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Abstract

In this work a technique to improve the condition number si of a simple eigen-
value λi of a matrix A ∈ Cn×n is given. This technique obtains a rank one
updated matrix that is similar to A with the eigenvalue condition number of
λi equal to one. More precisely, the similar updated matrix A + viq

∗, where
Avi = λivi and q is a fixed vector, has si = 1 and the remaining condition num-
bers are at most equal to the corresponding initial condition numbers. More-
over an expression to compute the vector q, using only the eigenvalue λi and its
eigenvector vi, is given.
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1. Introduction

Let A ∈ Cn×n and let λi be a simple eigenvalue of A with associated right
and left eigenvectors vi and li, respectively. The condition number of λi is given
by

si =
∥vi∥ ∥li∥
|l∗i vi|

≥ 1,

that is, si is the inverse of the cosine of the angle between the right and left
eigenvectors of A associated with λi (see [6, 8, 9]). To compute si some authors
assume that the right and left eigenvectors are normalized. However, we assume
that the right eigenvectors are normalized and the left eigenvectors are chosen
in such away that l∗i vi = 1.

The interpretation of the condition number of an eigenvalue λi is that an
O(ϵ) perturbation in A can cause an O(ϵsi) perturbation in the eigenvalue λi.
So, if si is near to 1 a perturbation in A will have less effect. Byers and Kressner
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[5] study the variation of the condition number of a complex eigenvalue under
a real perturbation and they show that restricting the backward error to be
real the condition number decreases at most by a factor of 1/

√
2. Therefore, an

interesting and more general problem is the following: Can we update the matrix
A maintaining the same spectrum and improving the corresponding eigenvalue
condition numbers?

In this work, we show that an n × n complex matrix with n distinct and
ill conditioned eigenvalues can be updated, with a rank one perturbation, to a
similar matrix such that one of its eigenvalue condition number is one and the
remaining eigenvalue condition numbers are less or equal than the correspon-
ding of those of the matrix A. In addition, the sensitivity of eigenvectors are
given. Finally, Theorem 2 gives a method to obtain this rank one perturbation
where it is only necessary to know one eigenvalue and its corresponding right
eigenvector.

It is worth to note that the rank one modification has also been used to
update the singular value decomposition [3] and the symmetric eigenproblem
[4].

2. Improving eigenvalue condition numbers

In this section we apply the Brauer’s Theorem and the results given in [2, 7]
to improve the eigenvalue condition number of a matrix with pairwise distinct
eigenvalues.

Theorem 1. Let A ∈ Cn×n be a matrix with eigenvalues λ1, λ2, . . . , λn, pair-
wise distinct, and v1, v2, . . . , vn, their associated unit right eigenvectors. Let
s1, s2, . . . , sn, be the corresponding eigenvalue condition numbers. Then, there
exists an n-dimensional vector q(1), with q∗(1)v1 = 0, such that the matrix

A(1) = A + v1q
∗
(1) is similar to A and the corresponding condition numbers of

its eigenvalues satisfy that s
(1)
1 = 1 and s

(1)
i ≤ si, for i = 2, 3, . . . , n. Moreover,

if v
(1)
1 , v

(1)
2 , . . . , v

(1)
n are the associated eigenvectors of A(1), then∥∥∥v(1)i − vi

∥∥∥ = | < vi, v1 > | = |v∗1vi| i = 2, 3, . . . , n.

Proof. Let q be an arbitrary solution of the equation q∗v1 = 0. By
the Brauer’s Theorem (see [1, 2]) A and A + v1q

∗ are similar matrices. Let
l1, l2, . . . , ln, be the left eigenvectors of A associated with λ1, λ2, . . . , λn, res-
pectively, and such that l∗j vi = δij , i, j = 1, 2, . . . , n. Then, the eigenvalue
condition numbers are

si =
∥vi∥ ∥li∥
|l∗i vi|

= ∥li∥, i = 1, 2, . . . , n.

By [2, Propositions 1.1. and 1.2.] and [7], the right {w1, w2, . . . , wn} and
left {r1, r2, . . . , rn} eigenvectors of A+ v1q

∗ associated with λ1, λ2, . . . , λn, are
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respectively

w1 = v1, wi = vi −
q∗vi

λ1 − λi
v1, i = 2, 3, . . . , n,

r∗1 = l∗1 +
∑n

i=2

q∗vi
λ1 − λi

l∗i , r∗i = l∗i , i = 2, 3, . . . , n.

 (1)

Since

r∗1w1 = r∗1v1 =

(
l∗1 +

n∑
i=2

q∗vi
λ1 − λi

l∗i

)
v1 = l∗1v1 +

n∑
i=2

q∗vi
λ1 − λi

l∗i v1 = 1, (2)

r∗iwi = l∗iwi = l∗i

(
vi −

q∗vi
λ1 − λi

v1

)
= l∗i vi −

q∗vi
λ1 − λi

l∗i v1 = 1, i = 2, 3, . . . , n,

the condition numbers s̃i of the eigenvalues λi, i = 1, 2, . . . , n, of the updated
matrix A+ v1q

∗ are

s̃1 =
∥w1∥ ∥r1∥
|r∗1w1|

= ∥v1∥ ∥r1∥ = ∥r1∥,

s̃i =
∥wi∥ ∥ri∥
|r∗iwi|

= ∥wi∥ ∥li∥ = ∥wi∥ si, i = 2, 3, . . . , n.

 (3)

Therefore, s̃i ≤ si, whenever ∥wi∥ ≤ 1, for i = 2, 3, . . . , n.

Since wi = vi −
q∗vi

λ1 − λi
v1, by the approximation theory the vector wi has

minimal norm when
q∗vi

λ1 − λi
v1 is the orthogonal projection of vi on span{v1},

that is, when

q∗vi
λ1 − λi

v1 = Projv1(vi) =
< vi, v1 >

∥v1∥2
v1 = (v∗1vi) v1.

Then, we need that the vector q satisfies the following system

q∗v1 = 0,
q∗vi = (λ1 − λi) (v

∗
1vi) , i = 2, 3, . . . , n.

}
(4)

Let q(1) be the unique solution of this consistent system. Consider now the

updated matrix with this unique solution A(1) = A + v1q
∗
(1) and let us denote

the eigenvectors of this matrix with the superscript (1). By (1) the right and

left eigenvectors of A(1), {v(1)1 , v
(1)
2 , . . . , v

(1)
n } and {l(1)1 , l

(1)
2 , . . . , l

(1)
n } respectively,

associated with λ1, λ2, . . . , λn, are given by

v
(1)
1 = v1, v

(1)
i = vi − (v∗1vi) v1, i = 2, 3, . . . , n,(

l
(1)
1

)∗
= l∗1 +

∑n
i=2 (v

∗
1vi) l

∗
i ,

(
l
(1)
i

)∗
= l∗i , i = 2, 3, . . . , n.

}
(5)

Since vi and v1 are unit vectors, note that
∥∥∥v(1)i

∥∥∥ ≤ 1, for i = 2, 3, . . . , n.

Then, by equation (3) applied to the right eigenvector v
(1)
i , the corresponging
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eigenvalue condition numbers of A(1) satisfy

s
(1)
i =

∥∥∥v(1)i

∥∥∥ si ≤ si, i = 2, 3, . . . , n.

It remains to prove that s
(1)
1 =

∥∥∥l(1)1

∥∥∥ = 1. The right and left eigenvectors of

A(1) satisfy

⟨v(1)i , v
(1)
1 ⟩ =

(
v
(1)
1

)∗
v
(1)
i = 0, and

< v
(1)
i , l

(1)
1 >=

(
l
(1)
1

)∗
v
(1)
i =

l∗1 +

n∑
j=2

(v∗1vj) l
∗
j

 (vi − (v∗1vi) v1) = 0,

for i = 2, 3, . . . n. Then

l
(1)
1 ∈ span

{
v
(1)
2 , v

(1)
3 , . . . , v

(1)
n−1, v

(1)
n

}⊥
= span

{
v
(1)
1

}
,

and therefore
l
(1)
1 = α v

(1)
1 .

Applying equation (2) to the new eigenvectors we have
(
l
(1)
1

)∗
v
(1)
1 = 1. On the

other hand, (
l
(1)
1

)∗
v
(1)
1 =

(
α
(
v
(1)
1

)∗)
v
(1)
1 = α

∥∥∥v(1)1

∥∥∥2 = α.

Then, α = 1 and

l
(1)
1 = v

(1)
1 . (6)

Using equation (3) s
(1)
1 = 1, since

∥∥∥v(1)1

∥∥∥ = 1.

Finally, by (5) we obtain∥∥∥v(1)i − vi

∥∥∥ = | < vi, v1 > | = |v∗1vi| i = 2, 3, . . . , n.

�
We illustrate the results of Theorems 1 with the following example, where

we have used MatLab.

Example 1. Consider the matrix

A =


−149 −50 −154 −1
537 180 546 2
−27 −9 −25 1

0 0 0 2.9999


with eigenvalues λ1 = 1, λ2 = 2, λ3 = 3, λ4 = 2.9999, and the corresponding
eigenvalue condition numbers

s1 = 619.826169515, s2 = 437.718033299,
s3 = 1006180.948310136, s4 = 1006143.406357263.
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Applying Theorem 1 with the right eigenvector v1 associated with λ1 = 1 we
obtain the matrix A(1) = A + v1q

∗
(1), similar to A, such that its eigenvalue

condition numbers are

s
(1)
1 = 1, s

(1)
2 = 60.9478235921,

s
(1)
3 = 252507.4326370870, s

(1)
4 = 252533.6146298055.

Remark 1. Note that if we apply Theorem 1 to the matrix of the Example 1
using the eigenvalue λ3 = 3 we obtain the updated matrix A(1) = A + v3q

∗
(3)

with the eigenvalue condition numbers

s
(1)
1 = 155.5492761525672, s

(1)
2 = 167.7693394271733,

s
(1)
3 = 1, s

(1)
4 = 36.7972549222763.

This fact shows that the improvement of the eigenvalue condition numbers
depends on the eigenvector with we are working on. Then, to choose the eigen-
vector to use is a natural question. The following theorem gives some insight
on this question.

Proposition 1. Let A ∈ Cn×n be a matrix with eigenvalues λ1, λ2, . . . , λn,
pairwise distinct. Let v1, v2, . . . , vn and let l1, l2, . . . , ln be their associated right
and left eigenvectors, such that, ∥vi∥ = 1, i = 1, 2, . . . , n, and l∗i vj = δij. Let
s1, s2, . . . , sn be the corresponding eigenvalue condition numbers.

Let A(1) be the matrix obtained by applying Theorem 1 to matrix A working
with the right eigenvector associated with λ1. Then the eigenvalue condition
numbers of A(1) are given by

s
(1)
1 = 1, and s

(1)
i = | sin(α1i)| si, for i = 2, 3, . . . , n,

where α1i denotes the angle between the vectors v1 and vi.

Proof. Let α1i be the angle between the vectors v1 and vi, i = 2, 3, . . . , n.
By definition of eigenvalue condition number we have, for i = 2, 3, . . . , n, that

s
(1)
i =

∥∥∥v(1)i

∥∥∥∥∥∥l(1)i

∥∥∥∣∣∣(l(1)i

)∗
v
(1)
i

∣∣∣ =
∥∥∥v(1)i

∥∥∥ ∥li∥ =
∥∥∥v(1)i

∥∥∥ si = | sin(α1i)| si.

�
Consequently, smaller angle between the vectors v1 and vi better eigenvalues

condition number s
(1)
i of A(1). Of course an alternative method can be used for

instance choosing the eigenvalue with the largest condition number as we can
done in Remark 1.

Next result gives an expression to compute q(1) by a matrix vector product.
Note that this expression use only one eigenvalue and its right eigenvector.

Theorem 2. The unique solution of the system (4) can be obtained directly by

q∗(1) = v∗1(λ1I −A). (7)
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Proof. Consider the similar matrices A and A(1) = A+v1q
∗
(1) of Theorem 1.

Let JA = V −1AV be the Jordan form of A, where

V = [v1 v2 . . . vn] and V −1 =


l∗1
l∗2
...
l∗n

 ,

with ∥vi∥ = 1, i = 1, 2, . . . , n. Then

JA = JA(1) =
(
V (1)

)−1

A(1)V (1).

By equations (5) and (6) we have

V (1) = [v
(1)
1 v

(1)
2 . . . v

(1)
n ] = [v1 v2 − (v∗1v2)v1 . . . vn − (v∗1vn)v1],

(
V (1)

)−1
=


v∗1
l∗2
...
l∗n

 .

Therefore, A(1) =
(
V (1)V −1

)
A
(
V
(
V (1)

)−1
)
= T−1

1 AT1, where

T1 = [v1 v2 . . . vn]


v∗1
l∗2
...
l∗n

 = v1v
∗
1 + v2l

∗
2 + v3l

∗
3 + · · ·+ vnl

∗
n

= v1v
∗
1 + I − v1l

∗
1 = I + v1 (v

∗
1 − l∗1) ,

T−1
1 = I − v1 (v

∗
1 − l∗1) .

Then,

A(1) = A+ v1q
∗
(1) = T−1

1 AT1 = (I − v1 (v
∗
1 − l∗1)) A (I + v1 (v

∗
1 − l∗1))

= (I − v1 (v
∗
1 − l∗1)) (A+ λ1v1 (v

∗
1 − l∗1))

= A+ λ1v1 (v
∗
1 − l∗1)− v1v

∗
1A+ λ1v1l

∗
1 − λ1v1 (v

∗
1 − l∗1) v1 (v

∗
1 − l∗1)

= A+ λ1v1v
∗
1 − v1v

∗
1A

= A+ v1 (λ1v
∗
1 − v∗1A) .

Note that, the vector λ1v
∗
1 − v∗1A satisfies

(λ1v
∗
1 − v∗1A) v1 = λ1v

∗
1v1 − v∗1Av1 = λ1∥v1∥2 − λ1∥v1∥2 = 0,

and for i = 2, 3, . . . , n,

(λ1v
∗
1 − v∗1A) vi = λ1v

∗
1vi − v∗1Avi = λ1v

∗
1vi − λiv

∗
1vi = (λ1 − λi)(v

∗
1vi).
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Then, the system (4) has a unique solution

q∗(1) = λ1v
∗
1 − v∗1A = v∗1(λ1I −A).

�

Remark 2. Note that this rank one updated process can be applied recursively
without losing the improved condition numbers. That is, with the matrix A(1) =

A + v1q
∗
(1) we obtain a rank one updated matrix A(2) = A(1) + v

(1)
2 q∗(2), where

v
(1)
2 is the right eigenvector of A(1) associated with λ2 and where q(2) is obtained
by the updated expression (7)

q∗(2) =
(
v
(1)
2

)∗ (
λ2I −A(1)

)
.

Now, the eigenvalue condition numbers of the eigenvalues of A(2), λ1 and λ2,
are both equal to 1 and the remaining condition numbers are less than or equal
to those of the initial matrix.
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