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Abstract 

BACKGROUND: New directives on sustainable use of pesticides have encouraged 

research on efficient alternative pest control methods. In the case of the California Red 

Scale (CRS), Aonidiella aurantii (Maskell), this imperative, along with the many 5 

difficulties in controlling this pest, have led to the investigation of new approaches. 

Previously developed mating disruption (MD) dispensers, together with the 

augmentative releases of the parasitoid Aphytis melinus DeBach, are here considered as 

a combined strategy for use against A. aurantii. 

RESULTS: Efficacy of MD was demonstrated by a mean reduction of 80% in CRS 10 

male catches and a mean fruit damage reduction of 83% compared with the control. A 

delay in the development of A. aurantii instars was observed in the MD plot. This delay 

increased the period of exposure of the susceptible instars to natural enemies that 

resulted in higher predation and parasitism levels in the MD plot. Under laboratory 

conditions, A. melinus mating behaviour and effects on A. aurantii were not 15 

significantly altered in a CRS pheromone-saturated environment. 

CONCLUSION: Mating disruption pheromone did not affect the behaviour or level of 

parasitism by A. melinus or the incidence of other generalist predators. Therefore, A. 

aurantii pheromone appears to be compatible with augmentative releases and biological 

control, making its use a good strategy for CRS management. 20 

 

Keywords: California Red Scale; pheromone; biological control; Aphytis melinus; 

parasitism; mesoporous dispensers 
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1 INTRODUCTION 

Worldwide, citrus groves are seriously affected by diaspidid pests, specifically by the 

California Red Scale (CRS), Aonidiella aurantii (Maskell) (Hemiptera: Diaspididae). 

This species is listed as one of the most important citrus pests, causing severe economic 5 

damage and crop losses.
1-3

 Damage is inflicted when the insects suck the sap from plant 

organs. In extreme cases, an infestation can even kill the tree;
4
 however, given the 

CRS’s preference for fruit
5
 and the fact that the presence of scales on fresh fruit 

considerably reduces market value,
6-8

 control methods are addressed to prevent CRS 

establishment on the fruit. 10 

The CRS life cycle has been extensively studied.
2,9,10

 Females can give birth to 100 to 

150 active crawlers, which emerge from under the female’s scale cover in 1-2 days, 

depending on the temperature. These crawlers, the only immature instars capable of 

movement, travel short distances and settle onto twigs, leaves or fruits.
11

 In the second 

instar, females and males begin to develop differently. Adult male emergence coincides 15 

with the development of third instar females; the insects then mate and produce the next 

generation. Virgin females attract males by releasing a pheromone, allowing males 

either to crawl to nearby females or to fly to other trees.
2
 The production of a sex 

pheromone, a mixture of 3-methyl-6-isopropenyl-9-decen-1-yl acetate (I) and (Z)-3-

methyl-6-isopropenyl-3,9-decadien-1-yl acetate (II), was demonstrated in CRS years 20 

before the description of their chemical structures.
12

  Since their description, synthetic 

sex pheromone traps have been widely employed as a tool for detecting CRS 

populations.
2,10,13-15
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Currently, integrated control of CRS in citrus is based on the application of pesticides at 

the pest’s point of maximum chemical sensitivity to keep pest populations below 

economically damaging levels.
3,6,8

 Chemical control, however, poses serious problems: 

(1) it is not always efficient,
8
 (2) it can negatively affect natural enemies,

16,17
 (3) it can 

generate chemical resistance,
18,19

 (4) it can cause serious marketing problems because of 5 

pesticide residues, (5) it can produce important environmental and sustainability 

problems, and (6) it increases production costs. The EU Directive on sustainable use of 

pesticides (Directive 2009/128/EC) enforces the implementation of efficient alternative 

pest control methods. We therefore investigated alternative CRS management methods 

to ensure sustainability from both the socio-economic and the environmental 10 

perspective. To this end, two different approaches to biotechnological control are 

currently being implemented. First, a new mating disruption mesoporous dispenser for 

CRS has been developed. The second approach involves the augmentation and 

conservation of the most effective natural enemy of A. aurantii: the parasitoid Aphytis 

melinus DeBach (Hymenoptera: Aphelinidae). 15 

Semiochemical-based pest management programs have increasingly been used as 

environmentally friendly methods to control major insect pests.
20

 Such programs 

include the use of sex pheromones for monitoring, mass trapping and mating disruption 

techniques. Mating disruption is an effective tool to control infestations of Lepidoptera 

species.
21-25

 In the late 1980s, some researchers attempted to effect CRS mating 20 

disruption using rubber pheromone dispensers, but the effectiveness of the technique 

was not clearly demonstrated;
26,27

 however, a new mating disruption mesoporous 

dispenser for CRS has proved to be the first effective mating disruption treatment 

against a diaspidid pest.
28,29
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The ectoparasitoids Aphytis chrysomphali Mercet (Hymenoptera: Aphelinidae) and A. 

melinus are the principal natural enemies of CRS in the Mediterranean basin.
7,30-33

 The 

level of natural parasitism on A. aurantii is rarely higher than 40%
7,30,31

 a value that is 

unfortunately insufficient to control the pest effectively. Augmentative releases of A. 

melinus are therefore being implemented as an additional control. Apart from the 5 

parasitoids, a set of endemic A. aurantii predators have also been reported, although 

their importance seems to be low in comparison to the parasitoids.
30,33

 

The effectiveness of mating disruption in managing CRS raises the question of possible 

unintended effects on natural enemies. This study focuses on the most important natural 

enemy of CRS, the parasitoid A. melinus. Additionally, the influence of mating 10 

disruption treatment on mortality caused by parasitoids (mainly A. melinus) and 

generalist predators was measured during one season under field conditions. These data 

will form a basis for considering the combined use of mating disruption, augmentative 

releases of parasitoids and the conservation of natural enemies. 

 15 

2 MATERIALS AND METHODS 

2.1 Mesoporous dispenser and device 

The CRS mating disruption pheromone (MD) was released in the field by installing the 

mesoporous pheromone dispensers described by Vacas et al.
28

 Each dispenser consisted 

of cylindrical tablets 9 mm in diameter and 10 mm in length. The mean initial load of 20 

the dispensers was 69 mg (a.i.) of the CRS sex pheromone. The formulation contained 

the diastereomeric mixture (3S,6R and 3S,6S) of the 3-methyl-6-isopropenyl-9-decen-1-

yl acetate (74% purity). This mixture was supplied by Ecología y Protección Agrícola 

S.L. (Valencia, Spain). 
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Dispensers were hung inside 50×90 mm polypropylene (PP) baskets with hangers at the 

top for attachment to branches; baskets were supplied by Ecología y Protección 

Agrícola S.L. The pheromone was released through a 6x5 mm mesh. 

2.2 Effects of MD on A. melinus in the laboratory  

In order to evaluate the influence of the A. aurantii mating disruption pheromone on A. 5 

melinus, two experiments were conducted. The two studies addressed, respectively, the 

effects of MD on A. melinus mating behaviour and the effects on the parasitism efficacy 

of A. melinus on A. aurantii susceptible instars. Unless otherwise stated, environmental 

conditions in laboratory experiments were 25  1ºC, 60  10% RH and a photoperiod of 

16:8 h (L:D). 10 

2.2.1 Effects on A. melinus mating behaviour 

Pupae of A. melinus reared on Aspidiotus nerii Bouché (Hemiptera: Diaspididae) on 

pumpkins were obtained from the commercial mass rearing facility Koppert Biological 

Systems S.L. (Águilas, Murcia, Spain). Pupae were removed from their hosts and 

placed individually in 4.5 cm high, 1 cm diameter glass vials. A small drop of honey 15 

was provided as a food source, and the vials were sealed with a piece of cotton. The 

adult parasitoids were sexed after emergence. Adults were kept isolated and held for 

two days in these vials under the conditions described above. Males and females were 

then paired to observe their mating behaviour. Each glass vial containing a wasp was 

lightly tapped to introduce the pairs to new vials without honey. The vials were then 20 

sealed with plastic lids. This experiment included two treatments, one with MD (n=20) 

and the control, without pheromone treatment (n=19). In the MD treatment, a 

mesoporous pheromone dispenser was adjusted to a 0.9 cm diameter hole in the vial lid; 

this hole was covered with a mesh in the control treatment. Mating behaviours were 
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recorded by observation under a binocular stereoscope. Each observation ended when 

mating took place or after 30 min without mating. Time of pre-copulations and 

copulations were recorded in seconds. The number of contacts made before copulation 

and the number of contacts in non-mating couples were also registered.  

2.2.2 Effects on A. melinus parasitism. 5 

Adults were obtained following the same protocol described above. After the newly 

emerged parasitoids were sexed, pairs were formed and left undisturbed for two days. 

Two mating pairs were then introduced per experimental unit. Each experimental unit 

consisted of a 30x20x23 cm plastic cage with a tight-fitting lid with a gauze-covered 

20x8 cm aperture. The two lateral sides of the cage had two concentric mesh-covered 10 

circle holes 30 cm in diameter for ventilation. 

Two lemons, each containing 35 third-instar A. aurantii scales, were introduced to each 

cage. The infested lemons were obtained from the A. aurantii colony at the IVIA.
7
 A 

light streak of honey was provided on the side of the cage as a food source for the 

parasitoids. Two treatments (MD and control), each with six replicates, were conducted. 15 

For the MD treatment a mesoporous pheromone dispenser as described above was 

placed inside each cage. Couples were removed after three days of exposure. After six 

days, parasitised scales, scales showing host feeding symptoms and healthy scales were 

counted.  

2.3 Effects of MD on A. aurantii and the effectiveness of its natural enemies 20 

2.3.1 Experimental site 

The field trial was conducted in a 2 ha commercial grove of 5 year-old clementines 

Citrus reticulata (Blanco) ‘Esbal’ located in La Pobla de Vallbona (Valencia, Spain) 
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(UTM: X713444 Y4390392; Z144 m altitude), with trees spaced 6.5 by 4 m. This grove 

was surrounded by other citrus and olive groves. 

In order to test the efficacy of the mating disruption treatment, the citrus grove was 

equally divided into two plots, as follows: 1 ha mating disruption plot (MD plot), with 

MD applied at a dose of 26 g ha
-1

, and a 1 ha control plot. MD devices were hung at 5 

least 1.8 m high inside the tree canopy, at a density of one dispenser per tree (about 400 

dispensers ha
-1

). Pheromone dispensers were installed on 24 March 2009 and never 

replaced. 

Both plots received two mineral spray oil treatments at a concentration of 1.5% 

(Volck® oil emulsion, Agrodan S.A, Madrid, Spain) on 11 March 2009, against mites 10 

and scales, and on 2 June 2009, against the peak of first-generation A. aurantii crawlers. 

Additionally, a third oil application was made in the control treatment on 24 September 

2009. Oil applications were made with a low-profile air-blast sprayer calibrated to 

deliver 2500-3000 L ha
-1

 at 150 psi with the tractor driven at 2.5 km h
-1

. 

Augmentative releases of the parasitoid A. melinus were conducted during 2009 in both 15 

plots. Each plot received 220,000 wasps divided into 11 releases from the end of 

February until the beginning of July. A. melinus adults were directly obtained from the 

commercial mass rearing facility of Koppert Biological Systems S.L. 

2.3.2 Evaluations 

In order to evaluate the efficacy of mating disruption, three commercial white sticky 20 

pheromone traps (PHEROCON
®
 V Trap), (Trécé, Adair, OK, USA) were placed in 

each plot, at least 30 m apart. Sticky traps were replaced weekly, and the PHEROCON
®

 

monitoring lures (Trécé, Oklahoma, USA) were replaced every 42 days. The numbers 

of CRS male and A. melinus trapped in the plot treated with pheromone and the plot 
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without pheromone dispensers were compared. Fruit damage was assessed on 22 

September 2009, just before harvest. Twenty trees per plot were randomly selected and 

10 fruits per tree (8 outer and 2 inner) were evaluated for crop damage. The number of 

scales on each fruit was recorded and the percentage of fruit with >3, >5 and >10 scales 

was calculated. 5 

Three shoot samplings were conducted to estimate the CRS population structure on 4 

May, 6 August and 9 September 2009. A. aurantii-infested shoots were randomly 

collected from each plot and taken to the laboratory, where leaves and twigs were 

removed. Shoots of approximately 10 cm were examined under a binocular stereoscope. 

From each shoot, irrespective of the number of scales present, only 10 individuals were 10 

checked to standardise the sampling. Two hundred and fifty scales were evaluated, and 

counting continued until 60 mature females were counted or until 500 scales were 

examined. The number of A. aurantii healthy scales, parasitised scales, scales showing 

host feeding symptoms and preyed-upon scales were recorded. Additionally, on 9 

September 2009, fruits were sampled in each plot following the methodology 15 

previously described. Numbers of parasitoid pupae and exuviae were also determined. 

2.4 Data analysis 

In the A. melinus mating behaviour experiment, significance was assessed using 

Student’s t-test (P<0.05). Where appropriate, P-values were calculated using the Fisher 

exact probability test. In the experiment evaluating the effects of MD on parasitism 20 

under laboratory conditions, differences between the two treatments assayed were 

analysed using Student’s t-test (P<0.05). 

In the field trial, to ascertain the percent reduction in males captured in pheromone traps 

between MD and control plots, the mating disruption index (MDI) was calculated 
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according to the following formula: MDI = (1 - (x/y)) *100, where x is the number of 

males captured in MD plots and y is the number of males captured in control plots. MDI 

for each flight was the average of the weekly MDI during the flight period. Fruit 

damage and CRS male captures were evaluated for significance by a Student’s t-test 

(P<0.05) (SPSS, 1999). A paired data t-test was employed to compare the weekly 5 

average of A. melinus caught in CRS monitoring traps between MD and control plots. 

3 RESULTS 

3.1 Effects of MD on A. melinus in the laboratory 

3.1.1 Influence on mating behaviour 

There was no significant difference in mating behaviour of A. melinus when pairs were 10 

subjected to CRS pheromone-saturated environment or to a control treatment (Table 1). 

In the treatment group, 40% of pairs were able to mate, versus 63.2% in the control 

group. For the mated pairs, the number of contacts taking place before copulation, the 

time passed before copulations and the duration of copulations were not significantly 

different in either environment. Similarly, the number of contacts in non-mating couples 15 

was not statistically different for both treatments. 

3.1.2 Influence on A. melinus parasitism 

The CRS pheromone-saturated environment had no measurable effect on the capacity of 

A. melinus to parasitise and feed on A. aurantii (Table 2). The mean numbers of 

parasitised A. aurantii third-instar nymphs and A. melinus progeny were not 20 

significantly different in either environment. 

3.2 Effects of MD on A. aurantii and the effectiveness of its natural enemies 



11 
 

3.2.1 Effects on A. aurantii. 

The population dynamics of CRS in the field are depicted in Figure 1. According to the 

trap captures in the control treatment, an initial minor flight took place in May, with a 

maximum of 0.5 males per trap per day (MTD). The second flight began in early June, 

with up to 2 MTD. Catches from the third flight began on 6 August, reaching the 5 

maximum of 12 MTD in the first week of September. A partial fourth flight followed in 

October at the end of the trial. 

Data from the first flight were disregarded, as there was not enough information to 

study statistical differences between plots. Measurements from the following weeks 

show that pheromone trap catches of CRS males in the MD plot were low throughout 10 

the entire season and differed significantly from catches obtained in the control plot (2
nd

 

flight: t15= 3.855, P = 0.002; 3
rd

 flight: t22= 4.419, P< 0.001). These data indicate that a 

male disruption effect was achieved with the mesoporous dispensers. MDI values 

calculated for 2
nd

 and 3
rd

 flights confirmed that MD treatment reduced CRS male 

catches by 73.8% and 87.3% , respectively, compared with the control plot. 15 

The fruit damage assessment showed that the percentage of injured fruit was 

significantly reduced in the MD plot compared with the control plot (Figure 2) for all of 

the studied thresholds (>3 scales: t39= 8.178, P < 0.001; >5 scales: t39= 2.885, P= 0.006; 

>10 scales: t39= 3.286, P= 0.002). Only 2% of fruits in the MD plot had more than 10 

scales on their surface, indicating an 87% damage reduction compared with the control 20 

plot. If the strictest threshold is considered, MD treatment reduced the number of 

attacked fruits by 83% when compared with the control plot. 

On May 4, 1.5 months after the installation of the mesoporous dispensers in the field, 

there was no significant difference in the population structure of A. aurantii between the 
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two plots (Figure 3a). However, on August 6, the percentage of first nymphal instars 

was significantly higher in the MD plot than in the control plot (F= 6.931; P= 0.006), 

indicating a slight delay in the development of A. aurantii instars in the MD plot (Figure 

3b). Similarly, the proportion of third-instar nymphs was higher in the control (F= 

3.748; P= 0.038). This delay was more evident on the third sampling date, 9 September 5 

(Figure 3c), when the number of gravid females was also lower in the MD plot (F= 

17.438; P< 0.001). The same pattern was observed in the fruit sampling (Figure 4), in 

which the proportions of first-instar nymphs were significantly higher (F= 22.965; P< 

0.001) and numbers of third-instars and gravid females were significantly lower in the 

MD plot than in the control plot (F= 8.084; P= 0.003 and F= 4.027; P= 0.035, 10 

respectively). 

3.2.2 Effects of MD on natural enemies. 

Differences in causes of A. aurantii mortality were observed for the MD plot in 

comparison to the control treatment (Table 3). Parasitism and predation were 

significantly higher in the MD plot, resulting in a decrease in the number of healthy 15 

scales found. A similar trend was observed in the fruit, although the differences were 

not significant. A. melinus was the only parasitoid species observed (n= 201). 

Catches of A. melinus in CRS monitoring traps of MD plot were not significantly 

different from those obtained in the control plot (paired data t-test: t= 0.89, P= 0.39) 

(Figure 5).  20 

 

4 DISCUSSION 
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An integrated strategy for managing CRS is essential because of the variety of 

difficulties involved in A. aurantii control. Methods such as MD that are based on 

pheromones appear to be good alternatives to conventional insecticide sprays,
28,29

 but 

attention must be paid to potential effects on beneficial insects. This study provides 

information on the effectiveness and ecological safety of the combined use of MD, 5 

augmentative releases of parasitoids and conservation of natural enemies. 

Since the discovery of the CRS sex pheromone, A. aurantii has become a subject of 

studies on the application of pheromone-based techniques, first in monitoring and 

detection,
 10, 14, 34

 and later in MD research.
26-29

 This work further confirms the efficacy 

of MD in controlling CRS: the main male flights were reduced by 73% and 87% when 10 

compared with the population recorded in a control plot. This inhibition ultimately 

resulted in 83% damage reduction using a fruit damage threshold of more than three 

surface scales. The mortality caused by parasitoids (mainly A. melinus) and generalist 

predators in the MD plot was the same as or higher than that in the control plot, 

suggesting that pheromones do not affect the behaviour of beneficial insects under field 15 

conditions. 

The hypothesis that the CRS sex pheromone may attract Aphytis sp. was first raised by 

Sternlicht in 1973,
35

 after finding positive responses both in laboratory and field tests. 

Later tests by Morgan and Hare found no evidence of host-independent orientation of 

Aphytis sp. towards the female sex pheromone of CRS.
36

 This finding is consistent with 20 

the results of the field trial reported here, in which A. melinus catches were not 

influenced by the CRS MD environment. Likewise, complementary laboratory tests 

showed that a CRS pheromone-saturated environment had no influence on A. melinus 

mating behaviour and efficacy. Nevertheless, from our field experiment it is not 

possible to conclude whether long-range effects of CRS sex pheromone might influence 25 
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(positively or negatively) mate finding in A. melinus. In any case, Bernal and Luck 

found that A. melinus males searching on substrates rely on a pheromone trail to locate 

mates,
37

 a mechanism that is not vulnerable to interference from the A. aurantii sex 

pheromone  

The objective of this work was to determine the influence of the CRS MD environment 5 

on the CRS instars susceptible to A. melinus, rather than to evaluate the role of the 

pheromone as a kairomone for Aphytis sp. For this reason, the population structure of A. 

aurantii was measured in both MD and control plots. As seen in the results, MD 

treatment delayed the development of immature A. aurantii, resulting in prolonged 

vulnerability to natural enemies. Accordingly, stage-specific mortality from natural 10 

enemies increased in the treated environment. This shift in the relative abundance of 

CRS immature stages in the field could partly explain the increase in the number of 

parasitised and preyed-upon A. aurantii. These conclusions should encourage future 

research on this pheromone’s effects on the A. aurantii life cycle; which may have 

practical implications for the control of this pest. 15 

In conclusion, this work confirms the compatibility of MD and biological control 

techniques. Such techniques could prove to be useful tools in Integrated Pest 

Management programs relying on pesticide-free and environmentally friendly control 

methods. 

 20 
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Table 1. Effect of California red scale pheromone on Aphytis melinus mating behaviour 

Behavioural variable MD  Control Statistical test 

Successful matings (%) 40 (n=20) a  63.2 (n=19) a F= 2.038 P = 0.205 

Contacts before copulation
a
 2.4 ± 0.6 a  2.7 ± 0.7 a t18= 0.33; P = 0.75 

Contacts in non-mating 

couples 
9.8 ± 2.8 a  15.3 ± 2.2 a t17= 1.33.; P = 0.20 

Time before mating (s) 6.6 ± 3.1 a  8.92 ± 2.1 a t18= 0.63; P = 0.54 

Duration of mating (s) 3.9 ± 0.6 a  3.6 ± 0.3 a t18= 0.51; P = 0.61 

Within a row, means followed by the same letter are not significantly different from 

each other (P<0.05). 

 5 
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Table 2. Effect of California red scale pheromone on Aphytis melinus feeding and 

parasitisation of Aonidiella aurantii 

Variable MD  Control Statistical test 

No. offered 68.7 ± 1.4 a 67.1 ± 1.0 a t13= 0.940; P=0.365 

No. Alive 44.3 ± 6.0 a 47.0 ± 6.0 a t13= 0.301; P=0.768 

No. Parasitism 8.3 ± 3.8 a 4.2 ± 2.0 a t13= 1.042; P=0.317 

No. Host feeding 4.0 ± 1.0 a 5.2 ± 1.6 a t13= 0.557; P=0.587 

No. Death 12.0 ± 2.9 a 10.6 ± 4.0 a t13= 0.267; P=0.794 

A. melinus Progeny 12.0 ± 6.0 a 6.6 ± 3.1 a t13= 0.892; P=0.389 

Mean ± SE of living, parasitised, fed-on and dead third-instar nymphs of A. aurantii  

and mean ± SE of A. melinus progeny, when 70 susceptible instars of A. aurantii were 5 

offered to two pairs of A. melinus over 3 days in the MD- saturated environment and 

control treatments. Within a row, means followed by the same letter are not 

significantly different from each other (P<0.05). 
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Table 3. Percentage of mortality caused by the natural enemies of A. aurantii, as found 

on shoots and fruits under field conditions 

Mortality MD Control  

factor Number/n Percentage Number/n Percentage P value 

Shoot 

Alive 218/335 65.1 b 141/182 77.5 a 0.002 

Parasitised 87/335 26.0 b 34/182 18.7 a 0.036 

Host feeding 1/335 0.3 a 0/182 0.0 a 0.647 

Preyed-upon 29/335 8.7 b 7/182 3.8 a 0.027 

Fruit 

Alive 115/168 68.5 a 135/179 75.4 a 0.093 

Parasitised 51/168 30.4 a 42/179 23.5 a 0.092 

Host feeding 0/168 0.0 a 2/179 1.1 a 0.265 

Preyed-upon 2/168 1.2 a 0/179 0.0 a 0.234 

 

For each mortality factor and treatment, values followed by the same letter are not 5 

significantly different (P-values calculated using the Fisher exact probability test, 

P<0.05). 
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Figure 1. Male CRS catches per trap per day (MTD) in monitoring sticky traps, for the 

mating disruption plot (MD) and the control plot receiving oil sprays. 
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Figure 2. Mean percentage of damaged fruit assessed just before harvest, according to 

three damage thresholds (> 3,> 5 or >10 scales per fruit) observed in MD and control 

plots. Bars labelled with the same letter for each threshold do not differ significantly 

(Student’s t-test, P<0.05). 5 
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Figure 3. Population structure of A. aurantii on shoots observed in different months: a) 

4 May, b) 6 August and c) 9 September. The stages recorded were nymphal instars 1, 2 

and 3 (N1, N2 and N3), gravid females (GF), gravid females with crawlers (GFC), male 

prepupae (PPM) and male pupae (PM). Bars labelled with the same letter for each stage 5 

are not significantly different (Fisher exact probability test, P<0.05). 
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Figure 4. Population structure of A. aurantii on fruit, observed September 9. The stages 

recorded were nymphal instars 1, 2 and 3 (N1, N2 and N3), gravid females (GF), gravid 

females with crawlers (GFC), male prepupae (PPM) and male pupae (PM). Bars 5 

labelled with the same letter for each stage are not significantly different (Fisher exact 

probability test, P<0.05). 
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Figure 5. Aphytis melinus catches per trap per day (AmTD) in CRS monitoring sticky 

traps, for the mating disruption plot (MD) and the control plot. 

 


