Running Head:
COPT2 responds to iron and phosphate deficiencies

Corresponding Author:
Lola Peñarrubia.
Tel: +34-963543013
Fax: +34-963544635
E-mail: penarrub@uv.es

Research Area:
Environmental Stress and Adaptation

Associate Editor:
Julia Bailey-Serres
Title:

Arabidopsis copper transport protein COPT2 participates in the crosstalk between iron deficiency responses and low phosphate signaling

Authors:
Ana Perea-García1**, Antoni Garcia-Molina1#**, Nuria Andrés-Colás1, Francisco Vera-Sirera2, Miguel A. Pérez-Amador2, Sergi Puig1‡, and Lola Peñarrubia1*.

Institution address:
2Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia, ES-46022 Valencia, Spain
Footnotes:
This work was supported by grants BIO2011-24848 and CSD2007-00057 to L. P. from the Spanish Ministry of Economy and Competitiveness and by FEDER funds from the European Union. A. P.-G and A. G.-M. were recipients of a predoctoral FPI fellowship from the Spanish Ministry of Economy and Competitiveness.

#Present address:

‡ Present address:

*Corresponding author e-mail: penarrub@uv.es
**These authors contributed equally to this work

One sentence summary: The function of the COPT2 high affinity copper transport protein unveil its role in the crosstalk among Cu, Fe and Pi deficiency responses in Arabidopsis.
ABSTRACT

Copper and iron are essential micronutrients for most living organisms because they participate as cofactors in biological processes, including respiration, photosynthesis and oxidative stress protection. In many eukaryotic organisms, including yeast and mammals, copper and iron homeostases are highly interconnected; yet such interdependence is not well-established in higher plants. Here we propose that COPT2, a high-affinity copper transport protein, functions under copper and iron deficiencies in Arabidopsis thaliana. COPT2 is a plasma membrane protein that functions in copper acquisition and distribution. Characterization of the COPT2 expression pattern indicates a synergic response to copper and iron limitation in roots. We characterized a knockout of COPT2, copt2-1, which leads to increased resistance to simultaneous copper and iron deficiencies, measured as reduced leaf chlorosis and improved maintenance of the photosynthetic apparatus. We propose that COPT2 could play a dual role under Fe deficiency. First, COPT2 participates in the attenuation of copper deficiency responses driven by iron limitation, possibly to minimize further iron consumption. Second, the global expression analyses of copt2-1 line versus wild-type Arabidopsis plants indicate that low phosphate responses increase in the mutant. These results open up new biotechnological approaches to fight iron deficiency in crops.
INTRODUCTION

Copper (Cu) and iron (Fe) act as a double-edged sword in living beings since they are essential redox active micronutrients, but are cytotoxic when in excess. Since both metals participate as catalytic cofactors in multiple metabolic pathways, their homeostasis needs to be strictly controlled. Plants are the basis of trophic chains and their nutritional deficiencies are often transferred to consumers. The essentiality of Cu and Fe in plants is evidenced by the symptoms that their deficiencies provoke, which affect the yield and nutritional value of crops (Märschner H., 2002; Puig et al., 2007). In biological terms, use of Fe preceded Cu due to the high bioavailability of Fe as Fe$^{2+}$ under anoxic conditions. However, the appearance of oxygen in the atmosphere caused not only reduced Fe bioavailability, but also concomitantly increased the bioavailability and use of Cu by biological systems (Crichton and Pierre, 2001). In parallel with the incorporation of Cu into multiple processes requiring higher redox potentials, a fact that temporally coincided with the commencement of pluricellularity, new strategies to solubilize and acquire Fe$^{3+}$ were developed. In some cases, enzymes that catalyze the same biochemical reaction are coordinately regulated to allow the alternative use of either Cu- or Fe-containing proteins, depending on metal bioavailability. One main example in Arabidopsis thaliana plants is the use of Cu and zinc (Zn) superoxide dismutase (Cu/ZnSOD) versus FeSOD, which both play a role in reactive oxygen species detoxification (Abdel-Ghany et al., 2005; Yamasaki et al., 2007; Burkhead et al., 2009; Waters et al., 2012).

In Arabidopsis, deciphering responses to Cu deficiency is now starting (Pilon et al., 2009; Penarrubia et al., 2010). A family of high-affinity Cu transport proteins, denoted COPTs in plants (CTR in yeast and humans), participates in Cu transport toward the cytosol. COPT1 is a plasma membrane-located member of this family that plays a key role in Cu uptake, root growth and pollen development (Kampfenkel et al., 1995; Sancenon et al., 2004). Recent studies have shown that deregulated Cu transport in COPT1 overexpressing plants affects development under continuous environmental conditions (Andres-Colas et al., 2010). On the other hand, Cu activates calcium- and potassium-permeable plasma membrane transporters in COPT1 overexpressing plants under 10 μM Cu conditions, a fact that might be caused by the generation of cytosolic hydroxyl radical (Rodrigo-Moreno et al., 2012). In the COPT family, COPT1 and
COPT2 mRNA levels are down-regulated by Cu and their expression completely rescues the respiratory defect of *Saccharomyces cerevisiae ctr1Δctr3Δ* mutants, which are defective in high-affinity Cu uptake (Sancenon et al., 2003). Arabidopsis genome encodes a 17-member Zn finger plant-specific transcription factor family named SPL (SQUAMOSA-promoter binding-like proteins) (Birkenbihl et al., 2005). SPL7 has been shown to be essential for the transcriptional activation observed in response to Cu deficiency in *vivo* through its binding to the GTAC motifs within the promoter of Cu-responsive genes, including those encoding COPT1, COPT2 and Fe superoxide dismutase FSD1 (Yamasaki et al., 2009; Bernal et al., 2012).

Despite its abundance in soils, Fe bioavailability is very limited, which often provokes Fe deficiency symptoms (i.e., chlorosis) and lowers crop yields. The primary response of Arabidopsis plants to Fe deficiency is controlled through coordinated transcriptional activation, including the increased expression of metal reductases and transporters, such as *FRO2* and *IRT1* respectively, to improve metal bioavailability and acquisition. The Arabidopsis bHLH transcription factor bHLH29/FRU, also known as FIT (Fe deficiency-induced transcription factor), controls some of the root responses upon Fe limitation at different levels (reviewed by (Guerinot, 2000; Hindt and Guerinot, 2012; Ivanov et al., 2012)).

Fe availability has been shown to play a crucial role in the root architecture changes induced by phosphate (Pi) deficiency in Arabidopsis (Ward et al., 2008). Thus, whereas primary root elongation is greatly inhibited by Pi starvation, root growth is restored under reduced Fe without increasing Pi availability (Ward et al., 2008). Moreover, Pi-starved Arabidopsis plants show elevated Fe accumulation in both shoots and roots (Misson et al., 2005; Ward et al., 2008). Phosphorus is not only an essential macronutrient, but also a key component of, among others, membrane phospholipids, and is crucial for processes such as signaling cascades (Raghothama, 1999; Chiou and Lin, 2011). It has been suggested that Pi may be sensed indirectly via complex and antagonistic interactions between Pi and Fe availabilities, which still remain to be elucidated (Abel, 2011).

Given their sessile nature, plants are organisms that probably explore the widest variety of responses to environmental nutrient availabilities, and they have developed multiple regulatory mechanisms to respond to metal and nutrient deficiencies. In addition to the aforementioned substitution of specific metalloproteins, improved metal
bioavailability and acquisition, including the increased expression of metalloreductases and high-affinity transporters, are among the main strategies to help face metal deficiencies (Jeong and Guerinot, 2009; Palmer and Guerinot, 2009; Puig and Penarrubia, 2009). Nutrient status information has to be communicated between organs to optimize essential inorganic nutrient allocation, especially in plants growing under suboptimal conditions. Root architecture is differentially modified during nutrient deficiencies. Whereas root elongation is considered an adequate modification under metal deficiencies, possibly to seek metals in underground soil layers, the inhibition of primary root growth and the development of secondary and higher-order roots under Pi starvation maximize the interception of the nutrient in top soil layers (Liao et al., 2001). These processes exemplify not only the extensive crosstalk between different metals and other nutrient homeostasis networks, but also the delicate balance that plant cells have to strike according to the variable nutritional status in the environment.

In this study, we analyzed the function of high-affinity Cu transport protein COPT2, whose expression in Arabidopsis is up-regulated in roots by both Cu and Fe deficiencies (Sancenon et al., 2003; Colangelo and Guerinot, 2004; Waters et al., 2012), whereas Pi-starvation diminishes its expression (Thibaud et al., 2010). The phenotypes and gene expression changes displayed by a copt2-1 line unveil a role for COPT2 in the crosstalk among Cu, Fe and Pi deficiency responses in Arabidopsis.
RESULTS

High-affinity copper transport protein COPT2 localizes to the plasma membrane of Arabidopsis cells.

The COPT2 gene (At3g46900) from Arabidopsis encodes a protein with a 78% identity with COPT1 (Kampfenkel et al., 1995; Sancenon et al., 2003); see Figure S1A. The hydrophobicity pattern and the topological comparison between COPT2 and other CTR/COPT family members indicate the presence of three transmembrane domains (TMDs) with an external amino terminus and a cytosolic carboxy terminus (Figure S1B). Moreover, it possesses the conserved extracellular methionine residue (indicated by an asterisk in Figure S1) before TMD1, the MxxxM motif in TMD2 and the GxxxG motif in TMD3, which are essential in yeast homologs (Puig et al., 2002; Aller et al., 2004). A CxC motif is also observed in the COPT2 carboxy-terminal domain (Figure S1). Given its ability to fully complement the respiratory defects of yeast ctr1Δctr3Δ mutants and its regulation by environmental Cu in Arabidopsis, it has been previously suggested that both the COPT2 and COPT1 proteins could function in Cu acquisition in the plasma membrane of specific plant cells (Kampfenkel et al., 1995; Sancenon et al., 2003; Sancenon et al., 2004).

For the purpose of localizing COPT2 at the subcellular level in Arabidopsis cells, its coding sequence was fused to the green fluorescent protein (COPT2-GFP) under the control of the constitutive CaMV35S promoter. As shown in Figure 1A, the construct COPT:GFP complements the respiratory defect of yeast ctr1Δctr3Δ mutants to a similar extent as COPT2 and COPT1, indicating that addition of the GFP does not interfere with the Cu transport function in yeast. Isolated Arabidopsis protoplasts transiently expressing the PCaMV35S:COPT2:GFP construct were analyzed for localization of COPT2-GFP, lipophilic styryl dye FM4-64 and chlorophyll fluorescences indicated by green, cyan and magenta colors, respectively (Figure 1B). In addition to the chlorophyll autofluorescence, COPT2-GFP-expressing cells display a signal on the cell surface that is absent in vacuoles, the cytosol and other discrete subcellular localizations. This signal colocalizes with the FM4-64 marker, which localizes to the cell surface at low temperatures (Figure 1B). Furthermore, immunofluorescence labeling of stable transgenic Arabidopsis plants expressing the
CaMV35S:COPT2-HA construct show a signal restricted to the peripheral side of the cytoplasm when using anti-HA antibodies (Figure S2). These results strongly suggest that the COPT2 protein localizes to the plasma membrane of Arabidopsis cells.

The COPT2 expression is differentially regulated by Cu and Fe deficiencies.

In order to study the COPT2 spatial expression pattern, the promoter region (PCOPT2, covering 1248 base pairs upstream from the start codon) was fused to the uidA (GUS) reporter gene. The transgenic Arabidopsis lines harboring the PCOPT2:GUS chimeric gene were obtained. GUS staining in 7-day-old Arabidopsis seedlings grown under Cu-deficient conditions indicated that COPT2 was expressed in most tissues of the seedlings (Figure 2A). For roots, GUS staining was observed in the differentiation zone, but was absent from the elongation and meristematic zones (Figure 2B and 2C). Moreover, COPT2 expression in roots included the lateral roots and root hairs, displaying expression mostly in the epidermis (Figure 2D). In cotyledons, the highest expression was observed in vascular bundles and hydathodes (Figure 2E). Histological analyses of seedlings and adult plants showed a COPT2 promoter-driven GUS expression in the apical meristem and trichomes (Figure 2F) and in young leaves (Figure 2G). During the development of reproductive organs, the GUS staining in anthers (Figure 2H) indicates that COPT2 is highly expressed in pollen (Figure 2I). Three other independent PCOPT2:GUS lines were analyzed and showed the same COPT2 tissue pattern expression (data not shown). A schematic COPT2, as compared to the COPT1 expression pattern, along with other characteristics of both permeases, are shown in Figure S3.

The analysis of the regulatory elements in the PCOPT2 region indicates the presence of four GTAC motifs, which are probably involved in its regulation by Cu (Figure S4; (Yamasaki et al., 2009)). Interestingly, COPT2 is the COPT family member whose expression was most highly regulated by Cu deficiency (Sancenon et al., 2003; Yamasaki et al., 2009; del Pozo et al., 2010). In addition, a putative E-box consensus, which may be involved in the interaction with bHLH-type transcription factors such as the Fe-responsive FIT protein (Hartmann et al., 2005), was present in its promoter (Figure S4). Accordingly, COPT2 expression has been shown to respond to Fe deficiency in a partially FIT-dependent manner (Colangelo and Guerinot, 2004). To ascertain COPT2 expression under separate Fe and Cu deficiencies, or when both
deficiencies are applied simultaneously, wild-type (WT) seedlings were grown in the four following media combinations: first, Fe- and Cu-sufficient medium (+Fe+Cu; ½ MS supplemented with 10 μM CuSO₄); second, Fe-sufficient and Cu-deficient medium (+Fe-Cu; ½ MS without CuSO₄); third, Fe-deficient and Cu-sufficient medium (-Fe+Cu; ½ MS without Fe and supplemented with 10 μM CuSO₄ and 300 μM ferrozine, a specific Fe²⁺ chelator); and fourth, Fe- and Cu-deficient medium (-Fe-Cu; ½ MS without Cu and Fe, and supplemented with 300 μM ferrozine). The Cu concentration used in this experiment was 10 μM, which was high enough to guarantee a sufficient Cu supply while being far from the deficiency and excess responses (Andres-Colas et al., 2010). COPT2 expression was induced by Cu deficiency (35.6-fold), by Fe deficiency (4.3-fold) and its expression was further increased under simultaneous Fe and Cu deprivation (52.3-fold) (Figure 3A and Table S1). COPT2 expression remained mostly under the control of the SPL7 transcription factor since the spl7 mutant displayed a significant drop at the mRNA levels (Figure 3A; (Yamasaki et al., 2009; Bernal et al., 2012)). However, COPT2 was still expressed at low basal levels under all the conditions tested in the spl7 mutant as compared to a copt2 null mutant (copt2-1 line, see next section) (Figure 3A), indicating that this basal expression level was SPL7-independent. Furthermore, the COPT2 tissue pattern shows that under Cu deficiency (+Fe-Cu), it was highly expressed in roots and that its expression increased under both metal deficiencies (-Fe-Cu) (Figure 3B). In order to further define where COPT2 expression started, root photographs under 1 h at 37°C for GUS staining were obtained, showing cell patches of differentiated root cells (Figure 3B). Interestingly, high (1 μM) Cu levels (+Fe+Cu) completely abolished COPT2 expression in roots, but a low expression level, which requires overnight GUS staining remained restricted to cotyledons under Fe deficiency (-Fe+Cu) (Figure 3B). The expression in roots requires Cu deficiency conditions, and it was not observed under Fe deficiency when the Cu levels in the medium were higher than 0.25 μM (Figure S5). However, the low expression in cotyledons was observed at higher Cu levels under overnight GUS staining conditions (Figures 3B and S5). Taken together, these results not only demonstrate that COPT2 expression is differentially regulated by low Cu and Fe conditions, but suggest a crosstalk between both metal deficiencies.

Characterization of copt2-1 line under Cu and Fe deficiency conditions.
A copt2-1 line (Figure S6) that contains the T-DNA insert at the -55 base pairs (in relation to the translation start codon), separating the four putative Cu regulatory GTAC motifs from the COPT2 coding sequence (Figure S6A), shows no COPT2 expression in seedlings grown on different Cu availabilities (100 μM BCS, and 0, 1, 5, or 10 μM CuSO₄) (Figure S6C). Moreover under the four conditions previously stated for Cu and Fe availability, the COPT2 expression levels in the copt2-1 line were below those found in the spl7 mutant (Figure 3A). Therefore, we used the copt2-1 mutant to study the function of this transporter in Arabidopsis.

Since COPT2 displays different expression patterns under +Fe-Cu, -Fe+Cu and -Fe-Cu conditions, we studied the potential copt2-1 phenotypes under these conditions as compared to the +Fe+Cu control media. Apparently the mutant did not seem to differ from the WT controls when grown on soil or in ½MS with different Cu availabilities. Furthermore certain parameters, such as root length, seed germination, de-etiolation and hypocotyls length, showed no significant difference between the WT and copt2-1 line under the different Cu statuses analyzed (data not shown). However, whereas the WT plants grown under simultaneous Cu- and Fe-deficiency conditions exhibited a light green leaf appearance, a typical symptom of mild chlorosis, the copt2-1 seedlings displayed a slight increased resistance to Fe deprivation by delaying symptoms, as shown by their greener leaves (Figure 4A). In order to quantify this copt2-1 phenotype, total chlorophylls were measured in the 7-day-old WT and mutant seedlings grown under the four Fe/Cu conditions stated above. As Figure 4B illustrates, the copt2-1 line showed increased chlorophylls when compared to the WT seedlings, especially under -Fe conditions. Despite no significant changes in fresh weight being detected under Fe deficiency (Figure S7A), a parameter indicative of photosynthetic apparatus integrity such as LHCBI.1 (light harvesting complex B1.1) mRNA, showed a slightly higher level in the mutant than in the WT plants under Fe deficiency conditions (Figure S7B).

In order to ascertain whether these defects were COPT2-specific, we transformed the copt2-1 line with the COPT2 WT gene driven by its own promoter (PCOPT2:COPT2:GFP). Importantly, the PCOPT2:COPT2:GFP seedlings grown under both metal deficiencies revealed a partial restoration of COPT2 expression and, accordingly, displayed an increased sensitivity to metal deficiencies as shown by the chlorophyll content (Figure 5). Moreover, the LHCBI.1 and FSD1 expression decreased when compared to the copt2-1 line under simultaneous metal deficiency (Figure 5C),
which is in agreement with reduced plant performance in the presence of COPT2 expression. The copt1 mutant also display a similar phenotype of resistance to Fe deficiency-induced chlorosis (results not shown), which further corroborates the role of Cu in this process. To investigate whether the better resistance of the mutant to ferric chlorosis under -Fe-Cu conditions was also displayed in adult stages, plants were grown in hydroponic cultures under +Fe+Cu (Hoagland) and -Fe-Cu conditions (Hoagland with no added Cu and Fe). As indicated for the seedlings grown in agar plates (Figures 4 and 5), once again the chlorosis under -Fe-Cu conditions in the aerial part was less pronounced or retarded in the copt2-1 line than in the WT adult plants (Figures 6A and 6B). It is worth noting that the plastocyanin content in the leaves of the adult plants grown under -Fe-Cu conditions was higher in the copt2-1 line than in WT plants (Figure S8). Moreover, senescence of the copt2-1 siliques is delayed compared to WT (Figure S9A) and subsequently the mutant produces more seeds (Figure S9B) with a higher germination rate (40%) than WT plants (5%) when grown under both metal deficiency conditions. Taken together, these results further support the better or extended maintenance of the photosynthetic apparatus in the copt2-1 line than in the WT plants grown under conditions of simultaneous Fe and Cu deficiencies, which leads to improved plant growth and seed production.

In order to determine whether the total endogenous metal content in these plants was responsible for the phenotypes observed in the copt2-1 line, the Fe and Cu contents from the 7-day-old seedlings grown under the four Fe/Cu conditions described above were determined by inductively coupled plasma mass spectroscopy (ICP-MS). No significant differences in Fe content were observed between WT and copt2-1 plants (Figure 7A). Although a slight decrease in Cu content was detected in the mutant under high Cu (Figure 7B), COPT2 was expressed at low levels under these conditions (Figure 3A), questioning a putative COPT2 role in Cu uptake from the medium under high Cu. Moreover, no significant differences in Cu content between the WT and the copt2-1 plants grown under either hydroponic or Cu deficiency conditions were found in different organs, such as roots, rosette leaves, stems or inflorescences (data not shown). These results suggest that the total endogenous metal content in seedlings is not responsible for the phenotype of the simultaneous resistance to Fe and Cu deficiencies displayed by the copt2-1 line.
The negative effects of Fe starvation on Cu deficiency responses are altered in the copt2-1 line.

In order to understand the molecular reasons underlying the copt2-1 phenotype, the mRNA levels of selected genes regulated by Cu deficiency (COPT1, FSD1 and CSD2) were determined by qPCR in the 7-day-old WT and mutant seedlings grown under the four Fe/Cu conditions described above (Figure 8). We observed that COPT1 expression was up-regulated by Cu deficiency in both the WT and copt2-1 lines (Figure 8A, +Fe+Cu vs. +Fe-Cu; (Sancenon et al., 2003). It is interesting to note that when Fe was limited (-Fe conditions), no COPT1 up-regulation was observed in response to Cu deficiency (Figure 8A, -Fe+Cu vs. -Fe-Cu). These results suggest that Fe deficiency negatively affects COPT1 induction by low Cu in both the WT and copt2-1 lines. To further address this observation, we determined the mRNA levels of Cu-regulated genes FSD1 and CSD2, which respectively encode for FeSOD and Cu/ZnSOD. As Figures 8B and 8C depict, the CSD2/FSD1 substitution was normally observed with Cu deficiency under Fe-sufficient conditions (+Fe+Cu vs. +Fe-Cu). However, when Fe deficiency was imposed, the increased FSD1 mRNA levels were greatly compromised (Figure 8B, -Fe+Cu vs. -Fe-Cu) and the copt2-1 line showed a slightly increased FSD1 expression under Cu and Fe deficiencies (Figure 8B). To check whether this slight increase in SOD expression implies a general enhancement in oxidative stress protection in the copt2-1 line, SOD activities were measured in gel and no significant differences were found between the WT and the mutants (Figure S10A). Moreover, when subjected to oxidative treatments, such as hydrogen peroxide (500 μM) or paraquat (0.1 μM), no phenotypical differences were observed (Figure S10B), indicating that the copt2-1 line does not show more resistance to general oxidative stress conditions.

Since Fe starvation attenuated the Cu deficiency-induced up-regulation of COPT1 and FSD1 (Figures 8A and 8B), we wondered how Cu deficiency could affect plant responses to Fe scarcity. For this purpose, the expression pattern of two well-known Fe deficiency genes, metalloreductase FRO2 and Fe transporter IRT1, was analyzed under the four previously assayed Fe/Cu conditions. Although both genes were activated in response to Fe deficiency (Figures S11A and S11B, +Fe vs. -Fe), as previously reported (Colangelo and Guerinot, 2004), no major differences were observed in the expression of FRO2 and IRT1 in copt2-1 plants (Figure S11).
Global analysis of gene expression changes under Fe and Cu deficiencies indicate that *copt2-1* plants display phosphate starvation responses.

With the aim of characterizing at the molecular level the causes of enhanced resistance to Fe deficiency and induced chlorosis in the *copt2-1* mutant, a global profiling analysis of gene expression under Fe and Cu deficiency was performed. To that end, WT and *copt2-1* seedlings were grown for 7 days under Fe and Cu sufficient conditions (+Fe+Cu) and compared to seedlings grown on medium without Fe and Cu (-Fe-Cu). Moreover, medium without Fe (-Fe+Cu) has been used as a control for Cu-complemented expression changes in the *copt2-1* line. In order to validate these growth conditions, we have previously confirmed by qPCR analysis the expression pattern of two genes previously known to be upregulated by Cu deficiency, *COPT2* (Sancenon et al., 2003) (Figures 3A and S12A) and *ZIP2*, a ZRT, IRT-like protein 2 transporter (Wintz et al., 2003) (Figure S12B).

Global profiling analysis of *copt2-1* and WT lines was carried out from four biological replicates grown in the three different conditions (+Fe+Cu, -Fe-Cu and -Fe+Cu). A median log2 ratio of 1 (2-fold difference in expression) was used as a cutoff criterion to compare the mutant with the WT under each condition. We identified 324 differentially expressed genes (Tables S1 and S2) distributed in 49 induced (ratio>1) and 275 repressed (ratio<1) genes in the *copt2-1* line in the three growth conditions (Figure 9A). Repressed genes are more abundant than induced in all the conditions. The condition -Fe+Cu shows the largest number of genes which expression is affected. Gene ontology analysis indicated that repressed genes include those of the abiotic stress and detoxifying processes, maybe reflecting the consequences of the dismantling photosynthetic apparatus taking place in the WT plants (Table S3) which may be delayed in the mutant. Interestingly, a significant percentage (35%) of the induced genes is related to Pi starvation responses based on bibliography (Table 1). Over-representation of this category in all three nutritional conditions indicated a general effect of COPT2 function in Pi starvation (Table S4). The ribo-regulators *At4*, *IPS1* and several SPX domain proteins are among the best-known genes induced in Pi-starved plants and they have been shown to participate in Pi homeostasis and signaling (Franco-Zorrilla et al., 2007; Duan et al., 2008; Thibaud et al., 2010; Chiou and Lin, 2011). Therefore, *At4* and *SPX1* expression was analyzed in the *copt2-1* line, confirming the
microarray results (Figure 9B). Moreover, these data underscore the intricate interactions between Fe and Pi deficiencies, since whereas At4 is down-regulated by Fe deficiency in WT, SPX1 expression remains mostly unaffected (Figure 9B). To check how Cu is implicated in Pi-starvation, we have grown WT and copt2-1 seedlings in Pi-deficient media and under different Cu and Fe regimes. As shown in Figures 10A and 10B, copt2-1 displays slightly larger roots than WT plants in all growth conditions, indicating a general insensitivity to Pi deficiency. Moreover, the COPT2 expression pattern remains unaffected under Pi starvation (Figure 10C). Taken together, our results are compatible with a model where COPT2 is involved in the antagonistic responses of metals and Pi deficiencies (Figure 11).
DISCUSSION

The conserved family of CTR/COPT proteins mediates high-affinity Cu transport in eukaryotic organisms (reviewed by (Puig et al., 2002; Kim et al., 2008; Nevitt et al., 2012)). Distinct COPT-family members have been characterized in the plant Arabidopsis. Whereas COPT1 is a plasma membrane protein that functions in root Cu uptake and pollen development, COPT5 is intracellularly localized and mediates Cu mobilization under severe deficiency conditions (Sancenon et al., 2004; Garcia-Molina et al., 2011; Klaumann et al., 2011). Previous studies have shown that COPT2 is the most similar COPT-family protein to COPT1, that both genes fully complement the Cu transport defect of yeast $\text{ctr}1\Delta\text{ctr}3\Delta$ mutants, and that they are up-regulated in response to Cu deficiency in a SPL7-dependent manner by probably SPL7-binding to GTAC motifs in the $\text{COPT}1$ and $\text{COPT}2$ promoter regions (Sancenon et al., 2003; Yamasaki et al., 2009; Bernal et al., 2012). Here we show that, similarly to COPT1, the COPT2 protein localizes to the plasma membrane of Arabidopsis cells. Furthermore, both genes display a similar aerial expression pattern under slight Cu-deficient conditions (½ MS medium), including the expression in cotyledons from young seedlings, trichomes, anthers and mature pollen (Sancenon et al., 2004). These observations suggest that COPT1 and COPT2 might exhibit a partially redundant function in Cu homeostasis in the aerial part. A notable difference between COPT1 and COPT2 relies on their root expression pattern. $\text{COPT}1$ is exclusively expressed in primary and secondary root tips (Sancenon et al., 2004), where overexpression activates plasma membrane OH$^–$-sensitive calcium and potassium channels and subsequent root apex signaling (Rodrigo-Moreno et al., 2012). However, $\text{COPT}2$ is expressed in subapical root regions (Figure 2), where the activation of these channels is prevented (Rodrigo-Moreno et al., 2012), suggesting local and specific functions and subsequent signaling events of these transporters in Arabidopsis roots. Moreover, another key difference is the regulation of both genes under Fe deficiency. In low Cu media, whereas $\text{COPT}1$ is downregulated (Figure 8A), $\text{COPT}2$ expression is increased by Fe deficiency (Figure 3A).

In this sense, it is noteworthy that previous genome-wide expression studies in Fe-deficient roots were mostly performed under low Cu levels (Colangelo and Guerinot, 2004; Buckhout et al., 2009; Yang et al., 2010; Stein and Waters, 2011). These studies have shown that $\text{COPT}2$ expression is up-regulated in response to Fe deficiency, which
has been further corroborated herein (Figures 3 and S5). However, the Fe deficiency-induced \textit{COPT2} expression in roots is abolished by high Cu in media, although still present in shoots (Figures 3B and S5), suggesting a role for Cu in FIT-mediated responses in Arabidopsis roots. Recently, (Waters et al., 2012) reported increased \textit{COPT2} expression in roots, but a decrease in rosettes for Fe deficiency under low Cu conditions. The remaining \textit{COPT2} expression in cotyledons under -Fe+Cu (Figures 3B and S5) may be attributed to another putative Fe-deficiency network that differs from FIT and is not affected by high Cu levels. It is believed that the increase in endogenous Cu levels when Fe is low (Figure 7B) may occur to favor the cofactor supply to Cu-enzymes (e.g., Cu/ZnSOD), which substitute their Fe counterparts (e.g., FeSOD) to optimize the utilization of low Fe available in more important or irreplaceable Fe-dependent functions (Waters et al., 2012).

Surprisingly, parameters indicative of the photosynthetic apparatus status, such as chlorophyll content are higher in \textit{copt2-1} than in WT plants (Figures 4 and 5) indicating that the absence of \textit{COPT2} expression results in better plant performance, which is more relevant under both metals deficiencies (Figure S9). A putative explanation for this interesting phenotype is based on the observation that \textit{copt2-1} plants display higher \textit{FSD1} mRNA levels than the WT ones for combined Fe and Cu deficiencies (Figure 8B). However, a concomitant disadvantageous effect of \textit{COPT2} expression resulting from diminished oxidative protection is not observed in the \textit{copt2-1} line (Figure S10). Instead, the analysis of global expression changes in the \textit{copt2-1} mutant suggests a complex scenario where different cuproproteins and maybe specific COPT-mediated signaling processes could be at the basis of the observed phenotype. One of the altered categories in the \textit{copt2-1} line is the response to low Pi, which is mostly independent of the metal status (Tables 1 and S2 and Figure 9B). Our results unveil a role of COPT2-mediated Cu transport in Pi starvation signaling, which is in agreement with the down-regulated \textit{COPT2} expression observed under Pi starvation conditions (Thibaud et al., 2010). Potential connections between Pi starvation responses and the homeostasis of other ions have been described (Abel, 2011; Chiou and Lin, 2011). Root responses to Pi starvation have been suggested to be an outcome of the complex interactions between Pi and other nutrients, essentially Fe (Svistoonoff et al., 2007; Ward et al., 2008). With simultaneous Fe and Pi deficiencies, a recovery in primary root elongation has been reported (Ward et al., 2008). Our results add Cu homeostasis to those interactions in which Fe deficiency and Pi starvation have
antagonistic effects by up-regulating or down-regulating COPT2 expression, respectively (Figures 3A and 11; (Thibaud et al., 2010)).

COPT2 could participate in Pi sensing by Cu delivery to cuproproteins, such as multicopper oxidases LPR1 and LPR2, which have been involved in root growth responses to low Pi (Svistoonoff et al., 2007). Our results are compatible with a role of COPT2-mediated Cu transport in supplying Cu to these enzymes. In this sense, a slight increase in root length is observed in the copt2-1 line as compared to the WT under low Pi conditions (Figure 10), which is consistent with the phenotype observed in lpr1 and lpr2 mutants (Svistoonoff et al., 2007). In addition these data reveal a putative complex COPT2-mediated role in Pi-starvation systemic signaling, such as At4 and SPX1 expression (Figure 9B), which still remains to be elucidated.

A putative explanation to the better maintenance of chlorophylls observed in the mutant can be postulated as an indirect effect through Pi-starvation responses. Indeed under Pi-limiting conditions, plants substitute phosphoglycerolipids by activating the genes for galactolipid biosynthesis (Kobayashi et al., 2009). Monogalactosyldiacylglycerol (MGDG) is an abundant lipid in chloroplast membranes (Shimojima and Ohta, 2011). Mutants affected in MGDG synthase show reduced chlorophyll content (Jarvis et al., 2000). Changes in lipid composition have already been shown to be involved in Cu deficiency responses in *Chlamydomonas reinhardtii* (Castruita et al., 2011). The genes induced in copt2-1 plants suggest that phospholipids substitution for galactolipids could take place in the mutant (Tables 1, S2 and S4). Alternatively, a putative COPT2-mediated signaling event could be involved in chlorophyll degradation and consequently, this process would be retarded in the copt2-1 line. In agreement with this suggestion other degradation processes, such as seed protein mobilization are also inhibited in the mutant (Tables S1 and S3). In addition, both the influence of Cu on ethylene perception (Hirayama et al., 1999) and the recently postulated role of a multicopper oxidase in Fe homeostasis (Bernal et al., 2012) also indicate different Cu functions, which could affect plant responses under Fe and Pi starvation (Romera and Alcantara, 1994; Hirsch et al., 2006).

Although more studies will be needed to further ascertain the relevance of COPT2 in these processes, this study opens up novel possibilities to help develop strategies to improve the growth, yield and nutritional quality of crops under environmental metal deficiencies. Along these lines, recent studies in rice indicate
certain COPT-family members, which are up-regulated by both Cu and Fe deficiency (Yuan et al., 2011), as potential targets for biotechnological improvement.
MATERIALS AND METHODS

Plant growth conditions and treatments

Seeds of *Arabidopsis thaliana*, ecotype Columbia-0 (Col-0), were surface-sterilized and stratified for 2 d at 4°C and were germinated in ½ MS medium plates either including 1% sucrose (Murashige, 1962) or supplemented with the indicated concentrations of metal ions. For severe Cu-deficient conditions, the ½ MS medium was supplemented with 100 μM BCS (*Bathocuproinedisulfonic acid disodium*). In order to know the effects of both Cu and Fe deficiencies in plants, the components of the ½ MS medium were prepared separately according to the conditions: macronutrients (10 mM NH₄NO₃, 9.4 mM KNO₃, 0.37 mM MgSO₄·7H₂O, 0.62 mM KH₂PO₄ and 1.13 mM CaCl₂), micronutrients (50 μM H₃BO₃, 36.6 μM MnSO₄·H₂O, 15 μM ZnSO₄·7H₂O, 0.57 μM NaMoO₄·2H₂O and 0.05 μM CoCl₂·6H₂O), 50 μM Fe-EDTA, 0.25 mM KI, 1 μM CuSO₄·5H₂O, 0.05% MES, 1% sucrose and 0.8% phytoagar; pH 5.7-5.8. 7-day-old seedlings were grown in Fe- and Cu-sufficient medium (+Fe+Cu), Fe-sufficient and Cu-deficient medium (+Fe-Cu), Fe-deficient and Cu-sufficient medium (-Fe+Cu) and Fe- and Cu-deficient medium (-Fe-Cu). Cu-excess medium was supplemented with 10 μM CuSO₄·5H₂O. Fe-deficient medium was supplemented with 300 μM ferrozine. With the Pi-deficient medium, KH₂PO₄ was not included in the macronutrients solution. To study sensitivity to others stresses, seedlings were grown in paraquat and H₂O₂ solution (0.1 μM and 500 μM, respectively). Seedlings were grown for 7 days with a 12 h photoperiod (65 μmol m⁻² of cool-white fluorescent light) at 23°C/16°C temperature cycle. Hydroponic cultures were performed in the same photoperiod conditions from 3-4 true leaves seedlings grown in commercial soil, which were transferred to black boxes containing standard Hoagland solution (0.1 X), pH 5.8, as described by (Hermans et al., 2005). After a 14-day adaptation, the -Fe-Cu treatment (corresponding to a Hoagland medium without Cu and Fe sources) commenced. Media were changed weekly for 4-5 weeks. The chlorophyll content of the Arabidopsis seedlings and leaves from adult plants was determined by the trichlorometric method (Parsons, 1962). Root length was measured using the Image J 1.42q software (http://rsb.info.nih.gov/ij).

Functional complementation assays in yeast
The yeast ctr1Δctr3Δ mutant strain was transformed with p426GPD, or with a vector containing COPT1, COPT2 or COPT2:GFP, and was assayed for growth on glucose (YPD: 1% yeast extract, 2% bactopeptone, 2% glucose), glycerol (YPEG: 1% yeast extract, 2% bactopeptone, 2% ethanol, 3% glycerol), and glycerol + Cu (YPEG supplemented with 100 µM CuSO4) media solidified with 1.5% agar (Puig et al., 2002).

Metal accumulation measurements

Fresh Arabidopsis material was dried at 65°C for 2 days and digested with 65% (v/v) HNO3 at 80-90°C. Digested samples were then diluted with Millipore H2O (Purelab Ultra), and Cu and Fe contents were determined by ICP-MS at the Servei Central d'Instrumentació Científica (Universitat Jaume I, Castelló Spain).

SODs activity assay

Plant material was homogenized in an equal volume of ice-cold grinding buffer (50 mM potassium phosphate, pH 7.4, 0.1% BSA, 0.1% ascorbate, 0.05% β-mercaptoethanol, 0.2% Triton X-100) and was clarified by centrifugation at 14000 r.p.m. for 15 min. Total protein was measured by the protein-dye binding assay (Bradford, 1976) with the BIO-RAD Protein Assay reagent. Samples (20 µg) were separated on a non denaturing 12.5% polyacrylamide gel at 100 V for 3-4 h. SOD activity was detected on these gels using the in situ staining technique of (Beauchamp and Fridovich, 1971). Briefly, the gel was kept in 1 mg/ml NBT for 10 min in the dark and then in developing buffer (33 mM potassium phosphate, pH 7.8, 28 µM riboflavin, 28 mM TEMED) for another 20-min period before exposure to light.

Plasmid constructs

The entire COPT2 open reading frame was obtained by PCR using the following specific primers: COPT2-Sall-F CATGTGCACATCATGGATCATGATCACATGC AT; COPT2-Neol-R TCTCCATGTTACAACGCAACCCTGAAGACGGCGGAA. The COPT2 carboxy terminus was fused in the frame to the GFP with the CaMV35S promoter through its insertion into transient expression vector P35SΩsGFP(S65T) (Miras et al., 2002). COPT2-GFP, obtained from the previous construct by PCR using these specific primers: COPT2-HindII-F CATAGCTTATGGATCATGATCACA TGCAT; GFP-R-Sall CATGTGCACCTTTGTACAGCTCGTCAT was cloned into the p426GDP plasmid for the yeast functionality assay. Plasmids p426GDP-COPT1
and p426GDP-\textit{COPT2} were described in (Sancenon et al., 2003). The \textit{uidA} coding sequence and the 1248 base pairs from \textit{COPT2} transcription start site (\textit{PCOPT2}) (indicated by arrows in Figure S4) were amplified and cloned into the pFP101 plasmid (Bensmihen et al., 2005) without its \textit{CaMV35S} promoter to obtain the \textit{PCOPT2:GUS} construct, used to determine the \textit{COPT2} spatial expression pattern by a \(\beta\)-glucuronidase assay. A PCR product containing 1248 bp of the \textit{PCOPT2} and the entire \textit{COPT2} coding sequence was cloned into the pFP101 vector and introduced into the \textit{copt2-1} line by floral dipping (Clough and Bent 1998). Homozygous transgenic plants (\textit{PCOPT2:COPT2}) were selected based on seed fluorescence. The entire \textit{COPT2} coding sequence was tagged with the human influenza virus haemagglutinin epitope (HA) with the specific primers COPT2-XbaIF CATTCTAGAATGGATCATGATCACATGCAT and COPT2HA-SalI-R ATGTCGACTCAAGCATAATCTGGAAACATCGTATGGATAAAACGCAGCCT GAAGACGCGGGAA and cloned into the pFP101 vector. Transgenic lines were selected based on the fluorescence of the seeds.

\textbf{Computer-assisted sequence analyses}

The hydrophobic profile of the \textit{COPT2} protein was obtained by the TMHHM application (www.cbs.dtu.dk/services/TMHHM). The theoretical analysis of the promoter sequences was performed with the PLACE Web Signal Scan (http://www.dna.affrc.go.jp/htdocs/PLACE/signalscan.html) and Patmatch from TAIR (www.arabidopsis.org).

\textbf{Subcellular localization of the GFP fusion proteins}

The Arabidopsis protoplasts from the fresh leaf tissue of the 30-day-old plants grown in soil were transiently transformed with \textit{COPT2-GFP}, as previously described (Abdel-Ghany et al., 2005). After 16 h under continuous light at 23°C in the wash solution, protoplasts were incubated with the FM4-64 dye (Invitrogen) at a concentration of 50 \(\mu\)M for 15 min at 4°C before analyzing. Confocal images were obtained using a Fluorescence Confocal Microscope TCS SP, vertical (DM-R) (Leica), equipped with the Argon ion (458 and 488 nm), He-Ne I (543 nm) and He-Ne II (633 nm) excitation laser systems, and a 40-60X objective lens. Fluorescence signals were detected at 500-530 nm for the GFP, 650-750 nm for chlorophyll and 560-650 nm for FM4-64 after exciting at 488, 633 and 543 nm, respectively.
Immunohistochemical techniques and microscopy

Samples of Arabidopsis plant leaves were fixed in Karnowsky reagent. They were dehydrated in successive ethanol series (20%, 40%, 60%, 80%, 95%, and 100%) and embedded in polyethylene glycol for fluorescence microscopy. Semithin sections (2 µM) were placed on slides and rehydrated with xylene and successive ethanol series (100%, 95%, 70%, 0%), washed with PBSII ((PBSI: 137 mM NaCl, 2.7 mM KCl, 9 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2) + 0.1% BSA and 0.05% Na2N3) and dried. Slides were blocked in PBSII with 2% BSA and 1% powder milk for 20 min and dried. Then, labeled overnight at 4°C and in humidity with rat monoclonal antibody to the HA epitope (clone 3F10; Roche) diluted 1:50 in PBSII. Subsequently, washed with PBSI, blocked in PBSII with 2% BSA and 1% powder milk for 20 min and dried. Then, an anti-rat-IgG antibody conjugated with AlexaFluor546 (Molecular Probes) diluted 1:500 with 0.1 M Glycine was used for 1-4 h at 4°C in humidity and darkness. Slides were then washed with PBSI and stained with 1 µg/ml DAPI in PBSI for 5 min. Finally, slides were washed with PBSI and mounted in Citifluor. The fluorescence of immunolabeled COPT2-HA and of DAPI-stained nuclei was visualized with a fluorescence microscope (Axioskop 2; Zeiss, Jena, Germany) using the appropriate filter combinations. Micrographs were taken by a camera SPOT (Diagnostic Instruments Inc.) and were processed through the Photoshop program (Adobe Systems, Seattle).

Protein analysis by Western blot

A crude extract from the WT and copt2-1 Arabidopsis leaves grown on plates was obtained and the amount of protein was determined by BCA (the BCA Protein Assay Kit, Thermo). Next, 40 µg of protein were analyzed by SDS-PAGE, transferred to a nitrocellulose membrane and blotted with an antibody against plastocyanin (Agrisera). Coomassie staining was used as a loading control.

GUS expression analyses

Assays were performed as described by (Jefferson et al., 1987). Briefly, the seedlings and organs from the adult PCOPT2:GUS plants were embedded with the substrate solution [100 mM NaPO4 pH 7.2, 0.5 mM K3Fe(CN)6, 0.5 mM K4Fe(CN)6, 0.1% (v/v) Triton X-100, 0.5 mM 5-bromo-4-chloro-3-indolyl-β-D-glucuronide (X-
Gluc, AppliChem) and 10 mM EDTA pH 7.2. Reactions took place at 37°C and were stopped with ethanol (70%).

copt2-1 mutant line analyses and complementation

The Arabidopsis T-DNA insertion line AL770147 was obtained from the GABI-Kat Project. Plants were self-pollinated and an homozygous mutant was obtained (denoted copt2-1 line). The COPT2-LB (F) and COPT2 RB (R) primers were used to amplify the WT alleles, whereas the COPT2-LB (F) and GKAT-PCR (S) primers amplified the inserted alleles in the copt2-1 line (see Figure S?A and Table S6). The location of the T-DNA insert was obtained by PCR amplification and sequencing. Several independent lines were obtained from different Arabidopsis databases were checked but none carried a T-DNA insertion in the coding region and the copt2-1 line was the closest insertion to the COPT2 coding sequence found among the lines analyzed. A PCR fragment containing the PCOPT2::COPT2 in frame with the GFP reporter gene was cloned into the pFP101 plasmid and introduced in the copt2-1 line by floral dipping to generate a complemented mutant line.

Microarrays and bioinformatics

Four biological replicates (7-day-old seedlings of the WT and copt2-1 plants grown in the 12L/12D photoperiod) were obtained for each treatment [Fe- and Cu-sufficient medium (+Fe+Cu), Fe-deficient and Cu-sufficient medium (-Fe+Cu) and Fe- and Cu-deficient medium (-Fe-Cu)]. Fe-deficient medium was supplemented with 300 μM ferrozine. Total RNA was isolated using the RNeasy Plant Mini Kit (Qiagen) and aRNA was amplified using the MessageAmp™ II aRNA Amplification kit (Ambion). Long oligonucleotide microarrays were provided by Dr. David Galbraith (University of Arizona, http://www.ag.arizona.edu/microarray/). The hybridization and analysis were performed as described elsewhere (Bueso et al., 2007). The expression values (log2) were obtained using the GenePix Pro 6.0 microarray-analysis software (Molecular Devices, Sunnyvale CA) and normalized with the GenePix Pro 6.0 and Acuity 4.0 software (Molecular Devices, Sunnyvale CA). Differential genes were identified with significance analysis of microarray (SAM) (Tusher et al., 2001) with false discovery rate (FDR) of <6% and 2-fold change (log2 ≤ |1|). Biological processes were identified with the Gene Ontology (GO) annotation (Ashburner et al., 2000), performed by the
GeneCodis2.0 (http://genecodis.dacya.ucm.es/; Carmona-Saez et al., 2007; Nogales-Cadenas et al., 2009) programs (Table 1). The total microarray differentially regulated genes are shown as Supplemental material (Tables S1 and S2). The microarray raw data were deposited in the NCBI's Gene Expression Omnibus ibus (Edgar et al., 2002) and are accessible through GEO Series accession number GSE42642.

Gene expression by semi-quantitative and real-time quantitative PCR

Total Arabidopsis RNA was extracted with Trizol Reagent (Ambion) and RT-PCR was performed with SSII (Invitrogen), as previously described (Andres-Colas et al., 2006). RNA was quantified by UV spectrophotometry; its integrity was visually assessed on ethidium bromide-stained agarose gels and was treated with Dnase I Amp Grade (Invitrogen). Semi-quantitative PCR (sqPCR) was carried out with specific oligonucleotides for ACT1 and COPT2 (Table S6). Real-time quantitative PCR (qPCR) was carried out with SYBR-Green qPCR Super-Mix-UDG with ROX (Invitrogen) and the specific primers detailed in Table S6 were used in a CFX96 Touch™ Real Time PCR Detection System (BioRad) with 1 cycle of 95°C for 2 min and 40 cycles consisting in 95°C for 30 s and 60°C for 30 s. Values were normalized to the UBQ10 mRNA levels and in control conditions WT was used as reference.

Statistical Analysis

The statistical analysis of the relative expression was performed by comparing the relative expression of the genes (RT-PCR) based on the pair wise fixed reallocation randomization test (P <0.05) (Pfaffl et al., 2002); for the remaining parameters, it was carried out using two-way ANOVA with the means compared by the Duncan test (P ≤ 0.05) using the InfoStat software, version 2010 (http://www.infostat.com.ar; (Di Rienzo et al., 2011).

ACKNOWLEDGEMENTS

We acknowledge the SCSIE (Universitat de València) for the sequencing and confocal microscopy services. We are grateful to Dr. Marinus Pilon for the GFP
plasmid and to Dr. Toshiharu Shikanai for the spl7 mutant. Finally, we wish to thank Drs Amparo Sanz and Javier Paz-Ares for critically reading the manuscript.

REFERENCES

family of Arabidopsis genes with the SPX domain reveals their diverse functions
in plant tolerance to phosphorus starvation. Plant J 54: 965-975

expression and hybridization array data repository. Nucleic Acids Res 30: 207-
210

Franco-Zorrilla JM, Valli A, Todesco M, Mateos I, Puga MI, Rubio-Somoza I,
new mechanism for regulation of microRNA activity. Nat Genet 39: 1033-1037

Garcia-Molina A, Andres-Colas N, Perea-Garcia A, Del Valle-Tascon S,
Penarrubia L, Puig S (2011) The intracellular Arabidopsis COPT5 transport
protein is required for photosynthetic electron transport under severe copper
deficiency. Plant J 65: 848-860

1465: 190-198

combinatorial interactions of cis-acting elements recognized by R2R3-MYB,
BZIP, and BHLH factors control light-responsive and tissue-specific activation
of phenylpropanoid biosynthesis genes. Plant Mol Biol 57: 155-171

Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N
(2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem
loading in young mature leaves. Planta 220: 541-549

Hindt MN, Guerinot ML (2012) Getting a sense for signals: regulation of the plant
iron deficiency response. Biochim Biophys Acta 1823: 1521-1530

JM, Dailey WP, Dancis A, Ecker JR (1999) RESPONSIVE-TO-
ANTAGONIST1, a Menkes/Wilson disease-related copper transporter, is

Hirsch J, Marin E, Floriani M, Chiarenza S, Richaud P, Nussaume L, Thibaud
MC (2006) Phosphate deficiency promotes modification of iron distribution in
Arabidopsis plants. Biochimie 88: 1767-1771

Ivanov R, Brumberova T, Bauer P (2012) Fitting into the harsh reality: regulation of
iron-deficiency responses in dicotyledonous plants. Mol Plant 5: 27-42

deficiency and abnormal chloroplast development in the Arabidopsis MGD
synthase 1 mutant. Proc Natl Acad Sci U S A 97: 8175-8179

Nevitt T, Ohrvik H, Thiele DJ (2012) Charting the travels of copper in eukaryotes from yeast to mammals. Biochim Biophys Acta 1823: 1580-1593

Table 1. Phosphate-starvation biological process overrepresented in the copt2-1 line. Common Pi-starvation and copt2-1 induced genes compared to WT are indicated (Thibaud et al., 2010; *other sources). MIPS codes, gene description, GO cellular function and the microarray values under +Fe+Cu, -Fe-Cu and –Fe+Cu are indicated. The genes used in qRT-PCR quantitation are in bold; the genes statistically significant but with value <1 are in gray; and not statistically significant are indicated as n.s.

<table>
<thead>
<tr>
<th>MIPS code</th>
<th>Gene description</th>
<th>GO_cellular_function</th>
<th>+Fe+Cu</th>
<th>-Fe-Cu</th>
<th>-Fe+Cu</th>
</tr>
</thead>
<tbody>
<tr>
<td>At2g32960*</td>
<td>PFA-DSP2</td>
<td>catalytic activity, phosphatase activity, protein tyrosine phosphatase activity</td>
<td>2.524</td>
<td>2.873</td>
<td>2.652</td>
</tr>
<tr>
<td>At2g04460</td>
<td>unknown</td>
<td>unknown</td>
<td>2.205</td>
<td>2.495</td>
<td>2.300</td>
</tr>
<tr>
<td>At5g03545*</td>
<td>At4</td>
<td>unknown</td>
<td>1.383</td>
<td>1.986</td>
<td>1.855</td>
</tr>
<tr>
<td>At5g20150</td>
<td>SPX1</td>
<td>unknown</td>
<td>1.145</td>
<td>1.309</td>
<td>1.477</td>
</tr>
<tr>
<td>At1g73010</td>
<td>PPsPasel</td>
<td>phosphoric monoester hydrolase activity</td>
<td>1.073</td>
<td>1.222</td>
<td>1.165</td>
</tr>
<tr>
<td>At2g11810</td>
<td>MGD3</td>
<td>1,2-diacylglycerol 3-beta-galactosyltransferase activity</td>
<td>1.306</td>
<td>1.052</td>
<td>0.738</td>
</tr>
<tr>
<td>At5g20790</td>
<td>unknown</td>
<td>unknown</td>
<td>0.865</td>
<td>1.811</td>
<td>1.515</td>
</tr>
<tr>
<td>At3g09922*</td>
<td>IPS1</td>
<td>unknown</td>
<td>0.614</td>
<td>1.354</td>
<td>1.469</td>
</tr>
<tr>
<td>At1g73220</td>
<td>OCT1</td>
<td>carbohydrate and carnitine transporter activity</td>
<td>2.067</td>
<td>0.782</td>
<td>0.733</td>
</tr>
<tr>
<td>At3g03530*</td>
<td>NPC4</td>
<td>hydrolase and phospholipase C activity</td>
<td>1.112</td>
<td>0.489</td>
<td>0.607</td>
</tr>
<tr>
<td>At1g17710</td>
<td>unknown</td>
<td>phosphoric monoester hydrolase activity</td>
<td>1.448</td>
<td>1.289</td>
<td>n.s.</td>
</tr>
<tr>
<td>At1g08310</td>
<td>unknown</td>
<td>galactolipid biosynthetic process, negative regulation of transcription, DNA-dependent</td>
<td>1.000</td>
<td>1.441</td>
<td>n.s.</td>
</tr>
<tr>
<td>At4g26530*</td>
<td>unknown</td>
<td>fructose-bisphosphate aldolase activity</td>
<td>1.123</td>
<td>0.219</td>
<td>n.s.</td>
</tr>
<tr>
<td>At2g45130</td>
<td>SPX3</td>
<td>unknown</td>
<td>2.069</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>At2g30540</td>
<td>unknown</td>
<td>thiol-disulfide exchange intermediate activity</td>
<td>1.039</td>
<td>n.s.</td>
<td>n.s.</td>
</tr>
<tr>
<td>At4g11800*</td>
<td>unknown</td>
<td>protein serine/threonine phosphatase activity</td>
<td>n.s.</td>
<td>1.129</td>
<td>n.s.</td>
</tr>
<tr>
<td>At1g21980*</td>
<td>PIP5K1</td>
<td>1-phosphatidylinositol-4-phosphate 5-kinase activity</td>
<td>n.s.</td>
<td>n.s.</td>
<td>1.111</td>
</tr>
</tbody>
</table>
Figure 1. COPT2:GFP functionality in yeast and subcellular localization in Arabidopsis protoplasts. A, *Saccharomyces cerevisiae* ctr1Δctr3Δ cells were transformed with p426GPD, COPT1, COPT2 and COPT2:GFP and were spotted on SC-ura media (glucose) or YPG (glycerol) supplemented with CuSO4 100 μM. Each spot represents a 1/10 cell culture density dilution, decreasing from left to right. B, Arabidopsis protoplasts were isolated from 30-day-old leaves and were transiently transformed with the PcA1M133S:COPT2:GFP construct, incubated with FM4-64 for 15 min at 4°C before being analyzed by confocal microscopy at 16 h post-transformation. Non transformed protoplasts were used as a negative control. Green, cyan and magenta fluorescences are indicative of the localization of the GFP protein, the FM4-64 marker and chlorophyll, respectively. Representative protoplasts are shown on the same scale, including their merge and light fields.
Figure 2. The COPT2 expression pattern in Arabidopsis PCOPT2::GUS transgenic plants under Cu deficiency. β-glucuronidase staining in a representative 7-day-old seedling (A), detail of a secondary root tip (B), general view of the main root (C), detail of root hairs (D), cotyledon (E), shoot meristem and trichomes (F), aerial part from a 3-week-old seedling (G), flower (H) and a longitudinal section of an anther with pollen grains (I).
Figure 3. The COPT2 expression under Cu and Fe deficiencies. A. The COPT2 expression analysis by qPCR in wild-type (WT; plain bars), spl7 (gray bars) and copt2-1 (copt2; dark gray bars) seedlings. The total RNA from the 7-day-old seedlings grown under the control (+Fe+Cu, supplemented with 10 μM CuSO₄), Cu-deficiency (+Fe-Cu), Fe-deficiency (-Fe+Cu, supplemented with 10 μM CuSO₄), or Fe and Cu deficiency (-Fe-Cu) conditions described in Materials and Methods was isolated and retrotranscribed to cDNA. The UBQ10 gene expression was used as a loading control. Values are means ± SD of three biological replicates. r.u., relative units. The different letters above the bars represent significant differences among all the means (P<0.05). B. β-glucuronidase staining in the 7-day-old seedlings from the PCOPT2:GUS transgenic lines grown under control (+Fe+Cu, supplemented with 1 μM CuSO₄), Cu-deficiency (+Fe-Cu), Fe-deficiency (-Fe+Cu, supplemented with 1 μM CuSO₄), or Fe and Cu deficiency (-Fe-Cu) at different incubation times at 37ºC (overnight; o/n and 1hour; 1h).
Figure 4. Phenotype of the copt2-1 seedlings grown under Cu and Fe deficiencies. A. Photographs of the 7-day-old seedlings from the wild type (WT), and copt2-1 line (copt2) grown under the same conditions described in Figure 3A. B. Chlorophyll content of the 7-day-old seedlings from both the WT (plain bars) and copt2 (gray bars) lines grown under the same conditions described in Figure 3. Values are means ± SD of at least three biological replicates. F.W., fresh weight. The different letters above the bars represent significant differences among all the means (P<0.05).
Figure 5. Chlorophyll content and gene expression of complemented copt2-1 seedlings grown under Cu and Fe deficiencies.

A. Photographs of the 7-day-old seedlings from the wild type (WT), copt2-1 (copt2) and PCOPT2:COPT2:GFP (C2) plants grown under -Fe-Cu conditions.

B. Chlorophyll content of the WT (plain bars), copt2 (gray bars) and C2 (dotted bars) seedlings. Values are means ± SD of at least four biological replicates. The different letters above the bars represent significant differences among all the means (P<0.01).

C. Expression analysis of COPT2, LHCB1.1 and FSD1 genes by qPCR in WT (plain bars), copt2 (gray bars) and C2 (dotted bars) seedlings, as described in Figure 3. The UBQ10 gene expression was used as a loading control. Values are means ± SD of three biological replicates. r.u., relative units. The different letters above the bars represent significant differences among all the means (P<0.05).
Figure 6. Phenotype of the copt2-1 adult plants grown under Cu and Fe deficiencies. A, Photographs from the rosette leaves and aerial part details from the wild type (WT) and copt2-1 line (copt2) grown on the +Fe+Cu and -Fe-Cu media were taken 14 days after treatments. B, Chlorophyll content of the caulinar and rosette leaves from the WT (plain bars) and copt2 (gray bars) shown in panel A. Values are means ± SD of four biological replicates. F.W., fresh weight. The different letters above the bars represent significant differences (P<0.05) among treatments in a type of leaves.
Figure 7. Endogenous Fe and Cu content in WT and copt2-1 seedlings. Fe (A) and Cu (B) content were measured by ICP-MS from whole 7-day-old wild type (WT; plain bars) and copt2-1 (copt2; gray bars) plants. Seedlings were grown under the same conditions described in Figure 3. Values are means ± SD of at least three biological replicates. D.W., dried weight. The different letters above the bars represent significant differences among all the means (P<0.05).
Figure 8. Gene expression pattern of the Cu-deficiency marker genes in the copt2-1 seedlings. Expression analysis of Cu transporter COPT1 (A), and the Fe and Cu/ZnSOD genes FSD1 (B) and CSD2 (C), respectively, by qPCR in wild type (WT; plain bars) and copt2-1 (copt2; gray bars) seedlings, grown under the same conditions described in Figure 3. The UBQ10 gene expression was used as a loading control. Values are means ± SD of three biological replicates. r.u., relative units. The different letters above the bars represent significant differences among all the means (P<0.05).
Figure 9. Venn diagrams of gene expression changes in WT versus copt2-1 seedlings under different metal statuses. A, Numbers indicate the amount of induced/repressed genes under grown under the same conditions described in Figure 3B control (+Fe+Cu), Fe-deficiency (-Fe+Cu) or Fe and Cu deficiency (-Fe-Cu) conditions in copt2-1 seedlings. B, Expression analysis by qPCR of At4 and SPX1 in wild type (WT; plain bars) and copt2-1 (copt2; gray bars) seedlings, as described in panel A. The UBQ10 gene expression was used as a loading control. Values are means ± SD of at least three biological replicates. r.u., relative units. The different letters above the bars represent significant differences among all the means (P<0.05).
Figure 10. Phenotype of the copt2-1 seedlings grown under Pi, Cu and Fe deficiencies. A, Representative photographs of the 7-day-old seedlings from the wild type (WT) and copt2-1 (copt2) line grown under Pi starvation (-Pi) and in addition to -Pi, the same conditions described in Figure 3A with regard to Cu deficiency (-Pi-Cu) and Cu and Fe deficiencies (-Pi-Cu-Fe). B, Root length from the WT (white bars) and copt2 (gray bars) measured in three biological replicates ± SD in the samples described in panel A. Asterisks above the bars represent significant differences among all the means (P<0.05) comparing to the WT. C, Overnight β-glucuronidase staining in the 7-day-old seedlings from the PCOPT2-GUS transgenic line grown under Pi-deficiency (+Fe+Cu-Pi), Cu and Pi-deficiency (+Fe-Cu-Pi), and Fe and Pi-deficiency (-Fe+Cu-Pi).
Figure 11. Model of the COPT2-mediated interactions among Cu and Fe deficiencies and Pi starvation responses. Cu, Fe and Pi deficiencies display antagonistic effects on COPT2 expression. Cu$^+$ uptake mediated by COPT2 attenuated Cu deficiency responses, could participate in Cu delivery to low Pi local sensing and systemic signaling. Local sensing mediated by multicopper oxidases LPR1 and LPR2 potentiates cell differentiation versus cell division.