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Abstract. The Florida leafwing is an endemic butterfly which is distributed in
South Florida and the lower Keys. Stage-structured population models are a useful
tool for the management and conservation of Florida leafwing. In this work we use
a discrete-time periodic control system for describing a leafwing population. One
of the main differences between this model and classical stage-structured models
is that in the current model we can alter the number of adults contributing to
eggs production. This allows us to control the population. The solution of the
problem is obtained using invariant formulations of positive periodic systems.
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1. Model description and results

Butterfly populations are in decline in Florida [5], including the Florida leafwing,
Anaea floridalis (Nymphalidae) which is now restricted to Everglades National
Park [2]. For butterflies and many other insect herbivores, at least one devel-
opmental stage in the life cycle is completely dependent on a food plant for
its environment and nutrition [3]. Butterflies develop through multiple lar-
val stages during which they feed exclusively on foliage. Following complete
metamorphosis, adult butterflies emerge and either subsist on stored resources
obtained as larvae or feed on liquid, sugar-rich sources available in their envi-
ronment, e.g. flowers or tree sap. Conservation strategies for butterflies must
therefore address the interaction of caterpillars and food plants. In recent
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years, several authors have used mathematical models to study species that
have stage-structured lives. Structured population models allow the study of
population structure, which is defined by a mix of individual attributes such
as size, age, disease state, etc, [6, 9].

In this work we focus on a stage-structured model for a theoretical leafwing
population that incorporates larval plant-dependent stages, and adult plant-
independent stages. Leafwing caterpillars feed exclusively on plants in the
genus Croton, which generally occur in fire-maintained landscapes. The effects
of fire and food plant on leafwing population growth are mediated through the
larval stages. Leafwing butterflies feed on a variety of non-floral foods includ-
ing tree sap, rotting fruit, and dung, which may contribute to their longevity
as adults relative to other butterflies. In the northern range, leafwing (Anaea
andria), have two reproductive pulses, or broods, each year, and overwinter
as dormant adults [7]. In southern tropical ranges, leafwing (A. floridalis and
other Anaea in the West Indies) have as many as three broods, or overlapping
broods [8]. Matrix entries in our general model can be manipulated to reflect
the effects of fire, different food plants, and differing numbers of broods each
year. The resulting matrices can then be analyzed for population growth and
stability given each hypothetical scenario. A discrete control system is used to
model leafwing population growth. One of the main differences between this
model and classical stage-structured models is that in the current model we
can alter the number of adults contributing to eggs production. This allows
us to control the population. The solution of the problem is obtained using
invariant formulations of positive periodic systems.In addition, some results
on stability are given.

We model a butterfly species whose life-histories is composed of a se-
quence within which their characteristics are broadly similar to those of other
individuals in the same stage and different from those individuals in other
stage. This life pattern can be split into ten distinct developmental stages,
immature stages (eggs and larvae), adult stages and dormant. These dif-
ferent stages have different responses to environment and regulating factors
to the population. We also assume that only the adult stage can reproduce
and the birth rate depends on the adult population density. The state vec-
tor, n(t) = (ni(t))i=1...10, contains the number of individuals in each stage at
time t, and n(t) ≥ 0, ∀t ∈ N. By the nature of the species during summer
ni(t) = 0, i = 1 . . . 7 and during winter ni(t) = 0, i = 1 · · · 9.

This model represents an entire year, making a discretization in 3-day
time steps. The process is considered periodic with T = 122, and we consider
the following parameters: Pi(t) is the probability survival in stage i and stasis
in i at time t; Gi(t) is the probability of survival in stage i and growth from
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stage i to i+ 1 at time t; Ri(t) is the probability of regression from stage i to
i− 1 at time t and F (t) is the average contribution of egg per female at time
t, taking into account that births are seasonal or occur only during a single
period of the year.

Making the assumptions described above the proposed model is given by
the following periodic system

n(t+ 1) = A(t)n(t) + b(t)u(t) (1)

where n(t) ∈ R10 is the state vector and u(t) is the control/input, A(t) and b(t)
are real nonnegative periodic matrices of period T with appropriate dimension,
i.e. A(t+ T ) = A(t) and b(t+ T ) = b(t). On the other hand, using the stage-
structure of the population, matrix A(t) is a tridiagonal matrix which has
nonzero elements only in the main diagonal, Aii(t) = Pi(t); the first sub-
diagonal, Ai+1i(t) = Gi(t); and the first super Aii+1(t) = Ri+1(t) and b(t) is a
column vector which has non zero element only in the first row, b1(t) = 1.

In order to study the existence and stability of equilibria of system (1) one
needs a time-invariant description of the periodic system. Specifically, system
(1) has associated an invariant cyclically augmented system (ICAS) (see [1]
and the references given there), denoted by (Ae, Be), as follows z(t + 1) =
Ae(t)z(t) +Be(t)ue(t) where Ae is a weakly cyclic matrix of index T given by(

O A(0)
diag (A(1), . . . , A(T − 1)) O

)
and Be is a block diagonal matrix whose i− th diagonal block is b(i). See [1]
and the references given there for more details on relations between states and
controls of system (1) and its ICAS.

A first step in examining a population model is to show that it is biolog-
ically feasible. It is important to establish that nonnegative initial data give
rise to nonnegative solutions, that is, the population should remain nonnega-
tive for all time t ≥ 0. In [1] a characterization of periodic positivity is given
using the ICAS associated to a periodic system. By the construction of the
stage-structure model, it is straightforward to show that matrices Ae and Be

are nonnegative and this implies the positivity of periodic system (1).
Periodic systems and their solution are studied in several works. In par-

ticular, we may use these results to give an explicit solution of our model, but
what really interests us is whether there exists a unique nontrivial equilibrium
state.

Clearly, in our analysis the control satisfies nonnegativity, that is, u(t) ≥ 0
and it can be interpreted as a birth function. In this work, we propose a
state-feedback which represents the recruitment rate in the system, defined by
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u(t) = λK(t)n(t) where K(t) is a row vector which has non zero element only
in the column 9, K9(t) = F (t) and λ is a positive constant. The periodic closed
loop system is given by n(t + 1) = Ac(t)n(t) with Ac(t) = A(t) + λK(t)n(t).
Note that, the state-feedback adds a new entry to the initial matrix A(t) at
position (1, 9). And its associated ICAS formulation is given by ne(t + 1) =
Ace(t)ne(t). We want a numerical value for the equilibria, n∗ and the stability
of the system in this point. Note that ”‘stable”’ is used here in a distinctive
sense. The population itself is growing, but the relative numbers in different
age classes are becoming stable.

We use the net reproductive rate or inherent net reproductive number [4],
R to analize the asymptotic dynamics of the linear system. The reproductive
number is the expected number of offspring per butterfly over the course of its
lifetime. For obtaining R, we will use the next generation matrix defined as
NG = Fe(I − T )−1, where T and Fe the transition and the fertility matrices,
respectively. In our case, these matrices are given by T = Ace and Fe is
a weakly cyclic matrix of index T , which block f(·) is a matrix whose only
nonzero element f1,9(·) = F (·). The reproduction number is defined as the
spectral radius of matrix NG.

2. Conclusions

In this work a periodic stage-structured population with ten life stages is
considered. The addition of a control input allows us to control the population.
We obtain that all populations with positive initial functions tend to constant
population level. In addition, the analysis of the stability of the model is given
by means of the reproduction number.
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