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Abstract 17 

Wildfires are a major threat to Mediterranean forests. Firebreaks are built as a prevention 18 

measure, but require a periodic and expensive maintenance. Cultivating the ectomycorrhizal 19 

mushroom Tuber melanosporum Vitt. in firebreaks could reduce costs and improve their 20 

sustainability. But firebreaks are built on forest soil, considered non-optimum for T. 21 

melanosporum cultivation. A pot experiment was used to study the persistence of T. 22 

melanosporum in firebreak soils in the short term, as a first step to assess the viability of these 23 

plantations. The influence of seedlings, soil heating and liming on T. melanosporum was also 24 

tested. During the two years after plantation, T. melanosporum mycorrhizas increased their 25 

number, showing its ability to proliferate. Percent root colonisation by native fungi importantly 26 

increased from month 12 to 22; although T. melanosporum remained dominant, with a 27 

colonisation level similar to those in standard truffle plantations. The age of seedlings at the time 28 

of planting influenced T. melanosporum poliferation, supporting a key role for nursery-seedling 29 

quality in the performance of young plantations. Heating the soil before planting reduced the 30 

richness of native fungi, suggesting that this could increase plantation success. The results tend to 31 

https://www.researchgate.net/profile/Santiago_Reyna?el=1_x_100&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
https://www.researchgate.net/profile/Sergi_Garcia-Barreda?el=1_x_100&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
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support the viability of T. melanosporum cultivation in firebreaks, and encourage experimental 32 

field plantations. 33 

Keywords: firebreak, truffle plantation, inoculated seedling, soil preparation, ectomycorrhizal 34 

fungi 35 

 36 

1  Introduction 37 

Wildfires are a major threat to the Mediterranean forests in Europe. A common silvicultural 38 

measure to prevent wildfires are firebreaks: in some Mediterranean countries like Spain they 39 

usually consist of a central band cleared to mineral earth, surrounded by a reduced fuel zone 40 

(with widely spaced, pruned trees). Effective firebreaks require a periodic and expensive 41 

maintenance (Plana et al. 2005), and thus grazing and agroforestry have been proposed as 42 

secondary uses to reduce costs and increase sustainability. Reyna and Garcia-Barreda (2005) 43 

proposed to cultivate the edible ectomycorrhizal (EM) fungus Tuber melanosporum Vitt. in the 44 

reduced fuel zone of firebreaks, since both uses require open stands. The phytotoxic activity of 45 

the fungus inhibiting plant growth around the symbiont tree (Splivallo et al. 2011) could create 46 

horizontal discontinuities in ground fuels. 47 

This area devoid of plant cover (called brûlé) is formed in most trees producing T. melanosporum 48 

sporocarps in open stands, whereas it is much rarer in other trees; so the success of the proposal 49 

depends on the fungus completing its life cycle. In sandy soils and in the most rainy areas of 50 

France and Italy the inhibition of plant growth is lower, thus limiting the potential benefits of 51 

these plantations. 52 

Successful T. melanosporum cultivation requires planting inoculated seedlings on receptive soils 53 

(suitable to complete its life cycle) with low EM infectivity (scant effective inoculum of other 54 

EM fungi). Thus Sourzat (1997) recommends establishing T. melanosporum plantations on soils 55 

https://www.researchgate.net/publication/226113920_Developing_Firebreaks?el=1_x_8&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
https://www.researchgate.net/publication/49804420_Truffle_volatiles_From_chemical_ecology_to_aroma_biosynthesis?el=1_x_8&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
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previously cultivated for non-EM plants. In forests dominated by EM trees Frochot et al. (1990) 56 

and Reyna et al. (2006) found that the native (soil-borne) populations of EM fungi colonised the 57 

roots of inoculated seedling and limited the development of T. melanosporum from the first years. 58 

This hinders the success of plantations, as they only start producing sporocarps between the 5th–59 

12th year. 60 

The viability of cultivating T. melanosporum in firebreaks has not been evaluated. Since the EM 61 

fungi obtain carbohydrates from their symbionts, the absence of EM plants negatively affects the 62 

EM infectivity of the soil (Dickie and Reich 2005). But in many Mediterranean firebreaks a low 63 

density of resprouting EM trees and shrubs usually appears, making the evaluation difficult. De 64 

Román and De Miguel (2005) and Martínez de Aragón et al. (2012) found that T. melanosporum 65 

persisted in recently burned forest soils in the short term despite the presence of resprouters. 66 

Reyna and Garcia-Barreda (2005) pointed that it would be interesting to test soil heating and 67 

overliming as a means of decreasing the EM infectivity of soil: it is well established that they can 68 

damage soil fungi (Erland and Söderström 1990; Neary et al. 1999), and in Spain it was frequent 69 

to observe truffle brûlés spontaneously forming on recently abandoned charcoal kilns and lime 70 

kilns located in forests. 71 

The characteristics of nursery seedlings also influence the success of T. melanosporum 72 

plantations: the abundance of an EM fungus on the roots can hamper colonisation by other fungi 73 

(Kennedy et al. 2009); the seedling attributes at the time of planting influence its early field 74 

performance (Del Campo et al. 2009); and the saplings with the higher growth rates in a T. 75 

melanosporum plantation produce sporocarps and phytotoxic effects earlier (Shaw et al. 1996; 76 

Lulli et al. 1999). 77 

Before establishing field plantations, and as a first step to design T. melanosporum plantations in 78 

firebreaks, we examine the ability of T. melanosporum mycorrhizas to proliferate on firebreak 79 

https://www.researchgate.net/publication/235632045_Fire_effects_on_belowground_sustainability_a_review_and_synthesis?el=1_x_8&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
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soils and to compete against native EM fungi in the first two years after planting. Inoculated 80 

holm oak (Quercus ilex L) seedlings were grown in pots with firebreak soil and compared to 81 

dense forest soil. As a secondary aim, we test if the performance of T. melanosporum is 82 

influenced by (a) the characteristics of the inoculated seedlings at the time of planting, and (b) 83 

two soil preparations aimed at reducing EM infectivity before planting: heating and liming. 84 

 85 

2  Materials and methods 86 

2.1  Study site 87 

The study was conducted in the T. melanosporum-producing region of El Toro, in the Valencian 88 

Community (eastern Spain, 1100 m a.s.l.). The soils are calcixerepts developed on Jurassic hard 89 

limestones (loam texture, pH 8.2, organic matter 3.8%). Three firebreaks with over 30 years and 90 

distant 2.8, 4.6 and 7.2 km from each other were selected. Subshrubs and herbaceous species 91 

(Santolina chamaecyparissus L, Brachypodium retusum Beauv., Genista scorpius AD, Thymus 92 

vulgaris L) dominated the vegetation, whereas EM trees and shrubs (Q. ilex, Quercus faginea 93 

Lam., Quercus coccifera L, and Pinus nigra Arnold) were sparse. The forest surrounding the 94 

firebreaks was a coppice of Q. ilex and Q. faginea with 300–900 trees ha
-1

 and a canopy cover 95 

40–90%. According to local harvesters, none of the sampled soils produced T. melanosporum in 96 

recent years. 97 

 98 

2.2  Experimental design and data collection 99 

A total of 48 seedlings were planted in a full factorial design with five independent variables: 100 

land use (forest, firebreak), liming (0 and 1 kg m
-2

), heat treatment (drying oven, microwaves, 101 

control), age of the seedlings at the time of planting (one and two years old), and time from 102 

plantation to sampling (12 and 22 months). 103 
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Two subplots 1×1 m were established in each of the three firebreaks and in the corresponding 104 

forest plots. In the firebreaks, the nearest EM tree or shrub was 6–7 m away from the subplots, 105 

whereas in the forest it was 2–3 m away. The topsoil (0–20 cm) of the two subplots was mixed. 106 

One of the subplots was limed with 1 kg m
-2

 quicklime powder (94% CaO, particle diametre<0.1 107 

mm, Cales Pascual) in October 2006. Immediately after liming, the pH rose from 8.2 to 11.5–108 

12.0, but at the time of planting (five months after liming, with more than 150 mm rainfall) it did 109 

not differ from that of the non-limed soil. 110 

In March 2007 the topsoil of the three limed firebreak subplots was collected and pooled. The 111 

same was done for the non-limed firebreak, the limed forest, and the non-limed forest subplots. 112 

Soils were pooled to reduce the high variability characteristic of EM communities, which often 113 

confound the response to the treatments (Marx et al. 1991), although in this way the 114 

heterogeneity between sites cannot be tested. 115 

Then the heat treatments were applied: (a) 30 minutes in a drying oven (maximum temperature: 116 

65ºC, time above 60ºC: about ten minutes), (b) 90 seconds in microwaves (nominal power output: 117 

700 W, frequency: 2.45 GHz, maximum temperature: 65ºC, time above 60ºC: about 60 seconds), 118 

and (c) control. In all cases the soil was laid out in a 2.5 cm layer to obtain a homogenous 119 

temperature. The temperature was measured at 1.2 cm depth. The soil water content at the time of 120 

the heat treatment was 10% w/w. 121 

Once the soil cooled down, a mixture of 3.5 l soil and 0.35 l perlite was used to fill the pots in 122 

which the seedlings (that came from the nursery in a container Quick–pot® 0.65 l volume and 18 123 

cm depth) were planted. The total volume of the growing medium was 4.5 l, its depth 25 cm, the 124 

diameter of top surface 16.1 cm, and the diameter in the open bottom: 13.5 cm. 125 

The seedlings came from a commercial nursery (viveros Alto Palancia) and had been inoculated 126 

with a spore slurry containing about 2 g of fresh, mature sporocarps per plant. Two different 127 
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seedling stocklots were used: one- and two-year-old Q. ilex seedlings. The inoculation technique 128 

and the growing conditions were the same, so we consider that the differences reflect the 129 

development of the seedling and the fungus during the second year in the nursery. The initial 130 

mycorrhizal state of the nursery seedlings was assessed at the time of planting (March 2007) 131 

through a volumetric sampling (n=12) to assess both the proportion of root tips colonised and the 132 

number of ectomycorrhizas per plant. In each seedling a sample with 8% of the substrate volume 133 

(54 ml) was taken; all samples containing more than 104 root tips (mean: 470, standard deviation: 134 

275). To cope with heterogeneity across soil depth, every sample consisted of three subsamples: 135 

the depth of the container was divided into three equal parts, and in the center of each third (3.5, 136 

9, and 15 cm depth) a horizontal core (2 cm diameter) across the container was taken. 137 

Once in the pots, the plants were kept outdoors and watered to keep soil water content between 138 

15% and 35% w/w (holding capacity: 46% w/w) and simulate the variable soil water content in 139 

the field. According to Mamoun and Olivier (1990) and Olivera et al. (2011), moderate irrigation 140 

regimes provide optimal conditions for the development of T. melanosporum mycorrhizas. High 141 

and constant soil water content, and closed greenhouses without ventilation were avoided to 142 

reduce the proliferation of nursery-adapted EM fungi. Half of the seedlings were sampled 12 143 

months after plantation in the pots (March 2008) and the rest at month 22 (January 2009). 144 

The mycorrhizal state at months 12 and 22 was assessed through a volumetric sampling. In each 145 

seedling a sample with 5% of the growing medium (219 ml) was taken; all samples containing 146 

more than 120 root tips (mean: 935, standard deviation: 498). To cope with heterogeneity across 147 

soil depth, each sample consisted of three subsamples: the pot depth was divided into three equal 148 

parts, and in the center of each third (6, 13, and 20 cm depth) a horizontal core (2.5 cm diameter) 149 

across the container was taken. The deepest core was the only one that did not cross the nursery 150 

rootball; thus it only included roots grown after the plantation in the 4.5 l-pots. 151 

https://www.researchgate.net/publication/226550431_Weed_management_and_irrigation_are_key_treatments_in_emerging_black_truffle_Tuber_melanosporum_cultivation?el=1_x_8&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
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The samples were kept in water at 4ºC. The length of fine roots (diameter<1 mm) was measured 152 

according to Tennant (1975). All root tips (active and senescent) were counted. Active root tips 153 

were classified as nonmycorrhizal or mycorrhizal, and the latter were sorted in morphotypes 154 

according to the criteria of Agerer (1987-2002) and with the aid of the descriptions in De Román 155 

(2003). Their description is given in Table S1. The plants were dried to constant weight at 80ºC. 156 

 157 

2.3  Statistical analysis 158 

The effect of the independent variables was evaluated through conventional ANOVA, except for 159 

the frequencies of appearance (proportion of samples in which a morphotype is present) which 160 

were analysed through logistic regression. Significant differences among treatments were 161 

identified with a least significant difference test with Bonferroni correction. When the model 162 

assumptions were violated, the response variable was transformed. In order to account for within-163 

treatment variability we included root length as a predictor in the ANOVAs of the colonisation 164 

level (proportion of active roots colonised) of T. melanosporum and the native fungi, and the 165 

richness of native fungi. 166 

The distribution of T. melanosporum along the depth profile was analysed through linear mixed 167 

models (LMM). Each core was considered as one different sample and the depth was treated as a 168 

repeated-measures variable. 169 

 170 

3  Results 171 

Before being planted, two-year-old seedlings showed significantly higher dry weight (shoot: P < 172 

0.001, root: P = 0.001), root tips per plant (P = 0.002) and T. melanosporum mycorrhizas per 173 

plant (P = 0.04) than one-year-old seedlings; whereas the proportion of active root tips colonised 174 

by T. melanosporum did not significantly differ (P = 0.72, Table 1). Before being planted T. 175 

https://www.researchgate.net/publication/244456080_Colour_Atlas_of_Ectomycorrhiza?el=1_x_8&enrichId=rgreq-616aba0021a07937c944d1eb859342c6-XXX&enrichSource=Y292ZXJQYWdlOzI1OTExMzA4MjtBUzo5OTUxMDM1MzEzNzY2OUAxNDAwNzM2NTI1MTYx
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melanosporum and Sphaerosporella brunnea Svrcek and Kubicka were the only mycorrhizas on 176 

seedling roots. S brunnea was found in 33% of the one-year-old seedlings, colonising 8–34% of 177 

the active root tips; and in 50% of the two-year-old seedlings, colonising 0.1–0.7% of the active 178 

root tips. 179 

 180 

Table 1  Mean characteristics of the nursery-inoculated seedlings before being planted in the pots. 181 
Letters indicate significant differences (α = 0.05) between one- and two-year-old seedlings. 182 

 1-year-old seedlings 2-year-old seedlings 

Shoot dry weight (g) 
a
 0.6 b 1.5 a 

Root dry weight (g) 
a
 1.8 b 5.3 a 

Root tips per plant 2909 b 7528 a 

T. melanosporum mycorrhizas per plant 
a
 884 b 1477 a 

Proportion of active root tips colonised by 

T. melanosporum 

0.36 0.32 

a
 Variables log-transformed 183 

 184 

Once planted in the pots, the shoot and the root dry weight of the seedlings were positively 185 

affected by the time from plantation (P < 0.001 for both shoot and root), and the age of seedlings 186 

at the time of planting (P < 0.001 for both shoot and root). The dry weights of shoot and root 187 

were significantly higher in the forest soil (shoot: P = 0.002, root: P = 0.01). Shoot weight was 188 

positively influenced by the microwaves treatment (P = 0.03) (Table 2). 189 

The length of fine roots, the number of root tips, and the number of T. melanosporum 190 

mycorrhizas per plant were significantly affected by the interaction between seedling age and 191 

time from plantation (P = 0.03, P = 0.04 and P = 0.04 respectively): all of them increased with 192 

time and were higher in two-year-old seedlings, but one-year-old seedlings showed higher 193 

increases of root tips and mycorrhizas from month 12 to month 22, whereas two-year-old 194 

seedlings showed higher increases from plantation to month 12 (Tables 1, 3). In the firebreak the 195 

number of root tips was higher than in the forest (P = 0.03), but the length of fine roots and T. 196 

melanosporum mycorrhizas per plant did not significantly differ. 197 



 10 

 198 

Table 2  Mean dry weight of the plants cultivated on the firebreak and 199 
forest soils. Letters indicate significant differences (α = 0.05) among levels. 200 

 Shoot dry 

weight (g) 
a
 

Root dry 

weight (g) 

Initial age of seedlings   

1-year-old seedlings 6.4 b 9.8 b 

2-year-old seedlings 9.4 a 14.2 a 

Time from plantation   

12 months 4.7 j 7.5 j 

22 months 12.8 i 16.5 i 

Land use   

Forest 8.5 m 13.0 m 

Firebreak 7.1 n 11.0 n 

Liming   

Control 7.7 11.4 

1 kg m
-2

 7.8 12.6 

Heat treatment   

Control 7.0 y 12.2 

Drying oven 8.0 xy 11.7 

Microwaves 8.3 x 12.1 
a
 Variable log-transformed 201 

 202 

Table 3  Mean fine root length, root tips per plant and T. melanosporum mycorrhizas per plant. 203 
Letters indicate significant differences (α = 0.05) among levels. 204 
 Fine root 

length (m) 

Root tips 

per plant 

T. melanosporum 

mycorrhizas per plant
 a
 

Initial age of seedlings × time    

1-year-old seedling, at month 12 31.5 b 5460 c 1770 b 

1-year-old seedling, at month 22 71.8 a 18025 b 4256 a 

2-year-old seedling, at month 12 82.6 a 18533 b 5945 a 

2-year-old seedling, at month 22 94.0 a 25239 a 6381 a 

Land use    

Forest 66.1 15187 j 4411 

Firebreak 73.8 18441 i 3832 

Liming    

Control 65.5 16379 4129 

1 kg m
-2

 74.4 17250 4094 

Heat treatment    

Control 69.6 17565 4312 

Drying oven 73.0 15229 3406 

Microwaves 67.3 17650 4733 
a
 Variable log-transformed 205 

 206 

T. melanosporum was present in all the seedlings. The proportion of active root tips colonised by 207 

T. melanosporum was significantly higher in two- than in one-year-old seedlings (P = 0.005). It 208 

was also significantly affected by the interaction between time from plantation and fine root 209 
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length (P = 0.003): 12 months after planting the relation between root length and the proportion 210 

of active tips colonised by T. melanosporum was not significant (P = 0.94); 22 months after 211 

planting the relation was significantly negative (P < 0.001) (Fig. 1). None of the soil preparations 212 

or land uses showed a significant effect. 213 

 214 

 215 

Fig 1  Proportion of active root tips colonised by T. melanosporum according to fine root length, at month 12 (a) and 216 
at month 22 (b). Open circles and dashed lines correspond to seedlings that were one year old at the time of planting. 217 
Full circles and solid lines correspond to seedlings that were two years old at the time of planting. 218 
 219 

At month 22 we found native EM fungi on 83% of the seedlings. The proportion of active root 220 

tips colonised by native fungi was significantly affected only by the interaction between time 221 

from plantation and fine root length (P = 0.01): 12 months after planting the relation between root 222 

length and native fungi colonisation levels was not significant (P = 0.87); 22 months after 223 

planting the relation was significantly positive (P = 0.003) (Fig. 2). At month 22 the ratio native-224 

to-T. melanosporum mycorrhizas was 0.14 for seedlings with mean root length. 225 

 226 
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 227 

Fig 2  Proportion of active root tips colonised by native EM fungi according to fine root 228 
length at month 12 (open circles, dashed line) and month 22 (full circles, solid line). 229 

 230 

The richness of native EM morphotypes showed a significant and positive relation with fine root 231 

length (P = 0.001) and time from plantation (0.7 types per plant at month 12 and 1.3 at month 22, 232 

P = 0.03), although not with their interaction (P = 0.72). The richness was significantly higher in 233 

the control heat treatment (1.6 types per plant) than in the drying oven (0.8) and the microwaves 234 

(0.7) treatments (P = 0.003); and marginally higher in one- than in two-year-old seedlings (1.3 235 

and 0.7 types per plant respectively, P = 0.05). 236 

Eleven native morphotypes were found in the assay (Table S1), although six of them appeared 237 

only on one or two seedlings. The frequency of appearance of four of the five most common 238 

morphotypes significantly associated with one land use. In three of them it was significantly 239 

lower in the microwaves treatment than in the control (Table 4). Five of the six rarer 240 

morphotypes appeared only in the forest (Tomentella galzinii Bourdot, type Hebeloma-241 

Cortinarius, type Russula, type Pisolithus, type Thelephoroid), and none of the six appeared in 242 

microwaves-treated soil. 243 
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 244 

Table 4  Frequency of appearance for the most common native EM morphotypes. For each morphotype, letters 245 
indicate significant differences (α=0.05) among treatment levels. 246 

 Unidentified 

6 

Unidentified 

1 

Cenococcum 

geophilum 

Complex 

Tuber albidum 

Unidentified 

7 

Initial age of seedlings      

1-year-old seedlings 0.42 0.13 0.08 0.04 0.08 

2-year-old seedlings 0.38 0.13 0.17 0.17 0.08 

Time from plantation      

12 months 0.21 b 0.04 b 0.08 0.04 0 b 

22 months 0.58 a 0.21 a 0.17 0.17 0.17 a 

Land use      

Forest 0.17 j 0.21 i 0.21 i 0.17 0 j 

Firebreak 0.63 i 0.04 j 0.04 j 0.04 0.17 i 

Liming      

Control 0.38 0.13 0.13 0.13 0.08 

1 kg m
-2

 0.42 0.13 0.13 0.08 0.08 

Heat treatment      

Control 0.38 0.25 x 0.31 x 0.06 0.25 x 

Drying oven 0.31 0.13 xy 0.06 y 0.13 0 y 

Microwaves 0.50 0 y 0 y 0.13 0 y 

 247 

The frequency of appearance of S. brunnea was significantly higher at month 12 (0.42) than at 248 

month 22 (0.13, P = 0.02). None of the other predictors showed a significant effect. The 249 

proportion of active roots colonised by this fungus ranged from 0 to 20%. 250 

 251 

3.1 T. melanosporum mycorrhizas along the depth profile 252 

The effect of time and seedling age on the density and proportion of root tips colonised by T. 253 

melanosporum significantly varied along the depth profile. 254 

The interaction among time, seedling age and depth significantly affected the density of T. 255 

melanosporum mycorrhizas (P = 0.001). The density increased with time in all depth-levels 256 

except for the central core of two-year-old seedlings. Twelve months after planting the maximum 257 

density was attained in the central core; 22 months after planting it was attained in the lower core, 258 

although in the two-year-old seedlings the density was rather uniform (Fig. 3a). 259 

 260 
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261 

 262 

Fig 3  Mean density of T. melanosporum mycorrhizas (a) and proportion of active root 263 
tips colonised by T. melanosporum (b) at the three sampling depths, according to time 264 
from plantation and age of seedlings at the time of planting. Error bars correspond to 265 
95% confidence intervals (n=12 for each bar). 266 

 267 

The interaction between time and depth significantly affected the proportion of active root tips 268 

colonised by T. melanosporum (P < 0.001), which was also influenced by seedling age (P = 269 

0.002). From month 12 to month 22 the colonisation level remained stable in the upper core, 270 
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moderately increased in the central core and sharply increased in the lower core, which showed 271 

the maximum levels at month 22 (Fig. 3b). 272 

 273 

4. Discussion 274 

The proliferation and competitiveness of T. melanosporum during the first years after planting 275 

can be an early indicator of the viability of T. melanosporum cultivation (Martínez de Aragón et 276 

al. 2012). 277 

During the study, T. melanosporum proliferated in all treatments and almost all depth-levels. The 278 

time trends in the abundance of its mycorrhizas were similar to those in fine root length and total 279 

root tips (Table 3). At month 22 the maximum density of T. melanosporum mycorrhizas occurred 280 

in the lower core, where all the roots were produced after plantation in the pot. This supports the 281 

receptiveness of these firebreak and forest soils for the Q. ilex × T. melanosporum symbiosis. 282 

The decrease in the colonisation level of T. melanosporum closely associated with the increase of 283 

native fungi. After the first year the colonisation level of native fungi was not significant for any 284 

value of fine root length, while that of T. melanosporum remained similar or higher than initially 285 

and was not influenced by fine root length. After the second year fine root length associated 286 

negatively with T. melanosporum and positively with native fungi. This supports the role of 287 

native fungi competition in reducing T. melanosporum colonisation levels, and points that they 288 

could challenge the success of the plantation. 289 

De Román and De Miguel (2005) and Martínez de Aragón et al. (2012) planted mycorrhizal 290 

seedlings on soils of burned forests. The former found that the ratio of native-to-T. 291 

melanosporum ectomycorrhizas was 0.28 after three years, suggesting that the competitive 292 

pressure of native fungi could be similar or slightly higher than in our firebreaks. Martínez de 293 
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Aragón et al. (2012) found a much higher ratio of 1.3 after 4.5 years; despite this, 26% of 294 

seedlings displayed a brûlé at year ten. 295 

The studies comparing the competition by native EM fungi in forest soils and soils cultivated for 296 

non-EM fungi (considered optimal for T. melanosporum plantation) are scarce. Frochot et al. 297 

(1990) planted inoculated seedlings in a recently-cleared forest soil and found native EM fungi in 298 

62% of the seedlings after four years, whereas in a soil cultivated with non-EM plants they found 299 

native EM fungi in only 24% of the seedlings. Reyna et al. (2006) planted inoculated seedlings in 300 

pots with soil from dense forests and cereal crops, and after 21-28 months they found native 301 

fungi in 82–92% and 3–27% of the seedlings respectively. Our results are similar to those of 302 

forests (83%), suggesting that the EM inoculum of these firebreaks is more effective in early 303 

colonisation than that from soils cultivated with non-EM plants. 304 

On the other hand, Sánchez-Durán (2012) sampled eight young T. melanosporum plantations in 305 

Teruel (Spain) on soils previously cultivated with non-EM plants, and found ratios native-to-T. 306 

melanosporum ectomycorrhizas similar to that in our firebreaks: 0.11 in trees three to seven years 307 

old, and 0.17 in trees seven to eleven years old, all of them already producing sporocarps. 308 

The proliferation of T. melanosporum and the low ratio native-to-T. melanosporum 309 

ectomycorrhizas tends to support the viability of its cultivation in the studied firebreaks and 310 

forests. The potential of both land uses appears to be similar, but the experiment does not take 311 

into account the hyphae attached to living trees as inoculum source (Jones et al. 2003). These are 312 

likely more abundant in the forest than in the firebreak soils (with a much lower density of EM 313 

plants), although we did not measure EM fine root densities in the field. Thus, our study is 314 

probably underestimating the competitive pressure of the native EM fungi, especially in the forest. 315 

The composition of the effective native EM community (fungi able to colonise the seedlings) was 316 

quantitatively different in the firebreak and the forest. Dickie et al. (2009) found distinct EM 317 
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communities in North American oak savannas and forests. Since the EM species can differ in 318 

their competitive ability once they are established on seedling roots (Hortal et al. 2008), the 319 

different EM composition in firebreak and forest soils could cause differences in T. 320 

melanosporum persistence in the long term. 321 

The differences between one- and two-year-old seedlings at the time of planting affected the 322 

performance of the seedlings and the introduced fungus after plantation. In the first year two-323 

year-old seedlings produced more root tips, and T. melanosporum proliferated more than in one-324 

year-old seedlings. From the first year T. melanosporum attained a higher colonisation level in 325 

two-year-old seedlings—even though  there were not significant differences before planting—326 

and two-year-old seedlings showed a lower richness of native fungi. Bourrières et al. (2005) 327 

found that the colonisation level of T. melanosporum after four years in the field was positively 328 

related with its level in the nursery and with growth rates in the field. This supports a key role for 329 

nursery-seedling characteristics in the performance of young T. melanosporum plantations, 330 

although the relative contribution of early root growth and initial number of mycorrhizas remains 331 

unclear. 332 

The second year after plantation appeared to be a critical period in the competition for root 333 

colonisation, as already pointed by Frochot et al. (1990) and Reyna et al. (2006) for seedlings 334 

inoculated with T. melanosporum, and by Pruett et al. (2008) for Tuber aestivum Vitt. The 335 

colonisation level and richness of native fungi related to fine root length and therefore to the 336 

ability of the seedling to explore the soil, which is intrinsic to plant growth. Reducing soil 337 

infectivity before planting could be an interesting strategy to enhance the proliferation of T. 338 

melanosporum while maintaining a high colonisation level. 339 

Our results suggest that heating the soil before planting could be useful to reduce EM infectivity. 340 

Heating at 65ºC reduced the richness of native fungi on seedling roots—although not their 341 
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colonisation level—without affecting seedling growth or T. melanosporum proliferation. The 342 

response to heating was species-specific, agreeing with the findings of Izzo et al. (2006). It would 343 

be interesting to test higher temperatures: although Izzo et al. (2006) found that heating the soil to 344 

75ºC did not limit root colonisation of bait seedlings, the presence of a nursery-inoculated EM 345 

fungus in the roots can hamper colonisation by native fungi (Jones et al. 2003; Kennedy et al. 346 

2009). 347 

On the other hand, we have not found any significant effect of liming on seedlings or on the EM 348 

community colonising the seedlings, in spite of the temporary pH rise. Rineau et al. (2010) 349 

pointed that in acidic soils the changes in an EM community after liming were mainly due to a 350 

reduction in acidophylic fungi, which are much rarer in calcareous soils like those in our study 351 

and in most T. melanosporum soils. 352 

Some caution is required in extrapolating these results to the field. Although we tried to simulate 353 

soil moisture conditions in the field, the Mediterranean region is subject to a more irregular soil 354 

water regime with broader ranges. Zambonelli et al. (2000) found that some EM species 355 

competed with the nursery-inoculated Tuber albidum Pico in greenhouse conditions but not in the 356 

field. In our study the occurrence of the pioneer, nursery-adapted S. brunnea (Garcia-Montero et 357 

al. 2008) decreased with time, suggesting that the experimental conditions were not optimum for 358 

such species. 359 

Another limitation is the difference in root growth between Q. ilex seedlings grown in pots and in 360 

the field: Tsakaldimi et al. (2009) found that the fine root length was ten times higher in seedlings 361 

germinated in pots than in the field. Similarly, the fine root length in our plants was two orders of 362 

magnitude higher than in four- and five-year-old field plantations (Olivera et al. 2011; Martínez 363 

de Aragón et al. 2012) and the number of root tips was one order of magnitude higher. The 364 

differences in the density and distribution of root tips are likely to affect the proliferation and 365 
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competitiveness of T. melanosporum. It would be interesting to evaluate the relation between T. 366 

melanosporum colonisation level and root length in seedlings with lower root lengths, similar to 367 

those found in field seedlings. 368 

Despite these limitations, the pot experiment proved useful as a first approach to evaluating the 369 

potential of a soil for T. melanosporum cultivation. T. melanosporum has shown able to 370 

proliferate in the firebreak and forest soils of a T. melanosporum-producing region, and to 371 

maintain high colonisation levels despite the infection by native EM fungi. The next step to 372 

design T. melanosporum plantations for firebreaks is to assess the viability in field plantations, 373 

where the soil environment can be more limiting and the living roots of other trees can colonise 374 

the planting holes. The second year after plantation appeared as a critical period in the 375 

competition for root colonisation between T. melanosporum and native fungi, since the 376 

colonisation level of the latter sharply increased. Nursery-seedling quality and heating the soil 377 

before plantation are promising for increasing the probability of success of these plantations, 378 

whereas liming did not cause any significant effect at the dose applied. 379 
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Table S1 Description and overall frequency of appearance of the EM morphotypes (ordered according to their 460 
frequency) 461 
Morphotype Freq. Colour Mantle

a
 Emanating elements

b
 

Tuber melanosporum 1 Orange to brown PS-type M C: yellowish-reddish, right angle-

ramified, non-clamped 

Unidentified 6 0.40 Pale yellow or 

whitish rose 

Type B in young 

mycorrhizas, type 

P in the older 

H: scarce, hyaline, wide, covered 

by crystals, Y-shaped ramification, 

enlarged in or between the septa, 

sometimes with ring-like shapes, 

non-clamped 

Sphaerosporella brunnea 0.28 Yellow to reddish 

black 

PS-type P H: hyaline to reddish, wide, 

ramified, constricted in the septa, 

non-clamped 

Unidentified 1 0.13 Pale yellow to 

brown 

PS-type P C: hyaline, short, non-ramified, 

capitate, non-clamped 

H: hyaline-yellow, sometimes with 

ring-like shapes, ramified, non-

clamped 

Cenococcum geophilum 0.13 Black PL-type G H: dark brown, thick-walled, non-

ramified, non-clamped 

Complex Tuber albidum 0.10 Yellow to brown PS-type M C: bristle-like, hyaline to pale 

yellow, thin, sometimes geniculate 

base 

Unidentified 7 0.08 Reddish black PS-type O H: reddish brown, ramified, 

anastomising, sometimes with 

warts, with clamped and non-

clamped septa 

R: type C, reddish brown, forming 

nodia at branching 

Tomentella galzinii 0.04 Yellowish to 

greenish brown 

PS-type L C: bristle-like, enlarged base, 

yellow below the first septa, 

clamped 

H: yellow, ramified, clamped 

R: type A, yellowish-greenish 

Type Hebeloma-

Cortinarius 

0.02 Whitish rose to 

brown 

PL-type B H: hyaline, ramified, enlarged in 

the septa, clamped, anastomising 

R: type A, hyaline, with fan-like 

connection to the mantle 

Type Russula 0.02 Witish to 

yellowish brown 

PL-type B C: hyaline, flask-shaped 

Type Pisolithus 0.02 Golden-orange PL-type B H: yellowish brown, ramified, 

sometimes ribbon-like, clamped 

R: type B, brown, ramified, with 

inflated cells 

Type Thelephoroid 0.02 Whitish grey to 

brown 

PL-type D C: hyaline, awl-shaped, non-

ramified, with clamped (when only 

one) and non-clamped septa 

H: hyaline, Y-shaped ramification, 

anastomizing, with clamped and 

non-clamped septa 

Tuber brumale 0.02 Orange to brown PS-type M C: yellow, bristle-like, enlarged 

base, usually without septa 
a
 PL: plectenchymatous, PS: pseudoparenchymatous (Agerer, 1987-2002) 462 

b
 C: cystidia, H: hyphae, R: rhizomorph 463 
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