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Abstract 

A Poly(L-lactic acid) scaffold prepared by a combination of freeze 

extraction/porogen leaching methods was submitted to static degradation in 

phosphate buffered saline solution at pH=7.4 and 37 ºC for up to 12 months. 

After 6 months of degradation the scaffold maintained its integrity, although 

noticeable changes in permeability and pore size were recorded. After 12 

months, SEM pictures showed that most of the trabeculae were broken and the 

sample disaggregates under minimum loading. Neither weight loss nor 

crystallinity changes in a first heating calorimetric scan were observed during 

the degradation experiment. However, after 12 months, a rise in crystallinity, 

from 13 % to 38 %, and a drop in Tg from 58 ºC to 54 ºC were measured in a 

second heating scan. The onset of thermal degradation moved from 300 ºC, to 

210 ºC after 12 months. Although the elastic modulus suffered only a very slight 

reduction with degradation time, the aggregate modulus decreased 44 % after 6 

months.  

Keywords: biomedical applications; degradation; mechanical properties 

INTRODUCTION 

Tissue engineering, based on cell transplantation in combination with supportive 

porous scaffolds and biomolecules, is mainly focused on restoring the structure 

of tissue damaged by illness or traumatism. The porous scaffold serves as a 

three-dimensional template for initial cell attachment and subsequent tissue 

formation. The scaffold gradually degrades while the new tissue develops. It is 
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well known that scaffold architecture and mechanical properties have decisive 

effects on the regenerating tissue.1 Changes in scaffold properties during 

degradation are of crucial importance in the long-term success of a tissue-

engineered cell/polymer construct. The rate of degradation may affect many 

cellular processes, including cell growth, tissue regeneration and host response. 

Biodegradable scaffolds intended for tissue engineering must meet different 

requirements2, including high porosity, adequate pore size and interconnected 

pore network, as well as having suitable mechanical properties. The scaffold 

should maintain the integrity of the designed structure and provide sufficient 

temporary mechanical support to withstand loading on the site of the implant.3,4 

The stress–strain response of the scaffold should be similar to that of the tissue 

surrounding the injured area, in order to deliver the appropriate mechanical 

signals to the cells to promote proper extracellular matrix production. 

Furthermore, as has been recently emphasized, the scaffold should remain at 

the site of injury until tissue formation, remodeling and maturation occur.5 

Scaffold pore configuration, i.e. pore size, porosity and interconnectivity, is of 

special importance in the scaffold design.6,7 Its permeability, closely related to 

pore interconnectivity, is also an important parameter, as it helps to control cell 

migration into the scaffold, as well as diffuse nutrients and waste products.8,9 

Polylactide acid (PLA) undergoes hydrolytic degradation via random scission of 

the ester backbone. It degrades into lactic acid, a normal human metabolic by-

product, which is broken down into water and carbon dioxide. Because 

hydrolytic degradation of aliphatic polyesters is autocatalyzed by carboxylic end 

groups generated by chain scissions of the ester bonds, solid films degrade 

faster than porous scaffolds and the degradation rate of the porous structures 
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increases with increasing pore wall thickness.10-13 Porosity and pore size thus 

influence degradation and the release of degradation products.14-16 

It has been established that PLA hydrolysis proceeds in three stage.17,18 During 

the first stage aqueous solution penetrates the polymer, initiating hydrolytic 

degradation, mainly in the amorphous regions. At this stage a rapid decrease in 

molecular weight is observed but without significant mass loss, since the broken 

molecules are still not soluble in water and remain inside the sample. In the 

second stage, mass loss increases and lactic acid monomer formation is 

observed, with a slight change in molecular weight. At this time the long 

polymer chains are converted into shorter water-soluble fragments that dissolve 

into the medium (PLA becomes soluble in water for number average molecular 

weight (Mn) below 20.000 g/mol). Hydrolysis of soluble oligomers continues in 

the third stage until the polymer is totally hydrolyzed into monomer lactic acid. 

Polylactide acid is present in two stereopolymer forms: poly(L­lactide) acid 

(PLLA) and poly(D­lactide) acid (PDLA). Complete degradation of PDLA has 

been observed “in vivo” between periods of 10 months and 4 years, depending 

upon its molecular weight, degree of crystallinity, material shape and 

implantation site.19 PLLA is more crystalline and has a lower degradation rate 

than PDLA. 

PLLA has received approval from the US Food and Drug Administration (FDA) 

for human clinical use.20 It exhibits mechanical properties suitable for human 

tissue engineering applications and has been widely used to guide the 

regeneration of bone and cartilage.21-24 Its mechanical properties are affected 

by degradation from the start of the process. Vieira et al.25 found that the 

decrease in tensile strength of PLA/PCL fibers follows the same trend as the 
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drop in molecular weight. Kang et al. 26 observed a linear fall in compressive 

strength from 10.5 MPa to 7 MPa in a 6-week degradation of porous PLLA 

scaffolds in SBF. Gaona et al. 27 studied hydrolytic degradation of PLA/PCL 

blend membranes showing the mutual influence of the degradation of both 

phases. Tsuji et al. 28,29 studied the hydrolytic degradation of PLLA films in PBS 

as a function of their crystallinity and found that the Young’s modulus of the 

PLLA specimens decreased monotonously in the first 8 months. Interconnected 

porosity and pore size, followed by permeability, are the important factors in the 

mechanical properties of the scaffold.30,31. There is no agreement in the 

literature on the target mechanical properties of a scaffold for bone tissue 

engineering.32 As stated by Rezwan et al.33 in general the scaffold should have 

sufficient properties to avoid pores collapse when implanted. Human cancellous 

bone has a compressive strength of 4-12 MPa, a tensile strength of 1-5 MPa 

and an elastic modulus of 0.1-0.5 GPa32; and these properties can serve as 

guidance for the design of scaffolds. The initial mechanical requirements 

become less demanding with time of implantation because the regenerated 

tissue in the pores of the scaffold contributes to the mechanical properties and 

compensates the loss of scaffold’s modulus caused by its degradation. There is 

also no established degradation rate; the recommendation is that the porous 

structure keeps its integrity during the first weeks after implantation.32 In vivo 

experiments has demonstrated higher degradation rates than in vitro.15 

In a previous work, our group proposed a porous PLLA scaffold with double 

porosity: micropores generated by dioxane solvent using a freeze extraction 

technique and macropores produced by the leaching of macroporogen spheres. 

A study was carried out on the influence of the preparation parameters on its 
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structure and mechanical properties34 and the material has been proposed for 

cartilage35 and bone regeneration after being coated with a biomimetic apatite 

layer36. In this work we studied the evolution of the properties of the PLLA 

scaffold after different degradation times in a phosphate buffered saline 

solution. The novelty of the present study is that the scaffold preparation 

method allows PLLA to crystallize to its maximum capacity. This high 

crystallinity is reached during the removal of the porogen with ethanol at 37ºC 

and has an important role in the evolution of the scaffold’s properties with 

degradation time. Although we have seen changes in the molecular weight with 

the time of degradation no mass loss was recorded, as chains remain 

entrapped in the crystalline regions. The high crystallinity of our scaffold also 

hinders the incorporation of those degraded chains in the crystals, as usually 

occurs in lower crystalline scaffolds found in the literature. We here emphasize 

these novel aspects in the degradation of this highly crystalline PLLA scaffold. 

MATERIALS AND METHODS 

Materials 

Medical grade poly(L-lactic acid) (PURASORB PL 18) (PLLA) with a viscosity of 

1.8 dl/g and an average molecular weight Mw=165000 g/mol was purchased 

from Purac Biomaterials (The Netherlands). Poly(ethyl methacrylate) (PEMA) 

spheres from Elvacite (Elvacite 2043 acrylic resin) with diameters ranging from 

120 to 200 μm were used as macroporogen and 1-4 dioxane (98 % pure) from 

Sigma Aldrich was used as PLLA solvent and microporogen. Ethanol (99 % 

pure) from Scharlab was used as a low temperature solvent of the dioxane. 
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Preparation of the PLLA scaffold 

The PLLA scaffold was prepared by a combination of the freeze 

extraction/porogen leaching methods.37,38 A solution of PLLA in 1-4 dioxane 

with a 15 wt.% of PLLA was homogeneously mixed at room temperature with 

the PEMA spheres in mass proportion 1:1 (w:w) in a Teflon mould and 

immediately frozen with liquid nitrogen. Cold ethanol at -20 ºC was then poured 

on the frozen sample to dissolve the crystallized dioxane. Dioxane extraction 

was conducted in a cold ethanol bath at -20 ºC in which the ethanol was 

renewed at least four times. Then extraction of the PEMA porogen was carried 

out with ethanol at 40 ºC under slow stirring. The ethanol was changed until no 

PEMA deposit was left on a glass when a drop of the extraction liquid was 

evaporated. After extraction, the scaffold was dried in an air atmosphere for 24 

h and then in vacuum to constant weight, first at room temperature and later at 

40 ºC. Cylinders 6 mm in diameter and 4 mm high were punched from larger 

pieces of scaffold. 

Degradation experiments 

Each sample of known mass was immersed in 2 ml of a phosphate buffered 

saline solution (PBS) at 37 ºC and maintained for 3, 4.5, 6 and 12 months under 

static conditions. The PBS bath was renewed every 2 weeks. After different 

immersion times in PBS, three replicates were washed several times with 

distilled water with gentle shaking, then dried (as described above) and 

weighed. The mass loss of the different scaffolds with time of degradation was 

evaluated as follows: 

100



i

fi

m

mm
(%) loss mass        (1) 
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where mi is the initial and mf the final mass of the samples. A balance (Mettler 

Toledo) with a sensitivity of 0.01 mg was used to weigh the samples, which 

were then analysed by different methods to determine the influence of 

degradation time on the scaffold properties. 

Scanning electron microscopy (SEM) 

The morphology of the samples was analyzed with a JEOL JSM 6300 scanning 

electron microscope at an accelerating voltage of 15 kV. The samples were 

mounted onto copper holders and gold sputtered for observation. Scaffold 

sections were excised with a razor blade in order to observe both the surface 

and cross section. 

Microtomography (µCT) 

Microtomography was carried out to define average macropore size. The image 

files (DICOM- Digital Imaging and Communication in Medicine) provided by the 

µCT were the main input for building the geometric model of the scaffold. 

Images of the whole sample were obtained by 360º rotational scanning. A GE 

Healthcare eXplore locus SP µCT was used, with an X-ray filter number 2, 45 

kV voltage and 120 mA power. The resolution of the equipment was 8 µm. 90 

DICOM files were obtained for each sample (one image for each 4.0º rotation). 

Five replicates for each degradation time (0, 3, 4.5 and 6 months) were 

measured to determine the corresponding macropore size.37 

Mechanical properties under compression 

The mechanical properties of the degraded scaffolds were measured under wet 

conditions in two static uniaxial tests: unconfined (UC) and confined 

compression (CC).34 During the UC test, the scaffold can generate a lateral 

deformation when a load or displacement is applied. In the CC test the lateral 
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deformation of the scaffold is constrained, due to the sample being in a confined 

space. Mollica et al.40 describe the development of a typical stress–strain curve 

for scaffolds submitted to uniaxial compression tests. After the first small region 

in which the struts and plates are being compressed, once a critical load has 

been reached, they buckle giving way to a plateau region, in which the apparent 

density of the material grows until the stress–strain curve increases again (third 

region) until failure or total collapse of the structure.40 For the UC and CC tests, 

either apparent Young's modulus (ES) or the aggregate modulus (HA) were 

calculated, respectively, from the slope of the first linear region of the stress–

strain curve and with the initial cross-section area.34 Additionally, the yield 

strength (Y) was determined between the first and second region. For this 

study, the first point after the linear region at the stress-strain curve was 

determined as the lower yield limit (YL), at which plastic deformation begins to 

occur.41 

Before carrying out the wet compression tests, the samples were maintained in 

PBS solution for 24 hours at a temperature of 37 °C.40 The tests began with a 

predeformation of 4 % of the total thickness of the sample at 0.001 mm s-1, in 

order to eliminate the nonlinearity generated by the geometrical variability of the 

samples and to normalize an initial reference test point.34,43 A monotonic ramp 

performed at a 0.01 mm s-1 cross-head velocity was carried out using an Instron 

MicroTester 5548 with a precision of 0.0001 N and 0.001 mm force and 

displacement, respectively, and provided with a 50 N load cell.34 The 

dimensions of the sample were measured before and after the test. Five 

replicates for each degradation time and UC and CC test were measured to 

determine the corresponding ES, HA and YL modulus. Finally, Poisson’s ratio () 
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describes the lateral expansion during axial compression, defined as the ratio 

between lateral and axial strains. For each degradation period, can be 

deduced from the ES and HA averaged data, using the theory proposed in44-46 

and according to the equation: 

AS HE









1

)21)(1(
        (2) 

Permeability 

Permeability is measured by quantifying the ability of a porous medium to 

conduct fluid flow through its interconnected pores when subjected to 

pressure47,48, regardless of the fluid used in the measurement and the thickness 

of the porous sample.49,50 

The permeability test was developed under conditions for which Darcy’s Law 

(Eq. 3a) is valid, i.e. for Reynolds numbers lower than 8.6: 34,47-51 

p

Q

A

t
k




·
          (3a) 

∆p = ∆pscaffold- ∆pchamber           (3b) 

where k is the intrinsic permeability (m2), µ the dynamic fluid viscosity 

(deionized water µ=10-3 Pa s), t the specimen thickness, A the cross-sectional 

area, Q the volumetric flow rate and ∆p the total pressure drop across the 

scaffold sample (Pa). The total pressure drop measured with the scaffold 

specimen inside the chamber is ∆pscaffold, whereas ∆pchamber is the measurement 

for the empty chamber (Eq. 3b).52 Due to the test configuration, the measured 

pressure drop is attributed to the scaffold microstructure and the section 

change. The pscaffold and ∆pchamber were measured between two points of the 

permeameter chamber using a pressure meter (Testo 510 with a precision of ± 

0.1% and operating range from 0 to 2000 hPa). Five samples comprising 
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cylinders of 6 mm diameter and 3.02 ± 0.02 mm thick were tested for each 

degradation period. In accordance with the experimental protocol, the fluid flow 

through the scaffold was varied by controlling the flow rate (20, 40, 60 ml min-

1).34 The ∆pscaffold generated in each case was measured and then averaged out 

to determine the permeability of the structure, using Eq. (3a). 

Differential scanning calorimetry (DSC) 

The thermal properties of the scaffolds were determined by a Pyris 1 

calorimeter (Perkin Elmer). Dry nitrogen gas was passed through the DSC cell 

at a flow rate of 20 ml/min. The temperature of the equipment was calibrated 

with the melting points of indium and zinc. The heat of fusion of indium was 

used for calibrating heat flow. Each sample underwent two heating processes 

from 0 ºC to 21 0 ºC at a rate of 10 ºC/min. The samples were cooled between 

scans from 210 ºC to 0 ºC at a rate of -10 ºC/min. The data from all three scans 

were collected for subsequent analysis. The first scan measured the effect of 

the previous history of the material (in our case the scaffold preparation 

followed by the degradation processes). As all the samples had been melted 

and crystallized under the same conditions, the second heating scan depended 

on the material properties.53 Crystallinity was assumed to be proportional to the 

experimental heat of fusion, according to: 

100
h

h
(%)x

0

m

m
c 




          (4) 

where mh  is the measured enthalpy of fusion of the sample, 0

mh  = 93.1 J/g is 

the enthalpy of fusion of the completely crystalline material (i.e. corresponding 

to an infinite thickness crystal).54,55 

Gel permeation chromatography (GPC) 
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The weight average molar mass of the samples was determined with a gel 

permeation chromatographer at 30 ºC using a Waters Breeze GPC system with 

a 1525 Binary HPLC pump (Waters Corporation, Milford, MA) equipped with a 

2414 refractive index detector and Waters Styragel HR THF columns. THF was 

used as the eluent at a flow rate of 0.5 ml/min. The calibration curve was 

prepared by using monodisperse polystyrene standards from Shodex (Showa 

Denko K.K., Kawasaki, Japan). 

Thermogravimetric analysis (TGA) 

TGA analysis (Thermogravimetric analyser SDTQ600 from TA Instruments) was 

performed to evaluate the effect of the static degradation in PBS on the thermal 

stability of the scaffolds. The samples were subjected to a temperature ramp 

from room temperature up to 800 ºC at 20 ºC/min under nitrogen flow (50 

ml/min). 

Statistical analysis 

For the experimental data (ES, HA, YL and k), a normal distribution was tested 

by the Anderson-Darling test. One-Way ANOVA was performed for parametric 

comparison. Statistical significance was set at a mean of p<0.05 with 95% 

confidence intervals.46 The statistical methods applied were calculated using 

Minitab software. Finally, the results were presented as mean ± standard 

deviation. 

RESULTS  

Morphology of the scaffolds 

As can be seen in the SEM micrographs of the samples sections in Fig. 1, the 

macro and microstructures of the different scaffolds submitted to different 

periods of degradation do not present significant changes up to 6 months. The 
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trabeculae seem to be intact and the macropores appear to maintain their size 

and interconnectivity. However, a significant change was observed after 1 year, 

when most of the trabeculae were seen to be broken in the SEM pictures, in 

fact at this time they disaggregate easily when manipulated. No changes in the 

micropore dimensions were observed for any degradation time, even after 1 

year of incubation in PBS. No morphological differences were observed 

between the section and surface of the scaffolds. 

Table 1 shows average macropore size as determined by µCT. In contrast to 

what was observed in the SEM pictures, µCT shows that pore dimension 

increased with degradation time (82,81 % after 6 months). Moreover, the 

statistical treatment found significant differences (p<0.05) between the initial 

condition and all degradation times (t1 = 3, t2 = 4.5 and t3 = 6 months, 

respectively). Significant differences were also found at t3 with regard to the t1 

and t2 degradation periods.  



Table 1 –Evolution of macropore size, permeability, and apparent Young’s modulus for the UC (ES) and aggregate modulus for the 

CC (HA) tests, as a function of degradation time for PLLA scaffold under static conditions. 

 

ES = Young modulus 

HA = Aggregate modulus 

YL = Lower yield limit point 

ν = Poisson’s ratio. 

k = Permeability 

Degradation 

time (months) 

Macropore 

size (µm) 

Unconfined test - UC Confined test - CC  k (m2) 

ES (MPa) Stress YL (MPa) Strain YL HA (MPa) Stress YL (MPa) Strain YL   

t0 = 0 127 ± 5 3.43 ± 0.25 0.38 ± 0.08 0.17 ± 0.02 7.73± 0.67 0.34 ± 0.06 0.05 ± 0.01 0.41 1.20×10-10 ± 7.71×10-12 

t1 = 3 184 ± 10 3.06 ± 0.12 0.41 ± 0.07 0.16 ± 0.02 5.46± 0.95 0.24 ± 0.04 0.05 ± 0.01 0.37 1.77×10-10 ± 2.96×10-11 

t2 = 4.5 206 ± 2 2.94 ± 0.33 0.30 ± 0.09 0.15 ± 0.02 4.56 ± 0.84 0.35 ± 0.09 0.06 ± 0.01 0.34 2.97×10-10 ± 3.74×10-11 

t3 = 6 232 ± 8 2.5 ± 0.30 0.23 ± 0.03 0.15 ± 0.03 4.31 ± 0.96 0.34 ± 0.05 0.10 ± 0.02 0.36 3.18×10-10 ± 5.79×10-11 



Degradation 
Time 

(months) 

 
Macroporosity Microporosity 

t0 = 0 

 

  

t1 = 3 

 

  

t2 = 4.5 

 

  

t3 = 6 

 

  

t4 = 12 

 

  

Fig. 1 – SEM pictures at different magnifications and degradation times of the 

section of the PLLA scaffold showing the effect of static degradation in PBS on 

scaffold morphology. The pictures on the surface of the scaffolds are similar to 

these ones. 

 

Mass evolution 

600 µm 60 µm 

600 µm 60 µm 

600 µm 60 µm 

600 µm 60 µm 

600 µm 60 µm 
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Mass loss as a function of degradation time was determined by applying Eq. 

(1). There were no significant changes in the sample mass for the first 6 months 

of degradation in PBS and only 2 % of mass loss was measured after 1 year. 

Mechanical properties 

The influence of the static degradation experiment on the mechanical properties 

of the PLLA scaffold was evaluated by a compression test (unconfined UC and 

confined CC), from which the elastic modulus was calculated (see the 

representative stress versus strain curves for each time of degradation in Fig. 2 

and the calculated mean parameters in Table 1).  
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Fig. 2 – Stress–strain curves of the confined and unconfined uniaxial 

compression tests after 0, 3, 4.5 and 6 months of static degradation for the 

PLLA scaffolds. 

 

The apparent Young modulus (ES) and the aggregate modulus (HA) decreased 

with degradation time. ES was reduced by 27.16 % between the initial and final 

immersion period (from ES (t0)= 3.43 ± 0.25 MPa to ES (t3)= 2.50 ± 0.30 MPa). 

HA was reduced by 44.27 % (from HA (t0)= 7.73 ± 0.67 MPa to HA (t3) = 4.31 ± 

0.96 MPa). The  factor was also seen to decrease with degradation time 

(Table 1). 

For UC, the strain required to achieve the lower yield limit (YL), was higher than 

that reported in the CC test (Table 1) and it was seen to decrease with 

degradation time (11.08 % between t0 and t3). This trend was opposite to the 

strain data reported in the CC tests, in which deformation increased by 97.5 % 

(between t0 and t3). However, in both cases at t3, and considering the 

experimental dispersion, the plastic zone started at the same strain level. 

Significant differences were found in the CC results between t3 and the t0 and t1 



 18 

degradation periods (p<0.05). In the UC test, the obtained stress level for YL 

decreased between t0 to t1, while the CC data showed the opposite trend. After 

the t1 degradation period, the YL stress results showed a change of tendency in 

both the UC and CC tests (Table 1). 

Permeability 

The results of the permeability test are shown in Table 1. The intrinsic 

permeability (k) of the scaffold structure can be seen to increase with immersion 

time. After 6 months’ degradation permeability rose by 165.23 % (k (t0)= 1.20 x 

10-10 to k (t3)= 3.18 x 10-10 m2) accompanied by increased experimental 

dispersion. The results at t3 showed the highest dispersion with ± 5.79 x 10-11 

m2 (Table 1). The statistical treatment determined significant differences 

(p<0.05) for k values between the initial condition and the t2 and t3 degradation 

periods (4.5 and 6 months, respectively), with no significant differences 

between them (t2 and t3). 

Calorimetric properties 

The influence of the static degradation process on the calorimetric properties of 

PLLA scaffold was evaluated by DSC scans. Crystallinity after the first heating 

scan is representative of the thermal history of the sample (porous scaffold 

fabrication and degradation), while that taken from the second heating scan (2) 

is representative of the properties of the previously degraded and melted bulk 

sample. The degraded scaffolds present a double melting peak in the first scan 

(Fig. 3). The second heating scan shows differences with the first one; two 

crystallization peaks appear, cold crystallization takes place around 100 ºC, but 

a smaller exotherm appears at higher temperatures with a minimum of around 
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160 ºC. The second crystallization peak is characteristic of PLLA samples 

crystallized at low temperatures (as it is the case of the crystals formed during 

heating at temperatures immediately above the glass transition) and is 

explained by a recrystallization process.56 The double melting peak does not 

appear in the second heating scan, while the maximum of the melting peak 

appears at a lower temperature in the second heating scan. This could be due 

to a decrease in molecular weight producing thinner, less perfect lamellae.57 
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Fig. 3 – Normalized heat flow of the DSC first (1) and second (2) heating scans 

after 0, 3, 6 and 12 months of static degradation of PLLA scaffolds. The heat 

flow was normalized by the mass of the samples and the heating rate (10 

ºC/min). The arrow represents a unit of heat flow in J/gK.  

 

The enthalpic glass transition temperature (determined as the intersection 

temperature of the enthalpy lines at the liquid and glassy states in the enthalpy 



 20 

vs. temperature diagram) was calculated from these curves (Table 2). The 

crystallinity values after the first and second heating scans are presented in 

Table 2 as well. They were calculated by integrating the heat flow trace with 

respect to a baseline joining a point immediately above the glass transition and 

one after the melting. This way the crystallinity values obtained after the second 

scan corresponds to the crystallinity obtained in the cooling scan, after the first 

melting. An endothermic peak appears in all the degraded samples overlapped 

on the glass transition process but not in the non-degraded ones. This peak is 

associated to the physical ageing suffered by the amorphous phase of the 

semicrystalline samples annealed for quite long times at 37 ºC which is around 

30 degrees below its glass transition. This peak disappears in the second scan 

since the samples are heated immediately after cooling from high temperatures. 

It is worth note the small value of the heat capacity increment at the glass 

transition, ∆cp, in the first scan due to the high crystallinity of the sample. The 

scaffold glass transition temperature (Tg2) and crystallinity (xc2) at the second 

heating are smaller than in the first one for all degradation times, and 

consequently ∆cp at Tg is higher in the second scan than in the first one. Glass 

transition temperature at day 0 shifted from 72 ºC in the first scan to 58 ºC in the 

second. Crystallinity and glass transition values in the first heating scan after 

the different degradation times remained almost constant. In the second scan, 

crystallinity increased with degradation time, from 13 % in the non-degraded 

sample up to 38 % after 1 year’s degradation. 
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Table 2–Crystallinity (xc (%)) and glass transition temperature (Tg) after the first 

(1) and second (2) DSC scan of scaffolds after different static degradation times 

in PBS at 37ºC. 

 

Degradation 

time 

(months) 

 Crystallinity (%)  
Glass transition 

Temperature (ºC) 

 xc1 xc2  Tg1 Tg2 

t0 = 0  48 13  72 58 

t1 = 3  46 22  72 58 

t3 = 6  51 27  73 54 

t4 = 12  49 38  75 54 

 

 

Gel permeation chromatography 

From the molecular weight distribution functions obtained by GPC (Fig 4) it is 

possible to analyze the effect of degradation time on the weight average molar 

mass (Mw) and the PLLA polydispersity index (Mw/Mn) (results shown in Table 

3). The non-degraded PLLA scaffold presents a narrow molecular weight 

distribution function, with its maximum around 2 105 g/mol. A higher fraction of 

short chains is generated with degradation time and the weight average molar 

mass decreases. The polydispersity index rises as the GPC curves broaden to 

lower molecular masses.  
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Fig. 4 – GPC curves representing the fraction of chains in percentage as a 

function of log (Mw) of the PLLA scaffolds after 0, 3, 4.5, 6 and 12 months of 

hydrolytic degradation. 

 

Table 3–Weight average molar mass (Mw) and polydispersity index (Mw/Mn) 

after different hydrolytic degradation times in PBS at 37 ºC. 

 

Degradation 

Time 

(months) 

 Mw (kDa)  Mw/Mn 

t0 = 0  165.4  1.4 

t1 = 3  126.4  2.3 

t2 = 4.5  125.2  2.4 

t3 = 6  127.6  2.2 

t4 = 12  34.4  2.7 
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Thermogravimetric analysis 

The PLLA scaffolds were thermally degraded in order to evaluate the effect of 

hydrolytic degradation in PBS on the thermal stability of the polymer chains. 

The TGA curves shown in Fig. 5a represent the residual mass of the thermally 

degraded scaffolds. The first derivative of mass as a function of temperature 

(dw/dT) is also shown in Fig 5b. The derivative curve for non-degraded PLLA 

indicates that PLLA decomposition takes place in only one step, as it presents 

only one peak. The maximum peak temperature is seen to gradually lower with 

degradation time; being 360ºC for non-degraded scaffold and 315 ºC after 1 

year’s degradation. The non-degraded scaffold starts to thermally degrade 

around 300 ºC, while the 1-year hydrolytically degraded product starts this 

process around 210 ºC (Fig. 5a). 
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Fig. 5 – (A) Residual mass as a function of temperature of PLLA scaffolds after 

0, 6 and 12 months of hydrolytic degradation, and (B) first derivative curves of 

residual mass with temperature (dw/dT) as a function of temperature for the 

same samples and conditions. 
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DISCUSSION 

The degradation of the polymer chains can be detected by GPC analysis from 

the first 3 months (Fig. 4). Although the SEM microphotographs do not clearly 

show that degradation starts on the pore surface (Fig. 1), microCT images show 

that macropore dimensions increase with time (Table 1), which is consistent 

with the rise in permeability. The GPC curves show that a major fraction of 

chains keeps its molecular weight, as the principal peak of the degraded 

samples does not change its position but does fall in intensity (Fig. 5). This 

evolution, together with the increased macropore dimensions and permeability, 

is characteristic of polymers with surface degradation and is related to PLLA 

hydrophobicity. PLLA hydrolysis produces carboxylic end groups that favor 

water penetration into the bulk material. After one year, the GPC curve shifts 

towards a lower molecular weight as the entire volume of the material becomes 

affected by the degradation process. The evolution of the molecular weight with 

degradation time is consistent with previous results obtained by Tsuji et al. for 

crystallized PLLA.28 The weight loss, however, is the least notable effect in the 

degradation test, suggesting that the degraded chains remain entrapped in the 

material, protected by the crystalline regions. The low degradation rate, together 

with the increasing permeability makes this scaffold suitable for bone 

regeneration. In our previous work on animal implantation36 the scaffold 

maintained the mechanical integrity and stability and allowed the new tissue 

formation after 6 weeks of implantation in the subchondral bone of sheep. 

. 
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Degradation affects the scaffold’s mechanical properties. As shown in Table 1, 

the Young’s modulus (Es), like the Poisson rate, decreases with degradation 

time (27 % and 15 % after 6 months, respectively), after which the porous 

structure loses its biaxial deformation capacity. Moreover, samples reach the 

plasticization limit at lower deformation levels, since the lower yield limit 

decreases with degradation time. 

The aggregate modulus (HA), also decreases with degradation time (44% after 

6 months). The difference between ES and HA was reduced with degradation 

time, and consequently the Poison coefficient decreases with degradation time. 

The transition to the plastic region, measured through YL in the confined test, 

remained approximately constant for the 3 first months of degradation. However 

between 4.5 and 6 months this zone moved toward higher deformation levels. 

In many applications, as for example in articular cartilage replacement, the 

scaffold works in a confined space, so that the confined results are more 

important than those of the unconfined test.  

The freeze extraction process generates highly crystallized scaffolds (50 %) 

(Table 1) without the ability to crystallize further during the first heating scan, so 

no cold crystallization peak is observed. No significant change in crystallinity 

with degradation time was observed in the first heating scan. This could be 

because the degraded chains, which usually belong to the amorphous regions, 

remain immobile, trapped between the crystalline regions. However, crystallinity 

was seen to increase in the second heating scan. After melting, the shorter 

chains produced by degradation, have higher mobility and can reorganize into 

crystallites. The second heating scan showed the degradation effect through 

increased crystallinity. Degradation had no significant effect on scaffold Tg, 
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which is consistent with the results obtained by Tsuji et al. on hydrolytic 

degradation of PLLA in PBS.31 Previous degradation studies on PLLA porous 

samples with lower initial crystallinity15 found higher degradation rate (30% 

weight loss after 40 weeks) and an increase in crystallinity with degradation 

time. 

The scission of the polymer chains measured by GPC also influences the 

thermal stability of the samples (Fig. 5a). Persenaire et al.58 describe the 

influence of molecular weight on PCL thermal degradation. In the case of PLLA, 

the shift observed in the temperature of the derivative peak could be a 

consequence of two phenomena. Firstly, the presence of a higher proportion of 

carboxylic and hydroxilic groups in the degraded samples could act as 

catalyzers in the scission of ester bonds. Secondly, as the degraded samples 

have shorter chains, the diffusion of volatile species should be easier and the 

onset of mass loss is produced at lower temperatures.  

The evolution of the properties presented at this work suggests that the polymer 

is on its first stage of degradation, at least during the 12 months of the 

experiment. There are signs of transition towards the second degradation stage 

around 12 months as indicated by the morphological and mass changes. 

 

CONCLUSIONS 

The freeze extraction fabrication process led to highly crystalline scaffolds that 

were able to maintain their morphology after 6 months of static degradation. 

Macroporosity seemed to be affected by degradation, but no change in 

microporosity could be observed. Although the morphological changes in the 
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form of surface erosion were quite slight, when testing the samples in the 

permeameter the more degraded samples suffered higher surface erosion and 

consequently permeability considerably increased with degradation time. The 

scaffolds’ high molecular weight and crystallinity made them highly resistant to 

degradation and no changes in the mass or crystallinity measured in the first 

scan were observed after one year of degradation. Although degradation 

attacked the amorphous phase, the degraded chains were trapped in the 

samples between the crystalline regions. Degradation produced shorter chains 

with higher mobility, producing the increased crystallinity observed in the 

second heating scan and a decrease in scaffold thermal stability during 

degradation. Hydrolytic degradation of PLLA was seen to affect its mechanical 

properties, as the main parameters (ES, HA, ν, and YL) decreased with 

degradation time.  
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FIGURE CAPTIONS 

Fig. 1 SEM pictures at different magnifications and degradation times of the 

section of the PLLA scaffold showing the effect of static degradation in PBS on 

scaffold morphology. 

Fig. 2 Stress–strain curves of the confined and unconfined uniaxial 

compression tests after 0, 3, 4.5 and 6 months of static degradation for the 

PLLA scaffolds. 

Fig. 3 Normalized heat flow of the DSC first (1) and second (2) heating scans 

after 0, 3, 6 and 12 months of static degradation of PLLA scaffolds. The heat 

flow was normalized by the mass of the samples and the heating rate (10 

ºC/min). The arrow represents a unit of heat flow in J/gK.  

Fig. 4 GPC curves representing the fraction of chains in percentage as a 

function of log (Mw) of the PLLA scaffolds after 0, 3, 4.5, 6 and 12 months of 

hydrolytic degradation. 

Fig. 5 (A) Residual mass as a function of temperature of PLLA scaffolds after 0, 

6 and 12 months of hydrolytic degradation, and (B) first derivative curves of 

residual mass with temperature (dw/dT) as a function of temperature for the 

same samples and conditions. 

 


