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Abstract 

 Different amounts of epoxidized linseed oil (ELO) have been added to poly(lactic 

acid)-PLA composites with hazelnut shell flour (HSF) to provide a plasticizing effect and 

improve the low intrinsic ductile properties of PLA/HSF composites. Mechanical, 

thermal, thermo-mechanical and dynamic mechanical properties have been studied in 

terms of the weight percentage ELO. Mechanical resistant properties in both tensile and 

flexural tests decrease with wt.% ELO while a remarkable increase with wt.% ELO is 

obtained. These results reveal a clear plasticization effect of ELO but, in addition, internal 

structure of PLA/HSF/ELO composites shows good PLA-HSF (matrix-particle) 

interactions so that indicating that ELO also provides a coupling effect between PLA 

matrix and HSF filler. ELO addition leads to a decrease in storage modulus (G’) obtained 

by dynamic mechanical thermal analysis (DMTA) in torsion mode thus giving clear 

evidence of the plasticization effect of ELO. Overall, the use of ELO in PLA/HSF 

composites is an attracting way to improve the low intrinsic fragility of these green 
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composites; furthermore, ELO provides an improvement on thermal stability and a 

coupling effect between the polymer matrix and the surrounding lignocellulosic filler. 

 

Keywords: A. Particle-reinforcement; B. Interface/interphase; D. Mechanical testing; E.  

Injection moulding. 

 

1.- Introduction. 

 In the last years, a remarkable increase in the development of high 

environmentally friendly materials has been detected in the field of polymers and polymer 

composites. The high concern of society about environment protection has promoted the 

development of new “eco”, “bio” or “green” materials. One of the main features of these 

new materials is their natural origin and/or potential biodegradability. So that, substitution 

of commodity plastics from petrochemical origin by biobased polymers is a challenge for 

the plastics and polymer composite industries as they do not generate harmful wastes at 

the end of the life cycle. With regard to polymer composites, the use of natural 

reinforcements (fibers, particulates, flours) such as vegetable fibers (jute, hemp, flax, 

sisal, Posidonia oceanica, etc.) or lignocellulosic particles (sawdust, peanut shell, almond 

shell, rice husk, spend coffee ground, etc.)[1-6] and other cellulose particles, contributes 

to obtain high environmentally friendly composite materials with new and attracting uses. 

These new uses include applications of conventional wood plastic composites (WPCs) in 

the building industry (outdoor deck floors, fences, window and door frames, railings, etc.) 

as well as in some technologic sectors such as automotive (parcel shelves, front and rear 

door linens, seat backs, headliners, etc.)[7]. 

 Poly(lactic acid), PLA is one of the most widely used biopolymer in the field of 

plastics (packaging) and green composites. Poly(lactic acid) is obtained by 



polymerization of lactic acid which is a natural monomer obtained by fermentative 

processes from sugar-rich compounds such as cellulose and starches (potato, corn, wheat, 

sugarcane, etc.)[8, 9]. PLA is a fragile thermoplastic with good mechanical resistance 

similar to polystyrene, PS. The molecular chain structure is similar to most thermoplastics 

and it can be manufactured by conventional processing techniques. In the last years, some 

researches have focused on the development of fully biobased composites with natural 

reinforcements, mainly natural fibers or woof flours. Hazelnut shell is a byproduct of the 

food industry. It is an industrial waste, so that it is cost effective and upgrading it is an 

interesting challenge. This filler can be grinded to give a lignocellulosic flour that can 

provide wood like appearance to polymer composites. It can be used as 

reinforcement/filler with a wide variety of polymeric matrices to give wood-like materials 

that contribute to preserve forestry resources[10-21]. Although these composites are 

attractive for some technical uses, one important drawback is their excessive fragility, 

which results from the high intrinsic account the relatively low hydrophilic nature of PLA 

and the extremely high hydrophilic nature of the lignocellulosic filler, poor matrix-

particle interactions are achieved thus leading to stress concentration phenomena that also 

contributes to fragility. For this reasons, research on how to reduce fragility of PLA-based 

composites is being investigated. One approach is focused on the use of compatible 

plasticizers for PLA and another approach considers the use of compatibilizer agents to 

act as a bridge between the hydrophobic PLA matrix and the highly hydrophilic 

surrounding particles. 

 In general terms, the use of plasticizers lead to a decrease in the PLA glass 

transition temperature (Tg PLA); they also favor cold crystallization and the resulting 

material is more flexible. Yu et al. concluded that poly(ethylene glycol), PEG is an 

effective plasticizer for PLA and contributes to a remarkable improvement on the impact 



strength of PLA. On the other PEG-plasticized PLA shows very low migration levels. 

Oligomeric lactic acid (OLA) gives excellent plasticizing properties to PLA as reported 

by Burgos et al. with a noticeable improvement on PLA ductile properties. Other research 

works focus on monomeric plasticizers (lactic acid, citrate esters, low-molecular weight 

ester-type, etc.), oligomeric and polymeric plasticizers such as commercial adipates 

(DOA - (bis(2-ethylhexyl) adipate), lactic-acid derived polymers, poly(ethylene glycol), 

poly(propylene glycol), etc.[8, 22-29].  

On the other hand, the use of coupling agents or compatibilizers provides intense 

PLA matrix-lignocellulosic filler interactions that contribute to decrease fragility. 

Chemical coupling agents such as N,N-(1,3-phenylene dimaleimide) and 1,1-

(methylenedi-4,1-phenylene) bismaleimide contribute to improved adhesion between 

PLA and dispersed lignocellulosic fillers thus leading to a remarkable increase in overall 

mechanical performance[10, 30]. Other successful coupling systems include silane-based 

coupling agents, alkali soaking, maleic anhydride treatment. All these coupling systems 

have demonstrated their usefulness in improving PLA-cellulosic particle interactions, 

with a considerable increase in elongation at break of PLA/cellulosic composites as well 

as reducing their impact behavior[31-37]. Other researchers analyzed the effectiveness of 

acrylic core-shell rubbers, coconut oil, sodium-montmorillonite, ionic liquids, etc. as 

coupling agents with a noticeable reduction of fragility [38-41]. 

 Epoxidized linseed oil (ELO) is a vegetable obtained by an epoxidation process 

of industrial oil coming from flax seed. Its main features are null volatility, extremely low 

migration tendency and high resistance to extraction in aqueous media or hydrocarbons 

(natural or biobased). Some authors have proved the efficiency of epoxidized vegetable 

oils as plasticizers for PLA and other polymers such as poly(vinyl chloride), PVC. Ali et 

al. concluded that epoxidized soybean oil (ESBO) offers good plasticizing effect to PLA 



with a remarkable increase in flexibility. Epoxidized palm oil (EPO) was tested by 

Silverajah et al. as plasticizer for PLA with an optimum amount of 1 wt.% with a 

noteworthy improvement of mechanical and thermal properties. Prempeh et al. used 

epoxidized sunflower oil (ESFO) to give high elongation at break to PLA (four times 

higher than unplasticized PLA)[23-25, 42-47]. 

 The main aim of this study is to reduce the high intrinsic fragility of poly(lactic 

acid), PLA – hazelnut shell flour (HSF) by using a biobased plasticizer from epoxidized 

linseed oil (ELO).  Mechanical, thermal and thermomechanical properties of PLA – HSF 

green composites are evaluated in terms of the epoxidized linseed oil (ELO) load in the 0 

– 22.5 wt.% range. 

 

2.- Experimental. 

2.1.- Materials. 

 Poly(lactic acid), PLA commercial grade Ingeo 6201D was supplied by 

NatureWorks LLC (Minnesota, USA). This grade is characterized by a melt flow index 

in the 15 – 30 g/10 min range and a density of 1.24 g cm-3. 

 Hazelnut shell waste (Corylus avellana) was obtained from the food industry and 

subjected to a grinding process to an average particle size of 63 m to give a 

homogeneous flour (hazelnut shell flour, HSF). Hazelnut shell was grinded in an ultra 

centrifugal mill from Retsch GmbH (Hann, Germany) at a rotating speed of 10000 rpm.  

 Epoxidized linseed oil (ELO), CAS number 8016-11-3 was used as plasticizer in 

PLA – HSF green composites. ELO with an oxyrange oxygen content of 8% and a iodine 

value of 5% was supplied by Traquisa S.L. (Barcenola, Spain). This epoxidized oil is 

characterized by a molecular weight of about 1037 g mol-1, a density of 1.05-1.06 g cm-3 

at 20 ºC and a viscosity of 8-11 p at 25 ºC. It shows high thermal stability with a 



flammability temperature of 287 ºC and it is not water-soluble. The average fatty acid 

profile is: 3-5% stearic acid, 5-7% palmitic acid, 14-20% linoleic acid, 18-26% oleic acid 

and 51-56% linolenic acid. 

2.2.- Manufacturing of PLA – HSF composites with different ELO loads. 

 Initially, both poly(lactic acid) pellets and hazelnut shell flour were dried at 60 ºC 

for 24 h to remove moisture. After this, PLA, HSF and ELO were weighed according to 

the compositions defined in Table 1. 

 

Table 1 

 

 All four compositions were extruded in a twin screw co-rotating extruder from 

DUPRA S.L. (Castalla, Spain). The temperature profile in the extruder was set to 176 ºC, 

180 ºC, 185 ºC and 192 ºC (from the hopper to the die) and the rotating speed was set to 

40 rpm. After extrusion, the different compositions were pelletized for further processing 

by injection molding in a Meteor 270/75 from Mateu & Solé (Barcelona, Spain). The 

injection temperature was set to 190 ºC, the cavity filling time was 1 second and the 

cooling time was set in 10 seconds. Standard samples for different tests were obtained 

with a thickness of 4 mm. 

 

2.3.- Testing and characterization. 

Mechanical Testing.  

 Tensile properties of ELO modified PLA – HSF composites were obtained as 

indicated in the UNE-EN-ISO 527-1 standard in a universal test machine ELIB 30 from 

S.A.E. Ibertest (Madrid, Spain). The selected load cell was 5 kN. Samples with a total 

length of 150 mm and a cross section of 10x4 mm2 (type 1A) were subjected to tensile 



tests at a crosshead speed was set to 10 mm min-1. The same machine was used for flexural 

characterization of composites by following the guidelines of the ISO 178 with a 

crosshead rate of 5 mm min-1. The impact strength was tested in a 1 J Charpy pendulum 

from Metrotec S.A. (San Sebastián, Spain) as suggested by ISO 179. Finally, Shore D 

hardness of PLA – HSF with different ELO content was measured in a Shore D durometer 

mod. 673-D from J. Bot S.A. (Barcelona, Spain) following the UNE-EN ISO 868. At least 

five different samples were tested for each mechanical property and average values were 

calculated. 

 

Microscopic characterization. 

 Fractured surfaces from impact tests and cryofractured surfaces of PLA – HSF 

with different ELO content were observed by field emission scanning electron 

microscopy (FESEM), mod. Zeiss Ultra 55 de Oxford Instruments (Abingdon, United 

Kingdom) at an acceleration voltage of 2 kV. Samples were covered with a thin platinum 

layer in a high vacuum sputter coater EM MED20 from Leica Microsystem (Milton 

Keynes, United Kingdom). 

  

Thermal and thermo-mechanical characterization. 

 Thermal transitions of PLA – HSF composites with varying ELO content were 

obtained by differential scanning calorimetry (DSC) in a DSC calorimeter mod. 821 from 

Mettler Toledo Inc. (Schwerzenbach, Switzerland). Samples with an average weight of 

7-10 mg were subjected to a three step program with an initial heating cycle from 30 ºC 

to 200 ºC at 10 ºC min-1 to remove thermal history followed by a cooling to -50 ºC at a 

heating rate of -10 ºC min-1. Finally, a second heating cycle from -50 ºC up to 350 ºC at 



10 ºC min-1 was used to evaluate all thermal transitions. All thermal cycles were 

performed in presence of a nitrogen atmosphere at 66 mL min-1. 

 Thermogravimetric analysis (TGA) was used to evaluate thermal stability of PLA 

– HSF composites at high temperatures. The heating program was from 30 ºC to 700 ºC 

at a heating rate of 20 ºC min-1 in nitrogen atmosphere (66 mL min-1). TGA 

characterization was carried out in a TGA/SDTA 851 thermobalance from Mettler Toledo 

Inc. (Schwerzenbach, Switzerland). 

Vicat softening temperature (VST) was obtained as described in ISO 306 by using 

a load of 5 kg and a heating rate of 50 ºC h-1. Additionally, the heat deflection temperature 

(HDT) was obtained following the guidelines of the ISO 75 and ASTM D 648 with a load 

of 296 g and a heating rate of 120 ºC h-1. Both VST and HDT values were determined in 

a VICAT-HDT station from Metrotec S.A. (San Sebastián, Spain). Dimensional stability 

was studied by determining the coefficient of linear expansion (CLTE) of PLA – HSF 

composites with varying ELO content in a thermomechanical analyzer Q400 from TA 

Instruments (Delaware, USA). The heating program was comprised between 0 ºC and 

140 ºC with a constant heating rate of 2 ºC min-1 and a constant load of 0.02 N. 

Dynamic Mechanical Analysis, DMA, in torsion mode were carried out in an 

oscillatory rheometer AR-G2 (TA Instruments, New Castle, EEUU) equipped with an 

environmental test chamber (ETC) with a rectangular torsion clamp system for solid 

samples. Samples sizing 40x10x4 mm3 were subjected to a dynamic temperature program 

ramp from 30 ºC to 120 ºC at a heating rate of 2 ºC min-1, with the following conditions: 

maximum deformation ()=0.1% and constant frequency of 1 Hz. 

 

3.- Results and discussion. 



3.1.- Effect of biobased plasticizer (ELO) content on the mechanical properties of the 

PLA – HSF composites. 

 Mechanical behavior of PLA – HSF containing 20 wt.% HSF is characterized by 

high fragility (see Table 2). The elastic modulus is relatively high, with values around 

1019 MPa, thus indicating it is a rigid material with high tensile strength but low 

elongation at break (3%). The inherent fragility of poly(lactic acid) together with the poor 

matrix-particle interaction lead to a pronounced fragility on this composite. 

 

Table 2 

 

 The change in mechanical behavior of PLA – HSF composites with ELO content 

is a clear evidence of the plasticization effect that ELO provides. As the ELO content 

increases, we observe a clear decreasing tendency on both tensile strength and elastic 

modulus while the elongation at break increases with ELO content. Unmodified PLA – 

20 wt.% HSF composite possesses and elastic modulus of 1019 MPa and this decreases 

up to values of 751 MPa and 590 MPa (a percentage decrease of 26% and 42% 

respectively) for composites containing 15 wt.% and 22.5 wt.% ELO thus indicating a 

clear plasticizing effect. Same behavior can be observed for tensile strength with an initial 

value of 45 MPa (unmodified PLA – 20 wt.% HSF composite) and a reduction up to 15.3 

MPa for the composite containing 22.5 wt.% ELO which represents a percentage decrease 

of about 66%. The remarkable decrease in tensile strength is representative for 

inappropriate PLA-ELO interactions. The plasticizer excess can appear as a dispersed 

phase in the PLA matrix with a negative effect on homogeneity that promotes a decrease 

in tensile strength. High plasticizer contents produce intense plasticizer-plasticizer 

interactions that lead to a phase separation[47]. Chieng et al. concluded that for high 



plasticizer contents, only a small part is directly in contact among the interface area while 

the excess is dispersed in the polymeric matrix. This phenomenon highly affects 

homogeneity and a decrease in tensile strength on PLA – 20 wt.% HSF composite with 

varying ELO content[23-25, 46]. 

On the other hand, the elongation at break is highly increased with ELO content. 

Unmodified PLA – 20 wt.% HSF composite is characterized by a relatively low 

elongation at break value of about 3%. Composites containing 7.5 wt.% ELO are 

characterized by slightly higher elongation at break with average values of 4.2% but we 

can clearly see the plasticizing effect in PLA – 20 wt.% HSF composites containing 15 

wt.% and 22.5 wt.% ELO with elongation at break close to 11% and 17% respectively. 

This means that ELO provides a clear plasticizing effect to PLA – 20 wt.% HSF 

composites. Presence of ELO promotes less intense intermolecular forces between PLA 

macromolecular chains thus leading to improved chain mobility which is responsible for 

the abovementioned decrease in stiffness as well as the clear improvement of ductile 

properties[22, 26, 42]. 

 The effect of ELO content on flexural properties can be explained by observing 

data in Table 2. In a similar way to tensile properties, the flexural modulus and strength 

(mechanical resistant properties) are reduced with increasing ELO content. With regard 

to flexural modulus, it is reduced by 10% in PLA – 20 wt.% HSF composites containing 

7.5 wt.% ELO. The flexural modulus is reduced to the half for composites containing 

22.5 wt.% ELO. As indicated previously, epoxidized linseed oil (ELO) molecules enable 

polymer chain mobility so that the material is less stiff. If we observe the evolution of the 

flexural strength it changes from 83.7 MPa (unmodified PLA – 20 wt.% composite) up 

to minimum values of 29.5 MPa for composites containing 22.5 wt.% ELO, which 

represents a percentage decrease of about 65%. Similar tendency can be observed for 



Shore D hardness of PLA – 20 wt.% HSF composites with varying ELO content as 

abovementioned for other mechanical resistant properties.  

 

3.2.- Effect of biobased plasticizer (ELO) content on morphological of PLA – HSF 

composites. 

 FESEM technique was used to study the effect of different ELO content on 

morphology of cryofractured surfaces to show in a qualitative way the internal structure 

and give evidence of the potential interactions. Fig. 1 shows FESEM images of PLA – 20 

wt.% HSF composites with varying ELO content. 

 

Figure 1 

 

Fig. 1a & 1b correspond to unmodified PLA – 20 wt.% composite. We can clearly see 

the lack of interaction between the lignocellulosic particles and the surrounding PLA 

matrix. This is evidenced by a small gap between the particle and the matrix, which is 

responsible for material discontinuity. This phenomenon does not allow optimum load 

transfer between particle and the matrix leading to stress concentration phenomena which 

has a consequence the fragility of the material as it has been observed in the previous 

section. In addition, the fracture surface is very smooth and homogenous due to the 

intrinsic fragility of poly(lactic acid) polymers.  

Nevertheless, composites containing 7.5 wt.% ELO show a remarkably different 

surface fracture morphology as observed in Fig. 1c & Fig. 1d for different magnifications. 

Improved particle-polymer interaction can be observed by a reduction of the gap between 

the dispersed lignocellulosic particle and the surrounding PLA matrix and the overall 

discontinuity is remarkably reduced. This interaction allows load transfer between PLA 



matrix and dispersed HSF particles and this leads to improved ductile properties such as 

elongation at break. PLA can be plasticized with relatively low amounts of epoxidized 

vegetable oils as reported by other authors and PLA is not absolutely miscible with 

epoxidized vegetable oils[23, 24, 44, 47]. This lack of complete miscibility is evidenced 

by observation of fractured surfaces. The fractured surfaces of composites with high ELO 

content are less homogeneous and we can find round shape irregularities and/or 

microvoids uniformly dispersed in the PLA matrix. This rounded shapes correspond to 

ELO-rich phase that has not mixed with poly(lactic acid) polymer chains due to this 

partial miscibility which leads to a phase separation[43, 46]. For composites with higher 

ELO content, the fractured surface morphology is similar but the particle-polymer 

interactions are pronounced. For example, the composite containing 15 wt.% ELO (Fig. 

1e & Fig. 1f) shows more intense adhesion phenomena between the lignocellulosic filler 

and the surrounding matrix. These strong interactions contribute to lowering the intrinsic 

fragility thus leading to increased elongation at break (around 11%). Fig. 1g & Fig. 1h 

correspond to PLA – 20 wt.% HSF composite with 22.5 wt.% ELO and show good 

particle-matrix adhesion. The gap between the HSF particles and the surrounding area is 

very small so that the composite offers higher ductility[31, 33, 36].  

This remarkable change in surface morphology is due the double action that ELO 

provides to PLA – 20 wt.% HSF composites; on the one hand the plasticizing effect of 

ELO leads to improved chain mobility but on the other hand, ELO provides a coupling 

effect between lignocellulosic HSF particles and plasticized PLA matrix thus leading to 

a synergistic effect. It is important to take into account that epoxidized linseed oil is 

characterized by high polarity due to the oxirane groups. The oxiranic oxygen content 

(OOC) of ELO is close to 8% which is higher compared to other commercial epoxidized 

vegetable oils such as epoxidized soybean oil (ESBO). The epoxide group can react with 



the hydroxyl groups in lignocellulosic filler to form strong interactions. These reactions 

(see Fig. 2) are favored by temperature during manufacturing (extrusion + injection 

molding)[23, 24, 42]. Wang et al. concluded that this mechanism decreases the overall 

polarity of lignocellulosic particles which favors good particle dispersion in hydrophobic 

(or low hydrophilic) polymeric matrices such as PLA. On the other hand, epoxide groups 

in ELO can react with terminal hydroxil groups in poly(lactic acid) macromolecular 

chains as proposed in Fig. 2. The high oxiranic oxygen content of ELO enables different 

reaction points with PLA[23, 24, 29, 41, 44, 47]. These two combined effects: PLA-ELO 

interactions and HSF-PLA interactions allow ELO to act as a coupling agent between 

poly(lactic acid) and hazelnut shell flour with a remarkable increase in polymer-particle 

adhesion as described previously. This interactions are optimum for ELO contents over 

7.5 wt.%. For relatively low ELO amounts (7.5 wt.%) ELO does not fully wet 

lignocellulosic particles due to the high surface area of HSF particles; so that, ELO-HSF 

interactions are not optimum (Fig. 1d) and the corresponding composite is characterized 

by relatively low ductility (see Table 2). 

 

Figure 2 

 

3.3.- Effect of biobased plasticizer (ELO) content on thermal and thermo-mechanical 

properties of PLA – HSF composites. 

 Fig. 3 shows a comparative plot of the DSC thermograms of PLA – 20 wt.% HSF 

composites with varying ELO content. We can see a decrease in the glass transition 

temperature (Tg) with increasing ELO content. The glass transition temperature of 

unmodified PLA – 20 wt.% HSF is located at about 66.5 ºC and this is moved to lower 

temperatures in the 60 ºC range for composites with 7.5 wt.% ELO. Higher ELO contents 



(i.e. 22.5 wt.%) lead to glass transition temperatures of 58 ºC. This is due to the 

plasticization effect of ELO as ELO presence promotes chain mobility. Epoxidized 

linseed oil molecules are placed between poly(lactic acid) macromolecules thus allowing 

polymer chain motions due to the internal lubricant effect. On the other hand, only one 

glass transition temperature can be observed so that indicating good compatibility 

between ELO and PLA in this range of compositions[22-24, 42, 45]. 

 

Figure 3 

 

 The cold crystallization temperature (Tcc) does not change in a great extent (1 – 2 

ºC) with increasing ELO content. With regard to the melt temperature (Tm) it changes 

from 170 ºC (unmodified PLA – 20 wt.% HSF) up to 167 ºC for composites containing 

22.5 wt.% ELO. So that, we can conclude that presence of ELO in PLA – HSF composites 

does not affect in a great extent the melt process[23, 24]. 

 Another important thing is that poly(lactic acid) is a semicrystalline polymer, so 

that the influence of ELO on PLA crystallinity degree (Xc PLA) has also been studied by 

using the following equation:  

 

𝑋𝑐𝑃𝐿𝐴 (%) = [
|∆𝐻𝑚|− |∆𝐻𝑐𝑐|

|∆𝐻100%|∙𝑤𝑃𝐿𝐴
] · 100       Eq. 1  

 

Where ΔHm is the melt enthalpy (negative value due to the endothermic process), 

ΔHcc is the cold crystallization enthalpy (positive value due to the exothermic process), 

ΔH100% is the melt enthalpy for theoretical 100% crystalline PLA (-93.7 J g-1) and finally, 

wPLA is the weight fraction of PLA in PLA – 20 wt.% HSF composites with different ELO 

content[8, 14, 27, 35, 48-50]. 



 

Table 3 

 

 Table 3 shows a summary of the main thermal parameters in terms of the wt.% 

ELO in PLA – 20 wt.% HSF. Normalized enthalpy values (ΔHcc and ΔHm) have been 

corrected by considering the wt.% PLA (excluding the dilution effect of HSF and ELO 

as these two components do not show thermal transitions in the typical melt and cold 

crystallization temperature range of PLA). If we observe the evolution of the corrected 

cold crystallization enthalpy (Hcc), we see a slight increase with ELO content, which is 

directly related to the crystallinity increase as the plasticizer allows more intense polymer 

chain motion. The crystallinity of PLA in unmodified PLA – 20 wt.% HSF composites is 

close to 15% due to the nucleating effect of cellulose in hazelnut shell flour particles[9, 

14, 35]. The presence of ELO plasticizer allows chain mobility and this has a positive 

effect on crystallinity as polymer chains can rearrange to ordered/packed structures. The 

highest crystallinity value is detected for the composite with 7.5 wt.% ELO (Xc = 19%). 

Higher ELO contents lead to slightly lower crystallinity. This could be related to a phase 

separation between PLA and excess plasticizer as observed in FESEM images (Fig. 1)[25, 

46, 47]. The melt temperature is not highly affected by presence of ELO but a slight 

decrease from 169.9 ºC up to values in the 167-168 ºC range can be observed. 

 With regard to the thermal stability of PLA – 20 wt.% HSF composites with 

varying ELO percentages, Fig. 4 shows a plot comparison of the thermogravimetric 

curves (TGA). We can observe an increase in the thermal stability with increasing ELO 

content. The TGA curve of the unmodified PLA – 20 wt.% HSF composite is placed to 

the left if compared to the TGA curves of composites containing different ELO contents. 

This means that degradation of unmodified composite occurs at lower temperatures. The 



degradation onset for unmodified composite is about 317 ºC and the degradation 

temperature range is relatively narrow. As the ELO content increases, the onset 

degradation temperature is moved to higher temperatures of about 335 ºC, 337 ºC and 

339 ºC for composites containing 7.5, 15 and 22.5 wt.% ELO respectively[23, 24, 43, 

44]. With regard the degradation endset temperature, it changes from 365 ºC for 

unmodified composite to 381 ºC for composite containing 22.5 wt.% ELO. It is important 

to remark that the main uses of epoxidized vegetable oils are as plasticizer and thermal 

stabilizers mainly for poly(vinyl chloride), PVC so that, ELO presence in PLA – 20 wt.% 

HSF composites, contributes to improved thermal stability. Prempeh et al. concluded that 

this stabilizing effect could be attributed to formation of hydrogen bonds between 

poly(lactic acid) polymer chains and the plasticizer which can lead to improved thermal 

stability[45]. In addition ELO rich phase embedded in the PLA matrix also contributes to 

act as an oxidation barrier which also restricts permeation to degradation volatile 

compounds and promotes a delay in degradation process[46]. Regarding to the weight 

loss, similar residual weights are obtained with a main degradation step of about 90 – 

91%. This is due to the fact that all composites contain 20 wt.% HSF and the residual 

weight is associated to the ashes generated by the combustion of the lignocellulosic filler. 

 

Figure 4 

 

 In addition to the thermal transitions by DSC and degradation by TGA study, the 

coefficient of linear thermal expansion (CLTE) was determined by thermomechanical 

analysis (TMA) as it is representative for the dimensional stability. The main parameters 

(CLTE below and over glass transition temperature, Tg) from TMA characterization of 

PLA – 20 wt.% HSF composites with different ELO content are summarized in Table 4. 



If we compare the CLTE below the Tg we can see that the initial value of the unmodified 

PLA – 20 wt.% HSF composite is close to 64 µm m-1 ºC-1 while composites with different 

ELO content offer remarkably higher values of 87 µm m-1 ºC-1 and 102 µm m-1 ºC-1 for 

composites with 7.5 wt.% HSF and 22.5 wt.% HSF respectively. This is in total 

accordance with the plasticization effect provided by ELO as it allows chain mobility, 

which is more pronounced with temperature. 

 

Table 4 

 

 The evolution of the CLTE over Tg follows similar tendency with a change from 

157.7 µm m-1 ºC-1 (unmodified composite) up to values of 175.8 for the composite with 

22.5 wt.% ELO. As we have observed, the CLTE is characterized by lower values below 

Tg as the chain mobility is restricted. On the other hand, CLTE values are higher over Tg 

due to a remarkable increase in chain mobility which is also more pronounced by the 

plasticization effect provided by ELO. 

 In addition to dimensional stability by TMA analysis, other thermo-mechanical 

properties have been evaluated. Fig. 5 shows the plot evolution of the Vicat softening 

temperature (VST) and heat deflection temperature (HDT) of PLA – 20 wt.% HSF 

composites with varying ELO content. As these two thermal parameters are directly 

related to mechanical resistant properties we observe the same tendency of that observed 

for strength and modulus. The initial VST and HDT values for unmodified composite are 

54.5 ºC and 53.1 ºC respectively which indicate that moderate temperatures lead to 

material softening. Regarding the VST evolution in terms of wt.% ELO, plasticization 

provided by ELO leads to more soft and flexible materials so that, VST values decrease 

with increasing ELO content up to values of 51.1 ºC, 50.5 ºC and 48.3 ºC for an ELO 



content of 7.5 wt.%, 15 wt.% and 22.5 wt.% respectively. Epoxidized linseed oil acts as 

a plasticizer which leads to a clear softening effect which is more pronounced by the 

application of external loads at lower temperature values. Sliding of polymer chains is 

easier in the presence of epoxidized linseed oil molecules since these diminish the 

intermolecular attraction forces between individual poly(lactic) acid 

macromolecules[42]. The evolution of the heat deflection temperature (HDT) is similar 

to that observed for VST. The HDT of unmodified composite (51.6 ºC) is reduced up to 

49 ºC for composites containing 22.5 wt.% ELO. 

 

Figure 5 

 

Figure 6 

 

The plasticization effect of ELO can also be detected by dynamic mechanical 

thermal analysis (DMTA). Fig. 6 shows a plot evolution of the storage modulus (G’). We 

can see that all DMTA curves for composites containing different ELO amounts are 

located below the curve for unmodified composite. Below the glass transition temperature 

(Tg), the storage modulus (G’) is high due to an elastic-vitreous behavior. In this first 

section the maximum G’ values are obtained for unmodified PLA – 20 wt.% composite 

with a value around 1952 MPa. As one can see, the initial storage modulus decreases as 

the ELO content increases with values of 1705 MPa, 1352 MPa and 1049 MPa for 

composites containing 7.5 wt.%, 15 wt.% and 22.5 wt.% respectively. Once the glass 

transition temperature is overpassed, we observe a remarkable decrease in G’ due to an 

elastic-viscous behavior. The temperature range of this softening process is remarkably 

lower for composites with high wt.% ELO content. This softening temperature range 



changes from [64 ºC – 85 ºC] for unmodified composite up to [50 ºC – 65 ºC] for 

composites with an ELO content of 22.5 wt.%. This is in total accordance with previous 

results as ELO enhances polymer chain motion, which leads to a softer material. So that, 

at 60 ºC, the storage modulus (G’) of unmodified composite is close to 1081 ºC while this 

is remarkably reduced up to values of 467 MPa for composites with 7.5 wt.% ELO due 

to the plasticizing-softening effect provided by ELO. These values are even extremely 

lower for composites containing 15 wt.% and 22.5 wt.% ELO with G’ values of 6.2 MPa 

and 3.4 MPa respectively[43, 47]. Over 90 ºC, unplasticized composite from PLA and 20 

wt.% HSF shows an increase in the storage modulus which is directly related to the cold 

crystallization process. As we can see, presence of ELO in PLA-HSF composites leads 

to a remarkable decrease in the cold crystallization onset temperature with values of about 

85 ºC, 70 ºC and 65 ºC for composites containing 7.5 wt.%, 15 wt.% and 22.5 wt.% ELO. 

This behavior is related to increased chain mobility over the glass transition temperature, 

which allows chain rearrangement to ordered/packed structures at lower temperatures. 

During the cold crystallization process, both density and stiffness increase to the highly 

packed structure[16, 28]. Once the crystallization process is completed, the evolution of 

the storage modulus (G’) follows similar tendency as observed in the initial stages with 

maximum values for unmodified composites and decreasing values with higher ELO 

content. 

 

Figure 7 

 

With regard to the damping factor (tan ) Fig. 7 shows its evolution with 

temperature for PLA – HSF composites. As the ELO content increases, the damping peak 

is moved to lower temperature. This peak is related to the glass transition due to a change 



in behavior from elastic to viscous material. By taking the damping peak as a 

representative value of the glass transition temperature (Tg) we can see that unmodified 

PLA – HSF composite is characterized by a Tg of 75 ºC and this is remarkably reduced 

with increasing ELO content up to values of 72 ºC, 60 ºC and 57 ºC for PLA – HSF 

composites containing 7.5 wt.%, 15 wt.% and 22.5 wt.% ELO respectively. As indicated 

previously, ELO provides good plasticizing effect on PLA – HSF composites and is 

evidenced by a decrease in the damping peak that is representative of a decrease in the 

glass transition temperature[22-24, 42, 45, 51].  

The evolution of the storage modulus and the damping factor indicate that low 

ELO content gives similar behavior to unmodified composite with a rigid behavior. For 

these compositions, the plasticization effect is not important and some coupling effect 

can be achieved by ELO. On the other hand, when high contents of ELO are used flexible 

materials are obtained with a clear plasticization effect evidenced by a decrease in the 

glass transition temperature and, furthermore, optimum coupling effects are provided by 

ELO thus leading to composites with improved overall properties. In addition to 

mechanical properties, ELO provides a lubricant effect that enables manufacturing of 

PLA-based composites with a remarkable decrease in viscosity even with presence of 

filler particles[16, 47]. 

 

4.- Conclusions 

 The effect of varying epoxidized linseed oil (ELO) content on overall properties 

of poly(lactic acid), PLA composites with constant 20 wt.% hazelnut shell flour (HSF) 

has been studied. The obtained results have revealed a dual effect provided by ELO: on 

the one hand it contributes to plasticize PLA with a noticeable decrease in the glass 

transition temperature and on the other hand, ELO acts as coupling agent with potential 



interactions with hydroxil groups from both lignocellulosic filler and terminal groups in 

poly(lactic acid) macromolecular chains. A synergistic effect is provided by ELO which 

enhances overall properties of PLA – HSF composites. 

 With regard to mechanical properties, presence of ELO leads to lower resistant 

properties such as tensile and flexural strength, elastic and flexural modulus and Shore D 

hardness but a remarkable increase in ductile properties is achieved with increasing 

amounts of ELO. The elongation at break changes from 3.1% for the unmodified PLA – 

20 wt.% HSF composite up to values of 17% for the composite containing 22.5 wt.% 

ELO in its composition. ELO provides a clear plasticizing effect, particularly for ELO 

content over 7.5 wt.%. Epoxidized linseed oil (ELO) molecules are placed between 

individual poly(lactic acid) macromolecules and contribute to diminish intermolecular 

attraction forces between polymer chains and this enhances chain mobility with a positive 

effect on deformation mechanisms. In addition, the coupling effect of ELO has been 

evidenced by field emission electron scan microcopy (FESEM) with a remarkable 

decrease of the gap among the filler-matrix interface area. 

 Regarding thermal properties of PLA – 20 wt.% HSF it is important to note an 

important decrease in the glass transition temperature by differential scanning 

calorimetry, DSC (about 8 ºC lower for the composite with 22.5 wt.% ELO) and dynamic 

mechanical thermal analysis, DMTA (about 15 ºC lower for the same composition) 

In general terms, attractive synergistic plasticization and coupling effects can be 

obtained by adding epoxidized linseed oil (ELO) to green composites based on poly(lactic 

acid) matrix and hazelnut shell flour (HSF) without further modifications. The resulting 

materials offer improved ductile properties and easy manufacturing due to the 

plasticization effect of ELO and overall mechanical properties are obtained due to the 

coupling effect between the lignocellulosic filler and polylactic acid. 
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Tables 

Table 1.- Composition (in weight %) of poly(lactic acid), PLA – hazelnut shell flour 

(HSF) composites with varying epoxidized linseed oil (ELO) content. 

Sample 

PLA content 

(wt.%) 

Hazelnut shell flour (HSF) 

content (wt.%) 

ELO content 

(wt.%) 

0-ELO 80 20 0 

7.5-ELO 72.5 20 7.5 

15-ELO 65 20 15 

22.5-ELO 57.5 20 22.5 

 

Table 2.- Mechanical properties of PLA – HSF composites with varying epoxidized 

linseed oil (ELO) content. 

Sample 

Tensile Flexural 

Hardness 

Shore D 

Elastic 

modulus 

(MPa) 

Strength 

(MPa) 

Elongation 

at break 

(%) 

Modulus 

(MPa) 

Strength 

(MPa) 

0-ELO 1019±53 45.0±4.9 3.1±0.4 3932±92 83.7±1.9 75.6±0.5 

   7.5-ELO 965±42 34.4±1.4 4.2±0.4 3523±152 59.6±0.9 71.2±0.4 

15-ELO 751±81 22.1±0.7 11.2±1.8 2702±287 42.1±0.8 67.8±0.8 

22.5-ELO 590±58 15.3±0.9 17.1±1.8 2118±143 29.5±0.9 59.6±0.5 

 

 

 

 



Table 3.- Thermal properties of PLA – 20 wt.% HSF composites with varying wt.% of 

epoxidized linseed oil (ELO) content, obtained by differential scanning calorimetry 

(DSC). 

Samples Tg 

(ºC) 

Tcc 

(ºC) 

ΔHcc 

(J g-1) 

ΔHcc 

corrected * 

(J g-1) 

Tm 

(ºC) 

ΔHm 

(J g-1) 

ΔHm 

corrected * 

(J g-1) 

Xc 

(%) 

0-ELO 66.5 104.8 20.99 26.24 169.9 -32.43 -40.53 15 

   7.5-ELO 60.1 105.3 22.84 31.5 168.8 -35.85 -49.45 19 

15-ELO 59.4 103.1 18.50 28.46 167.5 -29.76 -45.78 18 

22.5-ELO 58.7 102.4 16.97 29.51 167.5 -25.42 -44.21 16 

*ΔHcc corrected and ΔHm corrected correspond to normalized crystallization and melt 

enthalpies by considering the real wt.% PLA in composites.  

 

Table 4.- Coefficient of linear thermal expansion (CLTE) of PLA – 20wt.% composites 

with varying wt.% of epoxidized linseed oil (ELO) content, obtained by 

thermomechanical analysis (TMA). 

Samples CLTE below Tg 

(µm m-1 ºC-1) 

CLTE after Tg 

(µm m-1 ºC-1) 

0-ELO 64.1 157.7 

7.5-ELO 87.0 164.9 

15-ELO 102.6 171.4 

22.5-ELO 102.7 175.8 

 

 

 



Figures 

 

Figure 1.- FESEM images Corresponding to cryofractured surfaces from PLA – 20 wt.% 

HSF and varying ELO content: a) 0 wt.% ELO (500x); b) 0 wt.% ELO (2500x); c) 7.5 

wt.% ELO (500x); d) 7.5 wt.% ELO (2500x); e) 15 wt.% ELO (500x); f) 15 wt.% ELO 

(2500x); g) 22.5 wt.% ELO (500x); h) 22.5 wt.% ELO (2500x). 



 

Figure 2.- Proposed chemical interactions between epoxidized linseed oil (ELO) and 

lignocellulosic particles from hazelnut shell flour (HSF) and ELO with poly(lactic acid) 

polymer chains. 

 



 

Figure 3.- Comparative plots of differential scanning calorimetry (DSC) curves of PLA 

– 20 wt.% HSF composites with varying wt.% of epoxidized linseed oil (ELO) content. 

 

 



 

Figure 4.- Comparative plots of thermogravimetric degradation (TGA) curves of PLA – 

20 wt.% HSF composites with varying wt.% of epoxidized linseed oil (ELO) content. 

 

 

Figure 5.- Plot evolution of the Vicat softening temperature (VST) and heat deflection 

temperature (HDT) of PLA – 20 wt.% HSF composites with varying wt.% of epoxidized 

linseed oil (ELO) content. 



 

 

Figure 6.- Comparative plot of the storage modulus (G’) of PLA – 20 wt.% HSF 

composites with varying wt.% of epoxidized linseed oil (ELO) content. 

 

 

Figure 7.- Comparative plot of the damping factor (tan ) of PLA – 20 wt.% HSF 

composites with varying wt.% of epoxidized linseed oil (ELO) content. 


