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Abstract

Control architectures based on emotions are becoming promising solutions for

the implementation of future robotic systems. The basic controllers of this ar-

chitecture are the emotional processes that decide which behaviors the robot

must activate to fulfill the objectives. The number of emotional processes in-

creases (hundreds of millions/s) with the complexity level of the application,

limiting the processing capacity of the main processor to solve the complex

problems. Fortunately, the potential parallelism of emotional processes permits

their execution in parallel, hence enabling the power computing to tackle the

complex dynamic problems. In this paper, Graphic Processing Unit (GPU),

multicore processors and single instruction multiple data (SIMD) instructions

are used to provide parallelism for the emotional processes. Different GPUs,

multicore processors and SIMD instruction sets are compared to analyze their

suitability to cope with robotic applications. The applications are set-up taking

into account different environmental conditions, robot dynamics and emotional

states. Experimental results show that, despite the fact that GPUs have a bot-

tleneck in the data transmission between the host and the device, medium and

high performance GPUs permit undertaking complex robotic problems, while

low performance GPUs allows solving medium and low size problems. In addi-

tion, although SIMD instructions alone are not enough to undertake complex

and some medium robotic problems, they allow obtaining some speed-up at zero
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cost, just by using processor intrinsic instructions. Dual-core processors show a

similar performance to SIMD instructions, while the use of quad-core processors

provide similar results as low performance GPUs.

Keywords: Multicore processors, Graphics Processing Unit processors, SIMD

instructions, Emotional architecture, Robotics

1. Introduction

Many research works [1, 2, 3, 4, 5] predict a growth of the number of intel-

ligent robots in the industry and in our lives in the two next decades. They

state that advanced robots capable of making decisions on their own as humans

do are still under development and the first prototypes will not start to appear

until 2030. Some researches [2, 6] state that we are seeing the emergence of

the first generation robots such as the demining robot Warrior manufactured

by iRobot [7], which are able to solve simple tasks with little ability to adapt

to the changing environment, and running their program code on a single-core

processor. However, more intelligent features that robots could include such as

decision-making are not yet developed in real robots. It is expected that, by

2050, robots will be implemented using advanced computers capable of running

hundreds of billions of instructions (i.e., 4th. generation robots). These robots

would rival human intelligence and would be able to perform operations of ab-

straction and generalization, medical diagnostics, planning and decision-making

[3, 4, 5].

Control architectures based on emotions are inspired on emotional natu-

ral agents. They are becoming promising solutions for the implementation of

advanced robotic systems [3, 8, 9, 10, 11] because they facilitate the process

of decision-making [1, 12]. They use the mechanism of emotion in organiz-

ing the behaviors, which has the following advantages: allow the robot to be

autonomous to focus its attention on the most promising behavior; provide a

bounded response time, which helps organizing the deliberative processes; sort

the problems based on the expectations of success; autonomously adapt the
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computational load to the available processor capacity allowing solving prob-

lems of increasingly complexity; separate the decision from the action processes;

and use of subjective appraisal of the situation permit finding always an alter-

native solution. In this paper, an emotional robotic architecture for the control

of complex mobile robot applications is used. In this model, two main types

of processes coexist: behavior and emotion processes. The former solve the

application problems (e. g., surveillance) while the latter use an emotional

mechanism to motivate the robot behaviors.

Originally, all the processes of the emotional architecture, including the be-

haviors and the emotions were executed on a single-core computer (e. g., In-

tel 2,6 GHz). The emotional processes must be applied to all problems/sub-

problems of the robot agenda at every cycle of attention (e. g., 0.1 s). As the

agenda grows in high complexity level applications, the emotional workload in-

creases significantly as well (e.g., 200 million operations per second (MOPS)).

Each one of these operations is a reduction function involving: an hyperbolic

tangent function, a multiplication and a sum of up to 6 other functions. How-

ever, the control computer did not support this intensive workload because it

could only execute up to 25 MOPS. Moreover, the implementation of the emo-

tion processes on an MCU or low to medium performance DSP was discarded

because these devices provided even less power computation (i. e., between 10

and 20 MOPS). Alternatively, we can use FPGAs to provide the processing

capacity problem (i.e., Statrix IV by Altera). In our preliminary experiments,

Statrix IV [13] was able to solve even complex problems. However, they have a

high cost [14].

Fortunately, there are some alternatives. Taking into account the inherent

parallelism of the problem, this paper proposes the use of multicore processors,

GPUs and SIMD instructions to implement the emotional system. All these

alternatives do not need of any special hardware except from the ones that can

be found in any modern computer. By executing the emotion processes with

the proposed alternatives, the control computer will get slack time to solve more

complex applications by: (i) improving system throughput by simultaneously
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executing several problems, or (ii) tackling more time critical dynamic problems

(e. g., solve the problems at a higher speed).

The rest of the paper is organized as follows. Section 2 shows some related

work. Section 3 describes the problem to be solved and the sequential algorithm

that implements it. Section 4 describes the alternative parallel implementations

explored in this paper. Section 5 present some evaluation results for different

scenarios. Finally, some conclusions are drawn.

2. Related work

Control architectures inspired by the cognitive mechanism of the human

mind are becoming promising solutions for developing advanced robots. One

type of the cognitive architectures is based on emotions [1, 10, 11]. Different

research groups [6, 12, 15] are focusing on the design of the control architec-

tures for emotional-based robots. Salichs [12] proposes a decision making system

based on drives and motivations, also based on emotions and auto-learning. The

aim of the agent is to learn how to behave through the interaction with the envi-

ronment, using reinforcement learning, to maximize their well being. Moshkina

et al. [6] develop an algorithm based on the emotional disappointment of the

robot. To achieve it, they get inspiration from the disappointment observed in

animal and humans. Simulations show that robots which include this emotion

are more effective than the traditional ones. Damiano [15] suggests a model

where the decision making is based on a motivational system. Motivations have

a value that depends on the necessity that has to be satisfied and incentives stim-

ulates. Once all the values are calculated, the biggest motivation activates and

organizes the behavior trying to satisfy the most urgent necessity. Lee-Johnson

et al. [8] develop a hybrid architecture reactive/deliberative that incorporates

artificial emotions to improve the decision making and the actions of a mobile

robot. These emotions are active on different levels of the architecture, they

modulate decisions and actions of the robot. Moshkina proposes an effective

model called TAME [6] to help with the interaction between the man and the
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machine. It is based on different concepts like the emotional state, the emotion

and the attitude. These works propose interesting models based on emotions

however, implementations of these models are usually done with sequential algo-

rithms using general purpose processors, and consequently increasing the cost.

The aim of this paper is to parallelize these emotional processes to improve per-

formance at a reasonable cost. High- and low-performance GPUs, multicores

and SIMD instructions are used to parallelize these processes.

There are some works related to the implementation of emotional systems

using high performance hardware. In [16], authors propose an implementation

of an emotion bio-inspired system. In this work, the authors design a FPGA

controller based on emotional learning. However, the application consists of the

control of a simple crane, which could be solved using a traditional PID con-

troller. In [14], different possibilities to parallelize a limited subset of motiva-

tional processes and its implementation using a Statrix IV FPGA are proposed.

The results obtained improve the implementation of the system in a single-core

processor. However, the cost of migrating all the operating processes of the

robot to the FPGA resulted in a quite prohibitive solution. Ducrot et al. [17]

present a map estimating process with 2 depths and a partial implementation

using GPU processors. They use a configuration of the Cuda-Core 448 architec-

ture combined with dual-core processors. Their purpose is constrained to just

static objects. In [18] authors presented an implementation of the R* search

algorithm applied to complex planning problems, and fulfilled to reducing the

cost of implementation. They propose to apply this solution to a real robot in

future works. However, works where GPUs, Multicores and SIMD instructions

are applied to speed up the processes that implement emotional robotic models

to reduce the cost of the implementation of the 4th generation robots, like this

paper proposes, were not found in the bibliography.
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3. Emotional Architecture

3.1. Emotional processes specification

An emotion is the process of appraising an observed situation and motivating

a robot behavior to undertake this situation. Figure 1 details the emotional

motivation process: (i) the emotional activation, and (ii) the emotional response.

The emotional activation sets an emotional state and the emotional response

builds and motivates a behavior.

(i) During the emotional activation, the observed situations (1), represented

as real properties, are subjectively appraised. The appraisal process depends

on the robot character. The character dynamically adjusts the parameters of

this process. To calculate the appraisal of the situation (5) the robot ponders

and adds (4) a set of appraisal contributions (3), which are evaluated using

contribution functions (2). Equation 1 represents the ith situation appraisal.

ai =

l∑
k=1

wak ∗ fak(pk) (1)

Where: pk is the kth property of the situation,fak is the kth contribution

function, wak is the weight of the function and l is the number of appraisal

contribution in range of 1 to 6. The situation appraisals contribute to stablish

an emotional state (9). The emotional contributions (7), evaluated with contri-

bution functions (6), are pondered and added (8) to finally give the emotional

Figure 1: Emotional motivation process.
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state. The emotional contributions functions are defined in the real range [-

1,+1] and the emotional state in the [0, +1] range. Every emotional state is

labeled in the robot navigation problem (e.g., fear of collision”, a 0 level would

mean no fear”, while a 1 level would be afraid”).

(ii) As an emotional response, the robot generates new desires (11), and

motivates the behavior to accomplish the desire (13). The desires are the result

of application emotions, and their response functions (10) depend on the prob-

lem, meanwhile the motivations are the result of intrinsic emotions, and their

response functions (12) depend of the character of the robot.

The jth emotion is expressed as shown in Equation 2.

sj =

l∑
i=1

wci ∗ fci(ai) (2)

Where: sj is the state of the jth emotion, fci is the ith contribution function,

wci is the ith weight of the function.

The emotion contribution functions, fci, must have some properties such as

slight variations at the ends of the range that tends to asymptotic values and

abrupt variations around an inflection point in the center of the range. These

properties are found in the hyperbolic tangent functions, which are used to

represent the contribution functions:

fci(x) = th(x) =
exp2x − 1

exp2x + 1
(3)

Where x is the appraisal value ai when calculating the emotion. To allow

adjusting the hyperbolic function, equation 3 is transformed in the following

function

th∗(x) = (
exp2(x−x0)δy − 1

exp2(x−x0)δy + 1
− y0) ∗ δy (4)

where the parameters x0, y0, δx and δypermit to translate and scale the con-

tribution function.

These emotions are grouped in the emotional system and have the structure

shown in Figure 2. The emotional system gets, at a given instant, inputs from a
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Figure 2: Emotional system structure.

set of n situation appraisals (e.g., 2M, M refers to millions) and produces a set of

K motivations (e.g., 0.5M). The hyperbolic tangent is applied to each appraisal

and its result is multiplied by a weight. Each emotion can be composed of up

to 6 different contribution functions. The obtained emotion can pass through a

final function (fi). In this paper, though, the identity function is used (i.e. no

post-processing is done). The total number of these situation appraisals in the

emotional system depends on the complexity of the problem, the environment

conditions and the robot dynamics. In the experiments of the multi-objective

robotic applications, this number reaches a value of about 200 MOPS.

These operations can be computed in parallel since they are independent.

However, in an initial implementation they were executed sequentially in a host

computer controlling the robot. Due to their highly computational require-

ments, the capacity of the host processor was exceeded, being unable to fulfill

the robot objectives.

In the next section, this paper exploits the inherent parallelism of the prob-

lem, proposing a parallel implementation that takes advantage of the hardware
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already available in modern computers to implement the emotional system.

3.2. Sequential Algorithm

In this paper, the hyperbolic tangent is used to implement the emotional

system of the robot (as shown in section 2.1). The following fragment of code

shows an implementation in the C programming language of the calculation of

the hyperbolic tangent. For the sake of simplicity, the translation and scaling

factors and the weight of each contribution are not shown. This sequential code

will be the basis for the parallel code that will be explained later.

for(i=0;i<n;i++){

fci[i] = (exp(2*a[i])-1)/(exp(2*a[i])+1);

}

for (i=0;i<n/6;i++){

for(j=0; j<6; j++){

acum += fci[6*i+j];

}

m[i]= acum;

}

In the following section, different approaches to exploit the exhibited paral-

lelism will be shown.

4. Parallel Implementation of the Emotional Architecture

4.1. Multicore Processors

The first parallel implementation of the emotional architecture is carried out

using multicore processors. Multicore processors with several number of cores

are standard in today’s computers. The availability of several cores allows to

execute in parallel several threads. To generate the parallel threads, Open MP

(OMP) is used. OMP is an API that supports multi-platform shared memory

multiprocessing programming in C, C++, and Fortran. This API modifies the
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run-time behavior to obtain thread-level parallelism. OMP relies on directives

written by the programmer that tells the compiler what can be executed in

parallel. Parallelism is obtained by forking a master thread into a specified

number of slave threads; these slave threads receive a part of the task that the

master thread has to perform, allowing threads to run concurrently. To indicate

that a loop can be executed in parallel, the preprocessor directive #pragma omp

parallel for is written just before the for loop. The code inside the loop does not

need any special modifications. In this case, the counter of the inner loop (j)

and the auxiliary reduction variable (acum) are declared as private. The code

below shows the OMP parallel version of the emotional system:

#include <omp.h>

...

#pragma omp parallel for private(j, acum)

for(i=0;i<n/6;i++){

acum = 0;

for(j=0; j<6; j++){

fci[6*i+j] = (exp(2*a[6*i+j])-1)/(exp(2*a[6*i+j])+1);

acum += fci[6*i+j];

}

m[i] = acum;

}

...

4.2. Graphics Processing Unit

The second parallel implementation of the emotional architecture is based

on the use of a GPU coprocessor. A GPU is a parallel, multithreaded many-

core processor with a tremendous computational capability. This processing

power is exploited by programmers by means of a programming model. Cuda

is the programming model provided by Nvidia, which is used in this paper. In

this model, several blocks, each one composed of several threads, are launched

to be executed in the streaming multiprocessor (SMs) available on the device
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[19]. The threads of a block execute concurrently on one SM In this paper, the

workload of computing the n hyperbolic tangents is split among several blocks

of threads. Before the GPU starts processing, input data should be allocated

in the device where it will be processed. In addition, once the processing has

finished, the resulting data has to be transferred back to the host computer

main memory. Both data and results are transferred between the host and the

GPU and vice-versa through the PCI express bus.

The time used to perform these transfers is added to the total execution

time and its impact could be important. This is the case of the emotional

architecture considered in this paper, where input data is only used once per

computation. In this paper, it is assumed that every time that the robot needs

to calculate its emotions to make a decision, the device memory has to receive

all the input data, including the one which did not changed. So, the obtained

results could be considered as pessimistic. One way to improve the results is to

transfer only those data that have changed since the last run, therefore avoiding

useless transfers. Another way of improvement is to overlap communications

and computations [20]. Anyway, even without these improvements, the obtained

performance of the GPU-based implementation outstands the rest of proposals.

The code below shows the Cuda C implementation of the emotional archi-

tecture:

#include <cuda.h>

__global__ void hyperbolicTangent(float *dev_a, int *dev_n,

float *dev_fci) {

int tid = threadIdx.x + blockIdx.x * blockDim.x;

while(tid < *dev_n){

dev_fci[tid] = tanh(dev_fci[tid]);

tid += blockDim.x * gridDim.x;

}

}
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__global__ void reduction(float *dev_fci, float *dev_m,

int *dev_n){

int tid = 6*threadIdx.x + blockIdx.x * blockDim.x;

int tidemotion = threadIdx.x + blockIdx.x * blockDim.x;

int count;

//Each thread adds the values of 6 contiguous

// hyperbolic tangents, to form an emotion,

while(tid < *dev_n){

count = 0;

dev_m[tidemotion] = 0;

while(count <= 5){

dev_m[tidemotion] += dev_fci[tid+count];

count ++;

}

tid += 6 * blockDim.x * gridDim.x;

tidemotion += blockDim.x * gridDim.x;

}

}

int main(...){

float *a, *fci, *m;

float *dev_a, *dev_fci, dev_m;

...

//allocate memory on the CPU

fci = (float*)malloc( n * sizeof(float) );

a = (float*)malloc( n * sizeof(float) );

m = (float*)malloc( n/6 * sizeof(float) );

//allocate memory on the GPU

12



cudaMalloc( (void**)&dev_a, n * sizeof(float) );

cudaMalloc( (void**)&dev_fci, n * sizeof(float) );

cudaMalloc( (void**)&dev_m, n/6 * sizeof(float) );

cudaMalloc( (void**)&dev_n, sizeof(int) );

//copy values from CPU to GPU

cudaMemcpy( dev_a, a, n * sizeof(float), cudaMemcpyHostToDevice );

cudaMemcpy( dev_n, &n, sizeof(int), cudaMemcpyHostToDevice );

hyperbolicTangent<<<blocks, threads>>>(dev_a, dev_n, dev_fci);

reduction<<<blocks, threads>>>(dev_fci, dev_m, dev_n);

//Copy emotions back from the GPU to the CPU

cudaMemcpy( m, dev_m, ( N/6 ) * sizeof(float), cudaMemcpyDeviceToHost );

...

cudaFree( dev_a );

cudaFree( dev_fci );

cudaFree( dev_m );

cudaFree( dev_n );

}

Before processing the data, we have to allocate it on the device’s memory.

To do so, cudaMalloc((void**) &dev a, n * sizeof(float)) is used. This function

call works similar to the function malloc in C, and indicates that the vector

dev a, which has a size of n floats, is allocated on the GPU’s memory. Once

the memory is allocated on the device, we are able to transfer the data from the

host memory. The cudaMemcpy(dev a, a, n * sizeof(float), cudaMemcpyHost-

ToDevice) function does the work, copies all the values of the vector a in dev a.

Notice that the last argument indicates the direction of the transfer.

After the data is stored on the device, a function call can be done in or-
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der to start the execution on the device. According to Cuda C syntax, the

hyperbolicTangent <<< blocks, threads >>> (dev a, dev fci) launches the ex-

ecution on the GPU that computes the hyperbolic tangent. This function uses

dev a (input data) and dev fci (output data) as parameters. During the exe-

cution, the device needs to know in which part of the shared variable dev fci

data should be read and stored. To take care of this point, the integer tid is

used. When the function ends, the results are still in the device, so a transfer

of data should be done to send the results to the host. To perform this work,

the cudaMemcpy(fci, dev fci, n*sizeof(float), cudaMemcpyDeviceToHost) call

is used. It works similarly to the function used before, but now the direction

has changed. The reduction <<< blocks, threads >>> (dev fci, dev m, dev n)

launches the aggregation of the hyperbolic tangent in groups of 6. In both cases,

there is an special parameter which is declared between <<<>>>, which in-

dicates the amount of blocks and threads that is going to be used (see [21] to

adjust this parameter to increase the efficiency).

Once the results are in the host, the memory allocated in the device should

be released, as it is done in C. cudaFree call does this work.

4.3. SIMD instructions

Finally, we will propose the use of the SIMD (Single-Instruction Multiple-

Data) instructions that are part of the ISA of processors since the MMX instruc-

tion set extensions were introduced by INTEL in 1999. For a better comparison,

we have implemented SIMD version only in one core, even though it is possible

to combine SIMD and multicore parallelism capabilities to obtain better results.

SIMD instructions allow exploiting data-level parallelism. Data-level paral-

lelism consists of performing the same operation to different data at the same

time. Data must be of a uniform type and must need the same instruction

behavior. SIMD basic unit is the vector, which consist of a row of individ-

ual numbers or scalars. Regular CPUs perform operations on scalars one at a

time. However, SIMD instructions operate on all the scalars of a vector as a

unit, performing the same operation on each scalar. For example, considering
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single-precision floating-point, which occupies 32-bit. Calculations in parallel

can be done if data is grouped by 128-bit vector, allowing doing four single-

precision floating-point operations at the same time [22, 23]. So, the length of

the individual vectors determines the number of elements of that type that can

be worked with. Streaming SIMD Extensions (SSE) is an implementation of

SIMD instructions that allows working with 128-bit vectors. Advanced vector

extension(AVX), a more advanced implementation, allows working with 256-bit

vectors(i.e., up to 8 floats can be processed in parallel). It is only available

to processors which have Intel Sandy Bridge, AMD Bulldozer architecture or

newer.

The use of SIMD instructions are disabled by default. Using the gcc com-

piler, we enable the generation of these instructions by adding the -msseX or

-mavx flags, where X represents the SSE version number when compiling.

The code below shows the implementation of the emotional architecture

using SIMD instructions:

#include <emmintrin.h>

#include <mmintrin.h>

...

int main(...){

//one is a vector composed of 1.0 values, two is composed of 2.0,

// and zero is composed of 0.0 values

float *aux;

__m128 div, ptrPos, ptrNeg, ptr, ptr2, ptrEm, one, two, zero;

...

posix_memalign((void**)&fci, 16, n * sizeof(float));

posix_memalign((void**)&a, 16, n * sizeof(float));

posix_memalign((void**)&m, 16, n/6 * sizeof(float));
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...

//hyperbolic tangent

for(i=0; i<n/4; ++i){

ptr = _mm_load_ps(&a[4*i]);

ptr = _mm_mul_ps(two, ptr);

ptr = fmath::exp_ps(ptr);

ptrNeg = _mm_sub_ps(ptr, one);

ptrPos = _mm_add_ps(ptr, one);

div = _mm_div_ps(ptrNeg, ptrPos);

_mm_store_ps(fci+4*i, div);

}

//reduction

for(i=0; i<n/6; ++i){

// loading values

ptr = _mm_load_ps(&fci[4*i]);

ptr2 =_mm_load_ps(&fci[4*(i+1)]);

ptr2 = _mm_movelh_ps(ptr2, zero);

// horizontal add

ptrEm = _mm_hadd_ps(ptr,ptr2);

ptrEm =_mm_hadd_ps(ptrEm,zero);

ptrEm =_mm_hadd_ps(ptrEm,zero);

_mm_store_ps(&aux[0], ptrEm);

m[i] = aux[0];

j++;

}

...

}

Depending on which set of SIMD instructions are being used and its version,
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a different include directive must used in the code. In this case, the SSE in-

structions version 3.0 are used. To declare that a variable requires 128/256-bit

registers, the m128/ m256 types should be used. The allocation of memory

for data is done using the posix memalign((void**)&a, 16, n * sizeof(float))

function call, which ensures aligned data that leads to a better behavior. The

mm load ps( &app[4]) is one of the calls that are enabled by using the gcc

−msse option flag. It will generate an assembler instruction that loads the first

four members starting from the ith pointer of a and stores them in ptr. Then,

the computation of the hyperbolic tangent begins. As there is not an instruc-

tion to compute an exponential in SSE instructions, a call to a function of the

fmath library was used [24]. In each iteration of the loop, the resulting data is

stored with the mm store ps instruction. Finally, notice that the loop last n/4

iterations, due to each iteration performs 4 hyperbolic tangents in parallel.

During the reduction of the hyperbolic tangents in groups of six, the addition

of the six elements is performed by using the “horizontal add” instruction. The

mm hadd ps (ptr, ptr2) adds horizontally ptr and ptr2 (i.e., it adds the values

of its operands by pairs). The three horizontal adds allows performing the sum

of up to 8 operands (six of them are used in our case). The result will be stored

in the ith position of m.

5. Evaluation

5.1. Robot application

The emotional processor is designed to tackle mobile robotic applications.

The multipurpose mobile robot performs activities such as diagnosis, trans-

portation, cleaning, and surveillance, simultaneously.

To define the emotional computational workload of the applications, a sim-

ulator of the robot environment is used (see Figure 3). The simulator generates

a large stock of scenarios to test the robotic platform while performing its ac-

tivities. As an example, Figure 3 shows the result of an accident and the mobile

robot trying to fix it. After the accident, there are multiple parts of a broken ob-
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Figure 3: Robot solving a crash in the operating area.

ject and dust spots spread over the spatial area represented in the figure. To fix

the accident (1) the robot (2) defines a set of sub-problems (3). It must pick the

parts up and clean the spots. The emotional system of the robot motivates ev-

ery sub-problem considering several appraisals about the sub-problem situation:

the importance, the probability of success, the urgency, and the opportunity.

The attention system of the robot uses these calculated motivation values to

apply its attention policy. A set of people populates the accident scenario too

(4). The simulator defines the behavior of these people as they move around

the crash point. These people and other obstacles interfere the activities the

robot performs. To guarantee the safety requirements and avoid collisions, the

robot must perform the repairing activities adjusting its speed as the conditions

of the environment change.

The robot speed, the number of objects in the operation area, and the col-

lision risk factors define the attention cycle of the robot, Ta, which lies in the

range of [0.1s , 0.5s].

Table 1 shows the robot speed values used in the experiments.
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Table 1: Robot Speed.

Safe Normal Risky

0.1m/s 1m/s 2m/s

Table 2: Complexity of Application Problems

Simple Normal Complex

0.5 Mopc 1 Mopc 2 Mopc

Table 2 shows the assumed values of the complexity for three types of appli-

cations, measured in required millions of emotion operations per attention cycle

(Mopc). To obtain these values, applications of different complexities are run

in a simulator environment and the number of emotions involved in each of the

applications is calculated. A simple problem requires the execution of about 0.5

Mopc, while a complex application involves the execution of 2 Mopc.

The emotional state of the robot represents the ratio between the time spent

to execute the emotional processes and the attention cycle (Ta). Three robot

emotional states are considered in the experiments (i. e., relaxed, normal and

stressed). In the relaxed mode, the robot dedicates less time to the emotional

processing and more time to solve application problems, whereas in the stressed

mode it is the contrary. In the relaxed mode, the time used to compute emotions

is less than 10% of Ta. In the normal mode, it is assumed between 10% and

25%, and in the stressed mode it is between 25% and 40%, as shown in Table

3. A workload higher than 40% will not be acceptable because the applications

processes are stalled and the robot cannot fulfill the objectives.

By combining the different problem complexities, robot speeds and emo-

tional states, the computing power of the emotional architecture can be esti-

mated, measured in MOPS (millions operations per second, see Section 3.1).

Table 4 shows these requirements.

19



Table 3: Robot Global Emotional State

Relaxed Normal Stressed

< 0.1 [0.1, 0.25] [0.25, 0.4]

Table 4: Required Emotional Processing Power (MOPS)

Robot speed (m/s)

Problem Robot state 0.1 1 2

Simple Stressed 3 5 11

Simple Normal 4 8 17

Simple Relaxed 13 25 51

Normal Stressed 6 11 19

Normal Normal 8 17 33

Normal Relaxed 26 49 99

Complex Stressed 9 21 39

Complex Normal 17 33 68

Complex Relaxed 51 99 200

5.2. Evaluation Framework

The parallel implementation of the emotional architecture proposed in this

paper has been evaluated on different platforms. The version based on the use

of multicore processors has been run on a Intel core i7 processor with 4 cores

running at 2.93 GHz (3.6 GHz in turbo mode) [25]. For SIMD instructions,

both versions using SSE and AVX instructions were evaluated. For GPUs, two

experiments were run on two different graphic cards, an Nvidia GTX 9800 and

a Nvidia GTX 670. Table 5 shows the characteristics of these GPUs. For

comparison purposes, results for the sequential algorithm running on one core

and for an implementation based on FPGAs (e.g., statrix IV) are also shown.

The emotional based robot executing different applications, under the dif-
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Table 5: GPUs characteristics

GPU models

characteristic GTX 9800 GTX 670

Cuda cores 128 1344

Processor Frequency (MHz) 675 980

Memory Bandwidth (GB/sec) 70.4 192.2

ferent environmental conditions, robot emotional state and dynamics, is evalu-

ated. The evaluation is focused in the analysis of the performance, measured

on MOPS.

5.3. Evaluation results

Figures 4 to 12 show the results of evaluating the different implementation

alternatives. In each Figure, the bars represent the maximum computation

capacity in MOPS that each processor, SIMD, GPU or FPGA can achieve,

respectively. For each pair (complexity problem, robot emotional state), the

robot speed imposes a minimum computational capacity required to solve a

specific problem. This is shown as the horizontal lines in the figures. For

instance, in the case of a simple problem and a relaxed robot (Figure 6), if the

speed is 2m/s, the minimum computation capacity required by the processors

is 51 MOPS, while at 0.1m/s the required capacity is 13 MOPS (these bounds

are the ones shown in Table 4). In general, for the same type of problems,

at higher speeds, the computational requirements of the processors increase.

On the other hand, as the complexity of the problem increases, the processor

computation requirements to solve the problem also increase. Moreover, for the

same kind of problems, if the emotional robot state is becoming more stressed,

then the computational requirements decrease because the time dedicated to

the emotional computation is higher.

For a simple problem, and a stressed robot (Figure 4), any implementation is

able to fulfill the requirements in excess. This is also the case of a normal robot
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Figure 4: Simple problem. Stressed robot.

Figure 5: Simple problem. Normal robot.
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Figure 6: Simple problem. Relaxed robot.

Figure 7: Normal problem. Stressed robot.
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Figure 8: Normal problem. Normal robot.

Figure 9: Normal problem. Relaxed robot.
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Figure 10: Complex problem. Stressed robot.

Figure 11: Complex problem. Normal robot.
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Figure 12: Complex problem. Relaxed robot.

(Figure 5). For a relaxed robot solving simple problems (Figure 6) the sequential

implementation of the emotional architecture only works for the low and medium

speeds. For the highest speed, one-core implementation only achieves 24.84 of

the 51 required MOPS.

The sequential implementation also works for a normal problem and a stressed

robot (Figure 7). However, it is unable to support a normal problem on a normal

robot (Figure 8) at high speed. Any of the parallel implementations are enough

in this scenario. For a normal problem in a relaxed robot (Figure 9), the results

are quite different. Only GPU- and FPGA-based implementations can support

the robot running at the highest speed. AVX-based and Quad-core implemen-

tations also support 1 m/s speed. Two-core and SSE-based implementation

supports only 0.1m/s.

For complex problems, the sequential implementation fulfills with a stressed

robot running at 1 m/s. Any parallel implementation is a good choice for

a stressed robot (Figure 10). For a normal robot (Figure 11), any parallel

implementation works up to 1 m/s. For the highest speed, only quad-core, AVX,

GPU and FPGA based implementations work. For a relaxed robot (Figure 12)

moving at 2 m/s (the most constrained requirements) only the FPGA and one
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of the GPUs (GTX 670) are able to provide the required computational power.

As shown, only Nvidia GTX 670 and FPGA Statrix IV can tackle complex

problems under the most constrained requirements: relaxed robot at maximum

speed. However, in this case 670 GTX is a better election due to it outper-

forms Statrix IV in computational capabilities and its cost is much lower than

Statrix IV. Nvidia GTX 9800 and Quad-core, which achieve approximately the

same processing power, are the next more powerful solutions, hence they are a

suitable election to solve less constrained problems than the previous one but

still complex ones (e. g., complex problem and normal robot). SSE instruc-

tions are not able to tackle problems when the robot is relaxed and the robot

maximum speed is required. Its performance is almost the same as a two-core

processor. AVX instructions provide almost the same performance as a quad-

core processor and can tackle almost the same problems as the Nvidia GTX

9800. It must be noticed that SSE and AVX instructions allows increasing the

computer computational capabilities at zero hardware cost.

6. Conclusions

Emotional architectures are being considered promising solutions to imple-

ment robots of the future. However these architectures have very high com-

putational requirements, which consumes the computational power of the main

robot controller. To reduce this consumption and allow the main controller

solving more complex tasks, the parallelism of the emotional processes of the

architecture have been exploited and their implementation on GPUs, multicore

processors and using SIMD instructions have been tackled. A mobile robotic

application -under different environmental, dynamic and emotional robot state

conditions, implementing an emotional-based GPU architecture has been pro-

posed. The robotic application performances have been evaluated for Nvidia

GTX 9800 and Nvidia 670, and the results are compared with a quad-Core pro-

cessor (i.e., Intel i7 CPU 870 2.93GHz), SIMD instructions (i.e., SSE and AVX)

and FPGA (Statrix IV). Results show that Nvidia GTX 670 and Statrix IV solve
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most complex problems under the most constrained requirements, but Statrix

IV is much more expensive than GTX 670. Nvidia GTX 9800 and quad-core

processors solve medium size problems, while AVX instructions obtains similar

performance but without any additional hardware cost; however it requires a

processor with Sandy Bridge architecture or newer. SSE instructions provides

roughly the same performance as a dual-core and allows tackling some of the

normal problems without any additional cost.
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