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ABSTRACT 

The thesis is composed for four articles interrelated, where is studied either as 

relationships between body condition and energetic mobilization in rabbits and as 

the effect of selection for litter size variability in body condition and energetic 

mobilization, such as welfare biomarkers in animal production, and in litter size and 

its components after seven generation of selection.  

In this regard, the first article examines the relationships between measures of body 

condition and energetic mobilization on 157 primiparous rabbit does at mating, 

delivery and 10 d after delivery, using principal component analysis. Body condition 

was measured as body weight and perirenal fat thickness. Energetic mobilization 

was measured as non-esterified fatty acid concentration in blood, before (NEFAb) 

and after lipolysis stimulation by isoproterenol (NEFAr). All body weights and 

perirenal fat thickness were located on the first principal component, exhibiting 

high correlations between them both at the same or different times (from 0.51 to 

0.83). All NEFA measurements were located on the second component, showing low 

correlations with body condition measurements. Both NEFAs showed high positive 

correlations when measured at the same time (0.65 at mating, 0.72 at delivery and 

0.69 at 10 d after delivery), but low correlations when measured at different times 

(from 0.09 to 0.20).  

The second article analyses the correlated response in body condition and fat 

reserves mobilization in two rabbit lines divergently selected by litter size 

variability during seven generations of selection. The perirenal fat thickness and the 

increment in NEFAs from basal concentration until adrenergic stimulation by 

isoproterenol were measured in 80 females from the high litter size variability line 

and in 74 females from the low line at second mating, delivery and 10 d after 

delivery. Data were analysed using Bayesian methodology. Perirenal fat thickness 

was similar in both lines at mating. However, the high line showed lower fat 

thickness than the low line at delivery (-0.16 mm, P = 0.86), and this difference 

remained at 10 d after delivery (-0.17 mm, P = 0.86). Moreover, this line exhibited 
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30% less concentration in NEFAs at delivery than the low one after adrenergic 

stimulation by isoproterenol (P = 0.96).  

The third and fourth articles study the correlated responses to selection for litter 

size variability in litter size and its components. A laparoscopy was performed at 12 

d of the second gestation on a total of 94 females from the high line and 82 females 

from the low line, in order to count the ovulation rate (OR) and the number of 

implanted embryos (IE). The total number of kits born (TNB) and alive (NBA) were 

also recorded at second parity. Embryonic (ES), fetal (FS) and prenatal (PS) survival 

were estimated as IE/OR, TNB/IE and TNB/OR, respectively. In the last gestation, 

30 non-lactating multiparous does from each line were euthanized at 28, 48 and 72 

h of gestation, and embryos were recovered by perfusion of each oviduct and uterine 

horns. At 28 h of gestation, normal embryos were classified as 2-cell embryos or 4-

cell embryos. At 48 h of gestation, normal embryos were classified as early morulae 

or compacted morulae. At 72 h of gestation, normal embryos were classified as early 

morulae, compacted morulae or blastocysts. Data were analysed using Bayesian 

methodology. After seven generations of selection, ovulation rate was similar in 

both lines. The line selected to reduce the litter size variability showed more 

embryos at implantation (1.48 embryos, P = 1.00) than the high line. This line also 

displayed a more advanced embryonic development than the high one from 48 h of 

gestation, having a lower percentage of early morulae (53.32 % in the low line vs 79.90 

% in the high line, P = 0.93) and a higher percentage of compacted morulae (46.87 % 

in the low line vs 20.29 % in the high line, P = 0.94) at 48 h of gestation, and a lower 

percentage of early morulae (3.88 % in the low line vs 21.04 % in the high line, P = 

0.93) and a higher percentage of blastocysts (62.55 % in the low line vs 51.13 % in the 

high line, P = 0.71) at 72 h of gestation. A more advanced embryonic development was 

related to a higher embryonic survival (0.85 in the low line vs 0.78 in the high line, P 

=1.0). A higher uterine overcrowding of embryos in the low line did not penalise fetal 

survival, and as a result, this line continued showing a greater number of kits born 

at birth (+0.98 kits at birth, P = 0.96). 

In conclusion, the first study also allowed us to corroborate in rabbits, that body 

weight and perirenal fat thickness are good predictors of body reserves and both 
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measurements could be used to estimate energy changes in the mid-long term, while 

measurements in NEFAs should be used when an accurate measurement of 

energetic mobilization is needed in short term. The second study shows as a 

decrease in litter size variability has a favourable effect on body condition and fat 

reserve mobilization. In this regard, the more homogenous line for litter size seems 

to adapt better to adverse environments, as it has a greater capacity to mobilize 

energy reserves at delivery than the heterogeneous line. Besides, the third and 

fourth studies confirm that selection to reduce litter size variability also has a 

favourable effect on development of embryo and its survival, showing a higher litter 

size at birth. 
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RESUMEN 

La tesis se compone de cuatro artículos interrelacionados entre sí, donde se estudia 

tanto la relación entre la condición corporal y la movilización de energía en la coneja 

como el efecto de la selección por variabilidad del tamaño de camada en la condición 

corporal y movilización de reservas energéticas, como biomarcadores del bienestar 

del animal, y en el tamaño de camada y sus componentes después de siete 

generaciones de selección. 

Concretamente, el primer artículo examina las relaciones entre las medidas de la 

condición corporal y la movilización de energía en 157 conejas primíparas a la 

monta, al parto y a los 10 días tras el parto, a través de un análisis de componentes 

principales. La condición corporal se midió como el peso corporal y el espesor de 

grasa perirenal. La movilización de energía se midió como la concentración de 

ácidos grasos no esterificados en sangre, antes (NEFAb) y después de la estimulación 

lipolítica con isoproterenol (NEFAr). Todos los pesos y espesores de grasa perirenal 

se situaron sobre la primera componente principal, exhibiendo altas correlaciones 

entre ellos independientemente del estado fisiológico donde se midieron (de 0.51 a 

0.83). Todas las medidas de NEFAs se localizaron sobre la segunda componente 

principal, mostrando una baja correlación con las medidas de la condición corporal. 

Los NEFAb y NEFAr mostraron elevadas correlaciones entre ellos cuando se 

midieron en el mismo momento (0.65 a la monta, 0.72 al parto y 0.69 a los 10 días 

tras el parto), pero bajas correlaciones cuando se midieron en diferentes momentos 

(de 0.09 a 0.20).  

El segundo artículo analiza la respuesta correlacionada sobre la condición corporal 

y la movilización de reservas grasas en dos líneas de conejas seleccionadas 

divergentemente por variabilidad del tamaño de camada durante siete generaciones 

de selección. El espesor de la grasa perirenal y el incremento de los niveles basales 

de NEFAs después de su estimulación adrenérgica con isoproterenol fueron 

medidos en 80 hembras de la línea de alta variabilidad y 74 hembras de la línea de 

baja variabilidad a la segunda monta, al parto y a los 10 días tras el parto. Los datos 

fueron analizados utilizando metodología Bayesiana. El espesor de la grasa 
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perirenal fue similar en ambas líneas a la monta. Sin embargo la línea de alta mostró 

un menor espesor de grasa que la línea de baja al parto (-0.16 mm, P = 0.86), y esta 

diferencia se mantuvo a los 10 días después del parto (-0.17 mm, P = 0.86). Por otro 

lado, esta línea exhibió un 30% menos de NEFAs al parto que la línea de baja tras la 

estimulación adrenérgica con isoproterenol (P = 0.96).  

El tercero y cuarto artículo estudian la respuesta correlacionada de la selección por 

variabilidad del tamaño de camada sobre el tamaño de camada y sus componentes. 

Se realizó una laparoscopía a los 12 días de la segunda gestación en un total de 94 

hembras de la línea de alta y 82 hembras de la línea de baja para estimar la tasa de 

ovulación (OR) y el número de embriones implantados (IE). Se contabilizó el 

número de gazapos nacidos totales (TNB) y vivos (NBA) al segundo parto. La 

supervivencia embrionaria (ES), fetal (FS) y prenatal (PS) fueron estimadas como 

IE/OR, TNB/IE y TNB/OR, respectivamente. En la última gestación, se sacrificaron 

30 hembras no lactantes en cada una de las líneas a 28, 48 y 72 horas de gestación, 

y los embriones fueron recuperados tras la perfusión de los oviductos y sus 

correspondientes cuernos uterinos. A las 28 horas de gestación, los embriones 

recuperados fueron clasificados en un estado de desarrollo de 2 o 4 células. A 48 

horas de gestación, los embriones recuperados fueron clasificados como mórulas 

tempranas o compactas. A 72 horas de gestación, los embriones recuperados fueron 

clasificados como mórulas tempranas, mórulas compactas o blastocitos. Los datos 

fueron analizados utilizando metodología Bayesiana. Después de siete generaciones 

de selección, la tasa de ovulación fue similar en ambas líneas. La línea seleccionada 

para reducir la variabilidad en tamaño de camada mostró un mayor número de 

embriones implantados (1.23 embriones, P = 1.00) que la línea de alta. También, 

esta línea mostró un desarrollo de los embriones más avanzado que la línea de alta 

a partir de las 48 horas de gestación, exhibiendo un menor porcentaje de mórulas 

tempranas (53.32 % en la lı́nea de baja vs 79.90 % en la lı́nea de alta, P = 0.93) y un 

mayor porcentaje de mórulas compactas (46.87 % en la lı́nea de baja vs 20.29 % en la 

lı́nea de alta, P = 0.94) a 48 horas de gestación, y un menor porcentaje de mórulas 

tempranas (3.88 % en la lı́nea de baja vs 21.04 % in la lı́nea de alta, P = 0.93) y un mayor 

porcentaje de blastocitos (62.55 % en la lı́nea de baja vs 51.13 % en la lı́nea de alta, P 
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= 0.71) a 72 horas de gestación. Un desarrollo más avanzado del embrión está 

relacionado con una mayor supervivencia de éste (0.85 en la lı́nea de baja vs 0.78 en la 

lı́nea de alta, P =1.0). Por otro lado, un mayor atestamiento de embriones en el útero 

de la lı́nea de baja variabilidad no penalizó la supervivencia fetal, y como resultado, 

esta lı́nea continuó mostrando un mayor número gazapos al parto (+0.98 gazapos al 

parto, P = 0.96). 

En conclusión, el primer estudio nos permite corroborar también en conejo, que el 

peso y el espesor de grasa perirenal son buenos predictores de las reservas 

corporales y que ambas medidas podrían usarse para estimar los cambios 

energéticos a medio plazo, mientras que las medidas de NEFAs se deberían usar 

cuando se necesita una medida precisa de la movilización de reservas energéticas a 

corto plazo. El segundo estudio muestra como disminuir la variabilidad del tamaño 

de camada tiene un efecto favorable sobre la condición corporal y la movilización de 

reservas grasas. En este sentido, la línea más homogénea para el tamaño de camada 

parece adaptarse mejor a ambientes adversos, al mostrar una mayor capacidad de 

movilizar las reservas corporales al parto que la línea heterogénea. Por otro lado, el 

tercer y cuarto estudio confirman que la selección para reducir la variabilidad del 

tamaño de camada tiene también un efecto favorable sobre el desarrollo del 

embrión y su supervivencia, mostrando un mayor tamaño de camada al parto.  
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RESUM 

La tesi es compon de quatre articles interrelacionats entre si, on s'estudia l'efecte de 

la selecció per variabilitat de la grandària de ventrada en la condició corporal i 

mobilització de reserves energètiques, com biomarcadores del benestar de l'animal, 

i en la grandària de la ventrada i els seus components després de set generacions de 

selecció. 

Concretament, el primer article examina les relacions entre les mesures de la 

condició corporal i la mobilització d'energia en 157 conilles primípares a la munta, 

al part i als 10 dies després del part, usant una anàlisi de components principals. La 

condició corporal es va mesurar com el pes corporal i la grossària de greix perirenal. 

La mobilització d'energia es va mesurar com la concentració d'àcids grassos no 

esterificats basals (NEFAb) i després de l'estimulació lipolítica amb isoproterenol 

(NEFAr). Tots els pesos i grossàries de greix perirenal es van situar sobre la primera 

component principal, exhibint altes correlacions entre ells al mateix moment o en 

distints moments fisiològics (de 0.51 a 0.83). Totes les mesures de NEFA es van 

localitzar sobre la segona component principal, mostrant una baixa correlació amb 

les mesures de la condició corporal. Els NEFAb i NEFAr van mostrar elevades 

correlacions quan es van mesurar en el mateix moment (0.65 a la munta, 0.72 al part 

i 0.69 als 10 dies després del part), però baixes correlacions quan es van mesurar en 

diferents moments (de 0.09 a 0.20). 

El segon article analitza la resposta correlacionada sobre la condició corporal i la 

mobilització de reserves greixos en dos línies de conills seleccionats divergentment 

per variabilitat de la grandària de la ventrada durant set generacions de selecció. La 

grossària del greix perirenal i l'increment dels nivells basals de NEFAs després de la 

seua estimulació adrenérgica amb isoproterenol van ser mesurats en 80 femelles de 

la línia d'alta i 74 femelles de la línia de baixa a la segona munta, al part i als 10 dies 

després del part. Les dades van ser analitzats amb metodologia Bayesiana. La 

grossària del greix perirenal va ser semblant en ambdós línies. No obstant això la 

línia d'alta va mostrar una menor grossària de greix que la línia de baixa al part (-

0.16 mm, P = 0.86), i esta diferència es va mantindre als 10 dies després del part (-
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0.17 mm, P = 0.86). D’altra banda, esta línea va exhibir un 30% menys de NEFAs al 

part que la línea de baixa després de l’estimulació adrenérgica amb isoproterenol 

(P=0.96). 

El tercer i quart articles estudien la resposta correlacionada de la selecció per 

variabilitat de la grandària de la ventrada sobre el grandària de la ventrada i els seus 

components. Es va realitzar una laparoscopía als 12 dies de la segona gestació en un 

total de 94 femelles de la línia d'alta i 82 femelles de la línia de baixa per a estimar 

la taxa d'ovulació (OR) i el nombre d'embrions implantats (IE). Es comptabilitze el 

número de nascuts totals (TNB) i vius (NBA) al segon part. La supervivència 

embrionària (ES), fetal (FS) i prenatal (PS) van ser estimades com IE/OR, TNB/IE i 

TNB/OR, respectivament. En l'última gestació, es va practicar una eutanàsia a 30 

femelles no lactants en cada una de les línies d'alta i de baixa variabilitat en 

grandària de la ventrada a 28, 48 i 72 hores de gestació, i els embrions van ser 

recuperats després de la perfusió de cada oviducte i part de l´úter corresponent. A 

les 28 hores de gestació, els embrions recuperats van ser classificats en un estat de 

desenrotllament de 2 o 4 cèl·lules. A 48 hores de gestació, els embrions recuperats 

van ser classificats com mórulas primerenques o compactes. A 72 hores de gestació, 

els embrions recuperats van ser classificats com mórulas primerenques, mórulas 

compactes o blastòcits. Les dades van ser analitzats utilitzant metodologia 

Bayesiana. Després de set generacions de selecció, la taxa d'ovulació va ser semblant 

en ambdós línies. La línia seleccionada per a reduir la variabilitat en grandària de la 

ventrada va mostrar un número més gran d'embrions implantats (P = 1.00) que la 

línia d'alta. També, esta línia va mostrar un desenrotllament dels embrions més 

avançat que la línia d'alta a partir de les 48 hores de gestació, exhibint un menor 

percentatge de mórulas primerenques (53.32 % en la línia de baixa vs 79.90 % en la 

línia d'alta, P = 0.93) i un major percentatge de mórulas compactes (46.87 % en la 

línia de baixa vs 20.29 % en la línia d'alta, P = 0.94) a 48 hores de gestació, i un menor 

percentatge de mórulas primerenques (3.88 % en la línia de baixa vs 21.04 % in la 

línia d'alta, P = 0.93) i un major percentatge de blastòcits (62.55 % en la línia de 

baixa vs 51.13 % en la línia d'alta, P = 0.71) a 72 hores de gestació. Un 

desenrotllament més avançat de l'embrió està relacionat amb una major 
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supervivència d'este (0.85 en la línia de baixa vs 0.78 en la línia d'alta, P =1.0). D'altra 

banda, un major atapeïment d'embrions en l'úter de la línia de baixa no va penalitzar 

la supervivència fetal, i com resultat, esta línia va continuar mostrant un número 

més gran nascuts al part (+0.98 nascuts al part, P = 0.96). 

En conclusió, el primer estudi ens permet corroborar també en conill, que el pes i la 

grossària de greix perirenal són bons predictors de les reserves corporals i que 

ambdós mesures podrien estimar els canvis energètics a mitjà termini, mentres que 

les mesures de NEFAs s'haurien d'usar quan es necessita una mesura precisa de la 

mobilització de reserves energètiques a curt termini. El segon estudi mostra com 

disminuir la variabilitat de la grandària de la ventrada té un efecte sobre la condició 

corporal i la mobilització de reserves greixos. En este sentit, la línia més homogènia 

per a la grandària de la ventrada pareix adaptar-se millor a ambients adversos, al 

mostrar una major capacitat de mobilitzar les reserves corporals al part que la línia 

heterogènia. D'altra banda, el tercer i quart estudi confirmen que la selecció per a 

reduir la variabilitat de la grandària de la ventrada té també un efecte favorable 

sobre el desenrotllament de l'embrió i la seua supervivència, tendint a una major 

grandària de la ventrada al part. 
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1.1 The genetic improvement in meat rabbits  

The existence of breeding programmes has had an important role to improve 

efficiency in meat rabbit production, which has allowed that this sector has become 

an intensive farming industry and similar to swine or poultry. The breeding goals in 

an animal breeding programme are commonly established according to the 

economic importance of the traits. To our knowledge, there are only 4 former 

studies on economic weights in rabbits, two in Spanish industry (Armero and Blasco, 

1992; Cartuche et al., 2014), one in Australian industry (Prayaga and Eady, 2000) 

and one in French industry (Eady and Garreau, 2008) under restricted feeding. 

Number of litters per doe and year showed the highest economic weight within 

reproductive traits, and followed closely by litter size regardless of the country 

under study, while food conversion rate was the trait with highest economic weight 

within growth traits (Table 1.1). Number of litters per doe and year is a trait with a 

high economic weight; however, it must be noted that this trait depends directly on 

kindling interval and female fertility that have a large management component 

(Ragab, 2012; Piles et al., 2005). Therefore number of litters per doe and year is a 

not a sufficiently heritable trait and with sufficient genetic variation to expect an 

important progress in traditional selection methods, losing prominence in favour of 

litter size. Although, there have been great changes in the economic weights during 

these last 22 years, the economic weights for litter size and feed conversion rate 

were reduced near half; it must stress that both traits are still the most important 

traits in rabbit meat production (see Table 1.1). When economic weights are 

estimated in a context of restricted feeding, for a better control of enterocolitis 

(Boisot et al., 2003), litter size showed the highest economic weight (Eady and 

Garreau, 2008). Average daily gain and feed conversion rate had high and similar 

economic weights (Eady and Garreau, 2008), due that using restricted feeding will 

reduce feeding costs more than feeding ad libitum.  

All these results explain why intensive meat rabbit production is based on the three-

way crossbreeding scheme. The hybrid doe comes from the cross of two maternal 

lines in order to exploit heterosis and complementarity of the maternal traits 
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(Baselga, 2004). Maternal lines are selected for litter size at birth or at weaning 

(Lebas et al., 1997; Piles et al., 2006a, Ragab and Baselga, 2011), and terminal sire 

lines were selected for improvement the food efficiency through selection for 

growth rate post-weaning or for body weight at a point close to market age 

(Rochambeau et al., 1989; Lukefahr et al., 1996; Piles and Blasco, 2003; Larzul et al., 

2005). These growth traits are easier and cheaper to record than feed conversion 

index, and have a favourable genetic correlation with it (Piles et al., 2004), which is 

a very important productive cost.  

Recently, others functional traits are emerging successfully as criteria in breeding 

programmes, either in maternal lines such as the length of does’ productive lifes, 

ovulation rate and kit survival (Garreau et al., 2008a; Piles et al., 2006b; Sánchez et 

al., 2008; Laborda et al., 2011, Ziadi et al., 2013; Larzul et al., 2014) or in paternal 

lines such as carcass dressing percentage, thigh muscle volume, intramuscular fat, 

heat tolerance, resistance to pasteurellosis, and diseases causing digestive disorders 

(Eady et al., 2007; Garreau et al., 2008b; Zomeño et al., 2013: Sánchez and Piles, 

2013; Matics et al., 2014).  

The future priorities in rabbit breeding would be related to improvement of the 

safety of rabbit products and animal welfare, through resistance to disease and 

stress (robustness or resiliency), which leading to better female's adaptation to 

changing environmental conditions. 
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Table 1.1. Absolute (EW) and relative (REW) economic weights of the main traits of the profit function in €/unit of the trait. 

  Armero and Blasco 
(1992) 

Prayaga and 
Eady (2000) 

Cartuche et 
al. (2014) 

Eady and 
Garreau (2008)a 

Traits Unit EW EW1 EW EW2 EW REW REW3 
. Reproductive traits         

Pregnancy rate increase by 1 %     1.72   
Litter size increase by 1 16.90 30.46 15.03 22.44 15.66 45.52 48.82 
Number of litter per doe and year increase by 1 21.83 39.34 16.37 24.44    
Lactation survival increase by 1% 1.96 3.53 1.70 2.54 1.71   
Fattening survival increase by 1% 2.30 4.15 1.93 2.89 1.96   
Replacement rate of the farm per doe and year increase by 1% -0.45 -0.81 -0.23 -0.34 -0.29   

. Growth traits         
Daily feed intake during lactation decreasea by 1 g/d 0.52 0.90 0.40 0.59    
Daily gain during lactation increase by 1 g/d 0.38 0.68 0.21 0.32    
Daily feed intake during fattening decreasea by g/d 0.41 0.72 0.49 0.72 0.50   
Daily gain during fattening increase by 1 g/d 1.53 2.70 1.23 1.84 1.33 11.82 12.68 
Feed conversion rate during fattening decrease by 0.1 g/g 18.80 33.88   20.19 10.26 11.01 

. Healthy         
Resistance to enterocolitis       4.41 4.73 

a Eady and Garreau (2008) estimated the relative economic weights (REW) in a context of restricted feeding. 1 Economic weight according 

to Armero and Blasco (1992) adjusted to constant Euros (Base 100=2014). 2 Economic weights according to Prayaga and Eady (2000) 

adjusted to constant Euros (Base 100=2014). 3 Relative economic weights according to Eady and Garreau (2008) adjusted to constant 

Euros (Base 100=2014). 
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1.2 Environmental sensitivity and its impact on animal breeding 

The aim of the genetic selection in animal breeding has traditionally been to increase 

(or decrease) the mean of the productive traits. Overall, this intensive selection to 

increase productivity has had success but it has also had negative consequences on 

behaviour and welfare in animals, causing an increase in eliminating farm animals 

at early age (Rauw et al., 1998). For this reason, welfare will probably play an 

important role in future breeding goals for domestic animals, being included already 

in several breeding programs (e.g., lameness in dairy cows and faecal egg count in 

sheep, see Rodenburg and Turner, 2012). 

Animal welfare is related with a good health and a low stress response (Carenzi and 

Verga, 2009), and in a consequence, it is linking to good adaptation or less sensitivity 

of animal to environmental effects (Mormede and Terenina, 2012). Robustness and 

resiliency are terms that are being used frequently in related to adaptation to 

environment, although there are slight differences. Robustness is a property that 

allows an animal to maintain its functions despite external and internal 

perturbations (Kitaro, 2004); while resilience is defined as the ability to maintain 

critical functionality across different possible states and can gradually return to its 

equilibrium state, that is it can survive large perturbations through adaptation and 

evolution (Fiksel, 2003). Both robustness and resilience refer to the ability of a 

system to survive disruptions. However, robustness is considered a static concept 

where the system can resist disruptions and retain its previous stable situation, 

whereas, resilience is more of a dynamic concept incorporating adaptation where a 

system can return to a new stable situation after surviving a threat (see figure 1.1). 

Therefore, resilience is also related to plasticity. Note that if the environmental 

pressures are too high, the stabilizing mechanisms can fail, functionality breaks 

down and the characteristic of robustness does not recover, as Veerkamp et al. 

(2009) reported in cattle. The adaptation to environmental changes can be 

measured indirectly through to uniformity in productivity along lifespan of animal. 

Therefore, increase uniformity could be a useful tool to improve animal welfare.  
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Figure 1.1 a) Robustness as the ability to perform under high disturbance levels. The animal 
represented by the dashed line is less robust than the animal shown by the solid line. b) 
Resilience as the ability of an animal to bounce back after disturbance at time t0. One animal 
(solid line) is able to recover more quickly, i.e. in this case reach an arbitrary level of 95% 
of the pre-disturbance performance at t1, than the other animal (dashed line), which reaches 
the recovery point later (at t2) (taken from Döring et al., 2015). 

 

Besides, the uniformity in animal production is an economically interesting trait for 

breeders. In prolific species, the uniformity in litter size facilitates management by 

reducing fostering. The homogeneity in birth weight within litter is also an 

important trait in prolific species like rabbits (Bolet et al., 2007) and pigs (Berard et 

al., 2008), because increasing weight homogeneity within the litter reduces the 

competition between littermates and increases the viability of them (Garreau et al., 

2008a in rabbits; Damgaard et al., 2003 in pigs). Optimal weights at slaughtering for 

pigs, broilers and lambs are demanded by industry. The profits of the breeders 

depend on their ability to send large homogenous groups to the slaughterhouse that 

penalizes carcasses outside of standard range (Kanis et al., 2006). Also beef industry 

is interested to improve the uniformity of production traits such as carcass weight, 

fat deposition and carcass composition and pH 24 h after slaughter (Mach et al., 

2008).  

Moreover, another interesting aspect of reducing environmental variability is that 

can augment the heritability of the selected traits (Formoso-Rafferty et al., 2017), 

facilitating selection in traits with very low heritability, such as litter size (Argente 

et al., 2010).  
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1.3 Genetic control of environmental variability 

Different strategies can be used to reduce variability, e.g. management and selection, 

but selection can be effective only when there are genetic differences among animals 

in phenotypic variability. After correcting data by environmental effects, the 

remaining environmental variance is the residual variance caused by non-

controlled random effects. There is evidence that residual variance is under genetic 

control in several species. Most of this evidence is indirect because it comes from 

data bases analyses and not from experiments designed to find the genetic 

determination of the residual variance. Tables 1.2 and 1.3 show residual variance 

heritability and genetic coefficients of variation for litter size (San Cristobal-Gaudy 

et al., 2001, in sheep; Sorensen and Waagepetersen, 2003 and Sell-Kubiak et al., 

2015a, in pigs; Gutiérrez et al., 2006, in mice), uterine capacity (Ibáñez-Escriche et 

al., 2008a, in rabbits), pH (San Cristobal-Gaudy et al., 1998, in pigs), number of teats 

(Felleki and Lundeheim, 2015, in pigs), eggshell color (Mulder et al., 2016, in hens), 

weight at birth (Gutiérrez et al., 2006, in mice; Garreau et al., 2008a, in rabbits; Neves 

et al., 2011 and Fina et al., 2013 in beef cattle; Sell-Kubiak et al., 2015b, in pigs), 

weight at slaughter (Rowe et al., 2006, Mulder et al., 2009 and Wolc et al., 2009 in 

poultry; Ibáñez-Escriche et al., 2008b, in pigs), adult weight (Ros et al., 2004, in 

snails; Janhunen et al., 2012 and Sae-Lim et al., 2015, in rainbow trout; Sonesson et 

al., 2013, in Atlantic salmon; Marjanovic et al., 2016, in Nile tilapia), conformation 

(Wolc et al., 2009, in broiler; Marjanovic et al., 2016 in Nile tilapia), milk yield 

(Rönnegård et al., 2013 and Vandenplas et al., 2013, in dairy cattle), and milk quality 

(SanCristobal-Gaudy et al., 1998, on fat/protein rate in goats; Rönnegård et al., 2013 

and Vandenplas et al., 2013, on somatic cell score and on saturated and unsaturated 

fatty acids in dairy cattle).  

  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ib%C3%A1%C3%B1ez-Escriche%20N%5BAuthor%5D&cauthor=true&cauthor_uid=18832357
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1855112/#bib26
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Table 1.2 Estimates of heritability of residual variance (h2v), genetic coefficients of 
variation (GCVAv) and genetic correlation (ρ) between additive genetic effects for 
mean and residual variance. 

Trait Specie h2v GCVAva ρ Methodb Source 

Litter size Pigs 0.026 0.31 -0.62 MCMC Sorensen and Waagepertersen (2003) 
  0.021 0.27 -0.64 MCMC Yang et al. (2011) 
  0.012 0.27 0.70 MCMC Yang et al. (2011)c 
  0.040 0.41 -0.52 REML Felleki et al. (2012)d 
  0.006 0.09 0.49 REML Sell-Kubiak et al. (2015a) 
 Rabbits 0.045 0.42 -0.74 MCMC Ibáñez-Escriche et al. (2008a)e 
  0.041 0.37 -0.73 MCMC Yang et al. (2011) 
  0.017 0.24 0.28 MCMC Yang et al. (2011)c 
 Mice 0.048 0.44 -0.93 MCMC Gutiérrez et al. (2006) 
 Sheep 0.048 0.51 0.19 REML SanCristobal-Gaudy et al. (2001) 
       
Average for litter size 0.030 0.33 -0.25   
       
pH muscle Pigs 0.039 0.40 0.79 REML SanCristobal-Gaudy et al. (1998) 
       
Number of teats  Pigs 0.060 0.48 0.80 REML Felleki and Lundeheim (2015) 
       
Eggshell color Hens 

(purebred) 
 
0.010 

 
0.28 

 
-0.06 

 
REML 

 
Mulder et al. (2016) 

 (crossbred) 0.011 0.26 0.43 REML Mulder et al. (2016) 
       
Milk yield Dairy 0.003 0.25 0.60 REML Rönnegård et al. (2013) 
  0.002 0.17 0.47 REML Vandenplas et al. (2013) 
 
Fat/protein  

 
Goats 

 
0.000 

 
0.00 

 
- 

 
REML 

 
SanCristobal-Gaudy et al. (1998) 

 
Somatic cell score 

 
Dairy 

 
0.006 

 
0.26 

 
0.38 

 
REML 

 
Rönnegård et al. (2013) 

  0.003 0.16 0.27 REML Vandenplas et al. (2013) 
       
Saturated fatty 
acids  

Dairy 0.001 0.12 0.28 REML Vandenplas et al. (2013) 

       
Unsaturated 
fatty acids  

Dairy 0.003 0.12 0.24 REML Vandenplas et al. (2013) 

       
C18:1 cis-9 
contents  

Dairy 0.004 0.12 0.22 REML Vandenplas et al. (2013) 

       
Average for yield and quality 
milk 

0.003 0.15 0.23   

a GCVAv = σAV/σ2E, where σAV is the genetic standard deviation in the residual variance and σ2E is the 
mean residual variance a measure of evolvability (Houle 1992). b Methods classified into analysis of 
variance (ANOVA), residual maximum likelihood (REML) and Markov chain Monte Carlo (MCMC). c 

after Box–Cox transformation of data. d using the same data base for Sorensen and Waagepertersen 
(2003). e analysed trait was uterine capacity, highly correlated to litter size. 
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Table 1.3 Estimates of heritability of residual variance (h2v), genetic coefficients of 
variation (GCVAv) and genetic correlation (ρ) between additive genetic effects for 
mean and residual variance (continuation of Table 1.2). 

Trait Specie h2v GCVAva ρ Methodb Source 

Body weight 
at birth 

Pigs  
(Large White) 

 
0.008 

 
0.10 

 
0.62 

 
REML 

 
Sell-Kubiak et al. (2015b) 

 (Landrace) 0.011 0.11 0.55 REML Sell-Kubiak et al. (2015b) 
 Rabbits 0.014 0.25 - REML Garreau et al. (2008a) 
 Mice 0.208 0.21 0.97 MCMC Gutiérrez et al. (2006) 
  0.039 0.37 -0.81 MCMC Gutiérrez et al. (2006)c 
  0.006 0.36 -0.31 MCMC Ibáñez-Escriche et al. (2008c)d 
 Beef 0.094 0.69 0.42 REML Neves et al. (2011) 
  0.130 - 0.44 MCMC Fina et al. (2013) 
Body weight 
at slaughter  

 
Pigs 

 
0.011 

 
0.34 

 
-0.07 

 
MCMC 

 
Ibáñez-Escriche et al. (2008b) 

 Broiler (male) 0.029 0.30 -0.17 ANOVA Rowe et al. (2006) 
  0.046 0.44 -0.45 REML Mulder et al. (2009) 
  0.030 0.32 -0.23 REML Wolc et al. (2009) 
 Broiler (female) 0.031 0.32 -0.11 ANOVA Rowe et al. (2006) 
  0.047 0.57 -0.41 REML Mulder et al. (2009) 
  0.038 0.37 -0.22 REML Wolc et al. (2009) 
Adult body 
weight 

 
Snails 

 
0.017 

 
0.58 

 
0.81 

 
MCMC 

 
Ros et al. (2004) 

 Rainbow trout 0.024 0.38 -0.16 REML Janhunen et al. (2012) 
  0.011 0.21 0.30 REML Sae-Lim et al. (2015)e 
  0.010 0.19 0.79 REML Sae-Lim et al. (2015)f 
 Atlantic salmon 0.030 0.41 - REML Sonesson et al. (2013) 
 Nile tilapia 0.021 0.58 0.58 REML Marjanovic et al. (2016) 
       
Weight gain  Mice 0.018 0.47 -0.19 MCMC Ibáñez-Escriche et al. (2008c)g 
 Beef  0.020 0.23 -0.02 REML Neves et al. (2011)h 
  0.012 0.18 -0.09 REML Neves et al. (2011)i 
Conformation 
score 

 
Broiler (male) 

 
0.023 

 
0.25 

 
0.21 

 
REML 

 
Wolc et al. (2009) 

 Broiler (female) 0.032 0.31 0.20 REML Wolc et al. (2009) 
 Beef 0.019 0.26 0.17 REML Neves et al. (2011)j 
  0.006 0.15 0.06 REML Neves et al. (2011)k 
Morphologic
al traits 

 
Nile tilapia 

 
0.009 

 
0.39 

 
0.11 

 
REML 

 
Marjanovic et al. (2016)l 

  0.012 0.42 0.37 REML Marjanovic et al. (2016)m 
  0.014 0.45 0.20 REML Marjanovic et al. (2016)n 
       
Average body traits 0.033 0.34 0.12   

a GCVAv = σAV/σ2E, where σAV is the genetic standard deviation in the residual variance and σ2E is the 
mean residual variance a measure of evolvability (Houle 1992). b Methods classified into analysis of 
variance (ANOVA), residual maximum likelihood (REML) and Markov chain Monte Carlo (MCMC). c 
litter weight at birth. d body weight at 21 d. e in the selection nucleus. f in the sea. g weight gain from 21 
to 42 days. h weight gain from birth to weaning. i weight gain from weaning to yearling. J at weaning. k 
at year. j, m, n length, depth and width in Nile tilapia. 
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The reproductive and growth traits show low and similar average values for 

residual variance heritability (0.03), but genetic standard deviations exhibit high 

average values for both groups of traits (0.33 in litter size vs. 0.34 in growth traits). 

The low values of residual variance heritability show that a large amount of 

information is necessary to estimate accurately aditive value for enviromental 

variability, but the high values of genetic standard deviations indicate that there are 

opportunities to reduce variability, i.e. to improve uniformity, by selection. The 

scenario is completely different to milk yield and quality, whose residual 

environmental heritability and genetic coefficient of variation are extremely small 

(0.003 and 0.15, respectively) to expect to succeed in selection. 

1.4 Relationship between mean and variability 

Animal production has interests in reducing the variance but without reducing its 

possibilities for improving the mean. Decreasing variability can affect the mean of 

the trait, but it will depend on genetic correlation between both traits. Several 

authors have estimated the genetic correlation between the genetic effects of the 

mean and the genetic effects of variability (see Table 1.2 and Table 1.3).  

No genetic correlations were found between mean and residual variance by several 

authors. For example, no correlation between mean and residual variance was 

reported for the ratio of fat to protein contents in goats (San Cristobal-Gaudy et al., 

1998), slaughter weight in pigs (Ibáñez-Escriche et al., 2008b), and weight gain and 

conformation score in cattle (Neves et al., 2011). Besides, selection by litter 

variability of birth weight did not modify its mean in rabbits (Garreau et al., 2008a).  

Other authors found positive genetic correlations between mean and residual 

variance for body weight at birth (Sell-Kubiak et al., 2015b, in pigs; Gutiérrez et al., 

2006, in mice; Neves et al., 2011 and Fina et al., 2013, in Nellore and Bruna dels 

Pirineus beef cattle, respectively), adult body weight (Ros et al., 2004, in Helix 

aspersa snails; Sae-Lim et al., 2016, in Rainbow trout; Marjanovic et al., 2016, in Nile 

tilapia), body condition (Wolc et al., 2009, in broiler; Marjoanovic et al., 2016, in Nile 

tilapia), pH (SanCristobal-Gaudy et al., 1998, in pigs), number of teats in pigs (Felleki 
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and Lundeheim, 2015), and milk yield and quality in dairy cattle (Rönnegård et al., 

2013; Vandenplas et al., 2013).  

Different results were shown by Sorensen and Waagepetersen (2003), who detected 

a negative genetic correlation between mean and residual variance in pig litter size 

data, and it was confirmed by Felleki et al. (2012) with the same dataset using other 

methodologies. Ibáñez-Escriche et al. (2008a) estimated the correlation between 

the genetic effects of the mean and those on the residual variance in uterine capacity 

in rabbits, and it was -0.74. Uterine capacity is highly correlated to litter size 

(Argente et al., 2000). In mice, a strong negative genetic correlation was found 

between mean and residual variance for litter size (-0.93) and litter weight at birth 

(-0.82) by Gutiérrez et al. (2006). Genetic correlations between mean and residual 

variance for body weight was also negative in broiler chickens (Rowe et al., 2006; 

Wolc et al., 2009; Mulder et al., 2009). Note that these correlations are being 

questioned, due to they were obtained using highly parameterized and not robust 

models. For example, Yang et al. (2011) showed that small deviations from 

normality in the residuals can substantially change the genetic parameters 

estimated. Therefore, it must be carried out well-designed selection experiments, in 

order to validate the estimated genetic parameters for interested traits. 

1.5 Selection experiments for environmental variability 

Other evidence of the existence of a genetic component in environmental variance 

comes from some experiments using inbred lines in Drosophila melanogaster 

(Morgante et al., 2015) and domestic species like rabbits, mice and pigs. In 

particular, it has been perfomed five selection experiments for environmental 

variability (Table 1.4); three for birth weight (Bodin et al., 2010a in rabbits; Pun et 

al., 2013 and Formoso-Rafferty et al., 2016 in mice), one for Semimembranosus 

ultimate pH (Larzul et al., 2006 in pigs), and one for litter size (Argente et al., 2014a 

in rabbits). Divergent selection was performed in all experiments, with a line to 

increase the variability of character (H line) and another line to decrease the 

variability (L line). When the criterion of selection of the lines is to increase or 

reduce the variability around an optimum, the canalizing selection is applied, and 
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this is the criterion used in the INRA experiments of pH in pigs and birth weight in 

rabbits. The heteroscedastic model, developed by SanCristobal-Gaudy et al. (1998), 

was applied in all the experiments, except that carried out by Argente et al. (2014a) 

for litter size variability at birth in rabbits. The heteroscedastic model assumed that 

the environmental variance is heterogeneous and partially under genetic control. 

For the selection experiment on litter size variability in rabbits, it is the first 

experiment in which selection has been directly performed on environmental 

variance, treating it as an observed trait. 

One of the first canalizing experiments was the selection of Semimembranosus 

ultimate pH in pigs (Larzul et al., 2006). Direct response (5.69 in both lines) and 

correlated response in Abductor and Longissimus dorsi were not observed, but 

estimated breeding values were based on only four progeny and had low accuracy. 

Nevertheless, there was correlated response in pH of Gluteus superficialis, showing 

higher value the L line than the H line (5.63 vs 5.58, respectively). Moreover, the H 

line was leaner than L line (61.3 and 60.0 for lean content, 20.8 and 23.5 mm for 

backfat thickness). 

Another canalizing selection experiment based on the homogeneity of birth weight 

in rabbits was carried out at the INRA (Garreau et al., 2008a; Bodin et al., 2010a,b). 

The difference of within-litter birth weight standard deviation between the two 

lines was 0.61 g (9.17 g in the H line and 8.56 g in the L line) in the first generation, 

but this difference remained almost constant until the generation 4 (Garreau et al., 

2008a). Moreover, there was no correlated response for the individual weight at 

birth or weaning. Only after generation 5 was further response achieved in the 

experiment (Bodin et al., 2010a). After 10 generations, the standard deviation was 

11.26 g in the H line and 7.34 g in the L line. The correlated response in the mortality 

at lactation was 32.7% and 17.7% and in the H and L lines, respectively. 

In mice, Pun et al. (2013) performed a divergent selection experiment for 

environmental variability of the birth weight. However, this experiment failed after 

10 generations of selection, because as the authors argued, the trait was attributed 

to the individual when it should have been assigned to the mother (Pun et al., 2013). 

Moreover, they also identified some anomalous results such as an extreme genetic 

correlation between the birth trait and its environmental variability, or a too high 
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value for the additive genetic variance of the environmental variability as first 

warned by Hill and Mulder (2010). After that, this team returned to start a selection 

experiment for variability in birth weight where the selection criterion was the 

predicted breeding value for birth weight environmental variability associated with 

the mother (Formoso-Rafferty et al., 2016). At the seventh generation of selection, 

the means were 0.037 g2 and 0.014 g2 for variance of birth weight, 0.17 g and 0.11 g 

for standard deviation of birth weight, and 1.64 g and 1.47 g for body weight, in the 

H and the L lines, respectively. 

Table 1.4 Description of selection experiments for environmental variance. 

Ge generation. R direct response to selection estimated as mean of the marginal posterior 
distribution of the difference between lines for the selected trait. HM heteroscedastic model 
developed by San Cristobal-Gaudy et al. (1998). a in the last generation. b difference of 
within-litter birth weight standard deviation. c birth weight was attributed to the dam. 

Finally, a selection experiment for environmental variability of litter size is being 

carried out in rabbits (Argente et al., 2014a). In this experiment, the use of complex 

models on environmental variability is avoided by directly selecting for this trait as 

an observed trait. Litter size environmental variability was directly recorded by 

computing the intra-doe variance of litter after correcting litter size for year-season 

and parity-lactation status. After seven generation of selection, the H and L lines 

showed a difference of 1.19 kits2 for selection criterion. Besides, the H line showed 

lower total number of kits born (−0.70 kits) and total number of kits born alive 

(−0.58 kits) than the L line (Argente et al., 2014a). Indirect response in 

haematological parameters as immunologic indicators has also been studied, 

Trait Species Ge Nº per line 

♀                 ♂ 

Method R Source 

pH muscle Pigs 4 25-35 4 HM 0.00 Larzul et al. (2006) 

        

Individual 

birth 

weight 

Rabbits 10 52-68a 6-7 HM 3.92b Bodin et al. (2010b) 

Mice 10 12 6 HM 0.00 Pun et al. (2013) 

Mice  7 43 43 HM 0.02 Formoso-Rafferty et al. 

(2016)c 

Litter size Rabbits 8 120 25 Direct 1.19 Argente et al. (2014a) 
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showing that the L line appears to be more resistant to diseases and more able to 

withstand adverse environmental conditions (Argente et al., 2014b). 

1.6 Body condition and energetic mobilization in animal welfare  

Body condition is a common tool for assessing the energy status of dams in animal 

production. Body condition refers to the state of the body energetic reserves that are 

used when the females have an energetic demand. It is considered a medium-large 

measure of energy balance. Body condition is influence by reproductive rhythm 

(Castellini et al., 2003; Dal Bosco et al., 2003), lactation (Xiccato et al., 2004), 

reproductive performance (Cardinali et al., 2008) and animal welfare (Rosell et al., 

2008). Many methods to evaluate body condition in vivo are available in rabbits. 

Some, such as X-ray tomography (Romvári et al., 1998) or imaging by nuclear 

magnetic resonance (Köver et al., 1998) are useful, but require anaesthesia of 

animals. The total body electric conductivity (Fortun-Lamothe et al., 2002) 

combines a measurement of body conductivity with the animals' weight to estimate 

their composition; the advantage is that no preliminary preparation is needed in the 

animals but the disadvantage is that not provide information about the anatomic 

distribution of adipose tissue mobilised. The body condition score is easy to apply 

but it is a subjective method (Cardinali et al., 2008). The bioelectrical impedance 

analysis is based on the determination of differences in the electrical conductivity 

between the fat and non-fat tissues (Nicodemus et al., 2009). This method assumes 

a homogeneous distribution in body composition and uniform in cross-sectional 

area (Arnal et al., 2011). The ultrasound to assess the body composition (Pascual et 

al., 2000) is based on the measurements of the perirenal fat thickness. It is easy to 

use and it is a direct measurement of variations in the perirenal fat. The perirenal fat 

is the main adipose tissue, and it is highly correlated with the other adipose tissues 

(Silva et al., 2012). Thus, perirenal fat thickness has been proposed to estimate 

changes in body condition (Pascual et al., 2000). 

Negative energy balance is associated with mobilization of body reserves, 

predominantly localized in fat and muscle tissues (Gross et al., 2011). An increase of 

blood parameters, mainly non-esterified fatty acid (NEFA), generally indicates 

mobilizations of adipose tissue (Fortun-Lamothe, 2006) to support increased 
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energy requirements (Gross et al., 2013). Therefore, NEFAs show the energy balance 

in the short term. They are more related to energy balance as feed intake (Brecchia 

et al., 2006), milk yield (Fortun–Lamothe et al., 1999) or heat stress (Savietto et al., 

2014). 

Body condition score and energy management mobility has been proposed as a valid 

indicator of animal welfare in dairy cows (Roche et al., 2009) and in pigs (Prunier et 

al., 2010). In rabbits, both body condition and health has been proposed by Rosell 

and de la Fuente (2008), in order to define doe welfare on commercial farms. 

Moreover, Theilgaard et al. (2007) and Ferrian et al. (2013) showed that more robust 

rabbit females present greater longevity, and better body condition and modulation 

of the immune system under heat stress conditions when the immune system is 

effected (Ferrian et al., 2012). 

1.7 Litter size and its components in animal welfare  

Previously, we have discussed the genetic correlation between the variability of 

litter size and its mean. Although, it has recently been questioned, large majority of 

estimates displays a negative correlation between both traits in pigs, mice and 

rabbits, as shown in table 1.2. Therefore, an increase in litter size variability would 

be accompanied by a decrease in litter size. It is necessary to highlight that litter size 

at birth depends on a sequence of reproductive processes as ovulation, number of 

implanted embryos and survivors at birth. 

Litter size is affected by stressful conditions of the mother (Lawlor and Lynch, 2007, 

in sows; Marai et al., 2002, in rabbits). Besides, some research has shown that 

maternal stress is associated with lower embryo development and survival 

(Omtvedt et al., 1971 and Razdan et al., 2002, in sows; Marai et al., 2002, in rabbits; 

Walsh et al., 2011, in dairy cows; Burkuš et al., 2015, in mice). Our hypothesis is that 

litter size variability is related to the ability in female to withstand adverse and 

stressful conditions. Therefore, a decrease in litter size variability would be related 

to better adaptation in female to adverse and stressful environmental. In a 

consequence, these females would have a higher embryonic survival, and it leads to 

larger litter size at birth. 



Chapter 1: Introduction 
 

16 

1.8 Literature cited  

Argente M.J., Santacreu M.A., Climent A., Blasco A. 2000. Genetic correlations 

between litter size and uterine capacity. In Proceeding of the 8th World Rabbit 

Congress. July 4-7. Valencia, Spain. 333-38. 

Argente M.J., Garcia M.L., Muelas R., Blasco A. 2010. Effect of selection for residual 

variance experiment of litter sizeon components of litter size in rabbits. In 

Proceedings of the 9th World Congress on Genetics Applied to Livestock Production. 

August 1-6. Leipzig, Germany. Communication 0526.  

Argente M.J., García M.L., Muelas R., Blasco, A. 2014a. Effect of selection for residual 

variance of litter size on components of litter size in rabbits. In Proceedings of the 

10th World Congress on Genetics Applied to Livestock Production. August 17-22. 

Vancouver, Canada. Communication 149. 

Argente M.J., García M.L., Zbynovska  K., Petruska P., Capcarova M., Blasco, A. 2014b. 

Effect of selection for residual variance of Litter size on hematology parameters as 

immunology indicators in rabbits. In Proceedings of 10th World Congress on 

Genetics Applied to Livestock Production. August 17-22. Vancouver, Canada. 

Communication 631. 

Armero Q., Blasco A. 1992. Economic weights for rabbit selection indices. J. Appl. 

Rabbit Res. 15: 637-642.  

Arnal I.R., Álvarez M.H., Miñana M.C., Ruzafa E.L., Martínez R.G., López A.M. 2011. 

Systematized assessment of nutritional status. Acta Pedíatrica Española. 69(4): 165. 

Baselga M. 2004. Genetic improvement of meat rabbits. Programmes and diffusion. 

In Proceding of 8th World Rabbit Congress. Septembre 7- 10. Puebla, Mexico. Vol 1: 

1-13.  



Chapter 1: Introduction 

17 
 

Berard J., Kreuzer M., Bee G. 2008. Effect of litter size and birth weight on growth, 

carcass and pork quality, and their relationship to postmortem proteolysis. J. Anim. 

Sci. 86(9):2357-2368.  

Bodin L., Bolet G., Garcia M., Garreau H., Larzul C., David I. 2010a. Robustesse et 

canalisation: vision de généticiens. INRA Production Animales. 23: 11–22.  

Bodin L., Garcia M., Bolet G., Garreau H. 2010b. Results of canalizing selection for 

rabbit birth weight. In Proceedings of 9th World Congress Genetic Applied Livestock 

Production. Liepzig, Germany. 2-6 august. 

Boisot P., Licois D., Gidenne T. 2003. Une restriction alimentaire réduit l'impact 

sanitaire d'une reproduction expérimentale de l'entéropathie épizootique (EEL) 

chez le lapin en croissance. In Procceding of 10éme Journées de la Recherche 

Cunicole. November 19-20. Paris, France. 

Bolet G., Garreau H., Joly T., Theau-Clement M., Falieres J., Hurtaud J., Bodin L. 2007. 

Genetic homogenisation of birth weight in rabbits: Indirect selection response for 

uterine horn characteristics. Livest. Sci. 111(1): 28 – 32.  

Brecchia G., Bonanno A., Galeati G., Federici C., Maranesi M., Gobbetti A., Zerani M., 

Boiti, C. 2006. Hormonal and metabolic adaptation to fasting: effects on the 

hypothalamic-pituitary-ovarian axis and reproductive performance of rabbit does. 

Domest. Anim. Endocrin. 31: 105-122.  

Burkuš, J., Kačmarová, M., Kubandová, J.: Kokošová, N., Fabianová, K.: Fabian, D., 

Koppel, J., Čikoš Š. 2015. Stress exposure during the preimplantation period affects 

blastocyst lineages and offspring development. J. Reprod. Develop. 61(4): 325-331. 

doi:10.1262/jrd.2015-012. 

Cardinali R., Dal Bosco A., Bonanno A., Di Grigoli A., Rebollar P.G., Lorenzo P.L., 

Castellini C. 2008. Connection between body condition score, chemical 

http://www.ncbi.nlm.nih.gov/pubmed/?term=B%C3%A9rard%20J%5BAuthor%5D&cauthor=true&cauthor_uid=18469061
http://www.ncbi.nlm.nih.gov/pubmed/?term=Kreuzer%20M%5BAuthor%5D&cauthor=true&cauthor_uid=18469061
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bee%20G%5BAuthor%5D&cauthor=true&cauthor_uid=18469061
http://www.ncbi.nlm.nih.gov/pubmed/18469061
http://www.ncbi.nlm.nih.gov/pubmed/18469061


Chapter 1: Introduction 
 

18 

characteristics of body and reproductive traits of rabbit does. Livest. Sci. 116(1): 

209-215. 

Carenzi C., Verga M. 2009. Animal welfare: Review of the scientific concept and 

definition. Ital. J. Anim. Sci. 8: 21–30.  

Cartuche L., Pascual M., Gómez E.A., Blasco A. 2014. Economic weights in rabbit meat 

production. World Rabbit Sci. 22: 165–177.  

Castellini C., Dal Bosco A., Mugnai C. 2003. Comparison of different reproductive 

protocols for rabbit doe: effect of litter size and remating interval. Livest. Prod. Sci. 

83: 131–139. 

Dal Bosco A., Castellini C., Cardinali R. 2003. Evaluation of body condition score in 

pregnant rabbit does by ultrasound scanner. In Proceedings of the Atti XV Congress 

ASPA. June 18-20. Parma, Italy. Vol 1: 480-482. 

Damgaard L.H., Rydhmer L., Lovendahl P., Grandinson K. 2003. Genetic parameters 

for within-litter variation in piglet birth weight and change in within-litter variation 

during suckling. J. Anim. Sci. 81:604–610. 

Döring T.F., Vieweger A., Pautasso M., Vaarst M., Finckh M.R., Wolfe M.S. 2015. 

Resilience as a universal criterion of health. J. Sci. Food Agric. 95: 455–465.  

Eady S.J., Garreau H. 2008. An enterprise gross margin model to explore the 

influence of selection criteria for breeding programs and changes to management 

systems. In Proceedings of 9th World Rabbit Congress. June 10-13. Verona, Italy. Vol 

1: 61-66. 

Eady S.J., Garreau H., Gilmour, A.R. 2007. Heritability of resistance to bacterial 

infection in meat rabbits. Livest. Sci. 112: 90–98. 



Chapter 1: Introduction 

19 
 

Felleki M., Lee D., Lee Y., Gilmour A.R., Rönnegård L. 2012. Estimation of breeding 

values for mean and dispersion, their variance and correlation using double 

hierarchical generalized linear models. Genet. Res. (Camb). 94(6):307-17.  

Felleki M., Lundeheim N. 2015. Genetic heteroscedasticity of teat count in pigs. J. 

Anim. Breed. Genet. 132(5): 392-398.  

Ferrian S., Blas E., Larsen T., Sánchez J.P., Friggens N.C., Corpa J.M., Baselga M., 

Pascual, J. J. 2013. Comparison of immune response to lipopolysaccharide of rabbit 

does selected for litter size at weaning or founded for reproductive longevity. Res. 

Vet. Sci. 94: 518-525. 

Ferrian S., Guerrero I., Blas E., García-Diego F.J., Viana D., Pascual J.J., Corpa J.M. 2012. 

How selection for reproduction or foundation for longevity could have affected 

blood lymphocyte populations of rabbit does under conventional and heat stress 

conditions. Vet. Immunol. Immunop. 150: 53-60. 

Fiksel J. 2003. Designing Resilient, Sustainable Systems. Environ. Sci. Technol. 37: 

5330-5339. 

Fina M., Ibáñez-Escriche N., Piedrafita J., Casellas J. 2013. Canalization analysis of 

birth weight in Bruna dels Pirineus beef cattle. J Anim. Sci. 91: 3070-3078.  

Formoso-Rafferty N., Cervantes I., Ibáñez-Escriche N., Gutiérrez J.P. 2016. Genetic 

control of the environmental variance for birth weight in seven generations of a 

divergent selection experiment in mice. J. Anim. Breed. Genet. 133(3):227-37.  

Formoso-Rafferty N., Cervantes I., Ibáñez-Escriche N., Gutiérrez J.P. 2017. 

Modulation birth weight heritability in mice. J. Anim. Sci. 95: 

doi:10.2527/jas2016.1169. 

https://www.ncbi.nlm.nih.gov/pubmed/?term=Felleki%20M%5BAuthor%5D&cauthor=true&cauthor_uid=23374241
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20D%5BAuthor%5D&cauthor=true&cauthor_uid=23374241
https://www.ncbi.nlm.nih.gov/pubmed/?term=Lee%20Y%5BAuthor%5D&cauthor=true&cauthor_uid=23374241
https://www.ncbi.nlm.nih.gov/pubmed/?term=Gilmour%20AR%5BAuthor%5D&cauthor=true&cauthor_uid=23374241
https://www.ncbi.nlm.nih.gov/pubmed/?term=R%C3%B6nneg%C3%A5rd%20L%5BAuthor%5D&cauthor=true&cauthor_uid=23374241
https://www.ncbi.nlm.nih.gov/pubmed/23374241
http://www.ncbi.nlm.nih.gov/pubmed/26150168
http://www.ncbi.nlm.nih.gov/pubmed/26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Formoso-Rafferty%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cervantes%20I%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ib%C3%A1%C3%B1ez-Escriche%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guti%C3%A9rrez%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Formoso-Rafferty%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Cervantes%20I%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ib%C3%A1%C3%B1ez-Escriche%20N%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/?term=Guti%C3%A9rrez%20JP%5BAuthor%5D&cauthor=true&cauthor_uid=26150168
http://www.ncbi.nlm.nih.gov/pubmed/26150168


Chapter 1: Introduction 
 

20 

Fortun-Lamothe L. 2006. Energy balance and reproductive performance in rabbit 

does. Anim. Reprod. Sci. 93(1): 1-15. 

Fortun-Lamothe L., Lamboley-Gaüzère B., Bannelier C. 2002. Prediction of body 

composition in rabbit females using total body electrical conductivity (TOBEC). 

Livest. Prod. Sci. 78(2): 133-142.  

Fortun-Lamothe L., Prunier A., Bolet G., Lebas F. 1999. Physiological mechanisms 

involved in the effects of concurrent pregnancy and lactation on foetal growth and 

mortality in the rabbit. Livest. Prod. Sci. 60: 229-241. 

Garreau H., Bolet G., Larzul C., Robert Granié C., Saleil G., San Cristobal M., Bodin L. 

2008a. Results of four generations of a canalising selection for rabbit birth weight. 

Livest. Sci. 119: 55–62. 

Garreau H., Eady S., Hurtaud J., Legarra A. 2008b. Genetic parameters of production 

traits and resistance to digestive disorders in a commercial rabbit population. In 

Proceedings of the 9th World Rabbit Congress. June 10-13. Verona, Italy. Vol 1: 103–

107.  

Gross J., Van Dorland H.A., Bruckmaier R.M., Schwarz, F. J. 2011. Performance and 

metabolic profile of dairy cows during a lactational and deliberately induced 

negative energy balance with subsequent realimentation. J. Dairy Sci. 94(4): 1820-

1830.  

Gross J.J., Schwarz F.J., Eder K., Van Dorland H.A., Bruckmaier R.M. 2013. Liver fat 

content and lipid metabolism in dairy cows during early lactation and during a mid-

lactation feed restriction. J. Dairy Sci. 96(8): 5008-5017. 

Gutiérrez J.P., Nieto B., Piqueras P., Ibáñez N., Salgado C. 2006. Genetic parameters 

for components analysis of litter size and litter weight traits at birth in mice. Genet. 

Sel. Evol. 38: 445-462.  



Chapter 1: Introduction 

21 
 

Hill W.G., Mulder H.A. 2010. Genetic analysis of environmental variation. Genet. Res. 

92: 381–395.  

Houle D. 1992. Comparing evolvability and variability of quantitative traits. 

Genetics. 130(1): 195-204. 

Ibáñez-Escriche N., Sorensen D., Waagepetersen R., Blasco, A. 2008a. Selection for 

environmental variation: a statistical analysis and power calculations to detect 

response. Genetics. 180: 2209-2226. 

Ibáñez-Escriche N., Varona L., Sorensen D., Noguera J.L. 2008b. A study of 

heterogeneity of environmental variance for slaughter weight in pigs. Animal. 2: 19–

26. 

Ibáñez-Escriche N., Moreno A., Nieto B., Piqueras P., Salgado C. 2008c. Genetic 

parameters related to environmental variability of weight traits in a selection 

experiment for weight gain in mice; signs of correlated canalised response. Genet. 

Sel. Evol. 40(3): 279-93.  

Janhunen M., Kause A., Vehviläinen H., Järvisalom O. 2012. Genetics of 

microenvironmental sensitivity of body weight in rainbow trout (Oncorhynchus 

mykiss) selected for improved growth. Plos One. 7: 1-8. 

Kanis E., Van Pelt M.L., Bonekamp P.R.T., Knol E.F. 2006. Is within-family variation 

in carcass weight of pigs heritable? In Proceedings of 8th World Congress on 

Genetics Applied to Livestock Production. August 13-18. Belo Horizonte, Brazil. 

Communication 06-23. 

Kitaro H. 2004. Biological robustness. Nat. Rev. Genet. 5(11): 826-837. 

http://www.ncbi.nlm.nih.gov/pubmed/?term=Ib%C3%A1%C3%B1ez-Escriche%20N%5BAuthor%5D&cauthor=true&cauthor_uid=18832357
http://www.ncbi.nlm.nih.gov/pubmed/?term=Sorensen%20D%5BAuthor%5D&cauthor=true&cauthor_uid=18832357
http://www.ncbi.nlm.nih.gov/pubmed/?term=Waagepetersen%20R%5BAuthor%5D&cauthor=true&cauthor_uid=18832357
http://www.ncbi.nlm.nih.gov/pubmed/?term=Blasco%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18832357
http://www.ncbi.nlm.nih.gov/pubmed/?term=Ib%C3%A1%C3%B1ez-Escriche%20N%5BAuthor%5D&cauthor=true&cauthor_uid=18400150
http://www.ncbi.nlm.nih.gov/pubmed/?term=Moreno%20A%5BAuthor%5D&cauthor=true&cauthor_uid=18400150
http://www.ncbi.nlm.nih.gov/pubmed/?term=Nieto%20B%5BAuthor%5D&cauthor=true&cauthor_uid=18400150
http://www.ncbi.nlm.nih.gov/pubmed/?term=Piqueras%20P%5BAuthor%5D&cauthor=true&cauthor_uid=18400150
http://www.ncbi.nlm.nih.gov/pubmed/?term=Salgado%20C%5BAuthor%5D&cauthor=true&cauthor_uid=18400150
http://www.ncbi.nlm.nih.gov/pubmed/18400150
http://www.ncbi.nlm.nih.gov/pubmed/18400150
http://www.ncbi.nlm.nih.gov/pubmed/15520792


Chapter 1: Introduction 
 

22 

Köver GY., Szendrö ZS., Romvári R., Jensen JF., Sorensen P., Milisits G. 1998. In vivo 

measurement of body parts and fat deposition in rabbits by MRI. World Rabbit Sci. 

Vol. 6(2): 231-235. 

Laborda P., Mocé L., Santacreu M.A., Blasco A. 2011. Selection for ovulation rate in 

rabbits: Genetic parameters, direct response and correlated response on litter size. 

J. Anim. Sci. 89: 2981-2987.  

Larzul C., Gondret F., Combes S., Rochambeau H. de. 2005. Divergent selection on 63-

day body weight in the rabbit: response on growth, carcass and muscle traits. Genet. 

Sel. Evol. 37: 105–122.  

Larzul C., Le Roy P., Tribout T., Gogue J., SanCristobal M. 2006. Canalizing selection 

on ultimate pH in pigs: consequences on meat quality. In Proceedings of the 8th 

World Congress on Genetics Applied to Livestock Production. Augusta 13-18. Belo 

Horizonte, Brasil. Comunication 13-09. 

Larzul C., Ducrocq V., Tudela F., Juin H., Garreau H. 2014. The length of productive 

life can be modified through selection: an experimental demonstration in the rabbit. 

J. Anim. Sci. 92: 2395–2401. 

Lawlor P.G., Lynch P.B. 2007. A review of factors influencing litter size in Irish sows. 

Irish Vet. J. 60(6):359-366. 

Lebas F., Coudert P., Rochambeau H., Thébault R.G. 1997. The rabbit: husbandry, 

health and production. FAO Animal Production and Health Series No. 21. Rome, FAO 

(available at http://www.fao.org/docrep/t1690e/t1690e00.HTM). 

Lukefahr S.D., Odi H.B., Atakora J.K.A. 1996. Mass selection for 70-day body weight 

in rabbits. J. Anim. Sci. 74: 1481–1489. 

http://www.ncbi.nlm.nih.gov/pubmed/18400150
http://www.ncbi.nlm.nih.gov/pubmed/18400150
http://www.fao.org/


Chapter 1: Introduction 

23 
 

Mach N., Bach A., Velarde A., Devant M. 2008. Association between animal, 

transportation, slaughterhouse practices, and meat pH in beef. Meat Sci. 78(3): 232-

238.  

Marai I.F.M., Habeed A.A.M., Gad A.E. 2002. Rabbits´ productive, reproductive and 

physiological performance traits as affected by heat stress: a review. Livest. Prod. Sci. 

2: 71-90. 

Marjanovic J., Mulder H.A., Khaw H.L., Bijma P. 2016. Genetic parameters for 

uniformity of harvest weight and body size traits in the GIFT strain of Nile tilapia. 

Genet. Sel. Evol. 48(1): 41.  

Matics  Z.S., Nagy I., Gerencsér Z.S., Radnai I., Gyovai P., Donkó T., Dalle Zotte A., Curik 

I., Szendro Z.S. 2014. Pannon breeding program in rabbit at Kaposvár University. 

World Rabbit Sci. 22: 287-300. 

Morgante F., Sørensen P., Sorensen D.A., Maltecca C., Mackay TFC. 2015. Genetic 

architecture of micro-environmental plasticity in Drosophila melanogaster. Sci. Rep. 

5: 9785.  

Mormede P., Terenina E. 2012. Molecular genetics of the adrenocortical axis and 

breeding for robustness. Domest. Anim. Endocrinol. 43(2):116-31.  

Mulder H. A., Hill W.G., Vereijken A., Veerkamp R.F. 2009. Estimation of genetic 

variation in residual variance in female and male broilers. Animal 3: 1673–1680.  

Mulder H.A., Visscher J., Fablet J. 2016. Estimating the purebred–crossbred genetic 

correlation for uniformity of eggshell color in laying hens. Genet. Sel. Evol. 48:39.  

Neves H.H.R., Carvalheiro R., Queiroz S.A. 2011. Genetic variability of residual 

variance of production traits in Nellore beef cattle. Livest Sci. 142: 164-169.  

http://www.ncbi.nlm.nih.gov/pubmed/?term=Mach%20N%5BAuthor%5D&cauthor=true&cauthor_uid=22062275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Bach%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22062275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Velarde%20A%5BAuthor%5D&cauthor=true&cauthor_uid=22062275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Devant%20M%5BAuthor%5D&cauthor=true&cauthor_uid=22062275
http://www.ncbi.nlm.nih.gov/pubmed/22062275
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mormede%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22672758
http://www.ncbi.nlm.nih.gov/pubmed/?term=Mormede%20P%5BAuthor%5D&cauthor=true&cauthor_uid=22672758


Chapter 1: Introduction 
 

24 

Nicodemus N., Pereda N., Romero C., Rebollar P.G. 2009. Évaluation de la technique 

d’impedance bioélectrique (IBE) pour estimer la composition corporelle de lapines 

reproductrices. In Proceeding of 13èmes Journées de la Recherche Cunicole. 

Novembre 17-18. Le Mans, France. Vol 1: 109-112.  

Omtvedt, I.T., Nelson, R.E., Edwards, R.L., Stephens, D.F., Turman, E.J. 1971. Influence 

of heat stress during early, mid and late pregnancy of gilts. J. Anim. Sci. 32(2): 312-

317. 

Pascual J.J., Castella F., Blas E., Férnandez-Carmona J. 2000. The use of ultrasound 

measurement of perirenal fat thickness to estimate changes in body condition of 

young female rabbits. Anim. Sci. 70: 435-442.  

Piles M., Blasco A. 2003. Response to selection for growth rate in rabbits. World 

Rabbit Sci. 11(2): 53–62. 

Piles M., Gómez E.A., Rafel O., Ramon J., Blasco A. 2004. Elliptical selection 

experiment for the estimation of genetic parameters of the growth rate and feed 

conversion ratio in rabbits. J. Anim. Sci. 82: 654-660.  

Piles M., Rafel O., Ramon J., Varona L. 2005. Genetic parameters of fertility in two 

lines of rabbits with different reproductive potential. J. Anim. Sci. 83(2): 340-343. 

Piles M., García M.L., Rafel O., Ramón J., Baselga, M. 2006a. Genetics of litter size in 

three maternal lines of rabbits: repeatability versus multiple-trait models. J. Anim. 

Sci. 84: 2309–2315.  

Piles M., Garreau H., Rafel O., Larzul C., Ramon J., Ducrocq V. 2006b. Survival analysis 

in two lines of rabbits selected for reproductive traits. J. Anim. Sci. 84:1658–1665. 



Chapter 1: Introduction 

25 
 

Prayaga K.C., Eady S. 2000. Rabbit farming for meat production in Australia: 

preliminary estimates of economic values for production traits. Asian Australas. J. 

Anim. Sci. 13: 357–359. 

Prunier A., Heinonen M., Quesnel H. 2010. High physiological demands in intensively 

raised pigs: impact on health and welfare. Animal 4(6): 886-898.  

Pun A., Cervantes I., Nieto B., Salgado C., Pérez-Cabal M.A., Ibáñez-Escriche N., 

Gutiérrez J.P. 2013. Genetic parameters for birth weight environmental variability 

in mice. J. Anim. Breed. Genet. 130: 404-414.  

Ragab M., Baselga M. 2011. A comparison of reproductive traits of four maternal 

lines of rabbits selected for litter size at weaning and founded on different criteria. 

Livest. Sci. 136: 201–206. 

Ragab M. 2012. Genetic analyses of reproductive traits in maternal lines of rabbits 

and in their diallel cross. Thesis UPV. 

Rauw W.M., Kanis E., Noordhuizen-Stassen E.N., Grommers F.J. 1998. Undesirable 

side effects of selection for high production efficiency in farm animals: A review. 

Livest. Prod. Sci. 56: 15–33. 

Razdan P., Mwanza A.M., Kindahl H., Rodriguez-Martinez H., Hulten F., Einarsson S., 

2002. Effect of repeated ACTH-stimulation on early embryonic development and 

hormonal profiles in sows. Anim. Reprod. Sci. 70: 127–137. 

Rochambeau H., De la Fuente  L.F., Rouvier R., Ouhayoun J. 1989. Sélection sur la 

vitesse de croissance post-sevrage chez le lapin. Genet. Sel. Evol. 21: 527–546.  

Roche J.R., Friggens N.C., Kay J.K., Fisher M.W., Stafford K.J., Berry D.P. 2009. Invited 

review: Body condition score and its association with dairy cow productivity, health, 

and welfare. J. Dairy Sci. 92(12): 5769-5801.  

http://dx.doi.org/10.3168/jds.2009-2431


Chapter 1: Introduction 
 

26 

Rodenburg T.B., Turner S.P. 2012. The role of breeding and genetics in the welfare 

of farm animals. Animal Frontiers 2: 16-21.  

Romvári R., Szendro Z., Jensen J.F., Sorensen P., Milisits G., Bogner P., Horn P., J. Csapó 

J. 1998. Noninvasive measurement of body composition of two rabbit populations 

between 6 and 16 weeks of age by computer tomography. J. Anim. Breed. Genet. 

115(1‐6): 383-395. 

Rönnegård L., Felleki M., Fikse W.F., Mulder H., Strandberg E. 2013. Variance 

component and breeding value estimation for genetic heterogeneity of residual 

variance in Swedish Holstein dairy cattle. J. Dairy Sci. 96: 2627–2636. 

Ros M., Sorensen D., Waagepetersen R., Dupont-Nivet M., SanCristobal M., Bonnet 

J.C., Mallard J. 2004. Evidence for genetic control of adult weight plasticity in the 

snail Helix aspersa. Genetics. 168: 2089-2097.  

Rosell J.M., De La Fuente L.F. 2008. Health and body condition of rabbit does on 

commertial farms. In Proceedings of 9th World Rabbit Congress. June 10-13. Verona, 

Italy. Vol 2: 1065-1069. 

Rowe S.J., White I.M.S., Avendaño S., Hill W.G. 2006. Genetic heterogeneity of residual 

variance in broiler chickens. Genet. Sel. Evol. 38: 617–635.  

Sae-Lim P., Kause A., Janhunen M., Vehviläinen H., Koskinen H., Gjerde B., 

Lillehammer M., Mulder H.A. 2015. Genetic (co)variance of rainbow trout 

(Oncorhynchus mykiss) body weight and its uniformity across production 

environments. Genet. Sel. Evol. 47(1): 46.  

Sánchez J.P., Theilgaard P., Mı́nguez C., Baselga M. 2008. Constitution and evaluation 

of a long-lived productive rabbit line. J. Anim. Sci. 86: 515-525.  

http://www.ncbi.nlm.nih.gov/pubmed/26150168


Chapter 1: Introduction 

27 
 

Sánchez J.P., Piles M. 2013. Sources of individual variation to heat tolerance in a 

rabbit line. J. Anim. Sci. 91: 1059–1066.  

San Cristobal-Gaudy M., Elsen J.M., Bodin L., Chevalet C. 1998. Prediction of the 

response to selection for canalization of a continuous trait in animal breeding. Genet. 

Sel. Evol. 39: 423–451. 

San Cristobal-Gaudy M., Bodin L., Elsen J.M., Chevalet C. 2001. Genetic components 

of litter size variability in sheep. Genet. Sel. Evol. 33: 249-271.  

Savietto D., Cervera C., Ródenas L., Martínez-Paredes E., Baselga M., García-Diego F.J., 

Larsen T., Friggens N.C., Pascual J.J. 2014. Different resource allocation strategies 

result from selection for litter size at weaning in rabbit does. Animal. 8(04): 618-

628. 

Sell-Kubiak E., Duijvesteijn N., Lopes M.S., Janss L.L.G., Knol E.F., Bijma P., Mulder H.A. 

2015a. Genome-wide association study reveals novel loci for litter size and its 

variability in a Large White pig population. BMC Genomics. 16:1049.  

Sell-Kubiak E., Bijma P., Knol E.F., Mulder H.A. 2015b. Comparison of methods to 

study uniformity of traits: application to birth weight in pigs. J. Anim. Sci. 93(3): 900-

911. 

Silva S., Guedes C., Mourão J.L., Pinheiro V., Monteiro D. 2012. Relación entre los 

depósitos de grasa corporal e el espesor da grasa perirenal obtenida mediante ultra-

sonografia en tiempo real en conejas. In Proceedings of XXXVII Symposium de 

cunicultura de ASESCU. Barbastro, Spain. Vol 1: 143-147. 

Sonesson A., Ødegård J., Rönnegård L. 2013. Genetic heterogeneity of within-family 

variance of body weight in Atlantic salmon (Salmo salar). Genet. Sel. Evol. 45: 41.  



Chapter 1: Introduction 
 

28 

Sorensen D., Waagepetersen R. 2003. Normal linear models with genetically 

structured residual variance heterogeneity: a case study. Genet Res. 82: 207-222.  

Theilgaard P., Sánchez J.P., Pascual J.J., Berg P., Friggens N.C., Baselga M. 2007. Late 

reproductive senescence in a rabbit line hyper selected for reproductive longevity, 

and its association with body reserves. Genet. Sel. Evol. 39: 207-223. 

Vandenplas J., Bastin C., Gengler N., Mulder H.A. 2013. Genetic variance in micro-

environmental sensitivity for milk and milk quality in Walloon Holstein cattle. J. 

Dairy Sci. 96(9): 5977-5990. 

Veerkamp R.F., Mulder H.A., Calus M.P.L., Windig J.J., ten Napel, J. 2009 Statistical 

genetics to improve robustness of dairy cows. In Proceedings of the Association for 

the Advancement of Animal Breeding and Genetics. 18: 406-413. 

Walsh S.W., Williams E.J., Evans A.C.O. 2011. A review of the causes of poor fertility 

in high milk producing dairy cows. Anim. Reprod. Sci. 123: 127-138. 

Wolc A., White I.M., Avendaño S., Hill W.G. 2009. Genetic variability in residual 

variation of body weight and conformation scores in broiler chickens. Poult. Sci. 88: 

1156-1161.  

Xiccato G., Trocino A., Sartori A. Queaque P.I. 2004. Effect of parity order and litter 

weaning age on the performance and body energy balance of rabbit does. Livest. 

Prod. Sci. 85: 239-251. 

Yang Y., Christensen O.F., Sorensen D. 2011. Analysis of a genetically structured 

variance heterogeneity model using the Box-Cox transformation. Gen Res Camb. 93: 

33-46.  



Chapter 1: Introduction 

29 
 

Ziadi C., Mocé M.L., Laborda P., Blasco A., Santacreu M.A. 2013. Genetic selection for 

ovulation rate and litter in rabbits: Estimation of genetic parameters and direct and 

correlated response. J. Anim. Sci. 91: 3113-20.  

Zomeño C., Hernández P., Blasco A. 2013. Divergent selection for intramuscular fat 

conten in rabbits. I. Direct response to selection. J. Anim. Sci. 91: 4526-4531. 

 



 

30 

 

 



Chapter 2: Objectives 

31 
 

 

 

Chapter 2 

OBJECTIVES 

 
  



Chapter 2: Objectives 
 

32 

 

In the present thesis, two genetic lines of rabbits selected divergently for litter size 

variability have been used to know the effect of selection in body condition and 

energetic mobilization, as welfare biomarkers in animal production, and in 

reproductive performance after seven generations of selection. 

The specific objectives of this thesis are: 

Chapter 3. To examine the relationships between measures of body condition and 

energetic mobilization in rabbit does. 

Chapter 4. To evaluate the correlated response in body condition and fat reserves 

mobilization in two rabbit lines divergently selected by litter size variability during 

seven generations. 

Chapter 5. To analyse correlated response to selection for litter size variability on 

litter size components after seven generations of selection. 

Chapter 6. To assess the effect to selection for litter size variability on early 

embryonic development and survival after seven generations of selection. 
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ABSTRACT 

The present work was performed to examine the relationships between measures 

of body condition and energetic mobilization in rabbit does. The variables studied 

were body weight (BW), perirenal fat thickness (PFT), basal non-esterified fatty acid 

concentration (NEFAb) and non-esterified fatty acids after lipolysis stimulation by 

isoproterenol (NEFAr). The effect of time of measuring (mating, delivery and 10 d 

after delivery) was estimated on 157 primiparous does. Correlations between 

components of body condition were estimated and a principal component analysis 

performed. The does decreased BW (6%) and PFT (3%), and increased NEFAb 

(25%) and NEFAr (16%) from mating to delivery. Later, NEFAb and NEFAr decreased 

around 20% from delivery to 10 d after delivery without changing perirenal fat 

thickness. All BW and PFT laid in the first principal component, and all NEFAs laid 

in the second component, showing low correlations with body condition 

measurements. Both NEFAs showed high positive correlations when measured at 

the same time (0.65, 0.72 and 0.69), but low correlations when measured at 

different times (0.09, to 0.20). We conclude that although body weight and perirenal 

fat thickness are good predictors of body condition, NEFA should be used when an 

accurate measurement of energetic mobilization is needed, due to their low 

correlation. 

Keywords: Body condition, NEFA, Perirenal fat thickness, rabbit. 

 

INTRODUCTION 

Body condition is a common tool for assessing the energy status of dams in animal 

production. Body condition refers to the state of the body energetic reserves, i.e. fat 

deposits, that are used when the does have an energetic demand. Different in vivo 

techniques have been proposed in order to estimate body condition in rabbits. Total 

body electric conductivity (Fortun-Lamothe et al., 2002), body condition score 

(Cardinali et al., 2008), computer tomography (Romvári et al., 1998), bioelectrical 

impedance analysis (Nicodemus et al., 2009), and ultrasound (Pascual et al., 2000) 

have been used to assess body condition. The ultrasound is a simple, low cost and 
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accurate method to estimate fatty deposits. Perirenal fat is the main adipose tissue 

and it is highly correlated with the other adipose tissues (Silva et al., 2012). Due to 

this, perirenal fat thickness has been proposed to estimate changes in body 

condition (Pascual et al., 2000). 

Negative energy balance is associated with mobilization of body reserves, 

predominantly localized in fat and muscle tissues (Gross et al., 2011). Fortun-

Lamothe (2006) indicates that an increase of non-esterified fatty acids (NEFA) 

concentration in blood generally indicates mobilizations of adipose tissue (Gross et 

al., 2013). An increase in NEFA concentration is interpreted as short-time 

mobilization, and perirenal fat thickness changes are used to estimate energy 

changes in the mid-long term. Consequently, body condition and NEFA are both used, 

as both provide information to interpret properly the energy balance of females 

(Fortun-Lamothe, 2006). 

There are three key moments when the does need to manage their body condition 

and energetic mobilization; mating (Castellini et al. 2006; Brecchia et al. 2006), 

delivery (Rebollar et al., 2011; Savietto et al., 2016) and early lactation (Quevedo et 

al., 2006). Our objective was to assess the relationships between body condition and 

energetic mobilization measurements at these three moments of the reproductive 

cycle of the doe. 

 

MATERIAL AND METHODS 

All experimental procedures involving animals were approved by the Miguel 

Hernández University of Elche Research Ethics Committee (Reference number DTA-

MJA-001-11), according to Council Directives 98/58/EC and 2010/63/EU. 

Animals 

One hundred and fifty-seven primiparous dams were used in this study. All animals 

were reared at the Miguel Hernández University of Elche (Spain). Rabbits were 

allowed ad libitum access to a standard pelleted diet (218 g acid detergent fibre, 174 

g crude protein and 11.0 MJ digestible energy, Cunilactal, Nutreco). The does were 
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kept in individual cages in a farm which had a constant photoperiod of 16 h 

continuous light: 8 h continuous darkness and controlled ventilation. They were 

first mated at 18 wk of age and at 10 d after parturition thereafter. If the dams were 

not receptive, they were mated again a week later. Kits were weaned at 28 d of age. 

Two synthetic maternal lines were used in the analysis. 

Traits 

All traits were measured at effective mating, delivery and 10 d after delivery, at the 

second parity. Dam body weight (BW) was recorded. Does perirenal fat thickness 

(PFT) was measured by ultrasound imaging as described by Pascual et al. (2000), 

using Justvision 200 SSA-320A Toshiba ultrasound equipment. 

Non-esterified fatty acid concentration was determined in basal state (NEFAb) and 

in response to the adrenergic agent isoproterenol (NEFAr), which increases the 

lipolysis. Blood was sampled before and 7.5 min after isoproterenol injection (50 

µg/kg BW, Sigma 15627). This time interval and concentration of isoproterenol was 

found appropriate by Theilgaard et al. (2005) for assessing the lipolytic potential in 

rabbits. Blood samples were obtained from the central ear artery at early in the 

morning hours, before feed was distributed, to prevent the effect of feeding, as 

proposed by Theilgaard et al. (2005). The samples were centrifuged immediately 

after sampling (4,000 x g, 4 ºC, 15 min) and plasma was stored at -20ºC for further 

analysis. Plasma NEFA concentrations were determined using the in vitro enzymatic 

colorimetric methodology prepared by the NEFA test Wako C (Wako Pure Chemical 

Industries, Ltd, Osaka, Japan). Samples were analysed with spectrophotometer UV 

(Model Hewlett Packard 8453). 

Statistical analyses 

Differences in body condition and energetic mobilization indicators were estimated 

with a model including the effects of time of measurement, line, lactation status 

(lactating or non-lactating at mating), season and dam permanent effect. All analyses 

were performed using Bayesian methodology. Bounded uniform priors were used 

for all effects with the exception of the dam permanent effect, considered normally 

distributed with mean 0 and variance Iσ2p. Residuals were a priori normally 
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distributed with mean 0 and variance Iσ2e. The priors for the variances were also 

bounded uniform. Features of the marginal posterior distributions for all unknowns 

were estimated using Gibbs sampling. Convergence was tested using the Z criterion 

of Geweke (Sorensen and Gianola, 2002) and Monte Carlo sampling errors were 

computed using time-series procedures described in Geyer (1992). The program 

Rabbit, developed by Institute for Animal Science and Technology (Valencia, Spain), 

was used for all procedures. 

Correlations between residuals of a model that included line, lactation status and 

season effects were estimated. A principal component analysis was performed. All 

these analyses were performed using the SAS statistical package. 

 

RESULTS AND DISCUSSION 

Descriptive results of the traits are presented in Table 3.1. Body weight of the 

females was lower than those reported by Quevedo et al. (2006) and Theilgaard et 

al. (2009), but perirenal fat thickness was similar (Quevedo et al., 2006) or higher 

(Theilgaard et al., 2009). This may be due to the different feed composition 

(Quevedo et al., 2006) or reproductive rhythm applied (Theilgaard et al., 2009).  

Basal NEFA and NEFA after stimulating lipolysis by injecting isoproterenol showed 

similar values than Theilgaard et al. (2009), and the NEFA levels were also similar 

to those obtained by Brecchia et al. (2006) after 24h of fasting. Both NEFAs showed 

high variability, with coefficients of variation from 0.40 to 0.47. 

Table 3.2 shows the evolution of body condition indicators at the three times in 

which they were measured. When |D| > 0, we consider that there is enough evidence 

about measurements at different times are different, if the probability of |D| is more 

than 0.80. Both basal NEFA and NEFA after stimulating lipolysis were higher at 

delivery than at mating (25% and 16%, respectively), as expected due to higher 

energetic demand (Rebollar et al., 2011) and lower food ingestion of the doe 

(Pascual et al., 2003) at this moment. It is known in dairy cows that during the 

transition from late gestation to early lactation, considerable amount of adipose 

tissue is mobilized, resulting in elevated plasma NEFA (Gross et al., 2013). Perirenal 
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fat thickness and body weight, are in agreement with the NEFA measurements, they 

are 3% and 6% lower at delivery. Subsequently, both NEFAs were around 20% 

higher at delivery than at 10 d after delivery, but no differences were found for 

perirenal fat thickness (D=−0.05, HPD95%= [-0.23, 0.12]). These variations of NEFA 

concentrations could be due to variation of the flow of NEFA concentration with 

respect to its oxidation capability and storage (Gross et al., 2013), thus this variation 

is not necessarily attributable to changes in energy balance. From mating to 10 d 

after delivery, the balance was negative for body weight (92 g) and perirenal fat 

thickness (0.19 mm). Within a reproductive cycle, the highest value of NEFA was at 

delivery, which is in agreement with Rebollar et al. (2011). 

Table 3.1 General mean, standard deviation (SD), coefficient of variation (CV) for 
measures of body condition and energetic mobilization at mating, delivery and 10 d 
after delivery. 

 Mating Delivery 10d after delivery 

 Mean SD CV      Mean SD CV       Mean SD CV 

BW (g) 3637 368 0.10      3411 413 0.12        3556 457 0.13 

PFT (mm) 9.30 0.80 0.09      9.1 0.90 0.09        9.20 1.10 0.10 

NEFAb (mmol/l) 0.53 0.25 0.47      0.66 0.31 0.47        0.53 0.21 0.40 

NEFAr (mmol/l) 0.88 0.39 0.44      1.02 0.36 0.38        0.81 0.32 0.40 

BW: body weight. PFT: perirenal fat thickness. NEFAb: basal non-esterified fatty 

acids concentration. NEFAr: non-esterified fatty acids after lipolysis stimulation.
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Table 3.2. Features of the marginal posterior distribution of the difference (D) between body condition and energetic mobilization 
measurements at different times. 

 BW PFT NEFAb NEFAr 

D HPD95% P D HPD95% P D HPD95% P D HPD95% P 

Mating  Delivery  227  174, 284 1.00 0.24  0.08, 0.41 1.00 -0.13 -0.20, -0.06 1.00 -0.14 -0.24,-0.05 1.00 

Delivery  10 d after delivery -135 -192, -77 1.00 -0.05 -0.23, 0.12 0.72 0.13   0.05, 0.20 1.00 0.21   0.10, 0.30 
1.00 

Mating - 10 d after delivery    92    36, 149 1.00 0.19   0.03, 0.36 0.98 0.00 -0.07, 0.07 0.50 0.07 -0.04, 0.15 
0.91 

HPD95%: highest posterior density region at 95%. P: probability of the difference being positive when D>0 or negative when D<0. BW: body 

weight (g). PFT: perirenal fat thickness (mm). NEFAb: basal non-esterified fatty acids concentration (mmol/l). NEFAr: non-esterified fatty 

acids after lipolysis stimulation (mmol/l). 
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Table 3.3 shows the coefficients of correlation between traits. In order to facilitate 

the interpretation of the correlations, we performed a principal components 

analysis. The first two components explain near 50% of total variation (30% and 

19% respectively). Figure 3.1 shows the first and second principal component. All 

body weights and perirenal fat thickness were located on the first principal 

component, with the exception of perirenal fat thickness at mating. We found 

substantial positive correlations between them, both at the same time and at 

different times (0.51 to 0.83). Body weight and perirenal fat thickness have been 

proposed as predictors of body reserves by Pascual et al. (2000). Both traits are 

related to energy content, which is highly influenced by the size of the animal. 

Although high correlations between measurements are expected, some of these 

correlations are not so high, therefore all of them give useful information about the 

energy balance in the mid-long term.  

All NEFA measurements were located on the second principal component, showing 

low correlations with the perirenal fat thickness measurements and also with body 

weight. As NEFA measurements do not depend on body weight or perirenal fat, they 

show the energy balance in the short term. NEFA should be more related to the 

energy balance due to differences in feed intake (Brecchia et al., 2006), milk yield 

(Fortun–Lamothe and Prunier, 1999) or heat stress (Savietto et al., 2014). Basal 

NEFA and NEFA after lipolysis stimulation measurements showed high positive 

correlations when measured at the same time (0.65 to 0.72), indicating that even in 

a state of high fat mobilization reserves, the does have at any time an important 

additional capacity for fat reserves mobilization. NEFAs showed low correlations 

between them when measured at different times (0.09 to 0.20), showing that the 

actual state of fat reserves mobilization should be measured at each time, being both 

NEFAs at a time poor predictors of the capacity of reserves mobilization at other 

times. Xiccato et al. (2005) also indicated that NEFA levels in blood did not closely 

reflect the changes in energy balance caused by reproductive rhythm and weaning 

management. 
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Table 3.3 Coefficients of correlation between body condition and energetic mobilization measurements. 

  Mating Delivery 10d after delivery 

  PFT NEFAb NEFAr  BW PFT NEFAb NEFAr  BW PFT NEFAb NEFAr 

M
at

in
g 

BW 0.53* 0.10 0.02  0.64*   0.41*   0.32*   0.23*    0.57* 0.45* 0.05  0.14 

PFT  0.18 0.25*  0.35*   0.31*   0.24*  0.12    0.34* 0.29*   0.24* 0.26* 

NEFAb   0.65*  −0.09 −0.09 0.16  0.09  −0.03 −0.03 0.09 0.12 

NEFAr     −0.07 −0.09 0.18  0.14  −0.08 −0.06 0.18 0.13 

De
liv

er
y 

BW        0.64* 0.10  0.07    0.83* 0.62* − 0.01 0.11 

PFT       0.02  0.00    0.55* 0.51* 0.03 0.04 

NEFAb          0.72*   0.08 0.04 0.14 0.11 

NEFAr          −0.01 0.04 0.14   0.20* 

10
 d

 a
fte

r 
de

liv
er

y BW            0.67* − 0.13 −0.06 

PFT            0.09 0.20* 

NEFAb             0.69* 

* P-value<0.05. Body weight (BW), perirenal fat thickness (PFT), basal non-esterified fatty acids concentration (NEFAb), and non-esterified 

fatty acids after lipolysis stimulation (NEFAr).
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Figure 3.1 Projection of the traits in the plane defined by the two first principal 
components. BW: Body weight, PFT: perirenal fat thickness, NEFAb: basal non-
esterified fatty acids concentration, NEFAr: non-esterified fatty acids after lipolysis 
stimulation. Superscripts m, d and l mean variable measured at mating, delivery and 
10 d after delivery, respectively. 

 

We conclude that although body weight and perirenal fat thickness are good 

predictors of body condition, NEFA measurements should be used when an accurate 

measurement of energetic mobilization is needed. We also conclude that measuring 

NEFA after stimulating lipolysis with an adrenergic agent is going to give similar 

results as basal NEFA, thus it does not seem to be required for a prediction of does’ 

fat reserves mobilization, unless the experiment requires a more accurate 

prediction of the additional capacity of the does for energetic mobilization.  
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ABSTRACT 

The aim of this study was to evaluate the correlated response in body condition and 

fat reserves mobilization in two rabbit lines divergently selected by litter size 

variability during seven generations. Variability of litter size was estimated as 

phenotypic variance of litter size within female after correcting for the year-season 

and lactation status effects. A total of 80 females from the high line and 74 females 

from the low line were used in this study. Body condition was measured as perirenal 

fat thickness. Mobilization of fat reserves was measured as the increment in non-

esterified fatty acids levels from basal concentration until adrenergic stimulation by 

isoproterenol (NEFAr) at second mating, delivery and 10 d after delivery. Data were 

analysed using Bayesian methodology. For perirenal fat thickness, the line selected 

for increasing litter size variability showed lower fat thickness than the 

homogenous line at delivery (-0.16 mm, P = 0.86), and this difference remained at 

10 d after delivery (-0.17 mm, P = 0.86). The homogenous line exhibited 30% more 

concentration in NEFAr (P = 0.96) at delivery than the heterogeneous one. In 

conclusion, a decrease in litter size variability showed a favourable effect on body 

condition and fat reserve mobilization. In this regard, the more homogenous line for 

litter size seems to adapt better to adverse environments, as it has a greater capacity 

to mobilize energy reserves at delivery than the heterogeneous line. Females from 

the line selected for litter size homogeneity are, therefore, more resilient than those 

of the heterogeneous line. 

 

Keywords: Body condition, litter size variability, non-esterified fatty acids, 

perirenal fat thickness, resilience. 

 

INTRODUCTION 

In prolific species such as rabbits and pigs, variability in litter size within a female is 

linked to her capacity to cope with environmental changes. This adaptation often 

involves changes in mobilization of body energy reserves, and consequently on 

animal body condition (Rauw, 2009). There is evidence to support that this 
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environmental sensitivity may be under genetic control (Mulder et al., 2013), 

whereby genes controlling environmental sensitivity can also control body 

condition. A divergent selection experiment for litter size environmental sensitivity 

has been carried out successfully in rabbits. After seven generations of selection, the 

low litter size variability line was 30% more homogeneous in litter size than the high 

line (Argente et al., 2014a). Our hypothesis is that the more uniform line is also more 

resilient when facing changes in microenvironment. We know, for example that 

stress has a negative effect on resource allocation and body condition (Elsasser et 

al., 2000; Broom, 2008). Selection for litter size environmental sensitivity may 

modify body condition. Body condition is related to body fat reserves (review by 

Chilliard, 1993), whose mobilization can be measured throught non-esterified fatty 

acids (NEFA) levels in blood (Belstra et al., 1998 in pigs; Chilliard et al., 1998; 

Fortun-Lamothe, 2006 in rabbits). It would be interesting to examine how selection 

for environmental sensitivity affects the mobilization of fat reserves. 

 

The objective of this study was to analyse the correlated response to selection for 

litter size variability in body condition and fat reserves mobilization in rabbit 

females. 

 

MATERIALS AND METHODS 

Animals 

Animals came from the seventh generation of a divergent selection experiment for 

litter size variability. Data from 80 females from the high line and 74 females from 

the low line were used in this study. All females were primiparous. Variability of 

litter size was estimated as phenotypic variance of litter size within female after 

correcting for the effects of year-season and lactation status (see more details in 

Argente et al., 2014a). All animals were kept on the farm at the Miguel Hernández 

University of Elche (Spain). Rabbits were fed a standard commercial diet (218 g acid 

detergent fibre and 174 g crude protein per kg of dry matter; Cunilactal, Nutreco). 

Food and water were provided ad libitum. Females were housed in individual cages 
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under a constant photoperiod of 16 h continuous light: 8 h continuous darkness and 

controlled ventilation throughout the experiment. They were first mated at 18 wk 

of age and at 10 d after parturition thereafter. Litters were not standardized. 

All experimental procedures involving animals were approved by the Miguel 

Hernández University of Elche Research Ethics Committee (Reference number DTA-

MJA-001-11), according to Council Directives 98/58/EC and 2010/63/EU. 

Traits 

Body fat reserves and mobilization of adipose tissue were recorded at three 

different physiology stages of the doe; second mating, delivery and 10 d after 

delivery. Body fat reserves were measured as perirenal fat thickness by ultrasound 

imaging as described by Pascual et al. (2004), using Justvision 200 SSA-320A 

Toshiba ultrasound equipment. Mobilization of fat reserves was measured as basal 

non-esterified fatty acids (NEFAb) and increase of blood NEFA after injection of 

isoproterenol (NEFAr), an adrenergic agent which increases lipolysis. NEFAr is also 

known as the lipolytic potential of fat reserves (Theilgaard et al., 2005). Blood was 

sampled before and 7.5 min after injection of 50 µg of isoproterenol per kg of body 

weight (Sigma 15627). This time interval and concentration of isoproterenol were 

established as appropriate by Theilgaard et al. (2005) for assessing the lipolytic 

potential in rabbits. Blood samples were obtained from the central ear artery early 

in the morning, before feed was distributed, in order to prevent the effect of feeding, 

as proposed by Theilgaard et al. (2005). The samples were centrifuged immediately 

after sampling (4,000 r.p.m., 4 ºC, 15 min) and plasma was stored at -20ºC until 

further analysis. Plasma NEFA concentrations were determined using the in vitro 

enzymatic colorimetric methodology prepared by the NEFA test Wako C (Wako Pure 

Chemical Industries, Ltd, Osaka, Japan). Samples were analysed with a UV 

spectrophotometer (Hewlett Packard Model 8453). 

Statistical Analysis  

Differences between lines were estimated using a model with effects of line-

physiological status, season, lactation status at mating and permanent effect of the 

doe.  
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All analyses were performed using Bayesian methodology. Bounded uniform priors 

were used for all effects with the exception of the doe permanent effect, considered 

independently normally distributed with mean 0 and variance Iσ2p. Residuals were 

a priori independently normally distributed with mean 0 and variance Iσ2e. The 

priors for the variances were also bounded uniform. Features of the marginal 

posterior distributions for all unknowns were estimated using Gibbs sampling. The 

Rabbit program developed by the Institute for Animal Science and Technology 

(Valencia, Spain) was used for all procedures. After some exploratory analyses, we 

used a chain of 60,000 samples, with a burn-in period of 10,000. Only one of every 

10 samples was saved for inferences. Convergence was tested using the Z criterion 

of Geweke (Sorensen and Gianola, 2002) and Monte Carlo sampling errors were 

computed using time-series procedures described in Geyer (1992).  

 

RESULTS AND DISCUSSION 

Animal breeding has traditionally been focused on increasing productivity. However, 

success in animal improvement appears to be seriously compromised by animal 

health and welfare (Rauw et al., 1998). Enhancing resilience in animals would be an 

interesting breeding goal for livestock, as animals may express their high production 

potential while being less affected by environmental conditions (Knap, 2005). We 

have proposed that resilience in dams is related to the variation in litter size 

throughout their reproductive lifespan (Argente et al., 2014b). There is no available 

information on whether selection for litter size environmental sensitivity can affect 

body condition. Table 4.1 shows means and coefficients of variation for body 

condition and fat mobilization reserves at mating, delivery and 10 d after delivery in 

the high and low lines. The basal NEFA concentration and lipolytic potential of fat 

reserves were highly variable traits, exhibiting larger coefficients of variation than 

body weight and fat reserves. 
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Table 4.1 Mean and coefficient of variation (CV) for body condition and fat 
mobilization reserves at second mating, delivery and 10 d of lactation in the high 
and low lines. 

  High line (n=80)  Low line (n=74) 

  Mean CV   Mean CV 

Perirenal fat 

thickness (mm) 

Mating 9.33 0.09  9.34 0.09 

Delivery 9.00 0.10  9.19 0.10 

Lactation at 10 d 9.07 0.10  9.26 0.11 

NEFAb 

(mmol/l) 

Mating 0.53 0.47  0.53 0.49 

Delivery 0.68 0.44  0.63 0.51 

Lactation at 10 d 0.53 0.41  0.54 0.39 

NEFAr (mmol/l) 
Mating 0.41 0.76  0.28 0.96 

Delivery 0.32 0.72  0.42 0.64 

Lactation at 10 d 0.30 0.77  0.27 0.85 

NEFAb: basal non-esterified fatty acid levels before adrenergic stimulation. NEFAr: response 

in non-esterified fatty acid levels from basal concentration until adrenergic stimulation. 

 

Features of the estimated marginal posterior distributions of the differences between 

the high and low lines for all traits are displayed in table 4.2. Marginal posterior 

distributions were approximately normal, so the mode, mean and median were 

similar. All Monte Carlo standard errors were very small and lack of convergences 

was not detected by the Geweke test. When |DH-L| > 0, we consider that there is 

enough evidence about the high and low lines are different, if the probability of |DH-

L| is more than 0.80. After seven generations of selection for litter size variability, 

there is some evidence that the high line had lower body fat than the low line at 

delivery (-0.16 mm, P = 0.86) and 10 d after delivery (-0.17 mm, P = 0.86), thus the 

line selected for homogeneity had a better body condition.  
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Table 4.2 Features of the estimated marginal posterior distribution of the 
differences between the high and low lines for body condition measurements at 
mating, delivery and 10 d after delivery. 

  DH-L HPD95% P 

Perirenal fat 

thickness (mm) 

Mating 0.02 -0.25, 0.33 0.63 

Delivery -0.16 -0.44, 0.13 0.86 

10 d after Delivery -0.17 -0.47, 0.12 0.86 

NEFAb (mmol/l) 

Mating -0.02 -0.11, 0.09 0.63 

Delivery 0.04 -0.07, 0.14 0.76 

10 d after Delivery -0.02 -0.12, 0.09 0.65 

NEFAr (mmol/l) 
Mating 0.13 0.03, 0.23 0.99 

Delivery -0.09 -0.19, -0.01 0.96 

10 d after Delivery -0.02 -0.12, 0.09 0.65 

DH-L: median of the difference between the high and low lines. HPD95%: highest posterior density 

region at 95%. P: probability of the difference being ˃0 when DH-L ˃0 and probability of the 

difference being < 0 when DH-L<0. NEFAb: basal non-esterified fatty acids levels before adrenergic 

stimulation. NEFAr: response in non-esterified fatty acid levels from basal concentration until 

adrenergic stimulation. 

 

The concentration of NEFA in blood is a useful biochemical marker for quantifying 

fat mobilization from body reserves in several species (Belstra et al., 1998 in pigs; 

Chilliard et al., 1998; Fortun-Lamothe, 2006 in rabbits). No relevant differences 

were found for basal NEFA levels between lines at mating, delivery and 10 d after 

delivery. Blood NEFA level in response to the adrenergic agent isoproterenol has 

proved to be useful to evaluate the lipolytic potential of fat reserves in vivo (Chilliard 

et al., 1998). At delivery, a time of high energy demands, the low line exhibited a 

30% higher concentration in NEFAr (P = 0.96) than the high line, thus the 

homogenous line had a better mobilization of fat reserves. Therefore, the does from 
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the low line exhibited better body condition and more efficient management in their 

body reserves under strong energetic demands.  

 

Delivery and lactation are stressful stages for female mammals (Hydbring et al., 

1999; Gellrich et al., 2015). Several studies have reported that stress negatively 

affects the immune system, and therefore disease susceptibility (see review by 

Webster-Marketon and Glaser, 2008). Stress also has a negative effect on resource 

allocation and body condition (Elsasser et al., 2000; Broom, 2008). Because of this, 

body condition has been proposed as an indicator for animal health and welfare 

(Blache et al., 2011). We found a better body condition and higher fat mobilization 

in the line selected for homogeneity than in the heterogeneous line, which suggests 

a higher animal health and welfare in this line. Greater efficiency in mobilization of 

fat reserves in the low line does may enable them to adapt better to environmental 

changes.  

 

CONCLUSION 

Selection for decreasing variability in litter size seems to improved female body 

condition and fat mobilization, which is related to a higher degree of health and 

welfare in the animal. The does selected for litter size homogeneity could be able to 

better deal with situations of high energy demand than does with higher litter size 

variability, being more resilient.  
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ABSTRACT 

A divergent selection experiment for litter size environmental variability has been 

carried out in rabbits at the University Miguel Hernández of Elche in Spain over 

seven generations. Environmental variability of litter size was estimated as 

phenotypic variance within female after correcting for year-season and lactation 

status. The aim of this study was to analyse the correlated responses to selection in 

litter size and litter size components. A total of 94 females from the high line and 82 

females from the low line were used in this study. Ovulation rate (OR) and number 

of implanted embryos (IE) were measured by laparoscopy at 12 d of the second 

gestation. The total number of kits born (TNB) and alive (NBA) were also recorded 

at second parity. Embryonic (ES), fetal (FS) and prenatal (PS) survival were 

estimated as IE/OR, TNB/IE and TNB/OR, respectively. Data were analysed using 

Bayesian methodology. After seven generations of selection, ovulation rate was 

similar in both lines. The line selected for homogeneity in litter size showed more 

embryos at implantation (11.53 embryos vs 10.20 embryos, P = 1.00) and higher 

embryonic survival than the heterogeneous line (0.87 vs. 0.78, P = 1.00). A higher 

uterine overcrowding of embryos in the homogeneous line did not penalise fetal 

survival, and as a result, this line continued showing a greater number of kits born 

at birth (+0.98 kits, P = 0.96). In conclusion, a decrease in litter size variability 

showed a favourable effect on embryonic survival leading to a higher litter size at 

birth. 

 

Keywords: implanted embryos, litter size, ovulation rate, rabbit, residual variance. 

 

INTRODUCTION 

Interest in the genetic determination of environmental variance is increasing, as the 

livestock industry is demanding a more homogeneous production (Mulder et al. 

2008); for example, increasing uniformity in litters can help management and 

increase litter viability. On the other hand, a decrease in environmental variance will 

increase the heritability (Formoso-Rafferty et al., 2017), being particularly 
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interesting for increasing the response to selection in low heritability traits, such as 

litter size. A direct divergent selection experiment for litter size environmental 

variance is currently being carried out in rabbits. The experiment has had some 

success, showing a difference of 30% between the divergent lines (Argente et al. 

2014a). Litter size environmental variance is related to litter size, but the sign of this 

relationship is controversial. In a closely related trait in rabbits, uterine capacity, 

Ibáñez-Escriche et al. (2008) found a negative relationship between the 

environmental variance and the mean of the trait, but reanalysing the data after 

normalising the residuals, Yang et al. (2011) found a low positive relationship 

between both traits. In pigs’ litter size, Yang et al. (2011) found that after the 

transformation the relationship between litter size and litter size environmental 

variance changed from -0.6 to +0.7. Hence, it will be interesting to learn how this 

selection process is affecting litter size, and also at which gestation moment the 

selection process is acting. The objective of this study is to analyse the correlated 

responses to selection for litter size environmental variability on litter size 

components. 

 

MATERIALS AND METHODS 

Animals  

Animals came from two divergent rabbit lines selected for residual variance of litter 

size over seven generations. A total of 94 females from the high line and 82 females 

from the low line were used in this study. Selection was based on phenotypic 

variance of litter size within female after correcting litter size for year-season and 

lactation status. As all litters have almost the same genetic determination (Piles et 

al. 2006) and the same environmental permanent effects, after correcting for 

systematic effects, the phenotypic variance intra-doe is a record of its residual 

variance (see more details in Argente et al. 2014a). All animals were kept on a farm 

at the Miguel Hernández University of Elche (Spain). Rabbits were fed a standard 

commercial diet (218 g acid detergent fibre and 174 g crude protein per kg of dry 

matter; Cunilactal, Nutreco). Food and water were provided ad libitum. Females 

were kept in individual cages under a constant photoperiod of 16 h continuous light: 
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8 h continuous darkness and controlled ventilation. They were first mated at 18 wk 

of age and at 10 d after parturition thereafter. Litters were not standardised. A 

laparoscopy was performed in all females at 12 d of second pregnancy, in order to 

estimate ovulation rate and number of implanted embryos. The laparoscopy 

technique is described in detail by Argente et al. (2003), and previously Santacreu 

et al (1990) showed that litter size is not affected by the performance of this 

technique. 

All experimental procedures involving animals were approved by the Miguel 

Hernández University of Elche Research Ethics Committee (Reference number DTA-

MJA-001-11), in accordance with Council Directives 98/58/EC and 2010/63/EU. 

Traits 

The analysed traits were ovulation rate (OR), number of implanted embryos (IE), 

total number of kits born (TNB) and alive (NBA) at second parity, embryonic 

survival (ES = IE / OR), fetal survival (FS = TNB / IE), and prenatal survival (SP = 

TNB / OR).  

Statistical Analyses  

Lines were compared using a model including effects of line, season and lactation 

status at mating (lactating or non-lactating). Correlation coefficients between the 

residuals of the traits from a model including the effects of season and lactation 

status were estimated in each line separately. All analyses were performed using 

Bayesian methodology. Bounded uniform priors were used for all effects. Residuals 

were a priori normally distributed with mean 0 and variance Iσ2e. The prior for the 

variance was also bounded uniform. Features of the marginal posterior 

distributions for all unknowns were estimated using Gibbs sampling. The Rabbit 

program developed by the Institute for Animal Science and Technology (Valencia, 

Spain) was used for all procedures. We used a chain of 60,000 samples, with a burn-

in period of 10,000. Only one out of every 10 samples was saved for inferences. 

Convergence was tested using the Z criterion of Geweke (Sorensen and Gianola 

2002) and Monte Carlo sampling errors were computed using time-series 

procedures described in Geyer (1992).  
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RESULTS AND DISCUSSION 

Homogeneity is an economically important trait in livestock production (Mulder et 

al. 2008). We previously carried out a divergent selection experiment on litter size 

variability in rabbits successfully (Argente et al. 2014a). In this paper, we examine 

the consequences that this selection process had on litter size components. Table 

5.1 shows the means and coefficients of variation for litter size components in the 

high and low lines. The homogenous line for litter size showed lower variability (CV) 

for all studied traits.  

Table 5.1 Mean and coefficient of variation (CV) for the traits in the high and low 
lines. 

  High line Low line 

  Mean CV Mean CV 

OR, ova  13.34 0.19 13.36 0.17 

IE, embryos  10.20 0.32 11.53 0.24 

ES, embryos / ova  0.78 0.29 0.87 0.19 

FS, kits / embryos  0.69 0.36 0.69 0.35 

PS, kits / ova  0.54 0.47 0.59 0.40 

TNB, kits  7.16 0.52 7.94 0.44 

NBA, kits  6.03 0.67 6.23 0.67 

OR: ovulation rate. IE: number of implanted embryos. ES: embryonic survival. FS: fetal 

survival. PS: prenatal survival. TNB: total number of kits born. NBA: number of kits born 

alive. 

Table 5.2 presents correlated response to selection. Marginal posterior distributions 

of the differences between lines were approximately normal, thus mode, mean and 

median were similar. All Monte Carlo standard errors were very small and lack of 

convergences was not detected by the Geweke test. When |DH-L| > 0, we consider that 

there is enough evidence about the high and low lines are different, if the probability 

of |DH-L| is more than 0.80. After seven generations of selection, ovulation rate was 

similar in both lines, showing a mean value in agreement with the range reported in 

rabbit literature (Blasco et al. 1993; Garcı́a and Baselga 2002; Laborda et al. 2011). 
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For embryonic survival, the heterogeneous line had lower values (78%) than those 

reported in the literature, which vary from 86% to 90% (Adams 1960; Blasco et al. 

1993; Garcı́a and Baselga 2002; Laborda et al. 2012; Ziadi et al. 2013). The 

homogeneous line showed more embryos at implantation (P =1.00) and a higher 

embryonic survival than the heterogeneous line (0.87 vs. 0.78, P = 1.00), but similar 

fetal survival, leading to a greater number of kits at birth than the heterogeneous 

line (P = 0.96). Therefore, selection for residual litter size variability has a negative 

correlated response with number of implanted embryos and with litter size. This is 

in agreement with Ibáñez-Escriche et al. (2008), who reported a negative correlation 

between uterine capacity and its residual variability in rabbits, a trait highly correlated 

with litter size (Argente et al. 2000). Our results show that the difference in litter size 

between lines was established at implantation. There is evidence that maternal stress 

around the time of implantation increases the failure rate in blastocyst implantation 

(Burkuš et al. 2015). We hypothesise that the line selected for heterogeneity in litter 

size should be more sensitive to stress and diseases than the homogeneous line. In this 

regard, Argente et al. (2014b) found a lower immune response to pathogenic agents in 

females from the heterogeneous line, showing greater sensitivity to diseases.  

Table 5.2 Correlated response. Features of the estimated marginal posterior 
distribution of the differences between the high and low lines. 

 DH-L HPD95% P 

OR, ova -0.15 -0.89, 0.61 0.65 

IE, embryos -1.48 -2.50, -0.56 1.00 

ES, embryos / ova -0.09 -0.15, -0.03 1.00 

FS, kits / embryos -0.01 -0.09, 0.06 0.57 

PS, kits / ova -0.06 -0.14, 0.01 0.94 

TNB, kits -0.98 -2.10, 0.15 0.96 

NBA, kits -0.35 -1.61, 0.85 0.71 

DH-L: mean of the difference between the high and low lines. HPD95%: highest posterior 

density region at 95%. P: probability of the difference being ˃0 when DH-L ˃0 and probability 

of the difference being < 0 when DH-L<0. OR: ovulation rate. IE: number of implanted 
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embryos. ES: embryonic survival. FS: fetal survival. PS: prenatal survival. TNB: total number 

of kits born. NBA: number of kits born alive.  

Features of the estimated marginal posterior distributions of the phenotypic 

correlations between traits are summarised in Table 5.3. We considered a 

phenotypic correlation irrelevant when it was less than 0.1 in absolute value. In a 

frequentist context we would offer the result of a signification test for the 

correlation coefficient, which has the drawback of being dependent on sample size 

and being rather uninformative, as ‘n.s.’ does not mean a null correlation. Here we 

offer the actual probability PR of a correlation being relevant, or at least non-

irrelevant. The phenotypic correlation between ovulation rate and number of 

implanted embryos was positive (P = 1.00), and relevant in both lines (PR was 0.98 

in the high line and 1.00 in the low line). However, the correlation was near twice as 

high in the homogenous line as in the heterogeneous line. Ovulation rate showed a 

negative correlation with embryo survival (P = 1.00), but was only relevant in the 

heterogeneous line (PR= 0.93). Both results would be in agreement with the lower 

number of implanted embryos in this line (Table 5.2). The other correlations were 

more similar between lines, confirming that the differences appear at early stages 

of gestation. 
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Table 5.3 Phenotypic correlation between traits in the high and low lines. Features 
of the posterior distributions.  

 High line Low Line 

Trait Mean HPD95% P PR Mean HPD95% P PR 

OR, IE 0.30 0.12 , 0.49 1.00 0.98 0.59 0.44 , 0.74 1.00 1.00 

OR, ES -0.29 -0.48 , -0.09 1.00 0.97 -0.15 -0.39 , 0.07 0.90 0.70 

OR, FS 0.07 -0.13 , 0.28 0.74 0.44 0.08 -0.15 , 0.31 0.75 0.50 

OR, PS -0.11 -0.30 , 0.13 0.83 0.52 -0.01 -0.23 , 0.23 0.51 0.41 

EI, ES 0.81 0.73 , 0.88 1.00 1.00 0.69 0.56 , 0.81 1.00 1.00 

EI, FS -0.04 -0.25 , 0.18 0.65 0.39 -0.10 -0.34 , 0.13 0.79 0.55 

EI, PS 0.52 0.36 , 0.67 1.00 1.00 0.26 0.06 , 0.48 0.99 0.93 

ES, FS -0.10 -0.30, 0.12 0.83 0.55 -0.19 -0.43 , 0.02 0.95 0.79 

ES, PS 0.57 0.43 , 0.71 1.00 1.00 0.34 0.12 , 0.54 1.00 0.98 

FS, PS 0.72 0.62 , 0.82 1.00 1.00 0.85 0.78 , 0.91 1.00 1.00 

OR, TNB 0.29 0.10 , 0.48 1.00 0.97 0.43 0.23 , 0.62 1.00 1.00 

IE, TNB 0.67 0.55, 0.78 1.00 1.00 0.50 0.32 , 0.67 1.00 1.00 

ES, TNB 0.48 0.31 , 0.63 1.00 1.00 0.23 -0.01 , 0.44 0.98 0.87 

FS, TNB 0.67 0.57 , 0.79 1.00 1.00 0.80 0.67 , 0.92 1.00 1.00 

PS, TNB 0.91 0.87 , 0.94 1.00 1.00 0.89 0.85 , 0.94 1.00 1.00 

HPD95% = high posterior density interval at 95%.  P: probability of the phenotypic 

correlation coefficient being greater than zero when positive, or lower than zero when 

negative. PR: probability of relevance; i.e., probability of the correlation coefficient higher 

than 0.1 in absolute value. OR: ovulation rate. ES: embryonic survival. FS: fetal survival. PS: 

prenatal survival. IE: number of implanted embryos. TNB: total number of kits born. 

In conclusion, selection for litter size variability showed a negative correlated 

response in embryonic survival, which continued at birth for litter size. 
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Abstract 

A divergent selection experiment for litter size variability was carried out in rabbits. 

Variability of litter size was estimated as phenotypic variance of litter size within 

female. The aim of this study was to assess the effect of selection for litter size 

variability on early embryonic development and survival after seven generations of 

selection. A total of 30 non-lactating multiparous does per line were used in this 

study. Ovulation rate and early embryonic development were analysed using 

Bayesian methodology. Ovulation rate was not affected by the selection process. At 

28 h of gestation, embryonic development and survival were similar in both lines. 

At 48 h of gestation, the majority of embryos were catalogued as early morulae in 

the high litter size variability line (79.54%). This line had a 27% more percentage of 

early morulae (P=0.94) and a 26% lower percentage of compacted morulae 

(P=0.93%) than the low line. At 72 of gestation, the high line had 1.59 embryos less 

than the more homogeneous line (P=0.85), as a consequence of its lower embryonic 

survival (0.60 vs 0.74, P=0.93). The line selected for increasing litter size variability 

continued to show a higher percentage of early morulae (21.01% vs 3.69%, P=0.93) 

and lower percentage of compacted morulae and blastocyst (78.99% vs 96.31%, 

P=0.94) than homogenous line, i.e. the high line also had a lower embryonic 

development at 72 h of gestation. In conclusion, selection for homogeneity in litter 

size evidenced a positive impact on embryonic traits. 

Keywords: Blastocysts, embryonic survival, morulae, ovulation rate, residual 

variance. 

 

Introduction 

Environmental sensitivity in animals has a considerable impact on their 

productivity (Rauw and Gomez-Raya, 2015). Selection for reducing environmental 

variance can lead to animals performing well in adverse environments (Mulder et 

al., 2013). A divergent selection experiment for litter size variability has been 

carried out successfully in rabbits; after seven generation of selection, the line 

selected to increase litter size variability showed a greater variability (+1.19 kits2) 

and a lower mean in litter size (-0.70 kits) than the low litter size variability line, as 
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consequence of a lower number of implanted embryos (-1.38 embryos) (Argente et 

al., 2014a). In addition, this line had a less resilience, i.e. greater sensitivity to illness 

and stressful conditions (García et al., 2012; Argente et al., 2014b). Stress in dams 

increases the failure rates in blastocyst implantation (Liu et al., 2015; Burkuš et al., 

2015) through changes in expression patterns of genes involved in embryo 

development (Marco-Jiménez et al., 2013; Silva et al., 2013). Asynchrony between 

embryonic development and oviductal functionality plays an important role in early 

embryonic losses (Geisert and Schmitt, 2002). Our working hypothesis is that lower 

implantation rate in the line selected to increase litter size variability can be related 

to a retarded embryonic development in relation to the oviductal functionality. 

The aim of this study was to assess the effect of selection for litter size variability on 

early embryonic development and survival in rabbits. 

 

Materials and Methods 

All experimental procedures involving animals were approved by the Research 

Ethics Committee of Miguel Hernández University, Elche on 21 June 2011 

(Reference 98 number DTA-MJA-001-11), in accordance with Council Directives 

98/58/EC and 2010/6/EU. 

Animals 

Animals came from the seventh generation of a divergent selection experiment for 

litter size variability, measured as phenotypic variance of litter size within does after 

correcting for the effects of year-season and parity-lactation status (first parity, and 

lactating or not at mating in other parities). Details of the experiment can be found 

in Argente et al. (2014a). All animals were bred at the farm of the Miguel Hernández 

University, Elche. They were kept under a constant photoperiod of 16 h continuous 

lighting: 8 h continuous darkness and controlled ventilation.  

Traits 

A total of 30 non-lactating multiparous does per line were used in this experiment. 

Does were euthanized at 28, 48 or 72 h post-mating by intravenous administration 
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of sodium thiopental in a dose of 50 mg/kg of body weight (Thiobarbital, B. Braun 

Medical S.A., Barcelona, Spain). The entire reproductive tract was immediately 

removed. Ovulation rate (OR) was estimated as the number of corpora 

haemorrhagica. The number of normal embryos (NE), abnormal embryos, and 

oocytes were counted after collection by perfusion of each oviduct and uterine horns 

with 10 mL of Dulbecco’s phosphate buffered saline containing 0.2% of bovine 

serum albumin. Embryos were classified as normal when they presented 

homogeneous cellular mass and intact zona pellucida and mucin coat (Maurer, 

1978), using a binocular stereoscopy microscope (Leica Mz 9.5-600x). At 28 h of 

gestation, normal embryos were classified as 2-cell embryos (2-cells) or 4-cell 

embryos (4-cells). At 48 h of gestation, normal embryos were classified as early 

morulae (EM) or compacted morulae (CM). At 72 h of gestation, normal embryos 

were classified as early morulae, compacted morulae or blastocysts (B). In all cases, 

number of 2-cells, 4-cells, early morulae, compact morulae and blastocysts were 

expressed as a percentage from the number of normal embryos. Early embryonic 

survival (EES) was estimated as normal embryos divided by ovulation rate. 

Statistical analyses 

All traits were analysed with a model including the fixed effects of line and season. 

The model for OR also included pregnancy stage (28 h, 48 h and 72 h post-mating) 

as fixed effect. The traits were analysed using Bayesian methodology. Bounded flat 

priors were used for all unknowns. Residuals were independently normally 

distributed with mean 0 and variance 2
eσI . The priors for the variances were also 

bounded uniform. Features of the marginal posterior distributions for all unknowns 

were estimated using Gibbs sampling. The Rabbit program developed by the 

Institute for Animal Science and Technology (Valencia, Spain) was used for 

performing the analyses of differences between lines 

(http://www.dcam.upv.es/dcia/ablasco/Programas/THE PROGRAM Rabbit.pdf). 

After some exploratory analyses, we used a chain of 60,000 samples, with a burn-in 

period of 10,000 and only one of every 10 samples saved for inferences. 

Convergence was tested using the Z criterion of Geweke (Sorensen and Gianola, 

2002) and Monte Carlo sampling errors were computed using time-series 

procedures described in Geyer (1992). In all Bayesian analysis, Monte Carlo 

http://www.dcam.upv.es/dcia/ablasco/Programas/THE%20PROGRAM%20Rabbit.pdf
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standard errors were small and lack of convergence was not detected by the Geweke 

test. An advantage of the Bayesian approach through MCMC procedures is the ease 

of computation of confidence intervals and probabilities (see reviews by Blasco, 

2001 and 2005). Bayesian statistics gives a new approach to the description of the 

uncertainty against classical statistics. For example, we can give the median in each 

line and the precision of our estimation, finding the shortest interval with 95% 

probability of containing the true value (what is called the highest posterior density 

interval at 95%). Note that this interval is not dependent on the estimate we give, 

and it can be asymmetric about the median. Besides, we are interested in estimating 

differences between the high and low lines (DH-L), thus we may also calculate the 

probability of this difference being greater than zero [P(DH-L>0)].  

Results and discussion 

Table 6.1 shows the features of the estimated marginal posterior distributions of the 

differences between lines (DH-L) for ovulation rate and early embryonic development. 

When |DH-L| > 0, we consider that there is enough evidence about the high and low 

lines are different, if the probability of |DH-L| is more than 0.80 (P in Table 6.1). Do 

not confuse P with P-value (Blasco 2001, 2005). Johnson (2013) has shown that the 

evidence provided by P-values is lower than they indicate. For example, a P-value of 

0.05 only gives 67% to 75% of evidence, i.e. around a 25% of false positives appear 

with P-values of 0.05. Then P is the actual probability, thus we chose 80% as 

evidence enough. According to the value of P, we see that both lines showed a similar 

ovulation rate (P = 0.70). 
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Table 6.1. Features of the estimated marginal posterior distribution of the 

differences between the high and low lines selected for litter size variability. 

 High linea Low linea DH-L HPD95% P 

ORb 12.43 (2.30) 12.08 (2.35) 0.35 -1.01, 1.57 0.70 

28 h post-matingc       

NE 9.95 (2.86) 10.24 (2.37) -0.29 -3.44, 3.06 0.55 

2C, % 42.64 (29.35) 52.86 (32.21) -10.18 -41.85, 23.10 0.75 

4C, % 57.36 (33.54) 47.14 (31.34) 10.81 -21.43, 40.45 0.75 

EES 0.81 (0.10) 0.84 (0.12) -0.05 -0.25, 0.18 0.63 

48 h post-matingc       

NE 9.92 (2.92) 10.20 (2.35) -0.27 -3.65, 2.85 0.58 

EM, % 79.54 (38.68) 53.43 (37.52) 26.81 -6.06, 62.12 0.94 

CM, % 20.46 (37.40) 46.57 (38.67) -26.16 -60.50, 8.28 0.93 

EES 0.79 (0.11) 0.85 (0.12) -0.06 -0.28, 0.14 0.72 

72 h post-matingc       

NE 7.56 (2.12) 9.18 (3.01) -1.59 -4.76, -1.42 0.85 

EM, % 21.01 (25.71) 3.69 (20.19) 17.36 -6.42, 39.86 0.93 

CM, % 27.38 (34.65) 33.63 (37.19) -7.17 -42.28, 26.07 0.67 

B, % 51.61 (44.43) 62.68 (44.67) -11.27 -50.74, 31.70 0.71 

EES 0.60 (0.10) 0.74 (0.11) -0.14 -0.34, 0.05 0.93 

a: mean (standard deviation). b: 30 does per line. c: 10 does per line. DH-L: median of difference 

between the high and low lines. HPD95%: highest posterior density region at 95%. P: probability of the 

difference being ˃0 when DH-L ˃0 and probability of the difference being < 0 when DH-L<0. OR: 

ovulation rate. NE: Number of normal embryos. 2C: 2-cell embryos. 4C: 4-cell embryos. EM: early 

morulae. CM: compacted morulae. B: blastocysts. 2C, 4C, EM, CM and B were expressed as a 

percentage of their respective number of normal of embryos (NE). EES: early embryonic survival 

(NE/OR). 
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At 28 h of gestation, the high and low lines exhibited similar numbers of recovered 

embryos (P = 0.55) and embryonic survival rate (P = 0.63). No difference in embryonic 

development was found between lines (P = 0.75). We observed similar percentage of 

embryos in 2-cell stage than in 4-cell stage (about a 50% in each one) in both line. The 

literature indicates that the majority of embryos are in 2-cell stage at 25 h post-mating 

(Peiró et al., 2007) and in 4-cell stage at 30 h post-mating (Peiró et al., 2015). Our 

results are in agreement with these studies, corroborating that embryonic 

development at 28 h post-mating is an intermediate stage between 25 h and 30 h post-

mating. 

At 48 h of gestation, no difference was found in number of recovered embryos (P = 

0.58) and embryonic survival (P = 0.72) between the high and low lines. The 

majority of embryos were catalogued as early morulae in the high line (79.54%). 

The high line showed a 27% (2.8 embryos) higher percentage of early morulae 

(P=0.94) and a 26% lower percentage of compacted morulae than the low line 

(20.46% vs 46.57%, respectively, P=0.93). Hence, increasing litter size variability 

revealed a negative effect on early embryonic development.  

At 72 h of gestation, the difference for number of normal embryos increased, and the 

high line had 1.59 embryos less than the more homogeneous line (P = 0.85). Embryonic 

survival was also lower in the high line than in the low line (0.60 vs 0.74, P=0.93). The 

line selected for increasing litter size variability had higher percentage of early 

morulae (21.01% in the high line vs 3.69% in the low line, P = 0.93) and a lower 

percentage of compacted morulae and blastocysts (78.99% in the high line vs 96.31% 

in the low line, P=0.94). Therefore, the high line continued to show a lesser embryonic 

development than the homogeneous line at 72 h of gestation. The embryonic 

development in this line was also smaller than that reported in others maternal lines 

(Mocé et al, 2004; Peiró et al., 2007; Argente et al., 2010), which exhibited a minor 

percentage of early morulae (10% - 14%) and a major percentage of compacted 

morulae and blastocyst (85% - 95%). Several studies have found that embryos with 

a lower development rate showed a higher mortality rate than those with a more 

advance development during gestation (Torres et al., 1987) and at birth Murakami 

and Imai (1996). The high line had a lower number of implanted embryos than the 
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low line after seven generations of selection (10.18 embryos in the high line vs 11.49 

embryos in the low line, Argente et al., 2014a). This difference was maintained at birth 

for litter size (Blasco et al., 2017). These results would be in agreement with lesser 

embryonic development at 48 and 72 h of gestation in the high line, which posteriorly 

has a negative effect on embryonic survival. 

In previous studies, the high line showed a higher subclinical immune response, which 

is related to a higher sensitivity to usual microenvironmental microorganisms in the 

farm (García et al., 2012; Argente et al., 2014b). These results are in agreement with a 

higher sensitivity to stress and a larger probability to ill in the high line than the low 

one. We hypothesize that the line selected for increase litter size variability can delay 

the development of the embryos, as a consequence of higher sensitivity to illness and 

to stress than the homogenous line. It is known that embryo development can be 

delayed under stress due to disruption of protein involving embryonic growth 

(review by Puscheck et al., 2015). For example, lack of DICER1, MATER, ZAR1, 

PADI6, and SEBOX does not allow embryo to develop beyond the 2-cell stage, while 

embryo is unable to reach the 8-cell or morulae stage in absence either of SMARCA4, 

DNMT1, DNMT3A, TET, KLF4 or OCT4, NANOG, SOX2, respectively (see review by 

Argente, 2016). Moreover, the survival of an embryo that reaches the oviduct 

environment in a less developed state than the oviduct per se will be compromised 

in the early stages of pregnancy due to an asynchrony problem (review by Geisert 

and Schmitt, 2002). It has reported that, although, lesser development embryos can 

survive beyond implantation, they would probably die soon after that due to fetal 

competence for uterine space, and a poor blood supply (Mocé et al., 2004; Argente 

et al., 2008). Selection for litter size variability modifies early embryo development 

starting from 48 h of gestation, leading with a lower embryo development and a 

lower percentage of normal embryos in the line selected for increasing litter size 

variability. These results show negative relationships between litter size variability 

with embryonic development and survival in early stages of gestation.  

Conclusions 

Selection for litter size variability did not seem to affect ovulation rate. Nevertheless, 

there was a negative correlated response in early embryonic development and 

survival.  
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In recent years, there has been an increasing interest in the genetic 

determination of the environmental variance (Morgante et al., 2015; Sørensen et al., 

2015). In animal breeding, a decrease in environmental variance will increase the 

heritability, being particularly interesting for increasing the response to selection in 

low heritability traits, such as litter size (Argente et al., 2010; Formoso-Rafferty et 

al., 2016). Moreover, selection for reducing environmental variability can be useful 

for livestock industry, which is demanding a more homogeneous production 

(Mulder et al., 2008). 

The animals object of this thesis come from two lines divergently selected by 

litter size environmental variability in rabbit. In this experiment, the use of complex 

models on environmental variability is avoided by directly selecting for this trait as 

an observed trait (Argente et al., 2014a). The selection criterion is based on 

phenotypic variance of litter size within female after correcting litter size for the 

effects of year-season and parity-lactation status. Genetic and permanent effects are 

common for all records of each female (Piles et al., 2006), thus correcting litter size 

for systematic effects leaves only the residual random effect, and the phenotypic 

variance within female is a direct estimate of the environmental variability of litter 

size. 

After seven generations of selection, the high (H) and the low variability (L) 

lines showed a difference of 1.19 kits2 for environmental variability (Argente et al., 

2014a). Our hypothesis is that females can show a higher litter size variability due 

to high sensibility to stress and a lower disease resistance. In this regard, Argente et 

al. (2014b) found a lower immune response against pathogenic agents in females 

from the heterogeneous line, showing greater sensitivity to diseases than those from 

the homogeneous line. For this reason, three experiments were proposed to analyse 

the effect of selection for litter size variability in body condition and energy 

mobilization, such as biomarkers of animal welfare (Chapter 4), in litter size and its 

components (Chapter 5), and in early embryo survival and development (Chapter 

6). 

Stress has a negative effect on resource allocation and body condition 

(Elsasser et al., 2000; Broom, 2008). Therefore, animal welfare can be measured by 
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the management of body reserves and energy mobilization at decisive moments in 

the production of females, i.e. mating (Castellini et al. 2006; Brecchia et al. 2006), 

delivery (Rebollar et al., 2011; Savietto et al., 2016) and early lactation (Quevedo et 

al., 2006). Body condition is related to body fat reserves (review by Chilliard, 1993), 

and NEFA levels reflect essentially the breakdown of body fat reserves (Herdt, 

2000). Firstly, we have studied the relationship between body reserves and 

energetic mobilization at mating, delivery and 10 d after delivery (Chapter 3). We 

have shown that body weight and perirenal fat thickness are good indicators of body 

reserves at mid-long term. They are necessary to measure at least in these three 

moments, because some of the correlations between measurements were not so 

high, therefore all of them give useful information about the energy balance in one 

reproductive cycle of the female. When the energetic mobilization is necessary to be 

measured, both NEFA before and after stimulating lipolysis were good indicators at 

short term. Both NEFAs showed high positive correlations when measured at the 

same time, but low correlations when measured at different times. 

After seven generations of selection for litter size variability, there is some 

evidence that the H line had lower body fat than the L line at delivery (-0.16 mm) 

and 10 d after delivery (-0.17 mm), thus the line selected for homogeneity had a 

better body condition. At delivery, a time of high-energy demands, the L line 

exhibited a 30% higher concentration in NEFA after stimulating lipolysis than the H 

line, thus the homogenous line had a better mobilization of fat reserves. Therefore, 

the does from the L line exhibited better body condition and more efficient 

management in their body reserves under strong energetic demand, which suggests 

a higher health and welfare in animals from this line. 

It is known that females under stress could reduce their productivity, 

measured as litter size (Zhao et al., 2013, in pigs; Zheng et al., 2016, in mice). In our 

experiment, the H line showed 0.98 kits at second birth less than the L line. When 

litter size components were studied; the ovulation rate was similar in both lines. 

However, the number of implanted embryos were lower in the H line than in the L 

line (-1.48 embryos), as a consequence of a lower embryonic survival in the H line 

than in the L line (-0.09). Therefore, selection for residual litter size variability has a 

negative correlated response in number of implanted embryos and litter size. The 
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correlation between the mean and the variance of litter size has been the goal of 

several studies, with different results. A negative correlation has been detected in 

uterine capacity (Ibáñez-Escriche et al., 2008), a trait highly correlated with litter 

size (Argente et al., 2000). Nevertheless, reanalysing the data after normalising the 

residuals, Yang et al. (2011) found a low positive relationship between both traits. 

Therefore, our results corroborate those found by Ibáñez-Escriche et al. (2008). 

Early stages of pregnancy are more vulnerable to prenatal stress than later 

stages, usually due to changes in oviductal environment (Zheng et al., 2016). For 

that, embryo survival and development were studied in our lines at 28 h, 48 h and 

72 h of gestation. At 28 h of gestation, embryonic development and survival were 

similar in both lines, but at 48 h and 72 h of gestation, the line selected for increasing 

litter size variability showed lesser embryonic development and survival than the 

homogeneous line. It could be expected that higher percentage of normal and the 

advanced embryonic development in the L line could be due to favorable endocrine 

environment. The oviduct synthesizes and secretes many proteins in many species 

including the rabbit (Oliphant et al., 1984), swine (Buhi and Alvarez, 2003), sheep 

and cattle (Nancarrow and Hill, 1995) which influence the gene expression of the 

developing embryos. Several proteins have an important role in embryo 

development and embryogenesis regulating (IGF1, Herrler et al., 1998; oviductine, 

Buhi, 2002; TIMP1, Hwang et al., 2000; uteroglobine, Riffo et al., 2007; leptin, Zerani 

et al., 2004). 

Our results are agreeing with that selection for litter size variability affects the 

environmental sensitivity of the females. Some indirect indicators, such as body 

condition and energy mobilization or productivity of the females, measured as litter 

size and its components, and embryos survival and development, showed that 

selection for homogeneity of litter size produced females with more capacity to 

adapt to stressful conditions than selection for heterogeneity of litter size. The 

pattern observed in this work might also be applied in other species in livestock 

production.  
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1. Body weight and perirenal fat thickness showed a high positive correlation 

between them, and they were related to body condition. 

 

2. Non-esterified fatty acids, before (NEFAb) and after lipolysis stimulation by 

isoproterenol (NEFAr), exhibited a high positive correlation between them when 

they were measured at the same physiologic status. 

 

3. NEFAs displayed low correlations with body condition measurements. 

 

4. Body weight and perirenal fat thickness are related with fat reserves mobilization 

at mid-term, and NEFAs concentrations are related with the energy balance in the 

short-term. 

 

5. The line selected to increase litter size variability showed lower fat thickness than 

the homogenous line at delivery (-0.16 mm, P = 0.86), and this difference 

remained at 10 d after delivery (-0.17 mm, P = 0.86). Therefore, the line selected 

for homogeneity had a better body condition. 

 

6. The homogenous line exhibited 30% more concentration in NEFAr (P = 0.96) at 

delivery than the heterogeneous one, thus the homogenous line had a better 

mobilization of fat reserves. 

 

7. The does selected for litter size homogeneity would be able to better deal with 

situations of high energy demand than does with higher litter size variability, 

indicating a more resiliency in these females. 

 

8. Ovulation rate was similar in the lines selected to increase and decrease litter size 

variability.  

 

9. The line selected for homogeneity in litter size showed more embryos at 

implantation (11.53 embryos vs. 10.20 embryos, P = 1.00) and higher embryonic 

survival than the heterogeneous line (0.87 vs. 0.78, P = 1.00).  
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10. A higher uterine overcrowding of embryos in the homogeneous line did not 

penalise fetal survival, and as a result, this line continued showing a greater 

number of kits born at birth than the heterogeneous one (7.94 kits vs. 7.16 kits, P 

= 0.96).  

 

11. At 48 h of gestation, the heterogeneous line showed a 27% higher percentage 

of early morulae (P=0.94) and a 26% lower percentage of compacted morulae 

(P=0.93) than the homogeneous one, which is more advance embryonic 

development stage.  

 

12. At 72 h of gestation, the line selected to increase litter size variability continued 

to show a lesser embryonic development than the homogeneous line (21.01% vs. 

3.69% for percentage of early morulae, P=0.93; and 78.99% vs. 96.31% for 

percentage of compacted morulae and blastocysts, P=0.94).  

 

13. A lower embryonic development in the heterogeneous line was related a lower 

embryonic survival than in the homogeneous line (-0.14, P=0.93) at 72 h of 

gestation.  

 
14. Selection for higher litter size variability showed a negative correlated 

response in embryonic development and survival, which continued at 

implantation and posteriorly at birth for litter size. 
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