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Abstract

Cylinder resonance phenomenon in reciprocating engines consists of high-frequency
pressure oscillations excited by the combustion. The frequency of these oscilla-
tions is proportional to the speed of sound on pent-roof combustion chambers
and henceforth the resonance frequency can be used to estimate the trapped
mass, but in bowl-in-piston chambers a geometrical factor must be added in
order to deal with the bowl disturbance.

This paper applies the finite element method to provide a resonance calibra-
tion for new design combustion chambers, which are commonly dominated by
the bowl geometry near the top dead center. The resonance calibration does
not need any sensor information when it is solved by a FEM procedure, and
consequently, is free from measurement errors. The calibration is proven to be
independent of the chamber conditions and the results obtained are compared
with experimental data by using spectral techniques and measuring precisely
the trapped mass.
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Nomenclature

ATDC After top dead center
BP Burnt products
CI Compression ignition
EGR Exhaust gas recirculation
FEM Finite element method
HCCI Homogeneous charge compression ignition
IV C Intake valve closing
OP Operation point
RCCI Reactivity controlled compression ignition
SI Spark ignition
SOC Start of combustion
STFT Short time Fourier transform
TDC Top dead center
UBP Unburnt products
V V T Variable valve timing
WD Wigner distribution

1. Introduction

In-cylinder pressure analysis provides a valuable information of the combus-
tion process [? ? ]. The pressure signal contains a wealth of information and,5

depending on the application, a different part of the pressure signal must be
processed, e.g. the compression stroke is used to determine the trapped air
mass by ∆p methods [? ? ], the low frequency components are employed to
estimate the wall heat transfer [? ], the frequency components above 500 Hz
are correlated with the noise radiated [? ], and sudden changes at the pressure10

signal are used to detect the combustion [? ].

The understanding of the pressure signal and the different phenomena taking
place in a piston engine is crucial for properly processing the signal. F. Payri
et al. analysed the frequency components of the in-cylinder pressure signal de-15

composing the signal by three different phenomena, namely pseudo-motored,
combustion and resonance [? ]. Concretely, the resonance has been largely
studied along decades because it is associated with knock, which is a limiting
factor in SI engines [? ] and is a source of noise in CI engines [? ]. It consists
of a gas oscillation excited by abrupt changes in the in-cylinder pressure.20

The problem of the resonance frequency evolution during the combustion
event was firstly faced by Draper in 1938, by solving the wave equation with
cylindrical boundary conditions. He ended up with a linear relation between the
resonance frequencies and the speed of sound [? ]. This relation was then used25

to estimate the resonance evolution as a function of the gas properties in order
to filter the resonance [? ]. Hardly anyone tried the opposite process: detecting
the resonance frequency in order to determine the gas properties. Hickling et al.
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used the pressure resonance to calculate the bulk temperature [? ], Bordisco et
al. dedicated a section for the possible application of their statistical model of30

the resonance to the estimation of the trapped mass [? ] and finally Guardiola
et al. developed a complete method for the trapped mass estimation by using
STFT [? ].

The main trouble of the inverse process is that the cylindrical solution does35

not fit the response of new design chambers, which commonly dispose of com-
plex bowl geometries for controlling the turbulence of the gasses [? ? ]. When
the aim is locating the pressure resonance in order to filter it, the precision of the
cylindrical solution is sufficient; however, when the pressure resonance must be
used to estimate gas variables, the accuracy of the estimation directly depends40

on the hypothesis assumed. Past solutions for the inverse process calibrated the
chamber resonance response by using experimental data [? ? ]. But trusting
the sensor measurements implies that the accuracy of the method is affected by
the sensors precision, which normally have associated errors higher than 1 % [? ].

45

Scholl et al. used the Finite Element Method (FEM) [? ] to verify the
Draper’s cylindrical correlation on a pent-roof combustion chamber [? ]. Herein
FEM is used to permit obtaining a calibration of the bowl effect by analysing
only the geometry. The final calibration, which relates the resonance frequencies
and the speed of sound, is demonstrated to be independent of the chamber con-50

ditions and is compared with experimental data extracted from a RCCI heavy-
duty 4 stroke engine. The next section is aimed to introduce the reader with
the method to compute the trapped mass through the resonance phenomenon,
an extended description of the FEM-based procedure is given in section 3, the
experimental facilities employed are described in section 4, the results and the55

consequent discussion are exposed in section 5, and finally the main contribu-
tions of the method are highlighted in section 6.

2. From resonance to trapped mass

The cylindrical solution of the pressure resonance considered by Draper [?
] relates the speed of sound (a) for a given crank angle (α) with the resonance
frequencies (fi,j) as a function of the bore (D) and a Bessel constant (Bi,j):

fi,j(α) =
a(α)Bi,j

πD
(1)

Note that the Bessel constant in equation (1) is related to the solution of60

the wave equation in a cylindrical domain [? ]. Table 1 shows the first values
of the Bessel constant for the cylindrical solution considering rigid walls [? ].

Guardiola et al. inverted the problem [? ]: they detected the resonance
frequency (fi,j) with STFT and computed the final mass (m) by iterating (by65

bisection or fixed-point iteration) the following equation:
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Table 1: Bessel constants of the first resonance modes for a cylindrical chamber [? ]

Mode Bi,j

1,0 1.841
2,0 3.054
0,1 3.832
3,0 4.201
1,1 5.332

fi,j(α,m) =
Bi,j

√

γ(α,m)p(α)V (α)

πD
√
m

(2)

where p(α) is the low-frequency component of the pressure signal (below 3 kHz),
V (α) is the instantaneous volume and γ(α,m) is the ratio of constant pressure
and the constant volume heat capacities, which may be estimated using corre-
lations as in [? ].70

The Bessel constants, collected in table 1, have been accepted by many au-
thors, some of them are gathered in the appendix of [? ]. However, the growing
complexity of new combustion chambers invalidates the cylindrical approach
near the Top Dead Center (TDC).75

Figure 1 shows the pressure signal distribution over the frequencies as a func-
tion of the cycle evolution and superposes the theoretical cylindrical resonance
response (white line): the cylindrical response was calculated from equation 2
by using the first asymmetric mode (B1,0 = 1.841) and by inferring the speed80

of sound on the basis of a correlation [? ] as a function of gas composition and
temperature (obtained from the cylinder pressure, volume and trapped mass).
In this figure the discrepancies near the TDC are easily perceptible, despite the
convergence far from the TDC (where the bowl effect is negligible).

85

The solution proposed in references [? ? ] was based on assuming that the
resonance frequencies can be linearly correlated with the speed of sound but
only when the geometry is maintained unaltered. As a consequence, the Bessel
constant (Bi,j) must be experimentally calibrated for each crank angle position
(Bc

i,j(α)). All the past works on the topic calibrated the Bessel constant relaying90

on sensor data (normally only the first mode is considered because it is the most
representative):

Bc
1,0 =

πD
√
mf1,0√
γpV

(3)

Figure 2 is a scheme of the method implemented by Guardiola et al. (black
solid arrows) for the determination of the trapped mass [? ]. Their calibration
procedure (grey dashed arrows) was based on experimental data, where both the95

experimental determination of the resonance frequencies and the estimation of
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Figure 1: Theoretical Bessel constants (white line) over a Spectral distribution of a pressure
signal (STFT)

the trapped mass are important sources of errors. The aim of the new calibration
method is to obtain Bc

1,0(α) with no need of sensor data (grey solid arrow): using
FEM, the final Bessel constant is obtained only as a function of the geometry.
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Figure 2: Scheme of the pressure resonance method

3. Finite element model100

For a specific bowl geometry, the natural frequencies and the associated
pressure modes can be computed through a FE-based eigenvalue problem [? ].
Figure 3 depicts a particular finite element discretization used in the compu-
tations for a crank angle = 10o. The first mode (1,0) is also represented by
showing the pressure distribution in the figure for illustration purposes. In this105
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particular case, an asymmetric behavior can be observed, with a diametrical
nodal line (green) separating pressure regions in phase opposition.

Figure 3: Finite element discretization and pressure mode (1,0)

The numerical calculations have been carried out with a refined FE mesh con-
sisting of three-dimensional 10-node quadratic tetrahedral elements. To guaran-110

tee an accurate prediction, the final bowl discretization contains 115659 nodes
and 78284 elements, whose approximate size is 0.0025 m. This provides more
than 65 quadratic elements per wavelength for the frequency associated with
mode (1,0). An approximate variation of 0.008% is found in the natural fre-
quency f1,0 between two consecutive meshes with a refinement ratio of 2, from115

an element size of 0.005 m to 0.0025 m [? ]. Thus, it can be assumed that the
FE solution has reached the asymptotic range of convergence and the estimated
frequency is sufficiently accurate for the current calibration procedure.

4. Experimental data120

The results obtained from finite element computations have been compared
with pressure data acquired on a single cylinder heavy-duty engine. The latter
was equipped with gasoline port injection and diesel direct injection, allowing
multiple diesel injections during the cycle. EGR facilitated the control of the
engine over different combustion modes, while electrohydraulic variable valve125

timing (VVT) permitted controlling the valves to change the mass instanta-
neously [? ].

A sketch of the bowl geometry is shown in figure 4 and the main parameters
of the engine are summarized in table 2. The geometry evolution was supposed130

to follow the mechanical equation:
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V (α) = Vcc +
πD2

4
[l + r (1− cos(α))−

√

l2 − r2 sin(α)2] (4)

where l is the length of the rod, r is the radius of the crank and Vcc is the
chamber volume at the TDC.

Table 2: Main engine characteristics

Displaced volume (Vd) 1806 cc
Bore (D) 123.6 mm
Engine speed (n) 1200 rpm
Combustion mode RCCI-Diesel

Figure 4: Bowl geometry (dimensions in mm)

A classical procedure combining several measurements and models was used135

to calculate the in-cylinder trapped mass and will be referred hereinafter as the
auxiliary method.

The auxiliary method was based on the direct measurement of the air mass
flow through hot film anemometry, the determination of EGR by means of CO2140

balance in the intake manifold, the measurement of the blow-by using the orifice
measuring principle, and the determination of the fuel mass flow by a fuel bal-
ance. In order to estimate the residual gas fraction and the short circuit mass
flow, an emptying-and-filling model as in [? ? ? ] was used for solving the
flow through the engine valves. The gas properties (γ and R) were computed145

by semi-empirical equations developed by Lapuerta et al. [? ], dividing the
mixture in three components, namely fuel, air and burnt products and the com-
bustion evolution was assumed to follow the Rassweiler and Withrow model [? ].

The pressure was obtained by a Kistler 6125c sensor and processed by a Na-150

tional Instruments RT-PXI acquisition system. The RT-PXI permitted a crank
angle based acquisition (5 samples/deg) and a time based acquisition (up to 4
MHz), both of them with 16 bits resolution. The crank angle based acquisition
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enabled locating the samples in order to phase it properly with the chamber vol-
ume while the time based acquisition permitted computing the actual resonance155

frequencies. The time between crank angle samples was recorded to compute
the instantaneous engine speed and evaluate the differences between crank angle
and time based acquisitions.

4.1. Time-frequency analysis160

In order to obtain the frequency components with time resolution a spec-
tral analysis should be performed. Most of the authors employ the Short Time
Fourier Transform (STFT) because this permits a robust estimation of the spec-
trum with no important computational costs [? ]. In contrast to the Short Time
Fourier Transform (STFT), which dilutes the frequency content due to the win-165

dow effect [? ], the Wigner Distribution (WD) obtains the actual frequency
content at the expense of a higher computational time and the creation of cross
terms, also known as ghost terms [? ].

Although there are not big differences between WD and STFT, WD results170

have been added on detailed table information for more precise validation. All
plots and figures where experimental frequency results have been represented
were computed by STFT, because is the most extended time-frequency analysis
tool. In this paper a blackman-harris window of 25o was used for the STFT,
the WD computations were made with a resolution of 16 Hz (approximately 0.5175

% of the resonance value) avoiding aliasing troubles [? ] and the cross terms
were mitigated by pass-band filtering the pressure signal between 2 kHz and 7
kHz.

5. Results and discussion180

The method was validated by computing different FEM simulations and by
processing specific experimental data. It must be said that in order to calculate
the Bessel constants from the pressure resonance frequency experimentally ob-
tained the trapped mass should be carefully calculated (the auxiliary method
stated at section 3 was used).185

5.1. Proportionality between speed of sound and resonance frequency

Firstly, for a given geometry (or a given crank angle position) the Bessel
constant (fπD/a) was computed from different chamber conditions. The Bessel
constant obtained should be only a function of the geometry if the hypothesis
is met, i.e. for a given geometry the speed of sound is proportional to the reso-190

nance frequency.

On one hand bulk temperature variations were achieved by changing the
load (from 25% to 75%) and the SOC (from -5.4 to 14.5 CAD-ATDC) to check
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out experimentally the base hypothesis: 100 cycles were recorded at each OP195

and the resonance frequency was computed at each cycle. Table 3 shows de-
tailed information at different crank angle position (25, 45 and 65 degrees after
TDC), showing the mean and the standard deviation for the Bessel constants
obtained for the 100 cycles. Figure 5 plots the results for different OP with bulk
temperature values contained between the two points shown at table 3200

Table 3: Experimental results of fπD/a over different OP

STFT WD

CA [α] a [m/s] Increment B σ(B) B σ(B)
25 740.41 - 2.085 0.006 2.075 0.008

774.73 +4.6% 2.090 0.01 2.076 0.015
45 683.87 - 1.941 0.009 1.957 0.007

726.98 +6.3% 1.944 0.009 1.975 0.024
65 637.10 - 1.891 0.009 1.908 0.007

681.27 +6.93% 1.882 0.01 1.898 0.01
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SOC = −0.3 Load = 25%
SOC = −5.4 Load = 25%
SOC = 5.7  Load = 75%
SOC = −0.7 Load = 75%
SOC = 14.5 Load = 75%

Figure 5: Experimental Bessel constants obtained for different OP (All SOC values in CAD-
TDC)

It can be seen that despite the large variations of the speed of sound, the
resonance frequencies varied proportionally, maintaining the coefficient fπD/a
almost constant at each crank angle position, which perfectly accords the base
hypothesis. In figure 5 the OP starting combustion at 14.5 CAD-TDC does not205

coincide because of the late combustion.

On the other hand the results of FEM simulations over different in-cylinder
chamber conditions (a =

√
γRT ), at two different crank angle positions (5 and
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30 degrees after TDC) are provided in table 4 in order to check out the consis-210

tency of the method.

Table 4: FEM results over different chamber conditions
CA [α] a [m/s] Increment f1,0 [Hz] fπD/a [-]

5 852.1 - 5057.8 2.29362
766.9 −10% 4552.0 2.29365
937.3 +10% 5563.6 2.29364

30 786.8 - 4125.2 2.02599
708.1 −10% 3712.7 2.02601
865.5 +10% 4537.7 2.02598

5.2. Validation with experimental data

The calibration obtained by FEM was compared with experimental data
extracted from specific tests, where the trapped mass was measured by the aux-
iliary method and the pressure was acquired at 1 MHz. Figure 6 compares the
FEM calibration with experimental data of 100 consecutive cycles over 4 differ-
ent OP (400 cycles with different chamber conditions). In order to appreciate
the variations between the 400 cycles the standard deviation was computed as:

σ =

√

∑N

i=1 (xi − x)
2

N − 1
(5)

multiplied by three and represented with a gray dashed line around the averaged
value. Dashed line in the figure, labeled with A, indicates the end of the com-215

bustion. As it may be appreciated, there is very good agreement between the
FEM results and the experimentally determined Bessel constant in the region
far from the TDC, specially when the combustion has finished. However, when
approaching the combustion phase there is a significant shift in the measured
value. Next section discuss if it could be rooted on the existence of temperature220

non homogeneities, thus violating the calculation assumptions.

5.3. Effect of temperature gradients across the combustion chamber

High temperature gradients could disturb the pressure acoustical response.
Although HCCI combustion is not especially affected because of the short dura-225

tion and the nearby homogeneous combustion, high temperature gradients are
expected on classical CI due to diffusive combustion.

In order to discern the effects of temperature gradients in combustion cham-
bers a 2-zones finite element model was designed dividing the mixture into230

two species, namely burnt products and unburnt products, such as sketched in
figure 7. The simulated geometry was maintained constant (30o after TDC) to
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Figure 6: Final calibration (big black dots) over averaged experimental results of 400 cycles

separate the effect of the geometry with the temperature distribution. The tem-
perature distribution modeled does not intend to simulate a real combustion but
only the qualitative effect of temperature variations on the combustion chamber.235
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Figure 7: Two zones model sketch

Real data from an experimental test at 25% load was extracted to determine
the combustion evolution and the energy delivered. The energy delivered was
used to calculate the bulk temperature of the simulation by assuming constant
volume and using the first law of thermodynamics.240

11



dQ = mCvdT + pdV = mCvdT (6)

Equation 6 determines the bulk temperature estimated for the constant ge-
ometry chamber. The pressure and the gas constant (R) were assumed constant
along the chamber. As a consequence, mass, volume and temperature are related245

by equation 7 derived from ideal gas law. Figure 8 shows the final temperatures
simulated.

(

V

mT

)

BP

=

(

V

mT

)

UBP

=

(

V

mT

)

ALL

(7)

Although crank angle evolution was maintained in figures 8 and 9 and in
table 5 it does not represent a variation in geometry but only a more familiar250

measure of time evolution (at constant engine speed).
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Figure 8: Temperature profile simulated

Table 5 shows the results at different moments of the combustion (1, 2.4,
20.3, 73.4 and 91.4 % MFB), the temperature was modelled by assuming uni-
form bulk temperature (1z) and by dividing the chamber on burnt and unburnt255

products (2z). It is evidenced that temperature inhomogeneities along the cham-
ber perturb the acoustical response: by assuming uniform bulk temperature a
resonance frequency lower than by assuming temperature variations is always
obtained (with differences up to 11.4 %). Low differences are located at the
beginning of the combustion (where almost all the mixture is unburnt) and at260

the end of the combustion (where almost all the mixture is burnt), a line named
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Figure 9: Burnt products radius evolution during combustion

”A” was represented on figures 6, 8 and 9 to locate where the temperature in-
homogeneities become negligible.

Table 5: FEM results over temperature chamber variations

CA [α] MFB [%] f1z
1,0 [Hz] f2z

1,0 Difference [%]

-12 1 2295.9 2306.8 0.47
-2.2 2.4 2346.6 2462.1 4.69
1.4 20.3 2729.0 3081.6 11.44
10 73.4 3585.8 3857.4 7.04
24 91.4 3802.0 3899.2 2.49

Results shown in Table 5 could suggest that the applicability of the reso-265

nance frequency method to conventional diesel engines is compromised, since
in conventional diffusive combustions the temperature gradient will be signifi-
cantly higher than that found in the RCCI engine used in [? ]. However, results
summarized in Table 5 are for an infinite gradient with two zones of different
temperature, which corresponds to an extreme case. Additionally, if the method270

is applied in a window excluding the vicinity of the top dead center (i.e. during
the expansion stroke after the combustion has ended and the burnt gases are
sufficiently mixed with the surrounding air), temperature in the cylinder ap-
proaches that of a single-zone homogeneous mix, and the assumptions in (1)-(3)
are valid. Note that even in the case of RCCI engines, the method may not be275

applied during the combustion itself, as it is derived from Figure 5.

The reader will find in Appendix A an experimental validation on a CI
2.0 liter engine, which illustrates the applicability of the resonance frequency
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method for inferring the cylinder charge in the case of conventional CI engines280

if the analysis window is adequately selected.

6. Conclusions

A FEM-based procedure has been developed to calibrate the Bessel constant.
This calibration procedure is the final tool for implementing a new method to
compute the trapped mass through the pressure resonance, which has been285

recently developed by the authors [? ]. In the authors’ opinion the FEM-
based approach presents many advantages in comparison with an experimental
calibration:

• Using FEM instead of an experimental calibration ensures that the method
does not rely on sensor data for finding the Bessel constant and conse-290

quently eliminates one important source of errors at the final trapped
mass measurement.

• When using the pressure signal at the calibration, the phasing of the
different signals becomes crucial, being the location of the TDC a major
issue.295

• FEM permits avoiding spectral methods, which have lots of associated
problems: aliasing, computational time, discretization errors, ghost terms,
window influence, etc.

Nevertheless, FEM simulations with a two zones model show that tempera-
ture gradients strongly influence on the acoustic response. As consequence, the300

results obtained are only valid when combustion is finished.

The calibration was made over a 4 stroke heavy duty RCCI engine, with a
bowl geometry described in figure 4. The final Bessel constant was obtained ev-
ery 5 degrees between the TDC and 100 degrees (after TDC and before TDC).305

Finally the FEM calibration was validated with an excellent agreement with
experimental data.
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Appendix A: Evaluation of the method315

Originally, the method was validated by Guardiola et al. over a RCCI com-
bustion [? ]. Figure 10 compares the results obtained by the resonance method
and by the auxiliary reference method over 54 operation points; trapped air
mass ranged from 2900 mg/str to 8000 mg/str. Error was calculated as:

Error[%] =
|maux −mres|

maux

· 100% (8)

where maux is the trapped mass estimated by the auxiliary method and mres

represents the trapped mass obtained by the resonance method. The mean av-
eraged error for this engine and data set was below 2%.
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Figure 10: Evaluation of the resonance method on a RCCI engine

The good agreement with the data plotted was used in [? ] to validate the320

method for such engine, characterized by a fast and homogeneous combustion.
However, FEM results shown in the present paper suggest that the method
could be unusable in the case of classical CI engines, due to the existence of im-
portant temperature gradients. For validating the method over a CI combustion
the method was run on a 4 stroke CI engine equipped with the necessary sensors325

for applying the auxiliary method (air mass flow, EGR measurement through
CO2 balance and fuel mass flow). 808 tests were run covering from 1000 to
3000 rpm, and from idle to full load. In order to avoid the interference of the
combustion, the method was applied on the expansion stroke with a window
from 45o to 85o ATDC).330

Figure 11 shows a histogram of the difference of the resonance method with
regards to the auxiliary method for the tested CI engine. When comparing

15



figures 10 and 11 it may be noticed that the averaged error is similar in both
engines (around 2 %) and the resonance method does not usually differ more335

than 5 % with the auxiliary method. It must be noticed that the auxiliary
method do not represent the actual trapped mass and the error associated with
the method (sensors and models) is estimated to be below 5% in [? ]. Conse-
quently, it is not possible to discern the source of the differences between the
two methods reported in the histograms in figures 10 and 11.340
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Figure 11: Evaluation of the resonance method on a CI engine
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