bk(t) = Bn
k +

∫ t

tn
eλkτβk (M11M12) Φ̃(τ) dτ. (12)

Making use of the change (10), Cn+1
k can be expressed as

PCn+1
k = e−λk∆tn PCn

k + e−λk tn+1

∫ tn+1

tn
eλkτ βk (M11M12) Φ̃(τ) dτ . (13)

where ∆t = tn+1 − tn. The term (M11M12) Φ̃(t) inside the integral is approximated by its value at the instant tn+1
obtaining

PCn+1
k = PCn

k e−λk∆t +
βk

λk

(
1 − eλ∆t

) (
Mn+1

11 Mn+1
12

)
Φ̃n+1 . (14)

In the same way, Euler’s backward method is used in equation (7) obtaining,

[ṽ−1]
1
∆t

(
Φ̃n+1 − Φ̃n

)
+ Ln+1Φ̃n+1 = (1 − β)Mn+1Φ̃n+1 +

K∑
k=1

λkXCn+1
k . (15)
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Taking into account equation (14), equation (15) is rewritten as the system of linear equations

T n+1Φ̃n+1 = RnΦ̃n +

K∑
k=1

λke−λk∆tXCn
k = En , (16)

where the matrices are defined as,

T n+1 =
1
∆t

[v−1] + Ln+1 − âMn+1 ,

Rn =
1
∆t

[v−1] =
1
∆t

(
P v−1

1 0
0 P v−1

2

)
,

and the coefficient â is

â = 1 − β +

K∑
k=1

βk

(
1 − eλk∆t

)
.

This system of equations is large and sparse and has to be solved for each time step. As it was done in the eigenvalue
problem (6), the preconditioned GMRES [26] method has been chosen to solve these systems and the preconditioner
used has been the incomplete LU preconditioner.

3.1. Mesh Interpolation

Traditionally the time dependent neutron diffusion equation is solved using a spatial mesh that is fixed along all the
transient. As it has been already mentioned, the simulation of transients where the control rod banks move suffer
from the rod-cusping problem because averaged cross sections are used for the partially rodded nodes. In this work,
we propose the use of a spatial mesh that changes each time step following the control rod in such a way that we do
not have partially rodded nodes. This scheme requires the interpolation of the physical solutions of the equations,
which are continuous functions, from the old mesh in step n to the next mesh corresponding to step n + 1. The mesh
interpolation process consists of finding the solution in the new support point values corresponding to the new mesh
by polynomial interpolation of the values of the solution in the old mesh. To maintain the accuracy of the solution this
interpolation is done using a polynomial interpolation of the same degree as the degree used in the high order finite
element method used for the spatial discretization.

To formalise the method we use the superscript notation to refer to the time step number and the subscript notation to
the mesh number step. Then, Φn

m refers to the neutronic flux at time step n defined in the mesh m. The interpolation
process is implemented by means of a function f , and can be written as

Φn
m+1 = f (Φn

m) , (17)
Cn

k,m+1 = f (Cn
k,m) . (18)

Figure 3 shows an example of the neutron flux interpolation Φn(z) between two consecutive meshes m and m + 1. This
interpolation is similar to the one used in h-refined finite elements codes to interpolate from the coarse mesh to the
fine mesh and accelerate the convergence of solution in the fine mesh [9]. However in the moving mesh method, the
support points of the mesh are moved and not only coarse cells are subdivided into finer cells.

In the moving mesh interpolation, only physical quantities, which are continuous, can be interpolated adequately.
However, from equation (14) the obtained quantity is PCn

k and the physical magnitude needed for the interpolation
is Cn

k . To avoid the computationally expensive task of inverting matrix P, a mass lumping technique is considered to
obtain an approximation, P̂, of matrix P [25]. This procedure mainly consists of considering as matrix P̂ a diagonal
matrix whose elements are the result of adding all the elements of each row of matrix P. This is equivalent to calculate
the integrals involving polynomials up to order s approximately with a quadrature rule up to order s − 1 in the finite
element method [27].
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Figure 3: 1D Mesh interpolation example.

The inverse of the mass lumped matrix P̂ is a diagonal matrix calculated as

P̂−1
ii =

1∑Ne
e=1

(∑Ni
j=1

∫
Ωe

NiN jdV
) . (19)

In the usual fixed mesh scheme, it is not necessary to know the value of Cn
k because it is enough to obtain PCn

k for
each time step.

The steps necessary for the implementation of the moving mesh procedure are summarized in the scheme shown
in Figure 4. The computation starts with an eigenvalue computation to obtain the stationary configuration of the
reactor core, which is used as initial condition. Then, the dynamic calculation starts. First, the neutron precursors
concentration is solved in the initial mesh. Then the control rods and the mesh are moved and the neutronic flux and
the precursors distribution are interpolated to the new mesh. Then, the system associated with the numerical scheme
is solved obtaining the next flux distribution. This is clearly the most time consuming part of the computation. Finally,
the stopping criterion is checked and if it is not fulfilled the dynamic computation is repeated for the next time step.
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Figure 4: Scheme of the moving mesh time scheme.

4. Numerical Results

To study the performance of the moving mesh method proposed above, two benchmarks are studied. The first bench-
mark consists of a one dimensional problem where a control rod is ejected to a given velocity and then inserted back.
The second benchmark is a small 3D hexagonal reactor where also a rod ejection accident is studied.

In the two benchmarks, first, the spatial discretization is tested solving the critical configuration of the reactor. Then,
the time dependent problem is solved using the classical fixed mesh scheme and the proposed moving mesh scheme.

To compare the performance of the finite element method used for the spatial discretization, and to set the adequate
spatial discretization parameters, different errors have been employed, which are shown in Table 1. In this Table, Pwi

and Pw∗i are, respectively, the reference power and the computed power in the i-th cell [28] (cell averages), computed
as

Pwi = ER

(
Σ f 1φi1 + Σ f 2φi2

)
, (20)

where ER is the recoverable energy per fission which is assumed to be constant, Vi is the volume of the i-th cell and
Vt is the total volume of the reactor. keff is the reference dominant eigenvalue of the reactor and k∗eff

is the computed
eigenvalue. Similar errors are defined for the neutron fluxes.

Table 1: Different errors used for the spatial discretization.

Relative error εi = |Pwi − Pw∗i |/|Pwi|

Mean relative error ε̄ = 1
Vt

∑
i
εiVi

Maximum relative error εmax = max
i
|εi|

Eigenvalue error (pcm) ∆keff = 105 |keff − k∗eff
|
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4.1. Unidimensional problem

To validate the code a simple and small one-dimensional reactor is considered, which represents a simplified model
for a rod-ejection accident. This reactor consists of 12 cells composed of different materials. The reactor geometry is
defined in Figure 5 and the cross sections for the materials of each region are given in Table 2. Precursor parameters
are given in Table 3. Zero-current boundary conditions are imposed at the boundaries of the system.

The transient consists of removing the control rod from time 0.0 s to 4.0 s with a constant velocity of 25 cm/s.
Then the control rod is inserted again from 4.0 s to 10 s also with a constant velocity of 25 cm/s. All the transient
calculations are made using cubic polynomials in the finite element method. Reference results for the neutronic flux
and the keff of the problem are computed with the neutronic code PARCS [29], using a fixed mesh with 120 cells
where the rod-cusping problem should be eliminated.

The results obtained for the dominant eigenvalue keff using different polynomial degrees for the finite element method
(Degree of FE) are shown in Table 4. In this Table, also the number of degrees of freedom (DoF) are shown for the
reduced eigenvalue problem (6) in order to have an idea of the size of the problem solved. Also the mean relative
errors and maximum relative errors per cell for the neutronic flux and power are shown for the initial configuration
for the reactor.

Reflector

Rodded 

Unrodded 

200 cm

100 cm

t=0.0s  

25 cm

150 cm

25 cm

25 cm

25 cm

t=4.0s

50 cm

t=10.0s

25 cm

25 cm

200 cm

50 cm

Figure 5: Geometry of the 1D reactor problem.

Table 2: Cross sections of the materials of the 1D reactor.

Fuel Group Dg Σag νΣ f g Σ f g Σ12
(cm) (1/cm) (1/cm) (1/cm) (1/cm)

Unrodded Fuel 1 1.40343 1.17659e-2 5.62285e-3 2.20503e-3 1.60795e-2
2 0.32886 1.07186e-1 1.45865e-1 5.90546e-2

Rodded Fuel 1 1.40343 1.17659e-2 5.60285e-3 2.19720e-3 1.60795e-2
2 0.32886 1.07186e-1 1.45403e-1 5.88676e-2

Reflector 1 0.93344 2.81676e-3 0.00000e+0 0.00000e+0 1.08805e-2
2 0.95793 8.87200e-2 0.00000e+0 0.00000e+0

Figure 6 shows a detail of the evolution of the normalized mean power,

P̄w(t) =

∫
Ω

(
Σ f 1φ1(t) + Σ f 2φ2(t)

)
dV∫

Ω

(
Σ f 1φ1(0) + Σ f 2φ2(0)

)
dV

, (21)
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Table 3: Neutron precursors parameters for the reactor.

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6
βi 0.000247 0.0013845 0.001222 0.026455 0.000832 0.000169

λi (1/s) 0.0127 0.0317 0.115 0.311 1.4 3.87
v1 = 1.27 × 107 cm/s v2 = 2.5 × 105 cm/s β = 0.0065

Table 4: Dominant eigenvalue and power distribution results for the 1D reactor.

Degree DoF keff ∆keff Power Fast Flux Thermal Flux
of FE (pcm) ε̄ (%) εmax(%) ε̄ (%) εmax(%) ε̄ (%) εmax(%)

1 13 0.978430 38.1 2.98 9.84 7.17 29.2 7.64 31.62
2 25 0.978757 5.4 0.49 1.54 1.02 3.85 0.62 1.55
3 37 0.978801 1.0 0.10 0.38 0.16 0.53 0.10 0.41
PARCS 0.978811

in the reactor during the transient computed using a classical fixed mesh scheme with a mesh of 12 nodes, the moving
mesh scheme presented in this work and the reference values. As can be seen in this Figure, the fixed mesh computa-
tions present some unphysical jumps in the normalized mean power, mainly when the control rod is in the middle of
a cell. However the rod-cusping problem is mitigated with the moving mesh scheme reducing the mean error in the
power about three times, from 0.3% to 0.13%. Moreover, the relative errors for the reactor mean power for each one
of the time steps obtained with the fixed mesh scheme and the moving mesh scheme are shown in Figure 7. Figure 8
shows the errors in the computation of the dominant eigenvalue (∆keff) solving an static problem for all the time steps
of the transient. As it can be seen in these Figures, the errors for the keff and the reactor power have very similar
behaviours.

3 3.5 4 4.5 5 5.5 6 6.5 7
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Figure 6: Normalized power evolution for the 1D reactor from 3s to 7s.
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Figure 7: Comparative of errors over time in 1D reactor.

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

t (s)

E
rr

o
r 
in

 k
ef

f 
(p

cm
)

Fixed Mesh
Moving Mesh

Figure 8: Errors in keff during the transient.

4.2. Three dimensional problem

To test the performance of the method in 3D reactors, a small reactor that presents a large rod-cusping problem is
studied [30]. Figure 9 shows the layout map of the core, for which the hexagonal lattice pitch is 23.6 cm. The material
cross sections of the different materials composing the reactor are given in Table 5. The neutron precursors data used
in this problem are given in Table 3.

Albedo boundary conditions are applied on the outer edge of the reflector cells. The extrapolation length is set to
2 × Dg. The height of the reactor is 300 cm and 12 axial planes are considered, each one of 25 cm.
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As the Deal.II library cannot handle hexagonal finite elements, each hexagon is subdivided into 3 quadrilaterals with
the help of the mesh generation code Gmsh [31], as it is shown in Figure 10. Thus, the used mesh for this reactor has
a total 684 cells.

The transient simulates a rod ejection accident as follows. Starting from the initial configuration, see Figure 9, the
rod 23 begins to be removed until it is completely removed at time t = 0.15s remaining only the unrodded fuel. From
t = 0.15s until t = 1.0s nothing happens. Then, the security system acts inserting the rods 22 at constant velocity of
25 cm/s until the bottom of the reactor is reached at t = 9.0s.

(a) Core definition.

Reflector

UnRodded 

Rodded 

150 cm

100 cm

25 cm

25 cm

2322

25 cm

200 cm

50 cm

25 cm 25 cm

24

25 cm

200 cm

50 cm

(b) Rods definition.

Figure 9: Small 3D reactor geometry.

Gmsh

Figure 10: Hexadric cells transformed into quadrilaterals with Gmsh.

Table 5: Cross section definition for the small 3D reactor.

Fuel Group Dg Σag νΣ f g Σ f g Σ12
(cm) (1/cm) (1/cm) (1/cm) (1/cm)

Unrodded Fuel 1 1.40343 1.17659e-2 5.62285e-3 2.20504e-3 1.60795e-2
2 0.32886 1.07186e-1 1.45865e-1 6.00267e-2

Rodded Fuel 1 1.36764 1.39118e-2 5.37719e-3 2.10870e-3 1.35108e-2
2 0.25108 9.96214e-2 1.15403e-1 4.74909e-2

Reflector 1 0.93344 2.81676e-3 0.00000e+0 0.00000e+0 1.08805e-2
2 0.95793 8.87200e-2 0.00000e+0 0.00000e+0
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The results obtained for the dominant eigenvalue (keff) using different polynomial degrees for the finite element method
(Degree of FE) are shown in Table 6. In this Table, the number of degrees of freedom (DoF) of the reduced eigenvalue
problem are also shown together with the mean relative errors and maximum relative errors per cell in the neutronic
flux and power for the initial configuration of the reactor.

Table 6: Critical eigenvalue and power distribution results for the small 3D reactor.

Degree DoF keff ∆keff Power Fast Flux Thermal Flux
of FE (pcm) ε̄ (%) εmax(%) ε̄ (%) εmax(%) ε̄ (%) εmax(%)

1 949 0.801287 1539.0 6.38 17.70 15.49 38.13 16.34 36.45
2 6475 0.815211 146.4 0.97 0.84 1.98 3.40 1.14 3.26
3 20683 0.816024 65.3 0.15 0.35 0.17 0.66 0.23 0.81

PARCS 0.816677

Figure 11 shows the time evolution of the normalized mean power of the reactor in the first 0.15 seconds. In this
Figure, the results obtained with the moving mesh scheme proposed in this work are compared with the results
obtained with the classical fixed mesh scheme. The reactor is solved with a fixed mesh scheme using 120 axial planes
where the rod-cusping problem is very small and the results of this computation are taken as a reference. All transient
calculations are made using cubic polynomials in the finite element method.

The relative errors for the reactor mean power for each one of the time steps obtained with the fixed mesh scheme and
the moving mesh scheme are shown in Figure 12. Thus, the moving mesh scheme reduces the mean error from 5.7%
to 0.50%. As it can be seen in these Figures the moving mesh scheme produces better results than the fixed mesh
scheme when a small number of axial planes are considered for the spatial discretization.
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Figure 11: Normalized mean power evolution for the small 3D reactor.
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Figure 12: Normalized mean power error for the small 3D reactor.

5. Conclusions

Many transients in nuclear power reactors involve the movement of the control rod banks. For the simulation of this
kind of transients with the classical methods, it is necessary to define equivalent material properties corresponding to
partially inserted cells during the movement of the control rods. Volume averaged techniques are used to define this
equivalent cross-sections, but this procedure leads to unphysical behaviour of some magnitudes during the simulation
when a small number of axial planes are used in the spatial discretization and this problem is known as the rod cusping
effect. To avoid it, a new method based on a high-order finite element method is proposed in this work. In this new
method, the spatial mesh is moved together with the control rods in such a way that there is no partially inserted
cells. The solutions of the physical magnitudes are transferred between different spatial meshes using a polynomial
interpolation. To study the performance of the moving mesh scheme, two benchmark problems have been analysed.
A one-dimensional reactor problem and a small three-dimensional reactor. The spatial discretization was validated
solving the stationary state of the reactor. Cubic polynomials were used in the finite element method as a compromise
between accuracy and problem size. Also, it is shown in both problems studied that the moving mesh method has a
better performance that the traditional fixed mesh scheme when a small number of axial cells are used. The moving
mesh scheme permits to use a coarser discretization and reduces the computational effort.
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[13] G. Verdú, D. Ginestar, V. Vidal, J. Muñoz-Cobo, A consistent multidimensional nodal method for transient calculations, Annals of Nuclear

Energy 22 (6) (1995) 395 – 410.
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[21] S. González-Pintor, G. Verdú, D. Ginestar, Correction of the rod cusping effect for a high order finite element method, in: Proceedings of

the International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2011). Rio de
Janeiro, RJ, Brazil, May 8-12, 2011, on CD-ROM, Latin American Section (LAS) / American Nuclear Society (ANS), 2011.

[22] A. Yamamoto, A simple and efficient control rod cusping model for three-dimensional pin-by-pin core calculations, Nuclear Technology 145
(2004) 11–17.

[23] D. Gilbert, J. Roman, W. J. Garland, W. Poehlman, Simulating control rod and fuel assembly motion using moving meshes, Annals of Nuclear
Energy 35 (2) (2008) 291 – 303.
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