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Abstract 8 

The drying kinetics of thyme was analyzed by considering different conditions: air 9 

temperature of between 40-70º C, and air velocity of 1 m/s. A theoretical diffusion 10 

model and eight different empirical models were fitted to the experimental data.  From 11 

the theoretical model application the effective diffusivity per unit area of the thyme was 12 

estimated (between 3.68 10-5 and 2.12 10 -4 s-1). The temperature dependence of the 13 

effective diffusivity was described by the Arrhenius relationship with activation energy 14 

of 49.42 kJ/mol. Eight different empirical models were fitted to the experimental data. 15 

Additionally, the dependence of the parameters of each model on the drying 16 

temperature was determined, obtaining equations that allow estimating the evolution of 17 

the moisture content at any temperature in the established range. Furthermore, artificial 18 

neural networks (ANNs) were developed and compared with the theoretical and 19 

empirical models using the percentage of the relative errors (ER) and the explained 20 

variance (VAR). The ANNs were found to be more accurate predictors of moisture 21 

evolution with VAR ≥ 99.3% and ER ≤ 8.7%. 22 

 23 
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1. Introduction  27 

The food industry is becoming increasingly interested in aromatic herbs, mainly of 28 

the Lamiaceae family, for its medicinal properties and for possessing a wide variety of 29 

antioxidant components such as phenolic compounds. Thyme (Thymus vulgaris L.) is a 30 

member of the Lamiaceae family, native to Mediterranean countries. It is very important 31 

for the horticultural industry and can be used in herbal teas or as a condiment and the 32 

essential oils extracted from its fresh leaves and flowers are known for their different 33 

beneficial properties: antiseptic, carminative, antimicrobial and antioxidative (Shati and 34 

Elsaid, 2009). However, thyme is perishable, which requires the use of preservation 35 

methods in order to lengthen its useful life for further use (Doymaz, 2009). 36 

Hot air drying is one of the oldest food preservation processes. However, the 37 

exposure to thermal energy can affect important food properties, such as the chemical 38 

composition, texture, color and flavor. Therefore, the selection of a suitable drying 39 

method, developing an appropriate mathematical model, and the determination of the 40 

optimum operating parameters, are essential to achieve high quality, minimum cost 41 

products with a maximum yield (Clemente et al., 2010). 42 

Many mathematical models have been proposed to describe the drying process. 43 

These models can be categorized as theoretical, semi theoretical and empirical (Ozdemir 44 

and Devres, 1999; McMinn, 2006). A great deal of research has been carried out into 45 

the mathematical modeling and experimental drying processes of different agro-based 46 

products, such as kiwifruits (Maskan, 2001), red pepper (Akpinar et al., 2003), aromatic 47 

plants (Akpinar, 2006), tea leaves (Ghodake et al., 2006), rosemary leaves (Arslan and 48 

Ozcan, 2008), onion (Lee and Kim, 2008), and spinach leaves (Doymaz,  2009).  49 

Food processing is a complex system due to the complicated interactions that take 50 

place between various components. This makes it more difficult to develop 51 



mathematical models, since, in principle, it is necessary to understand the major 52 

mechanisms involved in the process.  Despite the criticism that it is not based on 53 

fundamental and/or individuals laws, an artificial neural network is an effective tool for 54 

developing mathematical models of relatively complex processes, mainly due to its 55 

ability to learn (Zhou and Therdthai, 2010).  ANNs are being applied in agri-food 56 

processes including drying, baking, osmotic dehydration and high-pressure processes as 57 

well as in the estimation of food properties and quality indicators (Sablani and Rahman, 58 

2003; Chegini, 2008).  Recently, modeling the drying of food products using ANNs has 59 

gained momentum for irregular geometries (Erenturk and Erenturk, 2007); however, 60 

there is no reference in literature to the modeling of thyme drying using ANNs. 61 

The objectives of this study were to apply and compare a theoretical model, 62 

different empirical models, and ANNs to predict the evolution of thyme moisture 63 

content during the convective drying at different temperatures. 64 

 65 

2. Materials and methods 66 

2.1. Sample preparation 67 

Fresh thyme samples (Thymus vulgaris L.) were acquired from a grower/producer 68 

in Valencia, Spain, and kept in refrigeration (4 ºC) for their later use. The initial 69 

moisture content was determined according to the AOAC standards (1997), obtaining 70 

the following results: 78.42 % (w.b.) ± 3.26. 71 

 72 

2.2. Drying experiments 73 

Several drying experiments were carried out in triplicate, at constant temperatures 74 

of 40, 50, 60 and 70 °C, and an air velocity of 1.0 m/s; the relative humidity of the hot 75 

air was between 3.7–18 %. In every experiment, the sample’s initial weight was 50 g 76 



(±0.5 g), and the drying process was performed until the final moisture content was 77 

about 10 % (w.b.). The thyme samples were distributed uniformly into de drying 78 

chamber, forming a bed with a thickness of 2.99±0.2 cm, and the air flow passed 79 

through the bed.  80 

A completely automatic, laboratory scale convective drier (Sanjuán, et al., 2003), 81 

with control of air temperature and velocity was used (Figure 1). The drying chamber 82 

was formed by a cylindrical sample holder which was periodically weighed (at 5 min 83 

intervals), and the weight was measured and registered using a balance connected to a 84 

computer.  85 

 86 

2.3 Mathematical modeling  87 

2.3.1 Theoretical model 88 

Considering that the product behaves like an infinite slab, a theoretical model (Eqs. 89 

1 to 3) based on Fick’s particular law was applied, taking the following simplifications 90 

into account:  (i) negligible external resistance to mass transfer; (ii) isotropic and 91 

homogenous material; (iii) negligible material shrinkage. 92 
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The equilibrium moisture values were estimated using the Modified Halsey 93 

equation (Eq. 3) obtained from literature (Soysal, 2001).  94 

 
1.37743 -1.44139

w e= exp[-exp(2.97977 - 0.00258492T )W ]a
 (3) 

To estimate the equilibrium moisture content from equation 3 the relative humidity 95 

is needed. The relative humidity of the hot air was calculated from the hot air 96 



temperature and the relative humidity and the temperature of the environment, 97 

considering that the wet air behaves like a perfect gas. 98 

 The saturation pressure of water vapor in the wet air was estimated using an 99 

equation obtained from literature (ASAE, 1999). 100 

The experimental results were applied to fit the mathematical model obtaining the 101 

value of the effective diffusivity (Deff). Later, the dependence of the parameters on the 102 

air temperature was analyzed applying the Arrhenius equation (Eq. 4) 103 

a
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   

(4) 

 104 

2.3.2 Empirical models 105 

A search was performed to find mathematical models of the convective drying of 106 

irregular shaped products, like thyme. Table 1 shows 7 widely used semi-theoretical 107 

drying models (Doymaz, 2011), where  is the dimensionless moisture content (Eq. 5) 108 

and t is the time.  109 
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The equilibrium moisture content values (We) were determined using equation 3, 110 

from the experimental values of the hot air temperature, and the relative humidity and 111 

temperature of the environment, considering that the wet air behaves like a perfect gas. 112 

 The experimental drying kinetics was used to fit mathematical models in order to 113 

obtain the values of the model parameters. Subsequently, the dependence of the 114 

parameters on the air temperature was analyzed, searching for polynomial relations in 115 

order to obtain, in each case, a generic model that could predict the evolution of the 116 

dimensionless moisture content in function of the time and temperature. 117 

 118 



2.3.3 Artificial Neural networks  119 

ANNs, a new generation of information processing paradigms designed to mimic 120 

some of the behaviors of the human brain (Baş and Boyaci, 2007), has as main 121 

advantage the fact that ANNs can simulate the nonlinear relationship between input and 122 

output variables through a learning process, and generalize the knowledge among 123 

homologous series without need for theoretical and empirical models. 124 

Artificial neural networks were applied to predict the average moisture content 125 

evolution and dimensionless moisture content: (i) one artificial neural network (ANN) 126 

to predict the dimensionless moisture content evolution (ANNr); (ii) a second ANN to 127 

predict the average moisture content evolution (ANNt). 128 

The ANNs were developed considering the most common architecture, based on a 129 

multilayer feed-forward structure with the back-propagation training algorithm used for 130 

computing the ANN weights and biases. This architecture is the result of a “universal 131 

approximation” (Hornik et al., 1989; Siegelman and Sontag, 1991) computing model 132 

based on Kolmogorov’s theorem (Kolmogorov, 1957) and the more comprehensive 133 

observation done by R. Hecht-Nielsen (1990). There are two main ideas behind a 134 

feedforward neural network: (i) the first idea is a full connection architecture, as the 135 

outputs of neurons from the previous layer are connected with the corresponding inputs 136 

of all neurons of the following layer; (ii) the second idea is a backpropagation learning 137 

algorithm, when the errors of the neurons from the output layer are being sequentially 138 

backpropagated through all the layers from the “right hand” side to the “left hand” side, 139 

in order to calculate the errors of all other neurons. One more common property of a 140 

major part of the feedforward networks is the use of sigmoid activation functions for its 141 

neurons. 142 



 This is a type of network of supervised learning that is based on an algorithm of 143 

descending gradients (Levenberg- Marquardt algorithm ) (Levenberg, 1944; Marquardt, 144 

1963), in order to minimize the error.  145 

One of the problems that occur during neural network training is called overfitting. 146 

The error on the training set is driven to a very small value, but when new data is 147 

presented to the network, the error is large. The network has memorized the training 148 

examples, but it has not learned to generalize to new situations (Lertworasirikul and 149 

Saetan, 2010). To improve the generalization, the method called regularization was 150 

applied, which updates the weight and bias values according to the Levenberg-151 

Marquardt optimization. It minimizes a combination of squared errors and weights, and 152 

then determines the correct combination so as to produce a network that generalizes 153 

well. The process is called Bayesian regularization (MacKay, 1992, Aggarwal et al. 154 

2005). 155 

There is no fixed rule for determining the required hidden layers and nodes. In 156 

general, one hidden layer has been found to be adequate, and only in some cases, may a 157 

slight advantage be gained by using two hidden layers (Lertworasirikul and Saetan, 158 

2010). Therefore, although the number of hidden layers was fixed at one, this could be 159 

increased if the fit wasn´t adequate, while the number of neurons in the hidden layer, 160 

and transference functions between layers (tansig, logsig, purelin) were investigated.  161 

To fit each ANN, a total of 273 data from 15 drying experiments were used.  In the 162 

ANN developed to predict the evolution of the dimensionless moisture content (ANNr), 163 

2 independent variables were considered: drying temperature (T) and time (t); as target 164 

matrix, the dimensionless moisture content was applied. In the ANN developed to 165 

predict the evolution of the average moisture content (ANNt), 4 inputs were considered:  166 

drying temperature (T), relative air humidity (hr), initial sample moisture (W0) and time 167 



(t). With this ANN, the evolution of the average moisture content would be evaluated. 168 

The evolution of the value of the average moisture content depends both on the air 169 

conditions (T, hr) and the initial moisture content (W0), for which reason the variables hr 170 

and W0 were added as inputs. In this case, the average moisture content was considered 171 

as target matrix. 172 

The proposed neural networks possessed a common structure: an input vector, with 173 

two components (T, t) (Figure 2a) or four components (T, t, hr, W0) (Figure 2b), one or 174 

two hidden layers with a number of neurons to be estimated, an output layer with 1 175 

neuron, and 1 output (dimensionless moisture content or average moisture content). In 176 

the hidden layers the transfer function was studied, and the linear transfer function was 177 

applied in the output layer.   178 

 179 

2.4 Statistical analysis  180 

The average value of the percentage of the relative errors (ER) (Eq. 6) and the 181 

explained variance (VAR) statistics were used to evaluate the accuracy of fit (Bon et al., 182 

2010). The average value of the relative errors is a measure of the random component in 183 

the estimation. VAR indicates the proportion of variance that is accounted for by the 184 

model. 185 

 186 

2.5 Computational tools 187 

To fit the theoretical model, obtaining the value of the parameter Deff, and to 188 

analyze the dependence of the Deff fitting the Arrhenius equation, algorithms were 189 
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developed using Matlab® R2009a (The MathWorks, 2009) as the computational tool. 190 

The "nlinfit' function was applied to estimate the parameter values, by means of  191 

nonlinear regression, and the 'nlparci' function to estimate the confidence intervals for 192 

the parameters. 193 

To fit the empirical models the Curve Fitting Toolbox of Matlab® R2009a was 194 

applied. 195 

To develop the ANN, the Neural Network Toolbox™ of Matlab® R2009a was 196 

used. Using the Matlab languages, a function was developed to create, by applying the 197 

function "newff",  and to train, by applying the function "train", a feed-forward 198 

backpropagation network. This function looked for the number of neurons in the hidden 199 

layers.  200 

 201 

3. Results and discussion 202 

3.1 Drying kinetic 203 

Figure 3 shows the drying kinetics of thyme for different air temperatures; 204 

predictably, the drying rate increases as the air temperature rises. At the beginning of 205 

the drying process, when the moisture content of the product is high, the drying rate is 206 

relatively high; in the same way it can be observed that when the product moisture 207 

content decreases, the drying rate drops. As can be seen in Figure 3, at drying 208 

temperatures of 60 and 70°C, the drying time is reduced considerably by 76 and 85 %, 209 

compared to the drying total time at 40°C. 210 

 211 

3.2 Theoretical model 212 



The theoretical model was defined by considering several assumptions according 213 

equation 1, as the external resistance to mass transfer was negligible. A way to assess 214 

the relative importance of external resistance is by means of Eq. (7) (Mulet, 1994).   215 

  0.5d Ln( ) (q + m )
=

dt

 

  
(7) 

 Plotting 
  

2

ωd Ln(ω) / dt
versus  allows the prevailing resistance to be assessed. 216 

When external resistance predominates, the plot is a straight line. Otherwise, it is a 217 

parabola; as can be observed in Figure 4, the internal resistance governs mass transfer 218 

during the drying process.  219 

The estimated values of Deff for all the drying conditions are presented in Table 2, 220 

obtaining values between 3.68 10-5 and 2.12 10-4 s-1. As expected, the values increased 221 

greatly in line with the increase in drying temperature. The results show a good fit 222 

between the experimental and estimated values (VAR ≥ 95.7%; ER ≤ 20.8%). 223 

To fit the dependence of Deff on the temperature (Equation 4) by means of a 224 

nonlinear regression, the initial values of the parameters were estimated by fitting the 225 

equation 4 linearized. Table 3 shows the parameter values obtained using the nonlinear 226 

regression, obtaining activation energy with a value of 49.42 kJ/mol. 227 

 228 

3.3. Empirical models 229 

Dimensionless moisture content data versus drying time were fitted with the 230 

different models listed in Table 1. Tables 4, 5, 6, and 7 show the results of non-linear 231 

regression analysis performed to fit the empirical models for each drying temperature. 232 

The results show a good fit between the experimental and estimated values of every 233 

model (VAR ≥ 97.6%; ER ≤ 16.7 %). To analyze the dependence of the parameters of 234 

the models with the temperature, polynomial equations were fitted, because previously 235 



it was checked that the Arrhenius equation didn't estimate properly the relationship 236 

between the parameters and the temperature. 237 

  Table 8 shows the polynomial relations between parameters and temperature, and 238 

the statistical results of the fit of the polynomial equations.  When these equations are 239 

considered in the corresponding model, generic models are obtained to be used in the 240 

temperature interval under consideration (40-70 ºC). 241 

 242 

3.4. Artificial Neural Network 243 

The number of hidden layers (between 1 and 3) and the number of neurons of each 244 

hidden layer (between 2 and 10),  and the corresponding bias and weights numbers, was 245 

looked for, selecting the number hidden layers and the number of neurons for which the 246 

"best" values of the objective function applied in the training of the ANN was obtained. 247 

For that, the function created using the Matlab language was applied.  Table 9 shows 248 

both the number of hidden layers,  the number of neurons in the hidden layers and also 249 

the transfer function used in each ANN. 250 

The correlation between the experimental and estimated values by neural networks 251 

can be seen in table 10.   252 

 253 

3.5. Models comparison 254 

Table 10 shows the statistical results of the application of the generic models, 255 

considering the experimental results for each temperature and considering all the 256 

experimental results. In every case, the designed neural networks show the best 257 

agreement for the drying curves of thyme, with VAR ≥ 99.3% and ER ≤ 2.9% for 258 

ANNr, and with VAR≥ 99.7% and ER ≤ 8.7% for ANNt  259 

 260 



4. Conclusions  261 

Analyzing the influence of the temperature on the parameters of the models studied, 262 

generic models to estimate the evolution of dimensionless moisture content in function 263 

of the hot air temperature and drying time were obtained. 264 

For the global application of the theoretical and empirical generic models analyzed, 265 

the Logarithmic model showed the best statistical results of the fit. 266 

The fit of the theoretical diffusive model allowed estimating the effective 267 

diffusivity per unit area and the activation energy for the thyme variety used.  268 

Both for individual cases (for each air hot temperature) to general cases (global 269 

application), the ANNs application showed the best statistical results of the fit. 270 

Therefore, the ANNs developed constitute an adequate model to predict the moisture 271 

content, representing the evolution of thyme drying better than either the theoretical 272 

model or the empirical models proposed. The models developed through ANNs would 273 

be of special interest in the formulation and optimization problems on line, and in the 274 

predictive control of process. 275 
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NOMENCLATURE 362 

a, al, aTe, aPb Dimensionless parameters of empirical models  

ANN Artificial neural network 

ANNr ANN developed to predict the  evolution of the 

dimensionless moisture content  

ANNt ANN developed to predict evolution of the 

average moisture content  

aw Parameters of empirical model (s-1) 

a
w Water activity 

b, bH, bL, bTe, bPb Parameters of empirical models (s-1) 

bP Parameter of empirical model (s-c) 

bW Parameter of empirical model (s-2) 

c, cL, Dimensionless parameters of empirical models 

cPb Parameter of  empirical model (s-2) 

Deff Effective diffusivity (s-1)  

Do Parameter of the Arrhenius equation (s-1)  

Ea Activation energy (kJ/mol) 

ER Average value of the relative errors (%) 

hr Relative humidity 

L Semi-thickness of the bed (m) 



m Parameter of equation 11 

N Number of observations 

q Parameter of equation 11 

R Constant of perfect gas (kJ/mol K) 

T Air temperature (ºC) 

t Drying time (s, min) 

VAR Explained variance (%) 

W Average moisture content, in dry basis  (kg /kg) 

W0 Initial moisture content, in dry basis (kg /kg) 

We Equilibrium moisture content, in dry basis (kg/kg) 

Zcal Calculated value of a property 

Zexp Experimental value of a property 

 Dimensionless moisture content 

 363 

364 



 365 

  366 

 367 

Figure 1. Schema of an automatic convective drier on a laboratory scale. 1) Support; 2) 368 

Fan; 3) Flow control; 4) Anemometer; 5) Electrical resistance; 6) Pneumatic valve; 369 

7)Temperature sensor; 8) Drying chamber; 9) Balance; 10) Elevator; 11) Air 370 

compressor; 12) Control and data acquisition 371 

372 
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 377 

 378 

 379 

 380 

 381 

 382 

Figure 2. Neural network schemes. a) Inputs vector with two components; b) Inputs vector 383 

with four components. 384 
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Figure 3. Thyme drying at different air temperatures 387 
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Figure 4. Influence of external resistance on drying kinetics of thyme 404 

 405 

 406 

 407 

 408 
409 



Table 1. Empirical models selected 410 

Model name Model 

Newton  Mr = exp(-b t)  

Henderson and Pabis Mr = a exp(-bH t)   

Page Mr = exp(-bP tc)  

Logarithmic Mr = aL exp(-bL t) + cL 

Two-term exponential Mr = aTe exp(-bTe t) + (1 – aTe) exp(-bTe aTe t)  

Wang and Singh Mr = 1 + aW t + bW t 2  

Parabolic Mr = aPb + bPb t + cPb t2 

 411 

Table 2. Values of effective diffusivity per unit area at different hot air temperatures (Deff 412 

± standard deviation)·10-9 (s-1). 95% confidence intervals 413 

Temperature (°C) Deff (s-1) 
Confidence bounds 

ER (%) 
VAR 

(%) Lower higher 

40 7.7± 1.14 7.4 8.0 20.8 95.7 

50 15.2 ± 1.17 14.7 15.7 11.0 98.5 

60 27.6 ± 2.49  25.7 29.6 17.4 97.5 

70 44.5 ± 1.41 44.4 48.6 18.4 98.3 

Relative error (ER) considering the dimensionless moisture content 414 

 415 

Table 3. Results of the fit of the Arrhenius equation. 95% confidence intervals 416 

Parameter Value 

Confidence bounds 

ER (%) VAR (%) 

Lower higher 

D0 (s-1) 7855  -1879 34500  
3.6 99.8 

Ea (kJ/mol) 49.42 40.05  58.80  

 417 



 

Table 4. Results of the fitting of empirical models using experimental results obtained by air drying at 40ºC. 

 

Model Models parameters VAR (%) ER (%) 

Newton  b 1.4 10-4 ± 2.6 10-5         99.2 7.2 

Henderson and Pabis a 0.913 ± 0.0 bH 1.4 10-4± 0.0   

 

99.4 16.7 

Page bP 4.0 10-4 ± 2.1 10-5 c 0.89675 ± 0.05    99.8 3.5 

Logarithmic aL 0.8807 ± 0.0 bL 1.7 10-4± 0.0 cL 0.05746 ± 0.0 99.7 12.2 

Two-term exponential aTe 0.28265 ± 0.02 bTe 2.1 10-4±  2.1 10-5   

 

99.6 4.3 

Wang and Singh aW -1.1 10-4 ± 1.6 10-5 bW 3.74 10-9 ± 1.1 10-9   

 

99.9 12.7 

Parabolic aPb 0.8906 ± 0.076 bPb -9.0 10-5± 1.2 10-5 cPb 2.7 10-9 ± 7.6 10-10 99.2 5.9 

 

 

Table 5. Results of the fitting of empirical models using experimental results obtained by air drying at 50ºC. 

 

Model Models parameters VAR (%) ER (%) 

Newton  b 2.3 10-4± 1.4 10-5         99.2 8.3 

Henderson and Pabis a 0.9668 ± 0.02 bH 2.3 10-4± 3.0 10-5   

 

99.7 3.7 

Page bP 2.8 10-4± 1.0 10-4 c 0.98983 ± 0.04    99.8 4.5 

Logarithmic aL 1.10853 ± 0.23 bL 2.3 10-4± 4.1 10-6 cL 0.01858 ± 0.1 10-3 99.7 7.1 

Two-term exponential aTe 1.01350 ± 0.02 bTe 2.5 10-4±  2.1 10-5   

 

99.1 4.2 

Wang and Singh aW -1.0 10-4± 1.9 10-5 bW 1.36 10-8 ± 2.5 10-9   

 

99.9 10.0 

Parabolic aPb 0.92746 ± 0.013 bPb -1.7 10-4± 2.0 10-5 cPb 9.3 10-9 ± 1.1 10-9 99.2 5.1 

 

 



 

Table 6 Results of the fitting of empirical models using experimental results obtained by air drying at 60ºC. 

 

Model Models parameters VAR (%) ER (%) 

Newton  b 3.9 10-4± 1.4 10-5         97.5 8.7 

Henderson and Pabis a 1.0131 ± 0.02 bH 3.9 10-4± 2.8 10-5   

 

98.1 9.0 

Page bP 1.8 10-4± 3.2 10-5 c 1.094 ± 0.15    99.8 8.2 

Logarithmic aL 1.133 ± 0.66 bL 2.3 10-4± 8.2 10-6 cL -0.15505 ± 6.63 10-2 99.2 3.1 

Two-term exponential aTe 1.568 ± 0.13 bTe 4.5 10-4±  2.6 10-4   

 

99.2 4.1 

Wang and Singh aW -3.1 10-4± 1.2 10-5 bW 2.48 10-8 ± 6.1 10-9   

 

98.8 4.3 

Parabolic aPb 0.9717 ± 8.0 10-3 bPb -2.8 10-4± 7.3 10-6 cPb 2.1 10-9 ± 5.6 10-10 99.5 3.4 

 

 

Table 7. Results of the fitting of empirical models using experimental results obtained by air drying at 70ºC. 

 

Model Models parameters VAR (%) ER (%) 

Newton  b 5.4 10-4± 5.0 10-5         99.2 11.9 

Henderson and Pabis a 1.02936 ± 0.04 bH 5.5 10-4± 4.1 10-5   

 

99.4 10.8 

Page bP 1.2 10-4± 2.1 10-5 c 1.26433 ± 0.16    99.8 9.1 

Logarithmic aL 1.25743 ± 0.28 bL 4.0 10-4± 1.2 10-4 cL -0.27942 ± 0.0213 99.7 6.2 

Two-term exponential aTe 1.01350 ± 0.16 bTe 2.5 10-4±  2.4 10-4   

 

99.6 5.8 

Wang and Singh aW -3.8 10-4± 4.6 10-5 bW 3.3 10-8 ± 1.7 10-8   

 

99.9 3.3 

Parabolic aPb 0.98566 ± 0.02 bPb -4.0 10-4± 2.5 10-5 cPb 4.1 10-9 ± 3.1 10-10 99.2 2.6 

 



 

 

Table 8. Empirical relations between parameters and temperature, and statistical results. 

  

VAR (%) ER (%) 

Newton b 1.338 10-5T- 0.00041 99.3 6.5 

Henderson and Pabis 
a 0.991 ± 0.051   

bH  1.413 10-5T - 4.432 10-4 99.3 7.1 

Page 
bP -8.531 10-6 T+ 7.196 10-4 97.5 15.8 

c  1.134 10-2 T + 4.337 10-1 98.3 1.7 

Logarithmic 

aL 1.394 10-2 T + 2.880 10-1 94.6 4.1 

bL 6.813 10-6T - 1.060 10-4 96.7 4.2 

cL -2.484 10-4 T2 + 1.534 10-2 T - 1.517 10-1 98.6 13.1 

Two term exponential 
aTe -1.148 10-3 T2 + 1.757 10-1 T - 4.9017 99.3 2.9 

bTe 3.163 10-7 T2 - 1.965 10-5 T + 4.763 10-4 99.3 7.2 

Wang and Singh 
aW -9.042 10-6 T + 2.494 10-4 99.3 3.6 

bW 1.148 10-9 T - 4.357 10-8 97.8 13.2 

Parabolic 

aPb -4.619 10-5 T2 + 8.419 10-3 T + 6.265 10-1 99.1 4.1 

bPb  -1.060 10-5 T + 3.445 10-4 99.6 5.7 

cPb 2.826 10-11 T2 - 1.874 10-9 T + 3.232 10-8 99.8 3.6 

   

 

Table 9. Number of hidden layers and number of neurons in the hidden layers 

 

Transfers 

function 

Number of 

hidden layers 

Number of 

neurons 
VAR (%) 

ER 

(%) 

ANNr 

Tansig 1 10 97.8 10.1 

Logsig 1 10 96.9 9.2 

Purelin 1 10 78.9 24.3 

ANNt 

Tansig 1 10 98.7 8.9 

Logsig 1 10 98.8 7.6 

Purelin 1 10 79.9 18.9 

ANNr 

Tansig 2 6/4 99.7 3.7 

Logsig 2 5/5 98.7 2.8 

Purelin 2 4/4 78.9 18.9 

ANNt 

Tansig 2 5/5 99.9 1.6 

Logsig 2 5/6 99.9 3.4 

Purelin 2 4/2 84.4 24.3 

 



 

Table 10. Statistical results of the fit (for all experimental results) and of the application (40, 50, 60 and 70 ºC) of the generic models.  

 

40°C 50°C 60°C 70°C 
For all experimental 

results 

VAR (%) ER (%) VAR (%) ER (%) VAR (%) ER (%) VAR (%) ER (%) VAR (%) ER (%) 

Theoretical model 99.5 5.6 99.7 5.5 98.4 3.7 97.1 19.5 93.4 17.8 

Empirical 

models 

Newton 99.3 14.7 99.6 12.7 99.2 8.5 98.6 14.0 97.1 13.0 

Henderson and Pabis 99.3 14.4 99.5 13.8 99.2 8.7 98.4 12.4 96.9 13.2 

Page 99.5 13.3 99.1 23.5 98.7 23.2 98.3 21.1 96.7 18.5 

Logarithmic 99.1 12.2 99.7 8.9 99.6 8.2 99.4 13.9 97.5 10.4 

Two-term exponential 99.1 68.6 99.3 19.0 99.5 12.7 99.3 20.5 87.3 39.6 

Wang and Singh 93.4 50.8 91.4 56.2 99.6 8.1 99.4 45.1 92.1 40.4 

Parabolic 97.2 52.2 99.2 31.2 99.5 13.7 99.4 8.7 89.6 35.5 

ANN 

Models 

ANNr 99.9 0.6 99.8 1.4 99.7 1.4 99.3 2.9 99.7 3.7 

ANNt 99.9 0.8 99.9 0.7 99.9 3.3 99.7 8.7 99.9 1.6 

Relative error (ER) was calculated considering the dimensionless moisture content, except for ANNt, where the ER is calculated considering the average 

moisture content, in d.b. 

 


