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Abstract 10 

This paper deals with the experimental testing of a bottoming Organic Rankine 11 

Cycle (ORC) integrate in a 2 liter turbocharged gasoline engine using ethanol as 12 

working fluid. The main components of the cycle are a boiler, a condenser, a 13 

pump and a swash-plate expander. Both steady and transient tests were 14 

performed in three engine operating points to understand the behavior and inertia 15 

of the system. Pressure-Volume diagram during these transients were presented 16 

and analyzed. Operating parameters of the expander, such as expander speed 17 

and boiler power, were shifted. The objective of these tests is to understand the 18 

inertia of the system and to have a robust control in all the possible transient tests. 19 

New European Driving Cycle was tested with and without the expander because 20 
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it is supposed to represent the typical usage of a car in Europe. It was used to 21 

validate the control of the ORC in realistic dynamic conditions of the engine. The 22 

importance of each parameter was analyzed by fixing all the parameters, 23 

changing each time one specific value. The main result of this paper is that using 24 

a slightly simple and robust control based on adaptive PIDs, the two dynamic 25 

effects of an ORC could be taken into account, i.e. high inertia effects (boiler and 26 

condenser) and low inertia effects (pump and volumetric expander).  27 

Keywords 28 

Organic Rankine Cycle, Gasoline engine, Waste Heat Recovery, Swash-plate 29 

expander, ethanol, transient tests, NEDC 30 

NOMENCLATURE 31 

Acronyms 32 

BDC Bottom Dead Centre 

CMT Centro de Motores Térmicos 

ICE Internal Combustion Engine 

ORC Organic Rankine Cycle 

PID Proportional Integral Derivative Controller 

PV Pressure-Volume 

SM Steady-state Map 

TEG Thermoelectric Generator 



TDC Top Dead Centre 

WHR Waste Heat Recovery 

NEDC New European Driving Cycle 

FS Full Scale 

WLTC 
Worldwide harmonized Light vehicles Test 

Procedures 

Notation 33 

Latin 34 

𝑚̇ Mass flow kg/s 

𝑇 Temperature °C 

𝑁 Speed rpm 

𝑃 Power kW 

𝐾𝑝 Proportional constant - 

𝐾𝑖 Integral constant - 

Greek letters 35 

𝛥𝑚̇ Mass flow increment kg/s 

𝜏𝑒𝑥𝑝 Expander torque Nm 

Subscripts 36 



𝐸𝐺 Exhaust gases side  

𝐸𝑇 Ethanol side  

𝑊 Water side  

𝑖𝑛 Inlet conditions  

𝑜𝑢𝑡 Outlet conditions  

𝑒𝑥𝑝 Expander   

𝑝𝑢𝑚𝑝 Pump  

𝑐𝑜𝑛𝑑 Condenser  

𝑏𝑜𝑖𝑙 Boiler  

𝑠𝑎𝑡 Saturation conditions  

𝑠𝑝 Set point  

𝑠𝑡 Steady  

𝑡ℎ Thermal  

1. Introduction 37 

Due to increasingly environmental restrictions and rising fuel prices, higher 38 

efficiencies are required to our actual powertrains [1]. Turbocharging technology 39 

have CO2 emissions reduction potential of downsizing engines up to 12% for 40 

diesel engines and 14% for gasoline engines [2]. The objective of the 41 

turbocharger is to increase torque of the engine and the specific power output 42 



with no or slight reductions of bsfc which is less than 1% [3]. Indeed, a 43 

turbocharged diesel engine still rejects 35–40% of input energy through the 44 

exhaust gas [4]. Therefore, WHR applications can also be found in turbocharged 45 

engines. Moreover, new future homologation cycles (such as Worldwide 46 

harmonized Light vehicles Test Procedures), will focus on CO2 emissions, 47 

requiring high efficiency increase of the whole drivetrain. In this type of cycles 48 

different driving situations on the WLTC are already covered by the hybrid 49 

technology: stop and start when the vehicle is stopped (13% of the time) and 50 

regenerative breaking system when the vehicle is slowed down (42% of the time). 51 

However, the exhaust heat recovery may offer a solution for the remaining time 52 

of the cycle (45%) when the engine is loaded [5]. 53 

New advanced engine technologies [6], such as electrical and mechanical 54 

turbocompounding, thermoelectrical materials (TEG) [7], Heat-to-heat and 55 

organic Rankine cycles (ORC) [8], are expected to grow strongly in the coming 56 

years [2]. They are considered as a promising source of improvement in modern 57 

internal combustion engines (ICE).  58 

Among these technologies, ORC promise high potential [9], therefore, this 59 

technology is most widely used in small-scale energy production and industrial 60 

applications, i.e. geothermal, biomass, solar thermal power and waste heat 61 

recovery (WHR) on industrial processes [10]–[13].  62 

However, the implementation of this technology in modern passenger cars 63 

requires additional features to achieve a compact integration and controllability in 64 

the engine [14]. While industrial applications typically operates in steady state 65 



operating points, there is a huge challenge taking into account its impact in the 66 

engine during typical daily driving profiles [15]. 67 

Although some experimental papers about ORC in IC engines exist [16]–[19], few 68 

experiments have been developed in transient tests. In a previous paper [20], five 69 

engine steady-state operating points have been tested using ethanol as working 70 

fluid and a swash-plate expander as expander machine. The testing mock up is 71 

the same than the one of the articles previously published [21]. The main 72 

differences are related to the control of the installation. Before, a state chart was 73 

used in order to control the installation by the technician only in stationary 74 

conditions. Using these maps of stationary conditions the control was calibrated 75 

in order to achieve a robust control in transient operation. The nominal heat input 76 

into the boiler in these tested points was 5, 12, 20, 25 and 30 kW respectively. A 77 

maximum increase of 3.7% was reached in the ICE mechanical power. In this 78 

engine operating point, the expander delivered 1.83 kW.  Nowadays the heavy 79 

duty industry seem to be clear that they will implement the technology of Rankine 80 

Cycle on their long haul trucks before 2020 as an answer to future stringent 81 

regulation and the still increasing customers request for operating cost reduction. 82 

According to several authors, a 5% fuel economy [22] is achievable when using 83 

ethanol as working fluid on such vehicles improving both the expander machine 84 

and the evaporator efficiency. This improvement will save approximately 2700 € 85 

per year in each truck, avoiding 6 tons of CO2 emitted to the atmosphere [5].  86 

Despite of these steady experimental studies, experimental transient tests with 87 

ethanol in WHR applications have not been published. Some transient models 88 

[23]–[26] and experimental installations with water [27] were presented in the 89 



literature. However, there is a gap considering ethanol as working fluid and 90 

dynamic conditions in an ICE.  91 

Thus, the objective of this paper is to evaluate the transient behavior of an ORC 92 

cycle added to an ICE by means of tests realized in our lab using a swash-plate 93 

expander and ethanol as working fluid. The partial objectives of this paper are: 94 

 To present the experimental setup. 95 

 To explain in detail the adaptive control of the installation. 96 

 To characterize the transient tests, by changing the inlet conditions of the 97 

ORC and understand the behavior of the expander machine during this 98 

transients. 99 

 To validate the control of the ORC in realistic dynamic conditions of the 100 

engine. 101 

2. Experimental setup 102 

2.1. System layout 103 

Fig 1 shows the schematic diagram of the bottoming ORC cycle. Red lines 104 

correspond to the exhaust gas line. The ethanol cycle loop is divided in two 105 

colors, green in the high pressure level and black in the low pressure level. 106 

Cooling loop is defined by blue lines (dark blue for the inlet cooling line and light 107 

blue for the outlet cooling line). 108 



 109 

Fig 1. Schematic diagram of the installation 110 

Engine exhaust gases provide heat needed to vaporize the ethanol. Ethanol is a 111 

flammable working fluid. Therefore, it is necessary to take the necessary safety 112 

measures to prevent accidents arising from the use of this fluid. The gas 113 

temperature and mass flow are defined as constant for each particular engine 114 

operating point. First, the working fluid is pumped from the tank at the condensing 115 

pressure to the boiler at the evaporating pressure. The boiler ensures the heat 116 

transfer from exhaust gas to the working fluid. Then, the working fluid is pre-117 

heated, vaporized and superheated in the heat exchanger. The ethanol vapor 118 

expands from the evaporating pressure to the condensing pressure. It transforms 119 

the enthalpy drop into effective work measured by a torque measuring unit. The 120 

expander prototype is a piston swash-plate. Finally, low pressure vapor is 121 

extracted from the expander and flows to the condenser, where it condenses 122 

using cooling water. The condenser is followed by an expansion vessel in order 123 

to insure the low pressure in the installation. It is connected to the circuit by means 124 



of a three-way valve to the security tank. In closed loop systems with volumetric 125 

machines, it is needed tanks in order to ensure the proper availability of working 126 

fluid in all operating points and not to have pressure pulses in the inlet of the 127 

expander. The ethanol tank is connected with the security tank. The security tank 128 

is used to absorb the working fluid in case the level is increased above the ethanol 129 

tank due to pressure pulses. Moreover, this security tank is connected through a 130 

manual valve to an additional tank in order to fill the installation.  131 

The geometrical features of the expander are listed in Table 1 and Fig 2 shows a 132 

picture of the Swash-plate expander delivered by Exoès. 133 

Table 1. Swash-plate characteristics 134 

Swash-plate characteristics 

Number of pistons 3  

Bore 40 mm 

Stroke 31 mm 

Maximum expander speed 4500 rpm 

 135 



 136 

Fig 2. Swash-plate expander delivered by Exoès 137 

Temperature and pressure sensors have been placed at the inlet and the outlet 138 

of the different elements, several mass flow sensors have also been installed. 139 

Table 2 shows the accuracy, the measurement principle and the range of these 140 

sensors. 141 

Table 2. Range and accuracies of sensors 142 

 Measurement principle Range Accuracy 

Exhaust gas 
pressure 

Piezoresistive 0-2 bar 0.05% FS 

Ethanol high 
pressure loop 

Piezoresistive 0-50 bar 0.05% FS 

Ethanol low 
pressure loop 

Piezoresistive 0-5 bar 0.05% FS 

Temperatures K-type thermocouples (class 2) 
(-270)-

(1,372)K 
±2.5°C 

Ethanol flow 
meter 

Coriolis flow meter 0-2,720 kg/h ±0.1% 

Water flow 
meter 

Electromagnetic flow sensor 0.3-1 m/s 
±0.5% of 

rate 

Exhaust gases 
flow meter 

Sensyflow FMT700-P 0-500 kg/h +-1% of rate 

Expander 
rotational speed 

Optical tachymeter 0-20,000 rpm ±1 rpm 



Expander torque 
meter 

Strain gauges 0-200 Nm 0.05%FS 

 143 

The expander performance has been characterized by the calculation of the 144 

indicated Pressure-Volume diagram. An AVL GU13P piezoelectric pressure 145 

sensor was placed inside the cylinder of one piston to evaluate the pressure 146 

oscillations during intake and exhaust processes. The piezoelectric transducer 147 

was connected to a Kistler 5015 charge amplifier. The PV diagram is used to 148 

describe changes of volume and pressure of a system. A swash-plate expander 149 

is a positive displacement machine. It works as a two-stroke machine, which 150 

means that during one revolution, with a piston movement from the Top Dead 151 

Centre to the Bottom Dead Centre and back again, one working cycle is 152 

completed. The superheated steam flows through the intake valve into the 153 

cylinder whose piston is near top dead centre. Moving the piston downwards, the 154 

intake valve closes, the steam expands and let out by exhaust ports situated near 155 

the bottom dead centre. Finally, the upmoving piston closes the exhaust ports 156 

and compresses the steam remaining in the cylinder and the cycle starts again. 157 

Furthermore, a TDC sensor and an angle encoder measure the position of the 158 

cylinder. TDC sensor is an eddy current-sensor, which delivers a signal 159 

correlating to the distance between sensor and the swashplate. The piezoelectric 160 

pressure signal has been referenced using low frequency measurement 161 

(piezoresistive sensor). LabVIEW is the software used to record all these signals 162 

with a sampling frequency of 50 kHz.  163 

2.2. Operating points 164 



Three engine operating points have been chosen in this tests. The gasoline 165 

engine used in these tests is an inline four-cylinder turbocharged engine 166 

(Ecoboost) with a volumetric capacity of 2 liter. In a previous article published by 167 

the authors [20] five engine operating steady-state points were measured. The 168 

vehicle speed was 63 km/h, 84 km/h, 106 km/h, 114 km/h and 126 km/h 169 

respectively. These points are representative points of the homologation cycle. 170 

However, in the low speed (63 km/h) both the available energy in the exhaust 171 

and the potential of recovering is low. Therefore, the viability of this system is 172 

achievable at high loads/speeds. Thus, in this article the higher engine operating 173 

points (84 km/h, 106 km/h and 114 km/h) were used in order to test the adaptive 174 

control. The highest engine operating point was not used in order to avoid 175 

possible problems with the control at high ethanol pressure in the system. Fig 3 176 

shows the available exhaust gas energy plotted in the engine map. It was 177 

measured at the outlet of the catalyst.  This figure also shows the points tested in 178 

the ORC. The vehicle model used in the test bench to take into account realistic 179 

dynamic conditions of a vehicle was the Ford Explorer. Therefore, these points 180 

correspond with 84 km/h (12 kW power in the boiler), 106 km/h (20 kW power in 181 

the boiler) and 114 km/h (25 kW power in the boiler). Both steady and transient 182 

tests were performed varying from 84 km/h to 114 km/h and from 106 km /h to 183 

114 km/h to understand the behavior and inertia of the system. 184 



 185 

Fig 3. Engine operating points in the ORC 186 

3. Control of the installation 187 

The control of the installation on dynamic conditions has been made using five 188 

actuators: IC engine conditions (exhaust gases power), speed of the pump, 189 

expander speed, expander vessel pressure (low pressure in the cycle) and the 190 

cooling mass flow through the condenser. These actuators can change the 191 

behavior of the ORC system:  192 

 Exhaust gases power (PEG), in order to estimate the engine operating point. 193 

It was obtained from measuring the exhaust gases temperature at the inlet 194 

of the boiler (T In Boil EG) and at the outlet (T Out Boil EG) and the exhaust gases 195 

mass flow (Mflow EG). 196 



 The speed of the pump (Npump), in order to control the mass flow of ethanol 197 

flowing through the installation. It is affected by the exhaust gases power 198 

and the temperature at the outlet of the boiler (TET,out). 199 

 The expander speed (Nexp), in order to control the high pressure at the inlet 200 

of the expander. A brake coupled to the expander shaft fixes this speed. 201 

The brake speed is obtained from the exhaust power released in the boiler. 202 

Depending on the exhaust gases power, the optimal expander speed was 203 

fixed by means of previous parametric studies in steady and optimal 204 

conditions for each particular power. 205 

 The expander vessel pressure, in order to control the low pressure in the 206 

system. 207 

 The cooling mass flow, in order to avoid cavitation in the pump. 208 

Transient tests were performed changing the exhaust gases power from an initial 209 

to a final engine operating point. During the transient, low pressure of the cycle 210 

was settled to 2 bar and the cooling mass flow to 672 l/h to avoid cavitation in the 211 

pump. The speed of the pump (Npump) and the speed of the expander (Nexp) have 212 

been controlled by using an adaptive control, presenting in Fig 4. Red arrows 213 

correspond to inputs of the system, while blue ones correspond to outputs. 214 

Different steady-state maps, obtained from previous steady tests [20], were 215 

implemented in the control. Table 3 summarizes the inputs and outputs of the 216 

system.  217 



 218 

 219 

Fig 4. Control of the installation 220 

Table 3. Inputs and outputs of the ORC control 221 

Variable name Description I/O 

𝒎̇ET Ethanol mass flow Input 

TEG Exhaust gases temperature (inlet and outlet) Input 

𝒎̇EG Exhaust gases mass flow Input 

TET,out Temperature at the outlet of the boiler Input 

TET,out_sp Temperature at the outlet of the boiler set point Input 

Npump Pump speed  Output 

Nexp Expander speed Output 

 222 

The mass flow (𝑚̇EG) and the temperatures at the inlet and outlet of the boiler (TEG) 223 

in the exhaust gases side were measured; therefore, an estimation of the power 224 

released by the exhaust gases was obtained (PEG) by using steady-state map (SM 225 

1). In the ethanol side, both the ethanol mass flow (𝑚̇ET) and the temperature at 226 

the outlet of the boiler (TET,out) were inputs of the control. 227 



Using steady-state map (SM 2), an initial ethanol mass flow set point was 228 

specified (ṁET,st_sp). However, in the steady tests, as the thermodynamic 229 

variables vary smoothly, the control system does not take into account effects of 230 

transients. During transient conditions, once the operating point is changed, the 231 

control should consider two interconnected phenomena: Low inertia elements 232 

(pump and volumetric expander) and high inertia elements (boiler and 233 

condenser). Therefore, in an ORC system, changes in the pump and expander 234 

speed have a fast time response (lower than 1 s), because they affect mainly to 235 

pressures and mass flows in the system. However, changes in the heat 236 

transferred by the heat exchangers (boiler and evaporator) have a higher time 237 

response (40 s) because its main function is to heat or cool down the ethanol, 238 

and therefore they affect mainly to the temperatures in the system. Thus, an 239 

adaptive part of the control corrects the ethanol mass flow set point of steady 240 

conditions to take into account the high inertia elements. The correction 241 

(ΔṁET,th_sp) was applied to the initial ethanol mass flow (ṁET,st_sp). The result 242 

signal (ṁET,sp) is compared to the actual ethanol mass flow through the system 243 

(measured by a Coriolis mass flow meter) and using PID 1 the pump speed set 244 

point for transient conditions is obtained (Npump). 245 

The correction (ΔṁET,th_sp)  takes into account the dynamic conditions of the boiler 246 

and deviation between the temperature signal at the outlet of the boiler (TET,out) 247 

and the ethanol temperature reference of steady conditions, setting by an 248 

external threshold TET,out_sp. This temperature is fixed by the working fluid in order 249 

to avoid degradation. In these tests, the working fluid was ethanol; therefore, the 250 

maximum temperature was 240 ºC. However, in these particular tests the 251 

temperature was 210 ºC in order to ensure a stable operation of the working fluid.  252 



The adaptive control consists of two inputs (PEG and ΔT) and two outputs 253 

corresponding to the proportional and integral constant of the PID (Kp and Ki). 254 

Depending on the exhaust power required and the difference of temperatures 255 

between the measurement (TET,out) and the set point (TET,out_sp) a specific value 256 

for Kp and Ki was obtained. Values of adaptive control were progressively 257 

adjusted from experimental tests. Different values of Kp and Ki were implemented 258 

in the control to avoid condensation at the expander inlet when the engine 259 

operating point changes from a lower to a higher exhaust power and superheating 260 

(and thus degradation) in the opposite case. When the engine operating point 261 

changes from a lower to a high power, the ethanol mass flow should not change 262 

rapidly because the boiler is not hot enough and condensation could appear if 263 

there is not enough power to maintain the temperature at the outlet of the boiler. 264 

Regarding the expander, a steady state map (SM 3) was used to fix the optimum 265 

expander speed for each boiler power (PEG). 266 

4. Transient tests PV diagram 267 

Two transient tests were performed in the cycle measuring the instantaneous 268 

pressure inside the cylinder of the swash-plate, varying the vehicle speed from 269 

84 km/h (12 kW power in the boiler) to 114 km/h (25 kW in the boiler) and from 270 

106 km/h (20 kW) to 114 km/h (25 kW). The time step between the two engine 271 

operating points was set to 5 s in order to test the most severe conditions to the 272 

engine and to the ORC.  273 

4.1. Transient 12-25 kW with 5 s 274 

The main actuators of the system are presented in Fig 5. The first subplot (A) 275 

indicates the pressure in the expansion vessel (P Ex Cond). The second subplot (B) 276 



indicates the temperatures in the exhaust line, inlet temperature of the boiler (T 277 

In Boil EG) in the left axis and outlet temperature of the boiler (T Out Boil EG) in the right 278 

axis. The third subplot (C) indicates the mass flow through the system, the 279 

exhaust gases mass flow (Mflow EG) in the left axis and the cooling mass flow 280 

(Mflow W) in the right axis. The last subplot (D) indicates the pump speed (Npump) 281 

in the left axis and the expander speed (Nexp) in the right axis. In this transient 282 

test, the vehicle speed was shifted from 84 km/h to 114 km/h. As it can be seen 283 

in Fig 5, the exhaust gas mass flow increases from 100 kg/h to approximately 284 

150 kg/h. The exhaust gas step starts approximately in second 15. The water 285 

mass flow remains constant with a value of 690 kg/h. Both expander and pump 286 

speed changes according the control previously presented. The colored vertical 287 

lines correspond to particular times of the transient tests that will be deeply 288 

analyzed on next paragraphs of this paper. 289 



 290 

Fig 5. Actuators of the ORC transient 12-25 kW (5s) 291 

The main output variables of the cycle are presented in Fig 6. The first subplot 292 

(A) indicates pressures in the ORC, HP (P In Exp ET) in the left axis and LP (P Ex Exp 293 

ET) in the right axis. The second subplot (B) indicates the temperature at the inlet 294 

of the swash-plate expander (T In Exp ET), the saturation temperature (T sat) and the 295 

temperature at the outlet of the expander (T Ex Exp ET). The third subplot (C) 296 

indicates the ethanol mass flow through the system (Mflow ET). The last subplot 297 

(D) indicates the torque (𝜏exp) and the expander speed (Nexp). As explained in the 298 

A 

B 

C 

D 



control of the installation, the expander speed was optimized for each particular 299 

exhaust gas power; therefore, while the engine operating point was shifted from 300 

12 kW to 25 kW the expander speed was varied from 2000 rpm to 2500 rpm. As 301 

higher power is released in the exhaust gases, the ethanol is vaporized into a 302 

higher level of pressure. Temperature at the boiler outlet remains almost constant 303 

due to the reference threshold of the control that fix 210 ºC as a set point. Ethanol 304 

mass flow increased considering both dynamic effects: high and low inertia 305 

elements. Torque delivered by the expander increases with exhaust gases 306 

power, as the nominal ethanol mass flow through the system increases. The 307 

isentropic efficiency remains constant because although the power delivered by 308 

the expander increases, the expansion ratio increases too, therefore the relation 309 

between isentropic and shaft power remains almost constant. The expander 310 

speed is also changing from 2000 rpm to 2500 rpm. 311 



 312 

Fig 6. Main parameters in the ORC transient 12-25 kW (5s) 313 

The analysis of PV diagrams in different conditions during the transient could be 314 

convenient to evaluate possible irreversibilities in the expansion machine. The 315 

PV diagram has been computed in 4 specific instants of time during the transient. 316 

The instances were chosen to represent initial steady-state, start of transient, end 317 

of transient and final steady-state (5 s, 12 s, 24 s and 40 s):  318 



 t=5 s: Initial steady state point at the lower engine operating point (12 kW). 319 

All the variables of the system remain constant and the expander speed is 320 

2000 rpm.  321 

 t=12 s: Start of the transient test. The ethanol mass flow is increasing to 322 

adapt the ORC to the new engine operating point (25 kW). Pressures are 323 

increasing and expander speed is changing from 2000 rpm to 2500 rpm. 324 

 t=24 s: End of the transient test. The ethanol mass flow has almost 325 

reached the new operating conditions. Pressure continues increasing. 326 

Expander speed is 2500 rpm. 327 

 t=40 s: Steady state at the new operating conditions of the engine (25 kW). 328 

All the variables of the system remain almost constant and the expander 329 

speed is 2500 rpm. 330 

These points have been indicated in Fig 5 and Fig 6 using vertical lines with the 331 

same colors that the PV plots of Fig 7. In order to estimate the PV diagram of a 332 

specific time of the transient, an average of a finite number of cycles have been 333 

computed. On one hand, a low number of cycles won’t be representative because 334 

of the deviation in measurements. On the other hand, if a high number of cycles 335 

is taken into account, the PV diagram area will increase as a consequence of the 336 

change in the engine operating point. Therefore, a sensitivity study was done to 337 

determine the optimal number of cycles to average the area in the PV diagram 338 

during these cycles. As a result of this parametric study, the average indicated 339 

power remains constant in the range from 80 to 110 cycles. Thus, 80 cycles were 340 

chosen to reduce the CPU calculation time. This parametric study was made in 341 

the middle of the transient (t=18 s) to consider a high level of variability. 342 



Fig 7 shows the PV diagram in the previous time instances. Red and green 343 

crosses indicate the intake and exhaust valve closing angles (or volumes) 344 

respectively. Red and green circles indicate the intake and exhaust valve opening 345 

angles (or volumes) respectively. By comparing all the diagrams, it can be seen 346 

that the compression process in the piston (PV slope during compression 347 

process) is more isothermal at lower expander speeds (at time 5 s, 2000 rpm) 348 

than at higher expander speeds (at time 12 s, 24 s and 40 s, 2500 rpm). Lower 349 

expander speeds involve higher heat transfer rates, therefore more isothermal 350 

compression process. 351 

Focusing on the maximum pressure reached by the system (at time 12 s, 24 s 352 

and 40 s) it can be seen that higher exhaust power has a direct impact on the 353 

maximum pressure of the PV diagram. This effect justifies the increase on the 354 

high pressure of the cycle and the thermal behavior of the system. Once the 355 

engine operating point is shifted, the thermal delay of the boiler causes that 356 

although the mass flow transient is finished, the indicated diagram continues 357 

increasing to higher levels of pressure. This effect is visible comparing 24 s and 358 

40 s indicated diagrams. 359 



 360 

Fig 7. P-V Diagram transient tests 12-25 kW (5s) 361 

 362 

4.2. Transient 20-25 kW with 5 s 363 

Fig 8 and Fig 9 show respectively the actuators and the main parameters of the 364 

cycle for the transient 20-25 kW. The main actuators of the system are presented 365 

in Fig 8. The first subplot (A) indicates the pressure in the expansion vessel (P Ex 366 

Cond). The second subplot (B) indicates the temperatures in the exhaust line, inlet 367 

temperature of the boiler (T In Boil EG) in the left axis and outlet temperature of the 368 

boiler (T Out Boil EG) in the right axis. The third subplot (C) indicates the mass flow 369 

through the system, the exhaust gases mass flow (Mflow EG) in the left axis and 370 

the cooling mass flow (Mflow W) in the right axis. The last subplot (D) indicates 371 



the pump speed (Npump) in the left axis and the expander speed (Nexp) in the right 372 

axis. In this transient test, the vehicle speed was shifted from 106 km/h to 114 373 

km/h. As it can be seen in Fig 8, the exhaust gas mass flow increases from 120 374 

kg/h to approximately 150 kg/h. The exhaust gas step starts approximately in 375 

second 15. The water mass flow remains constant with a value of 690 kg/h. In 376 

this case, the expander speed is constant (2500 rpm). 377 

 378 

Fig 8. Actuators of the ORC transient 20-25 kW (5s) 379 

A 

B 

C 

D 



The main output variables of the cycle are presented in Fig 9. The first subplot 380 

(A) indicates pressures in the ORC, HP (P In Exp ET) in the left axis and LP (P Ex Exp 381 

ET) in the right axis. The second subplot (B) indicates the temperature at the inlet 382 

of the swash-plate expander (T In Exp ET), the saturation temperature (T sat) and the 383 

temperature at the outlet of the expander (T Ex Exp ET). The third subplot (C) 384 

indicates the ethanol mass flow through the system (Mflow ET). The last subplot 385 

(D) indicates the torque (𝜏exp) and the expander speed (Nexp).  386 

The expander was optimized at 2500 rpm in both exhaust gas power. As higher 387 

power is released in the exhaust gases, the ethanol is vaporized into a slightly 388 

higher level of pressure. Changes are lower than in the previous transient due to 389 

lower differences in the transient. Temperature at the boiler outlet remains at the 390 

same level of 210 ºC. Ethanol mass flow increased considering both dynamic 391 

effects: high and low inertia elements. Torque delivered by the expander 392 

increases with exhaust gases power, as the nominal ethanol mass flow through 393 

the system increases. 394 

 395 



 396 

Fig 9. Main parameters in the ORC transient 20-25 kW (5s). 397 

The PV diagram has been computed in 3 specific instants of time during the 398 

transient. The instances were chosen to represent initial steady-state, start of 399 

transient and the end of transient (6 s, 12 s and 30 s):  400 

 t=6 s: Initial steady state point at the lower engine operating point (20 kW). 401 

All the variables of the system remain constant and the expander speed is 402 

2500 rpm.  403 



 t=12 s: Start of the transient test. The ethanol mass flow is increasing to 404 

adapt the ORC to the new engine operating point (25 kW). Pressures are 405 

increasing while the expander speed remains constant. 406 

 t=30 s: End of the transient test. The ethanol mass flow has almost 407 

reached the new operating conditions. Pressure continues increasing. 408 

Expander speed is 2500 rpm. 409 

Fig 10 shows the PV diagram at different instants of time during the test. By 410 

comparing all the diagrams, it can be observed that the compression process in 411 

the piston remains more or less similar (in second 6 s, 12 s and 30 s) due to the 412 

expander speed remains constant during this test.  413 

As regards the maximum pressure reached by the system, it can be seen that 414 

higher exhaust power has a direct impact on the maximum pressure of the PV 415 

diagram. Therefore, the more power it is released on the boiler, the higher amount 416 

of indicated power it is produced. The expansion laws are approximately equal; 417 

however, the inlet valve closes at higher level of pressure when time increases, 418 

therefore, the area of the PV diagram increases with time.  419 



 420 

Fig 10. P-V Diagram transient tests 20-25 kW (5s) 421 

To sum up, taking into account previous analysis, the control of the system should 422 

consider both phenomena, high inertia effects (boiler and condenser) and low 423 

inertia effects (pump and volumetric expander). A delay is visible analyzing the 424 

PV diagram of the expander machine. The temperature at the outlet of the boiler 425 

is fixed to 210 ºC, therefore the boiler delay is visible in the pressure signal. As a 426 

result, although the conditions of mass flow changes promptly, the thermal inertia 427 

of the system cause the cycle a delay in pressures. The final control of the ORC 428 

should consider these effects. Therefore, the adaptive correction introduced in 429 

the control of the cycle is justified with previous analysis, as shown in Fig 4.  430 

 431 



A statistical analysis of the work delivered by the expander in J during the 432 

transient 20-25 kW is presented in Table 4. In this table the average work 433 

delivered by the expander, the standard deviation, the maximum and the 434 

minimum values are shown in the same time analyzed previously (6 s, 12 s and 435 

24 s). The average work delivered by the expander increases from 11.101 J to 436 

12.832 J as a result of the change in the engine operating point. Regarding the 437 

standard deviation, it remains approximately constant with a maximum value of 438 

0.781 J in the second 12. Similar results were obtained with the transient 12-25 439 

kW. 440 

Table 4. Statistical analysis transient 20-25 kW 441 

Time Work delivered by the expander (J) Standard Deviation (J) Max Min 

6 s 11.101 0.711 12.708 9.829 

12 s 12.309 0.781 14.074 9.829 

24 s 12.832 0.552 13.873 11.718 

 442 

5. NEDC cycle 443 

5.1. Available energy in the NEDC 444 

In order to apply the control of the installation to realistic driving conditions, the 445 

engine was tested following the New European Driving Cycle (NEDC). The 446 

purpose of this test was to estimate the amount of power released by the exhaust 447 

gases during this cycle and estimate the points in which the expander could be 448 

started. Fig 11 shows the result of this test. During the urban part of the cycle, 449 

there is not enough power in the cycle to evaporate and produce power in the 450 

expander, because the engine is in warm up conditions and temperatures are too 451 

low. The vapor conditions at the boiler outlet begins approximately at second 900. 452 

Although the exhaust gas mass flow changes very fast, the response in 453 



temperature in the exhaust line is slower. The time response in temperatures is 454 

approximately 40 s, whereas in mass flows is in the range of 5 s, as it can be 455 

seen in Fig 5 and Fig 8 . Moreover, the installation response to the NEDC is well 456 

controlled with the control layout performed.  457 

 458 

Fig 11. NEDC without expander 459 

As the urban cycle starts from idle and cold conditions and reaches the high 460 

power in few minutes, there is no enough time to deliver enough power to the 461 

expander. Therefore, it can be concluded that NEDC cycle is not the optimal cycle 462 

to test this type of technology. High loads and hot conditions should be the 463 

starting ideal conditions to test and validate the control of the ORC proposed in 464 

this paper. 465 

5.2. Validation of the control in optimal driving profile 466 
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Considering the results obtained in previous section, the last part of the NEDC, 467 

starting at hot conditions, was tested. It corresponds to extra-urban cycle (the last 468 

acceleration from 70 km/h to 120 km/h of NEDC) after stabilizing during some 469 

minutes the point of 70 km/h. Fig 12 shows the result of this test with the 470 

expander. In this case, there is enough power in the cycle to evaporate the 471 

ethanol and start the expander.  472 

 473 

Fig 12. NEDC Extra-Urban with expander 474 

The main conclusion of this test is that using a slightly simple and robust control 475 

based on adaptive PIDs, the two dynamic effects of an ORC could be taken into 476 

account, i.e. high inertia effects (boiler and condenser) and low inertia effects 477 

(pump and volumetric expander). Therefore, the control of the ORC was validated 478 

in realistic dynamic conditions of the engine. 479 
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6. Conclusions 480 

This paper describes and analyzes the results of an experimental installation of 481 

an ORC system installed in a turbocharged 2.0 liter gasoline engine to recover 482 

waste heat in exhaust gases. Both, steady tests in three engine operating points, 483 

and transient tests varying from 84 km/h (12 kW) to 114 km/h (25 kW) and from 484 

106 km /h (20 kW) to 114 km/h (25 kW) were performed in order to understand 485 

the behavior and inertia of the system. The PV diagram during these transients 486 

were presented and analyzed. The following results have been obtained with 487 

available components based on non-commercial prototypes: 488 

1. The installation response to dynamic transient tests (12-25 kW and 20-25 489 

kW) is well controlled with the control layout performed with engine time 490 

steps up to 5s. NEDC extra urban transient cycle was performed using the 491 

same control obtaining a controllable system. 492 

2. The control of the system considers both high inertia effects (boiler and 493 

condenser) and low inertia effects of volumetric machines. The adaptive 494 

control lets the system adapt to these dynamic operating conditions of the 495 

engine. 496 

3. Compression in the piston is more isothermal at lower expander speeds 497 

than at higher expander speeds. Lower expander speeds involve higher 498 

residence time of ethanol inside the cylinders. Consequently, heat transfer 499 

rates increases with lower expander speeds. Therefore, lower expander 500 

speeds involve more isothermal compression process. The more power is 501 

released by the boiler, the higher amount of indicated power is produced 502 

by means of higher pressure at the inlet of the expander machine. 503 



4. NEDC cycle produce not enough power to run the expander in normal 504 

operating conditions starting from engine cold conditions. High loads and 505 

hot conditions should be the starting ideal conditions to test and validate 506 

the control of the ORC.  507 

5. The slightly simple and robust control presented in this paper, based on 508 

adaptive PIDs, allows the control of the ORC in realistic driving profiles. 509 
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