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Abstract. 

To optimize nitrogen-doped graphitic materials as metal-free catalysts for the oxygen 

reduction reaction mechanisms have to be better understood. Here, the role played by 

pyridinic nitrogen-dopants in the chemisorption-based activation of the target reaction is 

revealed. The study is centered on the monodentate chemisorption of molecular oxygen as the 

first step of the process. Several configurations of nitrogen dopants in which there was always 

a nitrogen dopant in the edge of the material were tested using DFT. A clearly favorable 

chemisorbed state for molecular oxygen was found when the pyridinic nitrogen-dopant is 

hydrogenated and located at an armchair edge. The found chemisorbed state is further favored 

by additional available charge. By contrast, the chemisorbed state of oxygen is much less 

favorable when the hydrogenated pyridinic nitrogen-dopants are located at zigzag edges. 

Moreover, it was found that the charge involved in the hydrogenation of pyridinic nitrogen-

dopants remains segregated, becoming available for reduction processes. Detailed reasons for 

the described facts are given, and an integrated model for the target activation mechanism is 

proposed including graphitic nitrogen-dopants effects.  
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1. Introduction. 

 Controlled oxidation of fuels in electrochemical cells is a promising energy conversion 

technology [1], whose future success depends on the development of an efficient catalyst for 

the oxygen reduction reaction (ORR). Platinum ORR catalysts have enabled the proof of 

concept but, mainly because of sluggish kinetics, cost and scarcity, low-platinum [2-5], non-

platinum [6-9] and even metal-free [10-12] ORR catalysts are being investigated. Among 

these, nitrogen-doped graphitic materials exhibit activity towards the ORR [13-20]. However, 

the nature of the sites and the mechanisms explaining the observed activity are still under 

discussion. It has been suggested that the ORR on nitrogen-doped graphitic materials could 

take place without involving chemisorption [20]. However, without chemisorption, only 

hydrogen peroxide would be produced, which is an undesirable byproduct for fuel cell 

applications. Moreover, since the ORR is very sensitive to the surface structure and 

composition of the electrode, it is clear that chemisorbed species are always involved in the 

process. Thus, ORR mechanisms based on chemisorption have to be better understood to 

optimize the performance of these catalysts. In all the proposed mechanisms [16, 21] the first 

step in the reaction would give rise to a monodentate chemisorbed state of molecular oxygen, 

generally in the form of a superoxide. From that point, two possible scenarios arise. The first 

one considers the formation of adsorbed peroxide. Then, the reaction could yield hydrogen 

peroxide or evolve sequentially to water. In the other possible scenario, the adsorbed oxygen 

species would give rise to a bidentate configuration. From that, the oxygen-oxygen bond 

would be broken yielding finally water.  

To determine the most probable mechanism, different facts and arguments can be 

considered. First, a significant production of hydrogen peroxide has been observed on 

nitrogen-doped graphitic materials [15, 17-18]. Second, the stabilizing solvation shell formed 

during the monodentate chemisorption of molecular oxygen [22] originates a significant 
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barrier in order to evolve to the bidentate configuration. Finally, high activation energies for 

the cleavage of the oxygen-oxygen bond have been computed on these materials [16]. 

Moreover, the measured ORR activity on the investigated materials has been mainly 

attributed to the effect of graphitic [20] and pyridinic nitrogen dopants [19]. So, determining 

the role played by those dopants on graphitic materials to favor the monodentate 

chemisorption of molecular oxygen was established as the research goal. The evolution 

mechanisms from the investigated state to water [23] and optimal design strategies based on 

the adsorption energies of the intermediates [24] have been already reported.   

 To explain the ORR on nitrogen-doped graphitic materials, mechanisms involving 

graphitic nitrogen-dopants in the basal plane have been investigated [20, 23, 25-27]. 

However, a single nitrogen dopant or specific configurations of dopants in cluster have been 

usually considered. Motivated by the experimental visualization of unclustered graphitic 

nitrogen-dopants perfectly integrated in the graphene lattice [28], and by the fact that such a 

kind of defect has been identified as the one presenting the lowest energy [29], we explored 

recently the role played by unclustered graphitic nitrogen-dopants to activate oxygen in the 

basal plane [22]. In spite of the fact that the monodentate chemisorption of molecular oxygen 

on the basal plane of graphitic materials is usually considered as an unfavorable process [20], 

it was found that unclustered graphitic-nitrogen dopants would promote it, provided that two 

specific conditions are fulfilled. It was realized that the monodentate activation of molecular 

oxygen on graphitic materials requires of locally destabilized carbon atoms and globally 

available charge. The calculations demonstrated that graphitic nitrogen-dopants would be 

capable of playing both roles. So, it was shown that the monodentate chemisorption of 

molecular oxygen can take place on carbon atoms neighboring a graphitic nitrogen-dopant if, 

for instance, an additional graphitic nitrogen-dopant provides the required available charge. 
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Moreover, solvation effects were found to be important in the mechanism, suggesting 

guidelines in order to capture it. 

Regarding the ORR on the target materials, mechanisms involving pyridinic nitrogen-

dopants at the edges have been also investigated [19, 30]. In fact, ORR activity on carbon 

atoms adjacent to pyridinic nitrogen-dopants has been recently demonstrated [19]. However, 

the microstructure and mechanisms have not been yet identified. We will provide 

computational evidence that the hydrogenation of unclustered pyridinic nitrogen-dopants 

could act as a switch activating molecular oxygen on these materials. The hydrogenation of 

pyridinic nitrogen-dopants in graphitic materials has been associated to high ORR activity in 

alkaline media [31]. Although in some calculations for graphitic materials that can be active 

for ORR, nitrogen dopants are hydrogenated [32], to our knowledge, no relevant role has been 

previously explicitly attributed to the hydrogenation of unclustered pyridinic nitrogen-dopants 

in the activation of the ORR on the investigated materials. We will show that hydrogenated 

pyridinic nitrogen-dopants at armchair edges of graphitic materials can give rise to a clearly 

favorable monodentate chemisorbed state of molecular oxygen on their laterally adjacent 

carbon atoms. The found chemisorbed state would be further favored by additional available 

charge. By contrast, hydrogenated pyridinic nitrogen-dopants at zigzag edges would not be 

capable of so favorably activating oxygen on their adjacent carbon atoms. We will also show 

that the charge involved in the hydrogenation of pyridinic nitrogen-dopants remains 

segregated, becoming available for reduction processes. Moreover, detailed explanations for 

the described facts will be given and, considering also the role played by graphitic-nitrogen 

dopants, an integrated model for the target activation mechanism will be proposed. 
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2. Computational methods.  

Mechanisms of the ORR on molecular and periodic models of nitrogen-doped 

graphitic materials have been previously investigated performing DFT calculations under the 

GGA approximation and using the PBE [33] functional [20, 23, 26, 29]. Thus, in this 

research, the monodentate chemisorption of molecular oxygen on nitrogen-doped graphitic 

materials was investigated using mainly different molecular models of nitrogen-doped 

graphene and performing DFT calculations under the GGA approximation and using the PBE 

functional and numerical basis sets of double-numerical plus polarization quality [34] as 

implemented in the Dmol3 code [35]. Moreover, each one of the found fundamental effects 

was verified using also periodic models of armchair and zigzag nitrogen-doped graphene 

nanoribbons, and molecular models of armchair and zigzag nitrogen-doped single-walled 

carbon nanotubes. All the calculations were performed under neutral charge conditions. All 

the electrons were explicitly included in the calculations under a spin-unrestricted approach. 

Full and partial optimizations were carried out depending on the goal. 

Since previous results [23] indicate that solvation effects are important in 

understanding the mechanisms, continuum solvation effects were taken into account by means 

of the COSMO model [36] and hydrogen bonds were captured by including additional 

explicit water molecules as solvation effect treatment [22]. To verify the quality of the 

selected solvation effect treatment, solvation energies were computed for oxygen and 

superoxide, obtaining values that were found to be consistent with those expected. 

An orbital cutoff radius of 0.37 nm was used in the numerical basis set for all the 

atoms. The optimization convergence thresholds were set to 1.0×10-5 Ha for the energy, 0.02 

Ha/nm for the force, and 5.0x10-4 nm for the displacement. The SCF convergence criterion 

was set to 1.0×10-6 Ha for the energy. A value of 78.54 was used as the dielectric constant in 

the continuous solvation model. 
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In order to capture hydrogen bonds, for models targeted to visualization (Figs. 3, 7, 

S2, S3, S5 and S7), an explicit water molecule was included in de model, in addition to the 

continuum solvation model, as solvation effect treatment. However, considering our previous 

results [22], for models targeted to energetics evaluations (Figs. 2, 6, 9 and S4) five explicit 

water molecules were included in the model, in addition to the continuum solvation model, as 

solvation effect treatment. A typical configuration of the formed explicit water solvation shell 

can be observed in Fig. S1. 

Chemisorbed states were searched for running full optimizations. The relevance of 

each one of them was established determining its stability. For such a purpose, the energetics 

for the shortest distances of the reactions paths were estimated performing several constrained 

optimizations. For each reaction path, the basic configuration and treatment was maintained, 

but the distance between the carbon acting as active site and the nearest atom of the oxygen 

molecule was varied and constrained during the optimization process. To facilitate 

comparisons, the displayed total energies were referred to their respective references, 

calculated as the adsorbent energy plus that corresponding to the adsorbate complex in the 

bulk. Note that only relatively short C-O distances were considered. Thus, the final 

convergence to the alignment level of the respective references, at very long distances, is not 

displayed. The reasons for doing so were three. First, it has been pointed out that, because of 

the required change in the spin multiplicity, non-adiabatic effects could be implicated in the 

chemisorption of a solvated oxygen molecule. Second, for some of the considered cases, long 

distances between adsorbent and adsorbate give rise to very challenging models for which 

states of different spin multiplicity are very close in energy. Third, when solvation effects are 

sufficiently captured, the available charge of the surface is assigned to the solvated oxygen 

molecule during the optimization process, giving rise to a solvated superoxide anion, even 

when the oxygen molecule has not even yet come close to the surface. All these difficulties 
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are circumvented by considering only relatively short C-O distances. For the shortest 

distances, the required spin multiplicity change has already taken place, the most favorable 

spin multiplicity of the solutions is much more clearly defined, and an eventual charge 

transfer to oxygen can be better explained. However, despite of only the shortest distances 

were considered, still useful insights can be derived about the investigated mechanism, for 

which detailed conceptual explanations will be provided.  

All the calculations were run under automatic spin multiplicity conditions. For the 

adsorbate complex, formed by an oxygen molecule and five explicit water molecules in the 

bulk, triplet was found to be the most favorable spin multiplicity. For de rest of the models 

(adsorbents and those corresponding to each considered distance between adsorbent and 

adsorbate), for those having an even number of electrons, singlet was found to be the most 

favorable spin multiplicity, meanwhile, for those having an odd number of electrons, doublet 

was found to be the most favorable spin multiplicity. Therefore, along the considered 

distances, for each reaction path the most favorable spin multiplicity was found to be 

invariant. 

Correcting results for dispersion forces was considered. Using the approach of 

Tkatchenko & Scheffler [37], but also the method of Grimme [38], it was estimated that such 

a kind of correction, for the investigated systems, would be of the order of 0.05 eV. 

Considering that the investigated reaction was chemisorption, for which significant energies 

in the order of 0.5 eV and higher were expected, we concluded that the considered correction 

could be safely neglected. For that reason, we decided not to correct our calculations, taking 

into account that dispersion forces are not always corrected by authors and that corrections for 

dispersion forces are not available in all the software packages. 
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3. Results. 

In most of the proposed mechanism for the ORR, the first intermediate species is 

always adsorbed superoxide. To reach that state, oxygen should adsorb on the surface and an 

electron should be transferred. In this work, it was assumed that these two processes are 

consecutive and that the rate limiting step is adsorption. As it will be shown, the monodentate 

chemisorption of oxygen under total neutral charge conditions leads to a reorganization of the 

charge in the system, so that negative charge is concentrated in the adsorbed oxygen species, 

which has a superoxide character. Thus, in view of the results reported in a previous article 

[19], monodentate chemisorbed states of molecular oxygen on carbon atoms adjacent to 

pyridinic nitrogen-dopants at armchair edges were first considered. Thus, using a molecular 

model of graphene, several configurations of nitrogen dopants were explored, in which a 

pyridinic nitrogen-dopant was always included at an armchair edge (Fig. 1). The simpler one 

would be a single nitrogen dopant located at an armchair edge (Fig. 1A). For this 

configuration, the laterally neighboring carbon atom (labelled a in Fig.1) was initially tested 

for activation process. No significant chemisorbed state was found, as revealed by the 

energetics of the path shown in Fig. 2.  
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It has been suggested that the hydrogenation of pyridinic-nitrogen dopants in graphitic 

materials can be involved in the activation of the ORR in alkaline solutions [31]. Since this 

process depends not only on the pH but also on the electrode potential, the hydrogenation of 

pyridinic nitrogen-dopants can take place actually under alkaline conditions. In fact, ORR 

activity on nitrogen-doped graphitic materials is usually reported under alkaline conditions 

[13-15, 17-19]. Thus, hydrogenated pyridinic nitrogen-dopants were also considered in the 

investigated configurations. Surprisingly, when the carbon atom a laterally adjacent to a 

hydrogenated pyridinic nitrogen-dopant in an armchair edge was tested for activation in the 

presence of an additional distant graphitic-nitrogen dopant (Fig. 1C), a very favorable 

monodentate chemisorbed state was found (Fig. 3). As can be observed in the geometric 

details displayed in Fig. 3A, significant bond changes have taken place. First, the tested 

carbon atom a is bonded to the nearest atom of the oxygen molecule (O1) at a distance of ca. 

0.144 nm. In addition, the O1-O2 bond of the molecule is significantly elongated, from ca. 

0.121 nm in the original O2 molecule to ca. 0.146 nm. Finally, an extraordinarily short (ca. 

0.155 nm) hydrogen bond, between O2 and the nearest hydrogen atom of the explicit water 

molecule is formed. The described chemisorbed state is favorable by ca. 1.76 eV (with respect 

to molecular oxygen in the bulk) and stable (upon desorption to a physisorbed state) by ca. 

0.63 eV (Fig. 2). To better understand the found chemisorbed state, the electrostatic potential 

mapped on the electron isodensity surface ρ = 10 e-/nm3 was visualized (Fig. 3B). The 

corresponding Mulliken partial charges are also provided in Fig. 3C. Jointly, Figs. 3B and 3C 

describe charge concentration in O1 (ca. -0.30 e-) and mainly O2 (ca. -0.58 e-), which is 

partially contributed from the region corresponding to the distant graphitic nitrogen-dopant. 

This excess of charge stands for ca. 0.88 e- for the whole of the molecule, indicating that the 

adsorbed oxygen species would have superoxide characteristics, which is always regarded as 

the first step in the reduction process. The mentioned excess of charge would be stabilized by 
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negative charge excess and the bond distances are comparable, indicating the formation of a 

chemisorbed species with a superoxide characteristic. Thus, it can be concluded from Fig. 2, 

that hydrogenated pyridinic-nitrogen dopants at armchair edges of graphitic materials would 

give rise to clearly favorable chemisorbed states of molecular oxygen on their laterally 

adjacent carbon atoms. In addition, that only when pyridinic nitrogen-dopants are 

hydrogenated the investigated chemisorbed state is clearly favorable. No additional nitrogen 

dopant would be required for activating oxygen when pyridinic nitrogen-dopants are 

hydrogenated. Nevertheless, extra available charge would favor the investigated mechanism.  

It could be argued that the excess of charge required for the stabilization of the 

adsorbed oxygen species is that which has been provided in the process of the hydrogenation, 

and that a system providing only available charge, and not necessarily hydrogenated, would 

yield a stable chemisorbed state. However, when the results corresponding to the model 

displayed in Fig. 1A are compared to those corresponding to Fig. 1B, in which available 

charge is provided by an additional graphitic nitrogen-dopant, it is evident that both 

chemisorbed states present a similar stability (Fig. 2). This fact clearly indicates that the 

chemical changes brought about by the hydrogenation process are responsible of the 

stabilization of the investigated chemisorbed state, and that additional available charge further 

favors the mechanism. 

The carbon atom inwardly adjacent to the pyridinic nitrogen-dopant (labeled as b in 

Fig. 1) was also tested for activation. However, for reasons that will be better understood 

later, a much less significant chemisorbed state was found. For clarity, those results are 

omitted. All these facts suggest that the ORR can be activated by means of the adsorption of 

oxygen in form of a superoxide on a carbon atom adjacent to a hydrogenated pyridinic 

nitrogen-dopant at an armchair edge of graphitic materials. The next step would be the 

formation of an adsorbed peroxide species, facilitated by the short O2-H distance in the 
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hydrogenated pyridinic nitrogen-dopant is coplanar within the surface. Planarity is a signature 

of the sp2 hybridization. Thus, after hydrogenation, the pyridinic nitrogen-dopant would retain 

its graphitic character. So, the corresponding bonding structure could be described as a proton 

bonded to the lone pair exposed by the pyridinic nitrogen-dopant and an additional 

neutralizing electron spread out on the surface, including the region polarized by the proton. 

Therefore, the formation of a covalent bond between the nitrogen and the proton, with the 

participation of the neutralizing charge, would not be favorable enough as for breaking the 

over-stabilized aromatic structure. The above description can be verified by comparing the 

electrostatic potentials mapped on electron isodensity surfaces, and the partial charges, before 

and after the hydrogenation process (Fig. 5). After the hydrogenation process, a segregated 

charge distribution, with positive character in the region corresponding to the hydrogenated 

pyridinic nitrogen-dopant and charge spread out on the surface, can be inferred from Figs. 5C-

D. 

On the other hand, it can be observed in Fig. 4B that, after activation, both the nitrogen 

dopant and the carbon atom enabling the activation are displaced out of the plane, in opposite 

directions, occupying each one of them the center of the respective tetrahedron defined by the 

atoms they are bonded to. Obviously, for nitrogen, a vertex is missing. The tetrahedral 

disposition is a signature of the sp3 hybridization. Therefore, it can be concluded that, to 

activate molecular oxygen under the considered mechanism, both the nitrogen dopant and the 

carbon atom enabling the activation would switch from the sp2 hybridization state to sp3. 

Moreover, from the energetics point of view, chemisorption requires a bonding restructuration 

of both adsorbent and adsorbate, taking place only if this is energetically favorable. On one 

hand, a suboptimal reactant reference is established because the proton captured by the 

pyridinic nitrogen-dopant and the neutralizing electron taken from the circuit remain 

segregated. On the other hand, the proton captured by the pyridinic nitrogen-dopant and the 
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may try to impose other geometry. For the chemisorbed state displayed in Fig. 3, after 

chemisorption, a virtually undistorted surface can be observed in Fig. 3A. Finally, once the 

monodentate chemisorption is sufficiently favorable, as more charge is available, more charge 

can be paired to the unpaired electron until reaching a limit, lowering the energy. In addition, 

given that the excess of charge in the oxygen is stabilized by the solvation effect [22], as more 

charge is paired to the unpaired electron, more solvation energy is generated, favoring even 

more the mechanism. Thus, the main role of non-hydrogenated pyridinic nitrogen-dopants 

would be precursor of the truly relevant hydrogenated state. As a conclusion, the monodentate 

activation of molecular oxygen at armchair edges of nitrogen-doped graphitic materials would 

be enabled by the hydrogenation of the pyridinic nitrogen-dopants and driven by the available 

charge. 

The above discussion about the Fig. 4A suggests that hydrogenated pyridinic nitrogen-

dopants could play an additional role to destabilizing their adjacent carbons. Given that the 

formation of a covalent bond between the pyridinic nitrogen-dopant and hydrogen would not 

be favorable enough as for breaking the aromatic structure, it was supposed that charge 

supplied in the hydrogenation of the pyridinic nitrogen-dopants may become available, 

eventually contributing to intensifying the investigated mechanism on a distant site. This was 

the case observed in a graphene structure containing two distant nitrogen graphitic-dopants 

[22]. One nitrogen dopant is providing the additional charge required for the process and the 

second one is destabilizing the adjacent carbon atoms to facilitate the chemisorption. To 

verify the hypothesis and using the models introduced in Figs. 1B-C, the monodentate 

chemisorption of molecular oxygen on a carbon atom adjacent to the graphitic-nitrogen 

dopant (labeled as c in Figs. 1B-C) was investigated under the two possible hydrogenation 

states of the pyridinic nitrogen-dopant. The corresponding reaction paths are displayed in Fig. 

6. Only when the pyridinic nitrogen-dopant was hydrogenated, a sufficiently significant 
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to a pentavalent behavior. Moreover, the higher electronegativity of nitrogen with respect to 

carbon would concentrate the paired charge implicated in the bonding network closer to the 

nitrogen atom. Finally, part of the charge related to the unpaired electrons would be made 

available to the adjacent carbon atoms and spread out on the surface, to compensate partially 

the excess of charge located close to the nitrogen. This spread out charge would be available 

to activate the chemisorption of oxygen in specific carbon atoms. In order to support the given 

explanation, the electron density difference between a periodic model of nitrogen-doped 

graphene and the same model with the nitrogen atom substituted by a carbon atom was 

visualized (Fig. 10). Fig.10 is completely consistent with the above description, since it shows 

high charge concentration on the nitrogen atom core (Fig. 10A) and small  charge distribution 

over the carbon network, avoiding the nitrogen atom region (Fig. 10C). Additionally, the 

pentavalent behavior provides an explanation for the fact that graphitic nitrogen-dopants favor 

the activation of their adjacent carbon atoms. For activating molecular oxygen by means of 

chemisorption, the involved carbon atom has to switch from sp2 hybridization to sp3. On a 

carbon atom adjacent to a graphitic nitrogen-dopant, its transition from sp2 to sp3 can be 

accompanied by a switch in the nitrogen-dopant role from pentavalent to trivalent, in sp3 

mode. By switching from the pentavalent to the trivalent behavior, the energy leaked 

unpairing the 2s electrons is recovered, enabling a favorable chemisorbed state. 
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providing available charge, enabling significant monodentate chemisorbed states of molecular 

oxygen in the basal plane. And, here, we have provided computational evidence that 

hydrogenated pyridinic nitrogen-dopants, mainly at armchair edges, would be also capable of 

both, locally destabilizing carbon atoms and globally providing available charge, enabling 

significant monodentate chemisorbed states of molecular oxygen at the edges. Moreover, it 

has been shown that charge provided by graphitic nitrogen-dopants in the basal plane would 

favor the activation at the edges. Meanwhile, the charge required for the hydrogenation of the 

pyridinic nitrogen-dopants at the edges would favor the activation in the basal plane. In 

addition, the stabilizing role played by the solvation effect in the investigated mechanism 

should not be forgotten. In any case, the monodentate chemisorption of molecular oxygen on 

carbon atoms laterally adjacent to hydrogenated pyridinic nitrogen-dopants at armchair edges 

would be, by far, the most favorable. By contrast, the chemisorbed state of oxygen is much 

less favorable when the hydrogenated pyridinic nitrogen-dopants are located at zigzag edges. 

Likewise, non-hydrogenated pyridinic nitrogen-dopants would not be capable of favoring the 

monodentate activation of molecular oxygen in any considered way. Thus, from the point of 

view of the investigated mechanism, the main role played by non-hydrogenated pyridinic 

nitrogen-dopants would be precursor of the truly relevant hydrogenated state. Therefore, the 

monodentate activation of molecular oxygen on optimal nitrogen-doped graphitic materials 

would be enabled by hydrogenation and driven by the available charge. The identified 

activation mechanism should take place in the same potential region where the hydrogenation 

process takes place, as has been already observed experimentally [31]. By focusing on the 

monodentate activation, fundamental effects would have been brought to light, explaining the 

experimental observations originating this research, and enabling the discussion of different 

configurations.  The effects and mechanisms here described have been verified using different 

hydrogen-passivated molecular and periodic models of nitrogen-doped graphene, and 
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armchair and zigzag graphene nanoribbons and single-walled carbon nanotubes (Fig. S7). 

Thus, the insights here provided should be useful in the performance evaluation and design 

optimization of a broad range of nitrogen-containing graphitic materials, such as graphitic 

carbon nitrides, graphitic nitrogen-containing COFs or graphitic boron-carbon-nitrogen 

ternary systems.  

 

Acknowledgments 

This work has been financially supported by the MICINN (Spain) (project 2013-44083-P) and 

Generalitat Valenciana (project PROMETEOII/2014/013). 

 

References 

[1] M. Winter,  R.J.  Brodd, What Are  Batteries,  Fuel  Cells,  and  Supercapacitors?,  Chem.  Rev.,  104 
(2004) 4245‐4270. 
[2] Y. Bing, H. Liu, L. Zhang, D. Ghosh, J. Zhang, Nanostructured Pt‐alloy electrocatalysts for PEM fuel 
cell oxygen reduction reaction, Chem. Soc. Rev., 39 (2010) 2184‐2202. 
[3] A. Morozan, B.  Jousselme, S. Palacin,  Low‐platinum and platinum‐free  catalysts  for  the oxygen 
reduction reaction at fuel cell cathodes, Energy Environ. Sci., 4 (2011) 1238‐1254. 
[4] K.A. Kuttiyiel, K. Sasaki, Y. Choi, D. Su, P. Liu, R.R. Adzic, Bimetallic IrNi core platinum monolayer 
shell electrocatalysts for the oxygen reduction reaction, Energy Environ. Sci., 5 (2012) 5297‐5304. 
[5]  I.E.L. Stephens, A.S. Bondarenko, U. Gronbjerg,  J. Rossmeisl,  I. Chorkendorff, Understanding the 
electrocatalysis of oxygen reduction on platinum and  its alloys, Energy Environ. Sci., 5 (2012) 6744‐
6762. 
[6]  M.  Lefevre,  E.  Proietti,  F.  Jaouen,  J.P.  Dodelet,  Iron‐Based  Catalysts  with  Improved  Oxygen 
Reduction Activity in Polymer Electrolyte Fuel Cells, Science, 324 (2009) 71‐74. 
[7] F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J.‐P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. 
Zelenay, Recent advances  in non‐precious metal catalysis  for oxygen‐reduction reaction  in polymer 
electrolyte fuel cells, Energy Environ. Sci., 4 (2011) 114‐130. 
[8]  Z.W.  Chen,  D.  Higgins,  A.P.  Yu,  L.  Zhang,  J.J.  Zhang,  A  review  on  non‐precious  metal 
electrocatalysts for PEM fuel cells, Energy Environ. Sci., 4 (2011) 3167‐3192. 
[9] K. Strickland, E. Miner, Q.  Jia, U. Tylus, N. Ramaswamy, W.  Liang, M.‐T. Sougrati, F.  Jaouen, S. 
Mukerjee, Highly active oxygen  reduction non‐platinum group metal electrocatalyst without direct 
metal‐nitrogen coordination, Nat Commun, 6 (2015). 
[10] D.‐W. Wang, D. Su, Heterogeneous nanocarbon materials for oxygen reduction reaction, Energy 
Environ. Sci., 7 (2014) 576‐591. 
[11] X.‐K. Kong, C.‐L. Chen, Q.‐W. Chen, Doped graphene for metal‐free catalysis, Chem. Soc. Rev., 43 
(2014) 2841‐2857. 
[12] L. Dai, Y. Xue, L. Qu, H.‐J. Choi, J.‐B. Baek, Metal‐Free Catalysts for Oxygen Reduction Reaction, 
Chem. Rev., 115 (2015) 4823‐4892. 
[13] K. Gong, F. Du, Z. Xia, M. Durstock, L. Dai, Nitrogen‐Doped Carbon Nanotube Arrays with High 
Electrocatalytic Activity for Oxygen Reduction, Science, 323 (2009) 760‐764. 



26 
 

[14] L. Qu, Y. Liu, J.‐B. Baek, L. Dai, Nitrogen‐Doped Graphene as Efficient Metal‐Free Electrocatalyst 
for Oxygen Reduction in Fuel Cells, ACS Nano, 4 (2010) 1321‐1326. 
[15] Z. Wang, R.  Jia,  J. Zheng,  J. Zhao, L. Li,  J. Song, Z. Zhu, Nitrogen‐Promoted Self‐Assembly of N‐
Doped Carbon Nanotubes and Their Intrinsic Catalysis for Oxygen Reduction in Fuel Cells, ACS Nano, 
5 (2011) 1677‐1684. 
[16] H. Wang,  T. Maiyalagan,  X. Wang,  Review  on  Recent  Progress  in Nitrogen‐Doped Graphene: 
Synthesis, Characterization, and Its Potential Applications, ACS Catal., 2 (2012) 781‐794. 
[17]  L.  Lai,  J.R.  Potts,  D.  Zhan,  L. Wang,  C.K.  Poh,  C.  Tang,  H.  Gong,  Z.  Shen,  J.  Lin,  R.S.  Ruoff, 
Exploration of  the  active  center  structure of nitrogen‐doped  graphene‐based  catalysts  for oxygen 
reduction reaction, Energy Environ. Sci., 5 (2012) 7936‐7942. 
[18] T. Sharifi, G. Hu, X. Jia, T. Wågberg, Formation of Active Sites for Oxygen Reduction Reactions by 
Transformation  of  Nitrogen  Functionalities  in  Nitrogen‐Doped  Carbon  Nanotubes,  ACS  Nano,  6 
(2012) 8904‐8912. 
[19] T. Xing, Y. Zheng, L.H. Li, B.C.C. Cowie, D. Gunzelmann, S.Z. Qiao, S. Huang, Y. Chen, Observation 
of Active Sites for Oxygen Reduction Reaction on Nitrogen‐Doped Multilayer Graphene, ACS Nano, 8 
(2014) 6856‐6862. 
[20]  C.H.  Choi,  H.‐K.  Lim, M.W.  Chung,  J.C.  Park,  H.  Shin,  H.  Kim,  S.I. Woo,  Long‐Range  Electron 
Transfer  over  Graphene‐Based  Catalyst  for  High‐Performing  Oxygen  Reduction  Reactions: 
Importance of Size, N‐doping, and Metallic Impurities, J. Am. Chem. Soc., 136 (2014) 9070‐9077. 
[21] R.R. Adzic, Recent advances in the kinetics of oxygen reduction, in: J. Lipkowski, P.N. Ross (Eds.) 
Electrocatalysis, Wiley‐VCH, New York, 1998, pp. 197‐242. 
[22] A. Ferre‐Vilaplana, E. Herrero, Charge transfer, bonding conditioning and solvation effect in the 
activation of the oxygen reduction reaction on unclustered graphitic‐nitrogen‐doped graphene, Phys. 
Chem. Chem. Phys., 17 (2015) 16238‐16242. 
[23] L. Yu, X. Pan, X. Cao, P. Hu, X. Bao, Oxygen  reduction  reaction mechanism on nitrogen‐doped 
graphene: A density functional theory study, J. Catal., 282 (2011) 183‐190. 
[24] Y. Jiao, Y. Zheng, M. Jaroniec, S.Z. Qiao, Origin of the Electrocatalytic Oxygen Reduction Activity 
of Graphene‐Based Catalysts: A Roadmap to Achieve the Best Performance, J. Am. Chem. Soc., 136 
(2014) 4394‐4403. 
[25] S. Yang, G.‐L. Zhao, E. Khosravi, First Principles Studies of Nitrogen Doped Carbon Nanotubes for 
Dioxygen Reduction, J. Phys. Chem. c, 114 (2010) 3371‐3375. 
[26] D.W. Boukhvalov, Y.‐W. Son, Oxygen reduction reactions on pure and nitrogen‐doped graphene: 
a first‐principles modeling, Nanoscale, 4 (2012) 417‐420. 
[27] S. Ni, Z. Li, J. Yang, Oxygen molecule dissociation on carbon nanostructures with different types 
of nitrogen doping, Nanoscale, 4 (2012) 1184‐1189. 
[28]  L.  Zhao,  R.  He,  K.T.  Rim,  T.  Schiros,  K.S.  Kim,  H.  Zhou,  C.  Gutiérrez,  S.P.  Chockalingam,  C.J. 
Arguello, L. Pálová, D. Nordlund, M.S. Hybertsen, D.R. Reichman, T.F. Heinz, P. Kim, A. Pinczuk, G.W. 
Flynn, A.N. Pasupathy, Visualizing Individual Nitrogen Dopants in Monolayer Graphene, Science, 333 
(2011) 999‐1003. 
[29] R. Lv, Q. Li, A.R. Botello‐Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A.L. Elías, R. Cruz‐
Silva, H.R. Gutiérrez, Y.A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J.‐C. Charlier, M. Pan, M. 
Terrones, Nitrogen‐doped graphene: beyond single substitution and enhanced molecular sensing, Sci 
Rep‐Uk, 2 (2012) 586. 
[30] H. Kim, K. Lee, S.I. Woo, Y. Jung, On the mechanism of enhanced oxygen reduction reaction  in 
nitrogen‐doped graphene nanoribbons, Phys. Chem. Chem. Phys., 13 (2011) 17505‐17510. 
[31] Q. Li, B.W. Noffke, Y. Wang, B. Menezes, D.G. Peters, K. Raghavachari, L.‐s. Li, Electrocatalytic 
Oxygen Activation by Carbanion  Intermediates of Nitrogen‐Doped Graphitic Carbon,  J. Am. Chem. 
Soc., 136 (2014) 3358‐3361. 
[32] K.A. Kurak, A.B. Anderson, Nitrogen‐Treated Graphite and Oxygen Electroreduction on Pyridinic 
Edge Sites, J. Phys. Chem. c, 113 (2009) 6730‐6734. 
[33]  J.P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. 
Rev. Lett., 77 (1996) 3865‐3868. 



27 
 

[34]  B.  Delley,  An  all‐electron  numerical  method  for  solving  the  local  density  functional  for 
polyatomic molecules, J. Chem. Phys., 92 (1990) 508‐517. 
[35] B. Delley, From molecules to solids with the DMol(3) approach, J. Chem. Phys., 113 (2000) 7756‐
7764. 
[36] B. Delley, The conductor‐like screening model for polymers and surfaces, Mol. Simul., 32 (2006) 
117‐123. 
[37] A. Tkatchenko, M. Scheffler, Accurate Molecular Van Der Waals Interactions from Ground‐State 
Electron Density and Free‐Atom Reference Data, Phys. Rev. Lett., 102 (2009) 073005. 
[38] S. Grimme, Semiempirical GGA‐type density functional constructed with a long‐range dispersion 
correction, J. Comput. Chem., 27 (2006) 1787‐1799. 
[39] B.E. Conway, B.V. Tilak, Interfacial processes involving electrocatalytic evolution and oxidation of 
H2, and the role of chemisorbed H, Electrochim. Acta, 47 (2002) 3571‐3594. 
[40]  S.  Trasatti,  Work  function,  electronegativity,  and  electrochemical  behaviour  of  metals:  III. 
Electrolytic hydrogen evolution in acid solutions, J. Electroanal. Chem., 39 (1972) 163‐184. 
[41]  V.  Tripković,  E.  Skúlason,  S.  Siahrostami,  J.K.  Nørskov,  J.  Rossmeisl,  The  oxygen  reduction 
reaction mechanism on Pt(1 1 1)  from density  functional  theory calculations, Electrochim. Acta, 55 
(2010) 7975‐7981. 
[42]  R.A.  Sidik, A.B. Anderson, N.P.  Subramanian,  S.P.  Kumaraguru,  B.N.  Popov, O2  Reduction  on 
Graphite and Nitrogen‐Doped Graphite:  Experiment and Theory, J. Phys. Chem. B, 110 (2006) 1787‐
1793. 
[43]  R.  Rizo,  E.  Herrero,  J.M.  Feliu,  Oxygen  reduction  reaction  on  stepped  platinum  surfaces  in 
alkaline media, Phys. Chem. Chem. Phys., 15 (2013) 15416‐15425. 
[44] R. Rizo, E. Sitta, E. Herrero, V. Climent, J.M. Feliu, Towards the understanding of the  interfacial 
pH scale at Pt(111) electrodes, Electrochim. Acta, 162 (2015) 138‐145. 
[45] D. Wei, Y. Liu, Y. Wang, H. Zhang, L. Huang, G. Yu, Synthesis of N‐Doped Graphene by Chemical 
Vapor Deposition and Its Electrical Properties, Nano Lett., 9 (2009) 1752‐1758. 
 

 


