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(n + 1)-tensor norms of Lapresté’s type

J. A. Lépez Molina

Abstract

We study an (n + 1)-tensor norm o, extending to (n + 1)-fold tensor
products the classical one of Lapresté in the case n = 1. We characterize the
maps of the minimal and the maximal multilinear operator ideals related to
ay in the sense of Defant and Floret. As an application we give a complete
description of the reflexivity of the ay-tensor product (®ji11 0 ).

1 Introduction

In [14] Pietsch proposed building a systematic theory of ideals of multilinear
mappings between Banach spaces, similar to the already well-developed one regard-
ing linear maps, as a first step to study ideals of more general non linear operators.
Since then several classes of multilinear operators more or less related to classical
absolutely p-summing operators has been studied although without to deal with
aspects derived from a general organized theory.

Having in mind the close connection existing in linear case between problems of
this kind and tensor products (see [2] for a systematic survey of the actual state of
the art), in the present setting it is expected an analogous connection with multiple
tensor products. However a systematic study of this approach has not been initiated
until the works [4] and [5] of Floret, mainly motivated by the potential applications
of the new theory to infinite holomorphy. In this way, classical notions of maximal
operator ideals and its associated a-tensor norm, dual tensor norm o’ and the related
a-nuclear and a-integral operators can be extended to the framework of multilinear
operator ideals and multiple tensor products.

However, there are few concrete examples of multi-tensor norms to whose the
general concepts of the theory have been applied and checked. The purpose of this

paper is to study an (n + 1)-tensor norm «, on tensor products ®§Lj E;, 1 <n,
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2Key words: (n + 1)-fold tensor products, a,-nuclear and ay-integral n-linear operators, r-
dominated n-linear operators, ultraproducts.



of n 4+ 1 Banach spaces F;, extending the classical one of Lapresté for n = 1, as
well its associated a,-nuclear and a,-integral multilinear operators. Knowledge of
such operators allows us to characterize the reflexivity of the corresponding tensor
product (@;L: 04 ar) of spaces (%,

The paper is organized as follows. First we introduce the notation and some
general facts to be used. In section 2 we define the (n + 1)-fold tensor product
X, (El,EQ, ...,En,F), n € N of type a, of Banach spaces E;,1 < j < n and F.
We find its topological dual introducing the so called r-dominated maps and we
obtain multilinear extensions of the classical theorems of Grothendieck-Pietsch and
Kwapien (theorem 3). The latter one is the key to approximate r-dominated maps
by multilinear maps of finite rank in many usual cases (theorem 7) and to compare
different tensor norms «,, a tool which will be very useful in our applications in the
final section of the paper.

The elements of a completed a,-tensor product canonically lead to multilinear
r-nuclear operators from H?:l E; into I, which are considered in section 3 and char-
acterized by means of suitable factorizations in theorem 9. According the pattern
of the general theory of multi-tensor norms, the next step must be the study of the
so called r-integral multilinear maps, i. e. the maps in the ideal associated to the
ay-tensor norm in the sense of Defant-Floret [2]. To do this we need a technical
result about the structure of some ultraproducts which follows easily from the work
of Raynaud [15]. It will be presented in section 4 just before its use.

In section 4 we characterize the r-integral operators, obtaining as main result the
”continuous” version of the previous factorizations of r-nuclear operators. Finally in
section 5 we apply the characterizations of sections 3 and 4 to study the reflexivity of
ap-tensor products and, more particulary, to characterize the reflexivity of a,-tensor
products of /* spaces, a result that, as far as we know, is new indeed for classical
Lapresté’s tensor norms.

We shall deal always with vector spaces defined over the field R of real numbers.
Notation of the paper is standard in general. Some not so usual notations are settled
now.

Given a normed space E, we shall denote by Bpg its closed unit ball and Jg :
E — E" will be the canonical isometric inclusion of E into the bidual space E”.
B will be considered as a compact topological space (Bg/, o(E’, E)) when provided
with the topology induced by the weak*-topology o(E’, E'). For every x € E, we shall
denote by f, the continuous function defined on (Bg/, o (E', E)) as f,(x') = (z,2) for
every &' € Bp:. The symbol E = F' will mean that F and F' are isomorphic normed
spaces. The closed linear span in a Banach space E of a sequence {z,,}3°_; C E
(respectively of a single vector x) will be represented by [a:n} ;ozl (resp. [:v] ).

As usual, e, denotes the k-th standard unit vector in every #, 1 < p < oo.



¢y, h € N will be the ¢P-space defined over the set {1,2,..,h} with the standard
measure.

Given a normed space E, a sequence {z,,}F _, C E,k € NU{oo},and 1 < p < o0,
we define in the case p < 0o

(i) = (ﬁ?\mhmv)p, co((am)hir) = s <§§1<xm*ﬂ>p)p

and when p = oo

Ww((xm)fnzl) = 500((33771)7’31:1) = Sup ngmH
1<m<k

A sequence {z,, }>°_, C E'is called weakly p-absolutely summable, notation (z,,)5_; €
(?(E), (resp. p-absolutely summable ), if &,((2,)3_;) < oo (resp. Wp((a:m)m 1) <
o0). Given Banach spaces E and F, an operator or linear map 7' € L(F, F) is said
to be p-absolutely summing if there exists C' > 0 such that

(@) € (E) = m((T(am))in,) < C epl(am)is)- 1)

The linear space P,(E, F) of all p-absolutely summing operators from E into F
becomes a Banach space under the norm P,(T) := inf{C > 0 | (1) holds} for
every T' € P,(E, F).

We consider always a finite cartesian product H 1 By, of normed spaces E, 1<
m < h € N as anormed space provided with the />*°-norm || Tm) m:1 || = supm:1 meH

If F is a Banach space we shall denote by £" (Hfﬂzl E,, F ) the Banach space of all
h-linear continuous maps from HZL:1 E,, into F. Given T € L" (anzl E.,., F) we
can define in a natural way the transposed linear map 17" : F' — L (HZZI E,., ]R)
putting

Vy € F Y (z)h_, € H E, <T’ e )?n:l> - <T((xm)fn:1),y’>.

Given maps A; € L(Ej;, F;) between normed spaces E; and F;,1 < j < n we

write
n n

(Aj);‘l=1 = (Ay, Ag, . Ay HEJ — HFJ

Jj=1 J=1

to denote the continuous linear map defined by

Y ()0, € HE ) (@1, 22y oo 1)) = (Ar(21), As(2), ..y An(@n)).



Some times we will write (A;) instead of (A4;)}7_,. Concerning (n + 1)-tensor norms,
n > 1 (or multi-tensor norms) we refer the reader to the pioneer works [4] and [5]. If

it is needed to emphasize, « <z; ®?+11 M j> or similar notations will denote the value

of the multi-tensor norm « of z € 1/ M;.

As customary, for p € [1,00], p’ will be the conjugate extended real number such
that 1/p + 1/p’ = 1. Given n > 1, in all the paper we denote by r an (n + 2)-
pla of extended real numbers r = (rg,71,72,...,7n, "nr1) such that 1 < ry < o0,
1<rj<oo, 1<j<n+1,and

1 1 1 1
1 ::——'+'—7 +'—7 + ...+ —. (2)
o T3 T Tn+1

Such r will be called an admissible (n + 2)-pla. Moreover, we define w such that

1 1 1 1
— =+ -+ + (3)
w oo n
which gives the equality
I 1
n=— —. (4)
w o =
7j=1

For later use we note that (2) implies

ry T T T 1 1 1 1 1
1=2+94+  +24+-0 and =—+S++.+— (5
T n Tnt1 nt1 T 1 T n
as well 11 11 111
wo To Thyr  Tn+1 To w o rg Ty
and moreover,
Vi<j<n  rpp<w<r), (7)
and
Vi<ji<n+4+1 r; <. (8)

To finish this introduction we consider the following construction which will be
of fundamental importance in all the paper. Given any measure space (£2,.A4, i)
and an admissible (n + 2)—pla r, as a direct consequence of generalized Holder’s
inequality and (2), we have a canonical (n + 1)-linear map 9, : L™(Q, A, 1) X
| L'i(Q, A, 1) — L™+ (0, A, p) defined by the rule

V()i € L) x [T 25 m) - () = [1 £

j=1 7=0



verifying ||201, ((f;))]] < ||g] Lro(Q) IT5- |5 e If (€2, A, p) is N with the count-
ing measure we will write simply 9t instead of 91,. Moreover, given g € L™ (€, p)

we shall write D, to denote the n-linear map from [7_, L7 (K2, ) into L+ (€, )
such that

V(i € [T m) Dy(()m) = Mu(g. fiso fu)). (9)

It will be important for later applications to remark that 91, induces a linearization
map M, : (LTO(Q, ,u)®(®j:1L’”3‘(Q, ,u)),w) — L™+ (Q, 1) and a canonical map

sm D (L(Q, ® ® L' (Q) n) )/Ker(ﬁ#) — L™ (Q, )
—~ Th "‘n-/kl
such that ||zm H < 1. Moreover, by (5) we obtain f = f% [[;_, f "7 for every
f=0in L+ (Q, ). As f = er f~ for every f € L™+ (Q, ) it turns out that
zm is a surjective map and fmu becomes an isomorphism such that ||9ﬁ 1” < 2.

2 ay-tensor products and r-dominated multilinear
maps

Let E;,1 < j <n+ 1 be normed spaces. Using classical methods we can show

that
n+1 n+1
. ( ® Ej> = ity () T e (@), (10)
j=1 j=1

taking the infimum over all representations of z of type

h
=Y A (@ ajm), Tm€E; 1<j<n+1,1<m<h heN,

m=1

is a norm on ®”+1 E; which defines an (n + 1)-tensor norm in the class of normed
spaces. It is 1nterest1ng to note that if n = 1 we obtain the classical tensor norm
Qryr, Of Lapresté (see [[2] | for details).

The just defined normed tensor product space will be denoted by (®"H E;, )

or ®ar (El,Eg, ---,En+1) and its completion by ®ar (El,EQ, ...,En+1). It is clear
that for every permutation o on the set {1,2,...,n + 1} the map

n+1

1, Z A, ®;‘+11 Tjm € (®§‘illE OéT — Z A ®;”11 To(j)m <® Eq(jy, as> ,

i=1



where s is the admissible (n + 2)-pla 5o := rg and s; = 75, 1 < j < n+1,
is an isometry from (®§L:11 E;, a,) onto (®;L:11 Ej, o). We shall use this type of
isomorphism in section 5 in the particular case of transpositions ¢ simply indicating
the transposed indexes o (jo) = j1,0(j1) = jo in the way jo — j1,j1 — Jo-

To compute the topological dual of an a,-tensor product we set a new definition:

Definition 1 Let F' and E;,1 < j < n be normed spaces. A mapT € L" (H?Zl E;, F)
1s said to be r-dominated if there is C' > 0 such that for every h € N and every set
of finite sequences {x}h_, C E;, 1 <j <n and {y,}1_, C F’ the inequality

o (e )7 2 (Tos(02)) o (001

j=
(11)
holds.

It is easy to see that the linear space B, (H?:l E; F ) of r-dominated n-linear
maps from [[7_, Fj into F is normed setting Pr(T") := inf{C >0 | (11) holds } for

every T € B, (H’jzl E; F ), becoming a Banach space when F' does. The interest

on r-dominated multilinear maps follows from the next result:

!/
Theorem 2 <®ar (El,Ez, ...,En,F)> = B, <H?:1 Ej,F’) for all normed spaces
Fand E;, 1 <j<n.

Proof. 1). Given T € fpr<H;;1 Ej,F'> and z = 31 A\ (@7 ,25) @ ye in

(®?:1 E;) @ F we define ¢, (z) = S )\k<T(($1k,x2k,...,xnk)),yk>. It follows
directly from Hélder’s inequality, definition 1 and (10)

|0 (2)] S Pe(T) ax(2) = [[io, | < Pe(T). (12)

2) Conversely, let ¢ € (®ar (El, Es, ..., E,, F))/ . We define T, € E"(H?Zl E;, F')
as

v (xj)?zl € HEjv VyeF <Tw<(l‘j)?:1)7y> = ¢($1 RT2 & ...T,y @ y)
j=1

Given {zj}t_, C E;, 1 <j<nand {y.}f_, CF, h € N we have

(T (er))oe)) L) = o

(ak)EBZTD
h

i o (@) @ ) ) ‘ =

k=1
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h
= sup Zak R Tik) @y || <
(ak)eBZTO =1
h
< s [0 m ((@in) { TT on (@) ) 2, (00 <
(ak)GBgzo j=1

< ol (1T (o) ) e ().

By o(F", F')-density of F' in F" the latter inequality also holds when y;, € F" 1 <
k < h. Hence P, (T}) < HzﬁH and clearly Pr, = Y, giving by 1) P.(T},) = H@/}H [ |

The name of r-dominated multilinear maps is suggested by the following char-
acterization.

Theorem 3 Given Banach spaces E;j,1 < j <n and F and T € L'"(H?:l E; F),
the following assertions are equivalent:

)T e Pellj= Ejp F).

2) (Pietsch-Grothendieck’s domination theorem) There are Radon probability
measures pij,1 < j < n (resp. v) in the unit balls By, (resp. in Bps) and C' = 0
such that, B; (resp. By41) being the o-algebra of Borel sets in B (resp. Bpr), for
every (v;)j_; € [[_, Ej and every y' € F' one has

ACUREY ' |
‘< (I])J 1 n+1 (Bpit, By, v) H

Moreover, P.(T) = inf C taking the infimum over all C >0 and p;, 1 < j <n and
v verifying (13).

3) (Generalized Kwapien’s factorization theorem). There exist Banach spaces
M; and linear maps A; € ‘ﬁré(Ej,Mj),l < j < n and an n-linear map S :
[I)-, Mj — F such that T = S o ((A1, Ay, ..., Ay)) and the adjoint map S' €
m%ﬂ (F/’ L (H?:1 Mj? R))

Proof. 1) = 2). Clearly, the restriction to C((Bg/,0(E',E))) of each ¥ €

(LOO(BE/))/ is a Radon measure. Then condition 2) follows from 1) directly by
definition of r-dominated maps and the very general result of Defant [ [3], theorem
1 } Moreover, the proof of that result allow us to obtain

<C

fy’

fl'j

(13)

!
L' (BE}’ Bj, ij)

mf{c >0 ] (13) holds} < P.(T). (14)



2) = 3). Let pj,1 < j < n and v be probability Radon measures in the
unit balls BE; and Bps respectively (with corresponding o-algebras B; and B, of
measurable sets) such that (13) holds.

Put Q = H?:l BE;_ provided with the product measure pu := ®j_;u; and its
corresponding o-algebra B of measurable sets. For every z; € E;, 1 < j < n,
we define the map G,, : Q@ — R given by G,,(x') = (v;,2}) for every x' =
(7,2, ..., 27,) € Q. Clearly, as a consequence of Fubini’s theorem, we have G,; €

ey by

L" (Q, B, ,u) and moreover, for each 3’ € F’ the inequality

(r((e3).v)

holds still.

Define A; € L(Ej,LTQ(Q,B,,u)), as Aj(z;) = G, for every z; € E; and M; :=
A;(Ej), taking the closure in L7 (), B, 1) and providing it with the induced topology.
It is easy to check (classical Pietsch-Grothendieck’s domination theorem) that

<c||s (15)

Zj

v !
L'n+1 (BF//, Bn+17 1/) =1 H Lrj (Q, B, /J)

Now we define the multilinear map S : [[;_, A;(E;) — F as

Y (25)j1 € HEj S((Gey)jr) = T((25)7-1)-
j=1
S is well defined because (ij)?zl = (G@);.Lzl implies G, = Gz, € LTQ'(Q, B,u),1<
7 <n and

n

T((25)7-1) = T(@)5=1) = D T(T1y s Tjm1, 5 = Ty Tyt ooy L)

J=1

and by (15) we obtain HT((xj);?zl) - T((fj)?zl)H = 0. (15) gives too the con-
tinuity of S and hence it can be continuously extended to a map (still denoted
by S) in L" <H?:1 Mj,F>. To finish the proof we only need to see that S’ €
q37{n+1 (F/’ L (H?:l Mj’ R))

Given {y,}t_, C F', h € N, fix a finite sequence {ay, }1_, verifying H(ak)zzl

1. For every € > 0, there are szk € BM]., 1<k<h, 1< 75 <nsuch that

/ =
T’n,+1
eh

Vi<k<h ‘

+ & |ayl.

S'(43) < (S0, (Gap i)

£r (17—, M;.R)

8



Hence, from Hélder’s inequality and (13) we obtain

T ( Sl( ) ) — sup ﬁk ‘ S/ ‘ S
1 ( >k 1 (BRIEB o ; £ (T M R)
< sup B (’< ), (G )Z:1> +5|O‘k|>
(Br)EB et kz "

1
h , o
Tn+1 ntl
< sw |[B]] o | D0[ (o T ) +
(5k)€BZ;n+l zh k=1
+e  sup ||(Be)eea|l o, (an)ioy || o, <
(Bk)eBz}:n+1 1 g 1 gthrl

fyk

h ﬁ
=C H te<
a (; ( L' 41 (B, Bs1, v) H L0, B, u))) =

h / T;: 1
<C (Z (/B <y§c,y”> o dV(y”)) ) T pe=
k=1 F!

1
¢ ( Z) Yy o V(y">> e
B k=1
= Cep (()yy) v(Be) ™ e =Cep ((),) +o

and € > 0 being arbitrary, the result follows. Moreover, by (16) and the definition
of P,y (S') we obtain

- H : (17)

3) = 1). Assume there there are Banach spaces M; and maps A; € ‘Br; (E;, M;),
1<j<nandS e ﬁ"(H?Zl M;, F) such that S’ € ‘,BT;LH(F’,ﬁ”(H?:l M;, R)) and
T = So ((A))r,). Given finite sequences {z;:}i_; C E; and {y;}}_, C F', h €N,
using (2) and Hélder’s inequality we have

h

(CQCTRENNENTI

k=1

<

Oék< (4(z8)) 1) S’(y;)>




sup z ol '@,

(ak GB T‘O

£n(IT7, My E) Jl_[ HAJ‘(%k)H <
= (H oy (A 30)) 1)) m (S0 ) <
<Py (5 (ﬁ Pr}(Aj)) 5%“((%)2:1) (H 5r}<<xjk)21>>

and hence T' € P, (H?:1 E;, F> and

akkl

(4;). (18)

The assertions about P,(T") follow from (14), (17) and (18). W

Theorem 3 can be used to find some equivalences between some tensor norms o,
and ag derived from different admissible (n + 2)-plas r and s on certain classes of
Banach spaces. We present some results of this type which will be of fundamental
importance in the final section of the paper.

Corollary 4 Let v = (r;)"} be such that v}, < 2 and let s = (s;)%) be an

admissible (n+2)-pla such that s, <2, and s =17, 1 <j <n. IfE;,1 <j<n+l

n+1
are Banach spaces and E,, | has cotype 2, one has (® ) (®j 1 )

Proof. By theorem 2 and the open mapping theorem it is enough to see that
‘BS(H? VEjELL) = ‘BT(H?ZI El.,). Given T € ‘BS(H E;, El,,) and us-
ing Kwapien’s generalized theorem we choose a factorlzatlon T C o (Aj)5,
throughout some product H?Zl M; of Banach spaces in such a way that A; €
P (B, M;),1 < j <mnand C" € Py (B, L([Tj-, M}, R)). Being By, of co-
type 2 and 7}, ,; < 2, Maurey’s theorem [ 2], corollary 3, §31 6} and Pletsch’ inclu-
sion theorem for absolutely p-summing maps give C’ € ‘Bl( o LT i M )) C
B, (EgH,E”(H?:l Mj,R)). As 7} = s}, 1 < j < n, by the sufﬁ(nent part of
Kwapien’s generalized theorem we obtain T € 3, (H E; E! +1) In the same way
we show B, (H;1 VEj ElLL) CBs (H] VEj,El,) and the proof is complete. W

Corollary 5 Let Ej,1 < j < n+ 1 be Banach spaces and let r = ('r’])”Jrl be an
admissible (n + 2) pla such that r’; > 2 for every 1<j<n+1. Lets= (s])”Jrl be

another admissible (n+2)-pla such that 2 < s’ for every 1 < j <n and s,41 = rppa.
n+1

—~n—+1 -
Th@n (®j:1 Ej7al‘) ~ (®j:1 Ej,OZS)~

10



Proof. Arguing as above, we only need to show that 93 (H?Zl Ej,E{lH) =
B ([1/-1 Ej, E,,1)- The crucial step is the proof of the inclusion B, ([T7—, Ej, ;1)
C Ps (H?Zl E; E), +1) since the proof of the converse inclusion can be made exactly
in the same way.

Let T € Pu([T)—, ), Ey,11)- By the proof of 2) == 3) in theorem 3 there are
a probability space (2, B, i), maps A; € ‘,BT;_ (Ej, LT§'(Q;,u)), 1 <j <nanda map
SeL" (H;;l Aj(Ej),E,’LH) such that S’ € %;LH (E;L’H,E" (H]‘:1 Aj(Ej),R)) and
T = So ((A))r,). Consider the tensor products T, := (@::IL’”?(Q,M)),W) and
= L0, ,u)@w‘fw. The canonical linear map ﬁu from $, onto L™+ (Q, ),
(recall the notation of introductory section) induces an isomorphism ﬁu from the
quotient space Kj := ﬁw/Ker(gﬁu) onto L™+1(€, u). As 1,41 < 2, Ky has cotype 2.

Let ¥y : §, — K, be the canonical quotient map. For every 1 < j < n we
consider the map ; € E(LT}(Q), ﬁﬂ) defined by

V2 € L(Q) — [Xa] @ [Xo] @ ® [Xa] @2® [Xo] ® .. ® [X0]

(z in the position j + 1) and define T; := 1), (L”Q(Q)). [x,] being of dimension 1 is
complemented in each LP(2, pu),p > 1. It follows that ¥, is a complemented (and
hence closed) subspace of ). Define F; := A;(E;). Clearly H; := 1;(F}) is a closed
subspace of ;.

Claim. For every 1 < j <n, ¥(%;) is closed in Kj.

Proof of the claim. Fix 1 < j < n. Let P; € L(H,T;) be a projection and

let W, := Ker(P;) @ (Ker(ﬁu) N %;). The quotient space Ky; = H,/W; is well
defined. Let ¥y, € £(55,r, ng) be the canonical quotient map. The map

Vze f)ﬂ- Lj . \Ifgj(Z) € sz — \Ifl e} PJ<Z) € \111(3:]) C Kl

is well defined and continuous. In fact, given z; = P;(z1) + (Ir — P;)(#1) € 9, and
2y = Pj(z3) + (In — Pj)(22) € $Hx (I denotes the identity map on £,) such that
Wo,(2z1) = Uaoj(22), as (Ir — P;)(z1) € Ker(P;) C W and (I, — P;)(%2) € Ker(P;) C
W, we obtain Wy; 0 Pj(21) = Wy, 0 Pj(22), 1. e.

Pj(z1) — Pi(22) e W = Pj(z1) — Pj(22) € Ker(M,)N%; C Ker(M,)

and hence L;(z1) = W3 0 Pj(21) = ¥y 0 Pj(22) = L;j(22) and L; is well defined. On
the other hand, given Wy;(z) € Kj; there is w € T such that Vy;(w) = Wy;(z) and
lwlls, < 2[[¥2 ()|, Then

|1Lj 0 Wai(2) ||, = [|1Lj 0 Way(w)|| ., = || P10 Pi(w)][ , <

11



< [Nl 1B ol < 2 [P 19252,

and L; turns out to be continuous. But, clearly, L; is surjective. Then the canonical
induced map Zj € L(Kj;, Ky) from the quotient space Kj; := Ky;/Ker(L;) onto
K is an isomorphism. Let W3; € L(Ks;, K3;) be the canonical quotient map. Note
that we have N

Uy0P;=L;oWy = LjoWs; oWy, (19)

Next take z € Wy(T;). There is a sequence {z,}_; C ¥, such that z =
lim,;, oo ¥1(2) in K5. Then {Zj_l(zm) oo_, is a Cauchy sequence in K3;. By a stan-
dard procedure (see [ [8], §14,4. (3)] for instance) and switching to a suitable
subsequence if necessary, we can assume that there is a sequence {w,,}>°_; C .
such that B

VmeN WUyjo0Wy(wy) = L (zm) = Vs; 0 Uyj(zy) (20)

and

Vm,k €N ||”u)r,1—w;€H5.%r < 2 || W (win) — Uay(wy, < 4}|Z;1(zm)—Z;1(zk)\\K3j.

e,

Then {w,,}>°_; is a Cauchy sequence in T, and there exists w = lim,, o0 Wy € Hr-
By (20) we obtain

W350Wa;(2m) = W3;0Waj (W) = Ws;0Ws; (P (W) — (L= Pj) (win)) = Ya;0Ws;0P;(wpn)
and since P; is a projection and Pj(z,) = 2, by the definitions of U3; and L;
Ui (2m) = V10 Pj(2m) = Lj o Voj(zm) = Lj o Uy; 0 Pj(w) = V1 0 Pj(wy,)

and ¥ o Pj(w) = im0 V1 0 Pj(wy,) = limy, o0 Ui (2) = 2. As Pj(w) € T; we
obtain z € V(%) and ¥;(%;) is closed. W

End of the proof of corollary 5. Let ®; be the restriction to ¥; of V.
Let W,; be the canonical quotient map from ¥; onto the quotient space Ky; =
T/ (TN Ker(M,,)). The map ®; : Uyj01;(2;) € Kiy — ®015(z) € B;(F;), 2 €
F; is well defined. In fact, if Z; € F; and Uy; o ¢j(z; — Z;) = 0, we will have
V(2 — %) € Ker(ﬁ#) and hence, by definition of ﬁu and 1);, one has z; = Z; and
D 0i(z5) = @, 01);(Z;), turning 6; well defined. The same argument shows that
2}5; is injective. By the claim ®;(%;) is closed in K;. As 5; is clearly surjective by
the open map theorem it turns out that ®; is an isomorphism from K,; onto ®,(%;).

Next, remark that given z; € L7(, p) and € > 0, there is Zj € L75(S), p) such
that Wy; 01;(z;) = Uy 09)(Z;) and

[5G ls, < %05 0 95(25) e, +& < 1857|1250 Paj 0 05(25) |, +6 =
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=251 l125 0 w5z, +2 < 1957 w5l + =

But, as we have shown previously, Wy, 0 1;(z;) = Wy; 0 ¢;(Z;) implies z; = Z; and
so ¥;(2;) = ¥;(Z;). Then € > 0 being arbitrary we obtain

195G lls, < N25 195 0w, < N5 I 120l

which means that ®; is an isomorphism from ¥; onto ®;(%;).

As a consequence the isomorphisms F; ~ H; ~ ®;(H,;) hold and F; has co-
type 2 because ®;(H;) is a closed subspace of K; which has cotype 2. As A; €
‘,Brg(Ej, F;), by Maurey’s theorem [ [2], corollary 3, §31.6 } and Pietsch’s inclusion
theorem for p-absolutely summing maps, we obtain A; € Po(E;, F;) C By (E;, F}).
It follow from the properties of S and from Kwapien’s generalized theorem that

T € PBs (H?Zl E; E).,) as desired. W

Corollary 6 Let E;,1 < j < n+ 1 be Banach spaces and let r = (Tj)?i_& be an

admissible (n + 2)-pla such that r;, < 2 for some 1 < jo < n + 1 and i > 2 for

some 1 < ji # jo < n+ 1. Choose s;, < rj, and define i = —i— /_ — S,L and
JO Jo

sj =151 <j#jo<n+1 Thens = (s;);%) is an admissible (n+2) -pla such that
so < 00 and (®”+1 Ej, ay) & (®"+1 Ej, ).

Proof. After the eventual transposition j; — n+1,n+ 1 — j; we can assume
that j; = n + 1. Then the proof is essentially the same of corollary 5 because we
have r,,1 < 2 and Maurey’s theorem will be applicable still in the "axis” j,. W

Another application of theorem 3 concerns to the approximation of r-dominated

maps by finite rank maps.

Theorem 7 Let F;,1 < j < n+1, be Banach spaces with duals Ej’ having the metric
approximation property and such that each E},1 < j < n has the Radon-Nikodym

n n+1
property. Then f,Br(Hj L B, E;LH) (®] VELLal).

Proof. Let T € P, (H E; E,’LH) By Kwapien’s theorem (theorem 3) there
are Banach spaces M; and operators A; € ‘,]3r;,(Ej,Mj),l < j<nand S €
E”(H] 1 n+1) such that T = S o (A4, Ay, ..., Ay,). Since every E} has the

Radon—leodym property, by the result [ [11], page 228 ] of Makarov and Samarskii,
each A; is a quasi r’-nuclear operator. By [ [13], theorems 26 and 43 ] there is a
sequence

jh 00
{Bin =3, ®mpns,} € Ej oM,

s;=1

13



of finite rank operators such that

V1<j<n hmP +(Aj — Bjn) = 0. (21)

In particular, every sequence {B;,}32, is a Cauchy sequence (and so bounded) in
%%(Ejan)? 1< .7 <n.
Since for every (7;)7_; € [[;_, £; and h € N we have

(S ((Bin)") ((2:)5) = ((z@hs ma) ) =

s;=1

tin tnh

=2 - Z(H%hswﬁ) ((msn,)71)-

s1=1 sp=1

it turns out that S o (( Jh) ) e L" (H ,E 1) has finite dimensional range
and

tin n+1

So( ) Z Z(;l%h3>®5(mgh3 ®E’

s1=1 Spn=1

/

—~n—+1
With a similar proof to the one given in [2] it can be seen that (®j:1 E}, o)) is a

topological subspace of 3, <H E; En+1> Hence by theorem 3, (18) and (21)

Oé;.(S o (Blh;BQha "'7Bnh) - SO (Blk‘aBQka 7Bnk‘>> =

=P, (Z <S o Bik, ..., Bj_11, Bjn — Bji, Bjyip, -, Bnh)> <

S’) Zn:Pr;(th - Bjk)( H ‘Pr;(Bsk;)> (H Prg(Bsh))

is arbitrarily small when h and k lets to infinity and so there exists z := limy, o, S o

(Blh,th, ) (®J 1 ;) On the other hand, it can be shown in an
analogous way that

lim Pr<T ~So ((th);.;l)) — lim Pr<So (A7) = So (B 1)) ~0

h—o00 h—o00

and hence T=2. N
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3 r-nuclear multilinear maps

With the same methods used in the classical case of Lapresté’s tensor topologies,

it can be shown that every element z € &, (El, Es ... E, F ) can be represented
as a convergent series

m=1

where (\y) € €70, (zjm)2_, € F3(E;), j = 1,2,..,n and (2,)_, € £n+1(F).
Moreover, the norm of such elements z can be computed as in (10) but using repre-
sentations (22) and h = oo.

If F is a Banach space every z € @ar (El, Ey ... E, F ) defines canonically a
multilinear map 7T, € L" (H?:1 B F ) by the rule

n

\ (x;)?zl € HE; Tz((x;);‘zl) = Z Am (H <xfﬂ,x’m>> Zm- (23)

j=1
Remark that 7. is independent on the representing series (22) for z as a conse-
quence of theorem 2 and the easy fact that (®7_, £j) @ F' C P, <H?:1 E;, F’)
canonically. In this way we have defined a canonical linear map

@:ze@a (By, By, ... By, F) — T. eﬁ”(ﬁEg,F) (24)
. 1

which suggest the next definition:

Definition 8 A multilinear map A € L™ (H?:l E;, F) is said to be r-nuclear if it is
the restriction R(T,) to H?zl E; of a map T, for some z € @ar (E{, Ej, ... FE! F)

It can be shown that the set 91, (H?Zl E; F > of all n-linear r-nuclear maps from
H?:1 E; into I’ becomes a Banach space under the r-nuclear norm
N, (A) = inf{ozr(z) ’ A=R(T.), 2 € Ba, (B, E)y ... E;,F)}

it all 5,1 < j <n and F' are Banach spaces. r-nuclear maps can be characterized
by means of suitable factorizations as follows.

Theorem 9 Let F' and E;,1 < j < n be Banach spaces and T € L" (H?zl E;, F) T
is r-nuclear if and only if there are maps A; € L(E;, £r3‘), 1<j<n,CeL{m F)
and X = (A,) € 07 such that T factorizes in the way

15



H;L:]_ EJ . F
(Aj)?:l C
H;‘Zzl t's D, -

Moreover N (T) = inf (H;I:lHAjH) | Dx|| [|C|| taking the infimum over all
factorizations as above.

Proof. The proof being quite standard (compare with [10]) is omitted.

Remark. By theorem 9, (2) and the compactness result ([ [1], theorem 4.2 ])
of Alencar and Floret, if ry < 0o, every r-nuclear mapping is compact.

As an application of theorem 7 we can obtain a sufficient condition in order that
the map ® be injective. Although the formulation of this condition is far to be
optimal, it will be enough for our applications in the sequel.

Corollary 10 Let E;,1 < j < n be reflexive Banach spaces having the approrima-

tion property. Then, for every Banach space E, 1 such that E] | has the metric
—~n+1

approzimation property, the map ® in (24) is injective and so (®j:1Ej,ar) =
s)/tr (Hglzl E;; En+1) .
—~n—+1
Proof. Since we have actually ® € E((@FlEj,ar),‘ﬁr (H?:l E},Enﬂ)),
is enough to show that this map is injective. Is easy to see that ®§L:11 E, C

!/
(‘ﬁr (H?zl B, En+1)) . Now theorem 7 implies that the transposed map

t

—e

Q' (‘ﬁr (ﬁ E;-, En+1)>/ — PBr (ﬁ Ej, E;H-l)
j=1 Jj=1

has dense range, getting the injectivity of ®. W

4 r-integral multilinear maps

Definition 11 Let E;,1 < j <n, and F' be Banach spaces. A continuous n-linear
Ny /

map T from [[}_, Ej into F is called v-integral if JrT € (&, (B, B, ..., E,, F'))

The norm of JrT in that dual space is taken as definition of the r-integral norm I,.(T")
ofamap T € J, (H?Zl E;, F), the set of r-integral multilinear maps from [[- B

16



into F. (J;,1,) turns out to be the maximal ideal of multilinear maps associated to
the (n + 1)-tensor norm «, in the sense of Defant and Floret (see [2] and theorem
4.5 in [5]). The next theorem gives the prototype of r-integral maps.

Theorem 12 Given a measure space (2, A, u) and g € L™(Q), A, ), the canonical
multilinear map Dy : [T} L' (Q, A, p) — L™+1(Q, A, 1) is r-integral.

Proof. Let §;,1 < 5 <n be the subspace of L’";(Q, ) of simple functions with
support of finite measure. Every S; being dense in L’ (€, i), it is enough so see that
D, e (®0/r (81, S, ..., Sy, U%H(Q, u)))/ (density lemma for (n + 1)-tensor norms).

Fix z € ®a; (81, Sa,y .y Sy, L’”2+1(Q, ,u)) There exist finite dimensional subspaces
M; C §;,1 < j < n generated by the characteristic functions {x,, Mh_, of a finite

family of pairwise disjoints sets of finite measure {B}!_, C A and there exists a
finite dimensional subspace N C L™+1(Q, u1) such that z € ®(M1,M2, ...,Mn,N).
Then for every f; € M;, 1 <j <nand f,41 € N, using (4)

<®?illfj’D9> ) <<®?:1 iaijBk) ® fn+1,D9> - i <ﬁ Oéjk> <XB,c 95 fn+1> =
k=1 o\
h n
= 1 N(;k)” (H (/Bk fi dﬂ)) <XBk 9 fn+1> =

Jj=1

1

S (L) (0 o)) (e v

j=1

As a consequence
Vze Q) (M, M, ..M, N) (2,D4) =(z,V) (25)

where we have defined

1

(ka g™ du>_”’

h
0
V= (/ lg|™ du> (®F_10k) ® Xz, 9
k=1 Y Bk = N(Bk)i o

and where @;, is the class in L' (Q, j1)/M;" = Mj of the function u(By) 7 x,, for
every V1 < j <n, 1<k < h. Moreover, (the class of ) X5, 9 € N’ for every
1 <k < hsince x, g € L™(S2,p) and by (7) we obtain x, g € L™+ (S, 1), By
being of finite measure.

1
T
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Note that, by finite dimensionality

Ve @ (M, M, ... M, N') = (K (M, M, ..., M, N))'. (26)

or !

(£33

Now we perform some computations. The first one is

1\ h h %
0
s g’°°du) = E/ g’”"du> =g
i <( Bk‘ | )k_l (k:l Bk’ | H |

In second time, for every 1 < j < n, using (4) and Holder’s inequality, we obtain

o @)

u.ﬁ\‘ =

™

1\
~
~

AS

o
~—
?lr >
N

I

0]

o

o}
=
—

~S\
N
T

~

=9

=
~~__
5

VAN

;<1 L
e =R
L/
h 1 o "y
< s [S ([ ) wm? | <
i <\ = 5 \Js,
L3 @) p(By) s
1
h 7.3.
< sw Juriae) = s fllyy =1 @)
Il s1<; By L, < IO
L () 7 ()
Finally, by Holder’s inequality and (6) we have

h _ v Tl
_T%+1 r T0 ntl

= s Soum ([ ) ([ aran) <

||f||Lr;LJr <\ =1 By, By,

L@

h = o
< sup Z/ |f‘7"%+1 du = sup ( |f‘7"%+1 d,u) SRR
A1 s )Sl —1 7/ Bk 171l <1 Q

Tn+1 (Q

Then, by (25), (26), (27), (28) and (29)
(2. D)| < 0 (R (My, My, ..., My, N)) o (Vi Q) (M, M, ..., M), N')) <
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< ol (5 @ (Mo, My, Mo N)) [

and, . being a finite generated (n + 1)-tensor norm,

’<Z’ D9>’ S Oé;'(z;®(81782a"'7SnﬁLrn+1(Q’/'L>) Hg|

which means I,(D,) < ||9}

L70(Q)

L7o (Q) Y

L7o(Q)

To find a characterization of r-integral maps we need to use ultraproducts (E. )y
of a given family {£,,v € &} of Banach spaces over an ultrafilter ¢/ on the index
set &. For this topic our main reference is [17]. We use the natural notation (z)y
for every element in (E.)y.

Given a family {T,ecLn (H?:1 EY, Fy), | v € &} of maps between the cartesian
product H?:l E7 of Banach spaces EJ and F,,1 < j < n, 7 € &, such that
supyeﬁHTyH < 00, there is a canonical n-linear continuous ultraproduct map (77 )y
from the ultraproduct (H?Zl EZ,)M into the ultraproduct (F,)y such that for every

X = ((x%):zl)u € ([Tj=, E),, we have (T3),,(x) = (TW((x‘;)?Zl))u. The main
result we shall need is the following factorization theorem:

Lemma 13 Consider a family of canonical maps D, : H?:l 05— o+t vEB#£
(0 defined by a family of elements {gv| v € &} C L such that 0 < sup, g HD%H <
oo. There exist a decomposable measure space (2, M, i), a function g € L™ (2, M, 1)
and order onto isometries X; : (ETQ)U — L%(Q,M,u), 1<ji<n, Xy: (E’”O)u —
LTo(Q,M, p) and X,,41 : (Er"“)u — L™+ (Q, M, ) such that the diagram

/ D
<H?:1 W)u B - (0 )y
(:{j)?:l %T_Lil
n r DQ r
Hj:l L5(8) - L™+1(Q).
is commutative. Moreover, DgH = H(ng)U”‘

Proof. By (5) and a factorization result of Raynaud, [ [15], theorem 5.1 } there
are a decomposable measure space (2, M, 1) and isometric order isomorphisms

Xo: (070), — L(Q M, ),  Xj: (07), — L5 (M, p), 1<j<n,

and X,41 : (E’””“)u — L1(Q2, M, i) such that, 91, being the map corresponding

to v € & (recall the notations introduced in section 1), we have (9, )y = X, 1; o
Mm, o ((}Zj)?zl) The lemma follows taking g = Xo((g,)y). W

Now we can obtain the following characterization:
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Theorem 14 Let E;,1 < j <n and I be Banach spaces and T € L"([]}_, Ej, F').
The following are equivalent:

1) T is r—integral.

2) JrT can be factorized as

T Jr

H?:l E; - F - [
(4;)7=1 ¢
Hgl:l L% (€2, M, ) D - LTt (Q, M )
g

(30)
where A; € E(Ej,LT3(Q,M,u)), 1<j<n, Ce £(L""+1(Q,./\/l,,u),F”) and D, is
the multilinear diagonal operator corresponding to some g € L™ (2, M, ). Moreover

L(T) = inf || D] ||C]| TTll4] (31)

taking the infimum over all factorizations as in the previous diagram.
3) JET can be factorized as above but (2, M, 1) being a finite measure space and
g = Xqo- Formula (31) holds too taking the infimum over the factorizations of that

type.

Proof. 1) = 2). This can be done using standard methods with help of theorem
9 and lemma 13 (see for instance [10] for a detailed development of the method, used
in a similar framework).

2) = 3). Given ¢ > 0, select a factorization of type (30) with g € L™ (2, M, p)
and such that

LTO(Q,M)HCH HHAJH <L(T)+e. (32)

Jj=1

lg]

After projection onto the sectional subspaces Lré(Supp(g)), 1 < j < n if nec-
essary, we can assume that @ = Supp(g). Consider the new finite measure v on
(2, M) defined by

VM e M V(M):/ g1 dy
M

and the mappings

0

V1<j<n Hj:f; € L5(Qu) — Hi(f;)=filgl 7 €Li(Q)
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and
__ro
Hpp o fe L™ (Qu) — Hya(f) = flg| ™+ € L1 (Q,v).

By Radon-Nikodym’s theorem

| Hoa()

H%UﬁL

=i 1<j<n

9 —_ —

L1 () L () (33)

LTn+1(Q,0) H ’

and for every (f;)7_; € [[j_, L7 (€2, 1), using (2)

T AT G A
@%ﬂ%wmﬂgwwgzmﬁlﬂﬁmvzm*wl s -
j=1 j

1

= ‘g‘m(rnil Tt HH) Hf] =9 Hfj < )= 1> (34)

As x, € L™ (£, v), joining the factorization (34) with the initial one we get our
goal and moreover, by (33) and (32)

L(T) < ||C o Hytal| | Dyl H 1 o Ayl| <
7=1
< €] Hn o Do 17 TT 4] <101 + = )
j=1

3) = 1). It is immediate by theorem 12 and the ideal properties of multilinear
r-integral operators. W
5 Applications to reflexivity

Previous results allows us to obtain some information about the reflexivity of
completed tensor products of type .

Theorem 15 Let F;,1 < j < n € N and F be reflexive Banach spaces such that
E}7 1 < j <n and F’" have the metric approximation property. Given an admissible

(n+ 2)-pla r, the space @ar (El, Es, ....E,, F) is reflexive if and only if

m(ﬁ E, F) — 3<ﬁ E, F) (36)
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Proof. If (36) holds, by theorem 7 and corollary 10 we obtain

—_

(&, (BB, B F)) = (mr(i[lEj, 7)) = (®,, (B By B F)) =
(HE’, ) (HE’ ) o (E1, By, . B, F).

Conversely, if ®ar (El, Ey ... E, F ) is reflexive, by definition of r-integral maps,
theorem 7 and corollary 10 we obtain

’Jr(jlle;., F) _ (m(i{lE] F’))' _ @ar(El,EQ,... F (H )

—~n+1
We apply theorem 15 to characterize the reflexivity of (® jzlfuﬂ', ar). First, we
need a lemma.

Lemma 16 Let r = (rj)?iol an admissible (n + 2)-pla verifying ro = oo and let
L <y <1 for every 1 < j < n+ 1. Then there erists a non compact map
T € 3 (15 09, ).

Proof. Let I, := [0,i[ and I, :== [27, &, L[ if m > 1. The map

79 =1 2@ =1 92t

\\H

Ay (B) € 05— X B L) X, € LH(0,1],10,1 < < m (s the
Lebesgue measure on [0, 1]), is well defined and continuous since

Il = (35 5585 a0 ) <l

Take g = x,,,, € L>([0, 1], p). Consider now the closed linear subspace F' gener-
ated by the set {x, ,m € N} in L™+1([0,1]). The map

Q:f¢€ (/1 fdu)xlmeF

m=1

Y

is continuous since, by Holder’s inequality

1

el - (i (] ra)” ﬂumy—w)w S

m=1
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_1
> 1—rp, nt1
< (Z (/1 | f[" du) plL) e +1> = 1l zrass oy

m=1
It is immediate that @ is a projection from L™+ ([0, 1]) onto F. Finally consider the
map

C:f=Y Bux, €F— (@n M(Im)ﬁ) € (uns
m=1

is continuous since 7,41 < u,y1 and

ot ueum:(zm —_y ?fﬁi)" (Zw o >)” ~ 1l

Hence T':= Co Qo Do (( E 1 6“9,6“”“) but 7" is not compact
since, using (2)

1 1
VmeN T((em,em, ...,em)) = ——— u(ly) 1 e, =€, A

M(Im>m
We can state now the main result of this section:

Theorem 17 If1 < wu; < oo for every1 <j<n-+1, (@j:fﬁ“j,ar) 15 reflexive if
and only if at least one of the following set of conditions holds:

S1). There is 1 < jo < n+ 1 such thatu; > 2 andu; > 7“; forall 1 < j # jo <
n+ 1.

S2). There exists 1 < jo < n+1 such that u}; > 2 for every 1 < j # jo <n+1

and
n+1

S @)
"o 1<5#5o ]
and moreover, there exists 1 < ji # jo < n+ 1 such that r; > 2 for every 1 < j #
J1<n-+1.
S3). We have u; > 2 for every 1 < j < n+1, and there exists 1 < jo < n +1

such that 7";0 < 2 and
n+1

Z — (38)
1<j#jo ]

S4). There is 1 < jo < n+ 1 such that v} = 2,77 < 2, u}; > 2 for every
1<ji#jo<n-+1and

l\DI»—t

(39)

l\DlH
I/\

M+
m|H



Proof. Sufficient conditions. Case S1). After the transposition j, —
n+1,n+1— jo if necessary, we can assume jo = n+1 and so u; > 2 and uj > r;
for every 1 < 7 <n.

By theorem 14, given T € J, (H?:l €“9,£“n+1) there are a finite measure space
(Q, M, 1) and mappings A; € L(£%, L"(Q, p)),1 < j <nand C € L(L™+(Q, ), £*)
such that T'= Co D, o (Aj)?zl. By Rosenthal’s result [ [16],theorem A.2 | every

A; is compact, and by the metric approximation property of %/, there is a bounded

sequence
e

kjm
A=Y %@ fh b C LY QL) (40)
k=1
m=1

such that
Vi<j<n lim HAj —Aij

m—r00

ol o = 0 (41)
L6, LT3 ()

Define 7}, := C'o D,_ o ((Ajm)?zl) for every m € N. Arguing as in theorem 7 and
using theorem 14 we obtain for every 1 < j <n and m € N

{C o DXQ (¢] (Almp ceey Aj—l,mv Aj — Ajm; Aj—l—l,m; ciey Anm) }::;:1 C jr <H 6“3 , Euyﬁl)
j=1
and by (41)

n

Ir(T - Tm) < ZII‘(C © DXQ © <A1m> SAED) Aj—l,ma Aj - Ajm7Aj+la ) An)) <

j=1
N n
< el 3204~ ( T 1al) (T 00)
j=1 1<s<y j<s<n
which approach to 0 if m — oo . But actually we have
kjm n
T = Y (@5x0) © (Co Dy, o ((74,)) € ([T e, 001).
k=1 J=1

It follows from theorem 7 that N, (7, — Ts) = I.(T,, — Ts) for m,s € N and using
(42), it turns out that {T,,,} ™ is a Cauchy sequence in M, (H;.Lzl 6“3,8“““). Then
/ —~n+1
T e, (H?zl %, *n+1) and by theorem 15 (&),_, (", o) is reflexive.
Case S2). Let 1 < jo # j1 < n+1such that v} > 2,1 < j # jo < n+1,

7 > 2,1 < j# j1 <n+1and (37) holds. In a first step we are going to see that
we can assume r}l > 2 too.
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Consider the case that r’ < 2. In such a case we have v} > 2 because jo # ji. If

J1=n+1, defining s, ., = 2,5" =77, 1 < j <n and % = %%— T,,l — % we obtain
n+1

an admissible (n + 2)-pla s = (sj)?ig verifying (37) still and such that, ¢“+' having
cotype 2, by corollary 4, we have (@?:;é“j,ar) A~ (@;:;E“j,as). f1<j<n,a
transposition j; — n+1,n+1 — j; would reduce the situation to the just considered
case. So, in the formulation of S1) we can assume that 7“;- >2,1<j<n+1.

After the eventual transposition jo — n+1,n+ 1 — j, we can assume that
u; > 2 for every 1 < j < n, 7’; > 2 for every 1 < j < n+ 1 and (37) holds for
jo =n+ 1. Using (5) this last condition can be written in the way

SEGDEGY e

Ulrg<ay N7 T30 ez N

For every 1 < j < n such that r;- > u;, choose 2 < t;» < u; close enough to u; in
order that

1 1 a 11 - 1 1
peae Y (5ea)- X (5w (49
{g Irf<ul} 7 I AL
Now define ¢ := 7% if r} <}, 1 < j <n and t,41 = rpp1. By (2) we have

1 "1 = 1 1 = 1 1 1
e X ()t X (ha)

tn+1 . ]
J=1 ) {jirg<uiy NI (rzugy >0

and it turns out that t = (tj);-‘iol is an admissible (n+2)-pla such that 2 < ¢ < u} and

t: < r for every 1 < j < n and moreover, by corollary 5 we have (@7;1 0%, a) ~
(®;L+11 (", o). Hence by case S1), (®T.lf1 0%, o) is reflexive.

7=1
Case S3). Once again after the transposition jo — n+ 1,n+ 1 — j, we can
assume that 77, <2, u} > 2 for every 1 < j <n+ 1 and (38) holds for jo =n +1,

or in an equivalent way (by (2)),

1 1 1 - 1 1 - 1 1
— - - ——— | > E ——=].
o N T 2 - , (7"’4 u’) (u’- r’)

J J P / J J
{3 |1“j ZUJ}

Remark that, by (2) we have necessarily r; > 2,1 < j < n. Since (***! has cotype

2, by corollary 4 there exists an (n + 2)-pla s = (s;)/%] such that s}, = 2, s} :=
. n+1 pu. ~ n+1 pu.

rl<j<mnand Li=14 L —dand (QI 0, a5) & (R £, 0;). Then

ro 1 2 j=1

(®;L:11 (", ag) is reflexive by the case S2) and so (®?;Lll (", o) does.
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Case S4). Assume the existence of 1 < jo < n + 1 such that u;O = 2,7”30 <2,
uj > 2 for every 1 < j # jo < n+1and (39) holds. Consider the admissible (n+2)-
pla s = (sj)”+1 such that s;, :=2,s; :=7r; forevery 1 < j # jo <n+1and & :=

1}0 + 7} ; We obtain from Kwapien’s generalized theorem and Pietsch’s 1nclu81on
Jo

theorem that ‘BF(H?:J“J',E%H) C Ps(IT7-s ¢, ("n+1). The reverse inclusion is

true by Kwapien’s factorization theorem and Maurey’s theorem [ [2], corollary 3,

§31.6 | because ("o = (2 has cotype 2 and 7}, < 2 give P (¢*, M) = pU (¢, M) for
n+1

—~n+1 —~n-+1 o~
every Banach space M. Then (®j:1€“1,ar) ~ (®j:1 E“J‘,Ozs) and (®j:1€“j,as) is
reflexive by (39) and the case S2).

Necessary conditions. We are going to see that (®;:1 0 ar) is not reflexive
if none of the previous conditions holds. It is enough to consider the following cases.

Case N1). Assume there exist 1 < jp < n such that ujo <2and 1 < jy #
J1 < n+ 1 such that u;, > 2. After the transposition j; — n+1,n+1 — j;
on{l,2,...,n + 1} if necessary, we can assume that j; =n+ 1, i.e. u,.1 > 2.

For every 1 < p < oo, let {R,,}7>, be the sequence of Rademacher functions
in LP([0,1]). It is well known that the sequence {R,}7°, is equivalent to the stan-
dard unit basis of /% and its closed linear span X, is complemented in LP([0, 1])
(Khintchine’s inequality and [ [12], proposition 5 |).

Let Poy1 € L(L™([0,1]),X,,,,) be a projection. Let Sj, : ¢ o — Xy be
the continuous linear map such that Sj,(en) = R,/ b On the other hand, for every
1 < j # jo < n fix a sequence (a;,)52, € (2 Such that oj; = 1 and denote by
S; Y — X, the continuous linear map such that Sj(es) = a;, Ry (remark
that

15: (BN < & l(@mBull < G [l 1Bl < C5 [zl B0 5

for some C; > 0 by Khintchine’s inequality).
Take g := [[j_ ;;, R, 1 € L™([0,1]), and consider the well defined map 7,11 €
L(X,, ., ") such that Tn+1(an+1,h) = ey, for h € N. Then

T:=Ty10P,10Dg0 (Sj);zl

is r-integral by theorem 14. Let {zj, 1 }32, := {(a1n, aon, -, ann) 1521 C [T, % such
that a;, = e; if j # jo and a;,, = e, for every h € N. We obtain T'(z;,,) = e, for
every h € N and so T is not compact. If ry # oo, by the remark after theorem 9 we
have T ¢ N, (H" (%5, ¢"n+1) and by theorem 15, (®;L+11 (", o) is not reflexive.

In the case ro = oo we need to consider several possibilities. First assume that
there are 1 < jp # jo <n+1and 1 < j3 # jo < n+1such that rj, > 2 and rj, > 2.
By corollary 6 there is an admissible (n + 2)-pla s = (s;)7"%] such that sy # oo and
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(®j:1€“f,ar) ~ (®j:1€”j,as). Then by the previous case with rq # oo, we see
—~n—+1
that (®j:1€“j, o) is not reflexive.

Finally, having (2) in mind, it remains to consider the case that % < 2andn = 1.
We are dealing with €“1®ar€“2 where v} < 2,7r] <2 and uy > 2. By theorems 2 and
7 we have (("'@Q),, 6“2), =0, 6“’2 The set K := {e;®e;, i € N} C (" Q. (2
is bounded. If €U1® ("2 were reﬂexwe A ® "2 would be reflexive too and by
Smul’yan’s theorem, sw1tch1ng to a suitable subsequenee if necessary, we would

assume that {e; ® €;}°, is weakly convergent to some z € 6“1® 6“2 It follows
from boundedness of K and the density of [eh]h . @[eh} in €“1® "2 that

given T' € €“1® "2 and p > 0, there exist w € ;- [eh]h . ®[eh}: and my € N
such that

Vi [(72)] < (722 = en ©en)] + (T = w.en 0] + | (1,00 D) <
< T,z = en @en)| +sup(T —w, e, @ ep)| + [(w,en @ en)| <p
keN
because (w, €, ® €,,) :/\0 if m is large/ienough. Then z = 0. But we are assuming
that J,(0%1, (12) = (Eu/1®oc; 6“5)/ = ("Q, (" and so, by the construction made in
the case 1y # oo there is T € €“1®ar€“2 such that <T(e,~),ei> = <ei,ei> =1 for

every ¢+ € N, a contradiction. Then €“1®a 2 is not reflexive.

Case N2). Assume that uj > 2 for every 1 < j < n, r; >2forevery 1 <j <
n+1,u,,, <r,. and <> , , or equivalently (by (5))

Tn+1 —
—+ Z — )< i o1y (45)
u.) T u, o
{ <t} i Gy N

Given 1 < j <, if r}; <u}and t; € [u], oo[ it turns out that we have

LD s G
{J Irf<uf} t {J Irf<uf} Y {J Irf<uf} "

On the other hand, if r; > v} and ¢} € [uj, rj} we have

= 1 1 - 11
> (y—ﬁ)e 0. >, (7_7)
(G Irj>ufy N J (g lrjzufy > J
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Then it follows from (45) that we can choose t;- > u; for every 1 < j < n such
that r} < u; and u; < t;- < 7’; for every 1 < 7 < n which verifies u; < 7’; in order

J
that
1 - 1 1 i 1 1
Y e)- X (5a)
0 et N J ; i T
J J

F s/
{j |Tj ZUJ}

By (2) we have

_Z Z (———)+ i (%—%)Jrrlo_gtl.

"
it S (I <u’} £ (G Irh>ul}

Taking ty = oo and ¢,41 = r,4+1 we obtain an admissible (n + 2)-pla t = (tj)ng

suchflhat t; > u; > 2 for every 1 < j < n. By corollary 5 we have (®j:1€ J,ozr) ~

(®j:1€u1‘,at) and so J (H?Zl E“Q,Eunﬂ) — :”Jr(H?ZIE“Q‘,E“"H). But by lemma 16
there is a non compact map S € J (H?:1€“J,€“"+1). Now we take s’ =t if 1 <

Jj <mn, s, >t and define sy < oo such that é = A — Then s =

t;’L+1 n+1
—~n—+1 —~n—+1
(s;)725 is another admissible (n + 2)-pla verifying (@);_; (%, as) ~ (®),—; £, )

corollary 6 and S € JS(H?:1€“9,€“"+1). By remark after theorem 9 we have S ¢
/ —~n+1 —~n+1

Ny (H;;l E“J‘,E“““) and by theorem 15 (®j:1£“j, Oér) ~~ (®j:15“j, Oés) turns out to

be not reflexive.

Case N3) Assume that v} > 2 for every 1 < j < n+ 1,7, < 2 and
T - , , or, in an equ1valent form (by (2))

L s (1)
To Tn+1 2 0 rj u] u] /rj
J

{ i<} {j >}
By (2) we have r; > 2,1 < j < n. Defining % = % + T7’11+1 — 5, 8 =11 <
j < nand s,41 := 2 we obtain an admissible (n + 2)-pla s = (s;)"] such that,

"1 having cotype 2, by corollary 4 one has (®j:1€“j, as) ~ (®j:1€“9', ar). Then
—~n+1
(®;:1€“1' , (xs) is not reflexive by the case N2), obtaining the desired conclusion by

isomorphism.

Case N4). Assume there are 1 < jo < nand 1 < j; # jo < n+ 1 such that
wh < 2,7 < 2and ry <y,

a) First we consider the case that n > 2. By (2) necessarily exist 1 < jo # j3 <
n+1such that v, > 2 and r’, > 2 and so, by corollary 6 and eventually switching to

an isomorphic tensor product ()

=1 v as), we can suppose moreover, that ro < oo.
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After the transposition j; — n + 1,n + 1 — j; if necessary we can assume that
j1 =n-+1,i e ry < upy1 indeed. If there exists 1 < j; # jo < n + 1 such that
ui, < 2, the result follows from case N1). Hence we can assume u/; > 2 for every
1<j#jo<n+1

Fix t < 2 such that 7} <, v} <t and u,y1 <t Let {¢p}p2; be a sequence
of standard independent identically distributed t-stable random variables in [0, 1].

It is known that the norm K, := ngkHLP([O,I])’ k € N is only dependent on ¢ and
p for every 1 < p < 2 and that {(IJIW = %}Zil is isometrically equivalent in
LP([0,1]), 1 < p < t to the canonical basis of ¢' (see [ [6], proposition IV.4.10 ]
for example ). Then {®, ., }72, is a normalized basis in the reflexive subspace
[Py Zozl ~ (' of L"™+1(]0,1]) and thus it is weakly convergent to 0 in L™+ ([0, 1])
(see [ [7], footnote page 169 | for instance). Switching to a suitable subsequence if
necessary, by [[18], chapter III, theorem 1.8 ], the sequence {®y, 741172, can be en-
larged to obtain a normalized basis B := { Py, }72 U{ ¥y }oo_; in L™+1([0,1]). By
reflexivity the sequence {®y, = 122, U{W} };°_; of associated coefficient functionals
to Bis a basis in L™+1([0, 1]). From [ [18], chapter I, theorem 3.1 | we find 1 < M € R
such that 1 < ||® . +1H < Mand 1< H\I/Z < M for every k € N. As above we
obtain that {®j , +1}k_l must be weakly convergent to 0. As 7, > 2, by the result

[ [7], corollary 5} of Kadec and Pelcinisky, switching to a subsequence again, it can
be assumed that {®} . 172, is equivalent to the standard unit basis in {Tn+1 or to
the standard unit basis in ¢2. By [ [7], corollary 1 ] the latter possibility would im-
ply that [®} +1] ., Would be complemented in Lw+1([0,1]) and by reflexivity and
* oo / oo ~ ~
duality, we would have the isomorphisms ([Cbk nmh 1) R [CIDk,rn +1}k:1 SHA ~ 0?2
which is not possible. Then {@ - }k=1 is equivalent to the standard basis of ¢+
and so, the map V € E(ﬁ“nﬂ,LrnH([O, 1])) such that V(ey)) = @j . s € Ns
well defined.

Let S; € E(ﬁ“g, L ([0, 1])), 1 < j # jo < n be defined as in previous case N1)
and consider Sj, € E(K“QO,LTQ'O([O, 1])) such that Sj,(ex) = Oy for every k € N.
Taking g as in case N1), the map T := V' o D, o ((SJ'))::1 is r-integral. However,
for every k € N and every (7,) € %+ we have

Kt Tl Ktv"'n 1
<T(Zj0,k)a (Vh)> = < K, + Dy, Tnt1) Z% hrn+1> = K, /+ Tk
7” o

Kt,rn+1
Kt,r’,
Jo

/ —~n+1
obtain T' ¢ N, (H?:1 %, (*+1) and by theorem 15 (®j:1€“j , @) is not reflexive.

and so T'(zj, ) = e, and 7T is not compact. By remark after theorem 9 we
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b) Now we consider the case n = 1. If ry # oo the previous argumentation can be

used still and (1), €2 is not reflexive. If ry = oo, after an eventual transposition,
we will be dealing with the case v} < 2,7 < 2 and ry < uy. If uy > 2 the result

follows from N1). If us < 2 and u} = 2 we repeat the proof given in this case for

n > 2 and @), ("* turns out to be non reflexive. If up < 2 and u} < 2 the same

construction just used in the case n > 2 show the existence of a map T' € J,.(£%1, (“2)
t,

such that T'(e;) = % e; for every i € N. Then we can repeat the argumentation
t 7'/1

used in the last part of N1) with the set K := {e; ® €;, i € N} C ("4 @ ("2 to
—~n—+1

conclude that (® =10, ozr) is not reflexive.

Finally we check that the proof of theorem 17 is complete. Assume that neither
condition S1), §2), S3), S4) holds.

a) First case: assume there is 1 < jy < n+1 such that u}O < 2. After an eventual
transposition with any 1 < k # jo < n+ 1, we can take jo < n. If there is some

—~n+1

1 < j1 # jo < n+1such that v} <2, by N1), (®j:1 (", o) is not reflexive. Then
we can assume u; > 2, 1 < j # jo < n+ 1. As S1) does not holds, there exists

—~n+1
J1 # Jjo such that r;, < wy,. If it would be v} < 2 and 7} < 2, (®j:1 v, ar) would
be not reflexive by N4). If wj, = 2 and 7, < 2, as S4) does not holds, after the

—~n—+1
transposition jo — n+ 1,n + 1 — jo, by N3) (®j:1£“f, ar) is not reflexive.
In the case r;O > 2, by (2) there is at most an unique 1 < j, < n + 1 such that
7, < 2. Necessarily jo # jo. As S2) does not holds, after an eventual transposition

Jo = n+1,n+1—= jy, wesee that u, , <2 <7, and by N2) (@:Llﬁuj,ar) is
not reflexive.

b) Second case: assume that u; >2,1<j<n+1. As S1) does not holds, after
an eventual transposition, it turns out that w/, , < 7/, ,. But S3) is not verified.
Then for every 1 < jo < n + 1 we have r}o > 2 or (38) does not holds. If it would

be 1% > 2 for every 1 < j < n+ 1, as §2) is not verified, (®j:1€“j,ar) would be
not reflexive by N3). If it would exists 1 < j; < n + 1 such that i < 2, then (38)

would fails for this index j;. After an evident transposition, by N3) (@:: 04, ar)
would be not reflexive. W

The application of theorem 17 to the case n = 1 gives the following characteri-
zation of reflexivity of classical Lapresté’s tensor products:

Corollary 18 Let n = 1 and let v = (ro,71,72) be an admissible triple. If 1 <
Uy, Up < 00, £* @arfw 15 reflexive if and only if one of the following sets of condi-
tions holds

1) w) > 2,u) > r].

2) ubh > 2,uh > rh.
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3) u'l >2,7’2 §2
4) uh > 2,1m < 2.
) uy > 2,uh > 2.
) up > 2,ub > 2.

S Ot

Proof. By theorem 17, ¢*1 @a‘ﬁ“? is reflexive if and only if one of the following
sets of conditions holds

a) uy > 2,uf >l
b) uhy > 2, ufhy > 1.
c) ufy > 2,ul >y > 2.

d) uhy > 2,ul > ry,rh > 2.

e) uy > 2,ul > 2,1 <2

f)uy>2ub > 2,1, <2.

g) uyp = 2,uhy > 2,7 <2

h) ufy =2,uy > 2,1y, < 2.

Clearly ¢) and 3) (resp. d) and 4) ) are equivalent. On the other hand, if 5)
holds and 7] < 2 then e) or g) holds. If 5) and 7] > 2 are true we have r < 2 < u,
and d) is verified. The remaining of the proof is similar or trivial. W
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