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HIGHLIGHTS 

 

 Different correlations for flow boiling in microfin tubes are evaluated. 

 Akhavan-Behabadi et al. correlation presents the best predictions. 

 Min. and max. deviations occur with R134a and R450A, respectively. 

 R450A and R134a evaporator performance almost the same. 

 Due to high R448A glide, its evaporator performance is very different to R404A. 

Abstract 

 

When retrofitting new refrigerants in an existing vapour compression system, their 

adaptation to the heat exchangers is a major concern. R450A and R448A are 

commercial non-flammable mixtures with low GWP developed to replace the HFCs 

R134a and R404A, fluids with high GWP values. In this work the evaporator 

performance is evaluated through a shell-and-microfin tubes evaporator model using 

R450A, R448A, R134a and R404A. The accuracy of the model is first studied 

considering different recently developed micro-fin tubes correlations for flow boiling 

phenomena. The model is validated using experimental data from tests carried out in a 

fully monitored vapour compression plant at different refrigeration operating conditions. 

The main predicted operational parameters such as evaporating pressure, UATP, and 

cooling capacity, when compared with experimental data fits within ±10% using 

Akhavan-Behabadi et al. correlation for flow boiling. Results show that R450A and 

R404A are the refrigerants in which the model fits better, even though R448A and 

R134a predictions are also accurate. 
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Nomenclature 

 

A Heat transfer area (m
2
) 

B o  Boiling number 

C  Constant 

p
C  Specific heat capacity (J kg

-1
 K

-1
) 

d  Diameter (m) 

e  Fin height (m) 
g  Gravitational acceleration (m s

-2
) 

G  Mass velocity (kg m
-2

 s
-1

) 

GR Subcooling degree (K) 

GS Superheating degree (K) 

h  Specific Enthalpy (J kg
-1

) 

k  Thermal conductivity (W m
-1

 K
-1

) 

n  Number of experimental data 

N T U  Number of heat transfer units 

P  Pressure (kPa) 

P r  Prandtl number 

Q  Thermal power (W) 

q   Heat flux (W m
-2

) 

R e  Reynolds number 

T  Temperature (K) 

U  Overall HTC (W m
-2

 K
-1

) 

V  Volumetric flow rate (m
3
 h

-1
) 

x  Vapor quality 

tt
X  Martinelli parameter 

  

Greek symbols  
  Heat transfer coefficient (W m

-2
 K

-1
) 

  Liquid film thickness (m) 

  Effectiveness 
  Dynamic viscosity (Pa s) 

  Standard deviation 
  Density (kg m

-3
) 

  Surface tension (N m
-1

) 

  Mean error 

  Absolute mean error 

  

Subscripts  

b e e  Brine at the inlet 

b s e  Brine at the outlet 

c b  Convective boiling 

evap evaporator 

i  Inlet 
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k Condenser 

l  Liquid 

lv  Liquid-vapor 

n b  Nucleate boiling 

  

Abbreviatures  
GHG GreenHouse Gas 
GWP Global Warming Potential 
HFC HydroFluoroCarbon 
HFO HydroFluoroOlefines 
HTC Heat Transfer Coefficient 

ODP Ozone Depletion Potential 

 

1. Introduction 

 

During the last decades, R134a, R404A and R507A have being used in different 

refrigeration and air conditioning applications as non-ozone depleting R12 [1] and R22 

[2] substitutes, respectively. They present good energy performance, are non-toxic and 

non-flammable. However, due to the Kyoto Protocol approval [3], they have been 

identified as Greenhouse Gas (GHG) as the rest of HFCs (HydroFluoroCarbon). 

 

In order to enforce that agreed at the Kyoto Protocol, the European Union approved the 

Directive 2006/40/EC in 2006 [4], also known as F-gas Regulation. This Directive 

affected refrigerants with a GWP (Global Warming Potential) higher than 150 in new 

vehicles from 2011 and in all new vehicles produced from 2017. Then, in 2014, the 

Directive 2006/40/EC has been replaced by the Regulation (EU) No 517/2014, which 

bans the use of HFC with high GWP values in rest of refrigeration and air conditioning 

systems [5]. 

 

Considering the very large refrigeration applications using the vapour compression 

system, several low GWP refrigerant fluids with different characteristics can be found 

to replace HFCs in vapour compression systems, both natural and synthetic, [6].Natural 

refrigerants comprise hydrocarbons, flammable but economical and energy efficient; 

carbon dioxide, increasingly relevant used in transcritical or cascade systems; and 

ammonia, toxic and flammable but very efficient. Synthetic refrigerants are considered 

good low and mid-term alternatives and can be differenced in low-GWP HFCs, HFOs 

(HydroFluoroOlefines) or mixtures of both groups. 

 

Two HFOs appeared as R134a replacements [7]: R1234yf [8] and R1234ze(E) [9]. They 

present low-flammability, they are non-toxic and its GWP values are 4 and 6 

(accomplishing GWP limitations), respectively. R1234yf has been proposed as R134a 

drop-in substitute in mobile air conditioning applications [10] and R1234ze(E) can be 

used in chillers [11] and heat pumps [12], among others applications. 
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Although R1234ze(E) shows relevant advantages in refrigeration systems, it is not 

recommended its use as R134a drop-in replacement because it presents lower cooling 

capacity [13] and low-flammability [14]. With the purpose of found a most satisfactory 

solution (non-flammable, lower GWP values, with acceptable cooling capacity) and 

extend the lower GWP refrigerants usage for substitution of another HFC (as R404A 

and R410A), it has been mixed with some HFC [15]. 

 

In this way, blends like R444A, R445A and R450A appeared as alternatives to 

substitute the refrigerant R134a. Focusing on blend R450A, it is a mixture of 

R1234ze(E) and R134a (58/42 in %mass) intended to replace R134a in medium 

temperature applications (chillers, heat pumps and commercial refrigeration, among 

other) [16]. It is non-flammable and its GWP is 549 (though it is not enough low for 

some cooling systems in Europe). It have shown good efficiency compared to R134a, as 

demonstrate Mota-Babiloni et al. [17] in a vapour compression test rig and Tewis Smart 

solutions [18] or Honeywell [19] in a supermarket cascade systems. Lower performance 

has shown in a water‐cooled screw chiller installation [20]. 

 

In the other way, R448A appears as a blend alternative to substitute the R404A and it is 

composed of R32/R125/R134a/R1234yf/R1234ze(E) (26/26/20/21/7 in %mass) 

resulting non-flammable and GWP of 1205. R448A can substitute R404A in large 

centralized systems at low and medium evaporating conditions [20]. As happens for 

R450A, this HFO/HFC mixture also presents good performance. Mota-Babiloni et al. 

[22] studied theoretically six R404A alternatives in four vapour compression 

configurations, obtaining high efficiency simulating with R448A. Yana Motta [23], 

using a 2.2 kW semi-hermetic condensing unit with evaporator for walk-in 

freezer/cooler, show that R448A matches the capacity of R404A with 6% higher 

efficiency. Rajendran [24] obtained lower energy consumption for R448A (3% to 8%) 

in a scroll compressors centralized Direct Expansion system with cases and food 

simulators. Abdelaziz and Fricke [25], in a test facility that uses reciprocating 

compressors and two separate temperature/humidity controlled rooms, found that 

refrigerant R448A average energy efficiency was 11.6% higher than that obtained with 

R404A. 

 

When designing vapour compression systems, the evaporator selection is one of the 

most important parts [26]. One of the main parameters in evaporator design is the flow 

boiling heat transfer coefficient (HTC) and depends on the evaporator geometry and the 

refrigerant properties [27]. Flow boiling HTC can be determined accurately through 

steady-state evaporator models, as demonstrated, for example, by Navarro-Esbrí et al. 

[28] or Zhao et al. [29] for R1234yf and R134a. 

 

R450A and R448A are promising alternatives to two of most currently used refrigerants, 

R134a and R404A, due to its similar properties, Table 1. The problem is that the there 

are few data available for both alternative refrigerants and the effect of replace HFCs 

cannot be predicted properly. In this paper a shell-and-micro-fin tubes evaporator model 
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is validated and used to evaluate these refrigerants considering different relevant heat 

exchanger parameters. The most accurate model is applied to compare the evaporator 

performance between these refrigerants. The conclusions of this work can be used in the 

evaluation of HFCs substitution or in the refrigeration system and heat exchanger 

design using R450A and R448A, two refrigerants that can achieve great GWP 

reductions and therefore, lessen the global warming. 

 

 

 

 

 

The rest of the paper is structured as follows: In section 2, the experimental setup, 

refrigerants and test performed are presented. In section 3, the evaporator model is 

mentioned. In section 4, the correlations selected are exposed. In section 5, the results of 

the study are discussed. Finally, in section 6, the main conclusions are summarized. 

 

2. Experimental setup 

 

2.1 Test bench 

 

The test bench used in this work is a fully monitored vapour compression plant that 

consists of a main circuit and two secondary circuits, Figure 1. The vapour compression 

system is composed of the following components: 

 Reciprocating open compressor, driven by variable-speed 7.5 kW electric motor 

using polyolester (POE) oil  as lubricant. The compressor speed can be selected 

using an inverter. 

 Shell-and-smooth tubes condenser (1-2), with refrigerant flowing along the shell 

and the water (used as secondary fluid) inside the tubes. 

 Shell-and-micro-fin tubes evaporator (1-2), where the refrigerant flows inside 

the tubes and a water/propylene glycol mixture (65/35 by volume) along the 

shell. 

 Thermostatic expansion valve. 

 Corrugated counter flow tube-in-tube internal heat exchanger (also known as 

suction-line/liquid-line heat exchanger), which is activated or deactivated by a 

set of solenoid valves. 

 

 

 

 

The secondary circuits fix the requested evaporating and condensing conditions: 

 The heat removal circuit is formed of a heat load circuit is composed by a set of 

immersed electrical resistances regulated by a Proportional Integral Derivative 

(PID) controller. 
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 The heat removal circuit uses a fan and an auxiliary chiller. 

 In both circuits the secondary fluid flow rate can be adjusted using a variable-

speed pump. 

 

The main characteristics of the evaporator (and micro-fin tube) geometry are listed in 

Table 2. 

 

 

 

 

 

As mentioned before the test bench is completely monitored to obtain the main 

thermodynamic parameters (through temperature and pressure measurements) at the 

inlet and outlet of each main component (the location of sensors can be seen in Fig. 1). 

The system also contains a Coriolis flow meter in main circuit and two electromagnetic 

flow meters in secondary circuits. The compressor power consumption and rotation 

speed are also measured for energetic calculations. Detailed information about sensors 

is listed in Table 3. 

 

 

 

 

 

Finally, all data generated by all sensors were gathered by a data acquisition system 

(every 0.5 seconds) and monitored and stored using a PC. The refrigerant 

thermodynamic states are calculated from REFPROP v9.1 database [30]. 

 

2.2 Tests performed 

 

The tests conditions cover a complete mid (all refrigerants) and low (R448A and R404A) 

evaporation temperature range of vapour compression systems, Table 4. 

 

 

 

 

 

The evaporating pressure is defined considering glide effects on heat exchangers, Eq. (1) 

is applied to correct R450A and R448A evaporating pressure [15, 22]. 

 

1 2

3 3
e v a p b u b b le d e w

P P P   (1) 

 

3. Evaporator model 
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The model is based on the thermal analysis ε-NTU method, correlations used to 

determine convective heat transfer coefficients and the data provided by the evaporator 

manufacturer (Table 2). The evaporator is modeled by dividing it into two zones that 

correspond to the state of the refrigerant, i.e., evaporation and superheating zones. The 

complete evaporator model (development, assumptions, and equations, etc.) is 

explained and analysed in Mendoza-Miranda et al. [31]. The overall heat transfer 

coefficient is calculated using Eq. (2) which includes the thermal resistance associated 

to the fouling on the shell side, Ro,e. This value is 0.000086 m
2 

K W
-1

 for 

water/propylene-glycol brine containing below 40% of propylene glycol according to 

the manufacturer data. 

 
1

,

, ,

ln

1 1

2

o

o

io

zo n e o e

i zo n e i o b r in e

d
d

dd
U R

d k 



  

  
      

        
  

 

  

 (2) 

The internal heat transfer coefficient,         , in single phase for turbulent flow for 

micro-fin tubes is given by the Jensen and Vlakancic correlation [32] defined as: 

 
0 .8

2

0 .5

1 2 2

0 .2 5
N u

0 .2 5

i

i s

i i f

dk
F F

d d N e t







  

          

 (3) 

 
0 .2 8

0 .5 30 .6 4

1 0 .4 10 .4 40 .8 9

s in 2
1 1 .5 7 7 c o s / 0 .0 2

s in 2
1 0 .9 9 4 c o s 0 .0 2 / 0 .0 3

f

i

i f i

f

i

i f i

N e t
e d

d N d

F

N e t
e d

d N d

 




 




     
                  

 

     
          

       

 (4) 

0 .6 6
0 .3 1

2

2 s in
1 1 0 .0 5 9 c o s

f f

i f i

N e N t
F

d N d

 


 


      

                   

 (5) 

 

Where     is obtained from the Gnielinskis’ correlation [33] for a smooth tube defined 

as: 

 

   

   
1 2 2 3

/ 2 R e 1 0 0 0 P r
N u

1 1 2 .7 / 2 P r 1
s

f

f




 
 (6) 

 

Where 

 

 
2

1 .5 8 ln R e 3 .2 8f


   
 (7) 
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For the external forced convection on the array of tubes the Zhukauskas’ correlation 

[34], Eq. (8), is used. 

 
1 4

0 .3 6

,

P r
R e P r

P r

fm

o b r in e

w o

k
C

d


   
    

   

 (8) 

 

Where coefficients, C and m, are estimated according to the Reynolds number. 

 

The model input parameters are mass flow rate, and inlet enthalpy for refrigerant; and 

volumetric flow rate and inlet temperature for the brine. The model outputs are 

evaporating pressure, outlet enthalpy for the refrigerant, outlet brine temperature, heat 

transfer areas dedicated to boiling and superheating as well as the cooling capacity. 

 

4. Flow boiling correlations 

 

The two-phase flow heat transfer coefficient of the refrigerant is one of the most 

important issues in the evaporator design. There are available in the literature different 

methods (or correlations) to calculate the flow boiling heat transfer coefficient. The 

final method selected will depend on the evaporator geometry, working fluid and 

predominant evaporation region. 

 

There are different mechanisms to enhance heat transfer coefficient in evaporators [35]. 

Add micro-fins to tubes of evaporators can produce thermal advantages (though 

pressure losses are incremented) [36]. As compared to smooth tubes, microfin tubes 

ensure a large heat transfer enhancement with a relatively low pressure drop increase 

and reduce the range of operating conditions leading to dry-out and partial dry-out. The 

presence of micro-fins may change the two-phase flow pattern and the relative 

importance of nucleate boiling and convective evaporation heat transfer mechanisms 

[37]. 

 

Diverse boiling flow heat transfer coefficient correlations for micro-fin tubes have been 

proposed in the past years. However, most of them have not been tested with 

experimental data using the considered mixtures. In this paper the models proposed by 

Koyama et al. [38], Yun et al. [39], and Akhavan-Behabadi et al. [40] are selected to 

analyse the model accuracy using R134a, R450A, R404A and R448A in the evaporator. 

 

The Koyama et al. [38] adapted Chen correlation, presenting a superposition-type model 

that considers the enhancement effect of micro-fins on the convective heat transfer and 

the nucleate boiling component. It presented good results for R22, R134a and R123 at 

mass velocity from 200 to 400 kg m
-2

 s
-1

, heat fluxes from 5 to 64 kW m
-2

 and reduced 

pressure from 0.07 to 0.24. Due to the great amount of equations, this micro-fin model 

is detailed in Table 5. 
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The Yun et al. [39] model implemented non-dimensional parameters accounting for heat 

transfer enhancement over smooth tubes and physical phenomena into the basic form of 

a smooth tube correlation. They used a great amount of experimental points to obtain 

the correlation agreement and the average deviation was -11.7%. The equations that 

represent this model are Eq. (9) to (11): 

 

 

5 63 9

7 82

1 4

1
B o R e P r

C CC C

e v a p i C CC

T P l l l

t t l

P d G e
C C

X e


 

 

        
         

        

 (9) 

 

B o =

lv

q

G h


 (10) 

 

 

0 .8 0 .4
0 .0 2 3 R e P r

l

l l l

i

k

d


 
  

   

(11) 

 

 

 

 

 

Finally, Akhavan-Behabadi et al. [40] developed a correlation based on their R134a 

experimental results, to predict the micro-fin HTC at four different mass velocities (53, 

80, 107 and 136 kg m
-2

 s
-1

) and tube inclinations (from -90° to +90°). They obtained 

good agreement between the correlation and experimental values (an error band of 

±10%). In the case of a horizontal tube the correlation results in Eq. (12) and (13). 

 

 

 

1 .0 9

0 .9 63 0 .9 8 0 .3 8 P r
4 .0 5 1 0 R e 1 .5 5

l

T P l

t t

F x
X





 

    
   

(12) 

 

 
1 .2

1 0 .7

1 0 .2 c o s 1 5 / 1 8 0 0 .7

x
F

x x





 

   

(13) 

 

Although they are not studied here, other micro-fin tubes model can be found in 

literature as those developed by Thome et al. [41] and Cavallini et al. [42]. Thome’s 

correlation was the first developed introducing the geometrical dimensions of micro-

fins and it considers the aggrandizement of nucleate boiling and convective evaporation 

caused by micro-fins. The Cavallini’s model considers heat transfer mechanisms: 

nucleate boiling, convective evaporation and capillarity. 
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5. Results and discussion 

 

5.1 Model validation 

 

In order to check the predictive ability of the three flow boiling heat transfer 

correlations used in the evaporator model, three operational parameters of the 

evaporator have been selected: evaporating pressure, two-phase overall heat transfer 

coefficient (UATP product) and cooling capacity. Thus, Table 7 provided a summary of 

the statistical analysis in order to check the evaporator simulation versus experimental 

data using all flow boiling correlation provided. To do so, Eqns. (14 – 17) [43] are used 

to quantify its individual error (Eq. 14), mean error (Eq. 15), absolute mean error (Eq. 

16) and standard deviation (Eq. 17) for predicted evaporating pressure, UATP product 

and cooling capacity, respectively. 

 

 

 

 

 

   
                              

                  
 (14) 

 

   
 

 
   

 

   

 (15) 

 

     
 

 
   

 

   

 (16) 

 

   
 

 
         
 

   

 (17) 

 

Although R134a is studied in Mendoza-Miranda et al. [31], it is also displayed here to 

compare this results (pure refrigerant) with the performed using the other refrigerants 

(near-azeotrope and non-azeotrope mixtures). Moreover, all the correlations used in this 

paper were validated by their authors using R134a, so it could suggest the magnitude of 

the deviation for the other refrigerants. 

 

Figs. 2 – 4 show comparisons of measured and predicted data for the four refrigerant 

tested (R134a, R404A, R448A, R450A) and the flow boiling heat transfer correlations 

for micro-fin tubes developed by Koyama et al.[38], Yun et al. [39] and Akhavan-

Behabadi et al. [40]. Fig. 2a highlights the measured evaporating pressure for each 

refrigerant and all boiling heat transfer correlations. It can be seen that the results agree 
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quite well, with 82% of the points predicted to an accuracy of ±10% using the three 

correlations studied. It appears that the model using the Akhavan-Behabadi et al. 

correlation slightly under predicts the evaporating pressure for low-load conditions 

using R134a; however, prediction is still within the error bandwidth. Fig. 2b shows a 

similar comparison for the R450A obtaining that the results agree with 32%, 59% and 

91% of the points predicted to an accuracy of ±10% using Koyama, Yun and Akhavan-

Behabadi correlations, respectively. Koyama and Yun correlations over predict the 

evaporating pressure when evaporating pressure increase meanwhile the Akhavan-

Behabadi et al. correlation shows a slight over prediction (compared with the first two 

correlations) when evaporating pressure increases. Similar results are obtained for 

R404A and R448A (Figs. 2c and 2d) highlighting that for high evaporating pressure 

using R404A the over prediction increase up to 13% using Koyama correlation, 9% 

with Yun correlation and 7.7% with Akhavan-Behabadi correlation. 

 

 

 

 

 

Fig 3 shows the comparison between the product of two-phase overall heat transfer 

coefficient and heat transfer area (UATP) for each refrigerant. In this case, the points 

observed are more scattered than those observed in evaporating pressure. For Koyama 

and Yun flow boiling correlations, the values are generally over predicted, meanwhile 

for Akhavan-Behabadi correlation we obtained a best fits of our experimental data. 

 

 

 

 

Finally, cooling capacity is the parameter that shows the most precise predictions, as all 

the values remains inside the ±10% error bandwidth, as shown in Fig. 4. Standard 

deviations are below 1.5% for all refrigerants using Akhavan-Behabadi et al. correlation 

and for the Koyama correlation, the highest deviation obtained is 1.8% for R404A. The 

values are generally over predicted except for R134a using Akhavan-Behabadi et al. 

correlation. As observed before, the highest deviations are obtained at higher cooling 

capacities (same tests that higher evaporating pressures). 

 

R450A is the first near-azeotrope mixture studied; as happens for R134a, values are 

over predicted for all the correlations, being the large deviation that obtained with 

Koyama correlation. Intermediate deviation is obtained with Yun correlation and the 

correlation that best fits to the experimental results is Akhavan-Behabadi. For pevap and 

UATP almost the half of the values are within ±10%, being the high deviation at higher 

pevap, aditianally, all Qref predictions are inside the ±10% error bandwidth. In the other 

hand, similar results are obtained for the R448A zeotropic refrigerant mixture. 
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5.2 Evaporator performance 

 

Once the evaporator model has been validated with the experimental results, this section 

compares the evaporator performance between the HFCs selected and their 

replacements. Because Akhavan-Behabadi et al. correlation provides the most precise 

predictions; the simulations have been performed applying this model. The comparison 

is performed at refrigerant mass flow rates between 0.025 and 0.09 kg s
-1

. The input 

conditions of the comparison are indicated in Figure 5, which shows the main results of 

the simulation. 

 

 

 

The evaporating temperature (Fig 5.a) decreases with the increase of mass flow rate. In 

the case of R448A this evaporation temperature is the lower due to the large glide 

effects that therefore is going to be reflected in a difference in evaporation pressure and 

compression ratio. The rest of refrigerants display higher evaporation temperatures, 

being that of R404A the higher at high mass flow rates. Then, Fig. 5(b) presents the 

variation of the temperature of the brine at the evaporator inlet. It also presents a high 

difference between R404A and R448A due to the large R448A glide. Both, Tevap and 

Tbse will imply a very different pinch point between R404A and its alternative. The 

difference between R134a and R450A can be considered small, 0.6K as average, mainly 

due to the R1234ze(E) inclusion in the mixture. 

 

Fig 5.(c) represents the evaporator effectiveness at flow boiling, which is very similar 

for refrigerants R134a and R450A, and lies between 30 and 50% approximately. The 

effectiveness of R448A is above that performed by R404A, 5% as average, and 

indicates that the flow boiling HTC of both refrigerants are significantly different. 

Finally, the cooling capacity during evaporation of the fluids analyzed is shown in Fig. 

5(d). As the rest of parameters, R450A cooling capacity is very similar to that of R134a 

(especially at great mass flow rates). On the other hand, R448A cooling capacity is 

between 1.2kW and 3.4kW greater than that of R404A, affected directly by higher 

R448A evaporating enthalpy difference. 

 

6. Conclusions 

 

In this paper a micro-fin tubes evaporator performance evaluation using two new low-

GWP alternatives, R450A and R448A, and their baselines, R134a and R404A, was 

presented. The comparison was made using results obtained from a steady-state 

evaporator model. This model was validated using experimental measurements from a 

shell-and- micro-fin tube evaporator located in an experimental vapour compression 

system. Tests were carried out varying parameters as evaporating pressure, mass flow 

rate or superheating degree, among others. The main conclusions of the work are 

summarized as follow. 
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The best predictions performed by the model are observed when Akhavan-Behabadi et 

al. correlation is used, then Yun and finally Koyama. The use of Akhavan-Behabadi et 

al. correlation allows obtaining great quantity of points inside the ±10% limits and 

lower mean error and standard deviation values. The deviation is low at lower 

evaporation temperatures (low mass flow rates and cooling capacity). 

 

This micro-fin-tubes evaporator model presented predicts accurate for all refrigerants 

tested, for the higher precision of the model is observed for R450A and R404A (near-

azeotropic mixtures), then R448A (azeotropic mixture) and finally R134a. The error 

observed is higher for UATP than evaporating pressure or cooling capacity, so this 

model is recommended to study operating conditions or evaporator energetic 

performance. 

 

Evaporator performance of R450A is very similar to that of R134a although it only 

presents 42% of R134a in its composition. Besides, R404A and R448A presents a great 

difference for all parameters studied, mostly caused by glide effects, different HTC and 

enthalpy difference. 
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Figure 1. Test bench schematic diagram. 
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a) b) 

  
c) d) 

Figure 2. Evaporating pressure model deviations for: a) R134a, b) R450A, c) R404A 

and d) R448A. 
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a) b) 

  
c) d) 

Figure 3. UATP model deviations for: a) R134a, b) R450A, c) R404A and d) R448A. 
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a) b) 

  
c) d) 

Figure 4. Cooling capacity model deviations for: a) R134a, b) R450A, c) R404A and d) 

R448A. 
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a) b) 

  
c) d) 

Figure 5. Results of the simulation: a) Evaporating temperature, b) Temperature of the 

brine at the evaporator outlet, c) Effectiveness at evaporating zone and d) Cooling 

capacity. 
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Figure Captions 

 

Figure 1. Test bench schematic diagram. 

 

Figure 2. Evaporating pressure model deviations for: a) R134a, b) R450A, c) R404A 

and d) R448A. 

 

Figure 3. UATP model deviations for: a) R134a, b) R450A, c) R404A and d) R448A. 

 

Figure 4. Cooling capacity model deviations for: a) R134a, b) R450A, c) R404A and d) 

R448A. 

 

Figure 5. Results of the simulation: a) Evaporating temperature, b) Temperature of the 

brine at the evaporator outlet, c) Effectiveness at evaporating zone and d) Cooling 

capacity. 
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Table 1. Refrigerants main properties [30]. 

 R134a R450A R404A R448A 

ASHRAE safety 

classification 
A1 A1 A1 A1 

ODP 0 0 0 0 

100-year GWP 1430 547 3922 1273 

Critical Temperature (K) 374.21 379.02 345.20 356.81 

Critical Pressure (kPa) 4059.28 3814 3728.85 4674.93 

NBP (K) 247.08 521.20 227.41 233.05 

Glide
 a
 (K) - 0.78 0.75 6.27 

Liquid density
 a
 (kg m

-3
) 

 
1295.27 1253.28 1150.59 1192.39 

Vapor density
 a
 (kg m

-3
) 14.35 13.93 30.32 22.09 

Liquid   
 a
 (kJ kg

-1
 K

-1
) 1.34 1.32 1.39 1.42 

Vapor    
a
 (kJ kg

-1
 K

-1
) 0.90 0.89 1.00 0.98 

Liquid therm. cond.
 a
 (W 

m
-1

 K
-1

) 
92.08·10

-3
 83.09·10

-3
 73.15·10

-3
 92.41·10

-3
 

Vapor therm. cond.
 a
 (W 

m
-1

 K
-1

) 
11.50·10

-3
 11.57·10

-3
 12.82·10

-3
 12.01·10

-3
 

Liquid viscosity
 a
 (Pa s

-1
) 267.04·10

-6
 258.22·10

-6
 179.70·10

-6
 188.35·10

-6
 

Vapor viscosity
 a
 (Pa s

-1
) 10.72·10

-6
 11.15·10

-6
 11.00·10

-6
 11.42·10

-6
 

a
 Temperature=273K  
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Table 2. Evaporator geometry. 

Total number of tubes 76 

Number of tube passes 2 

Number of Shell passes 1 

Inner tube diameter (m) 0.00822 

Outside tube diameter (m) 0.00952 

Number of micro-fins 30 

Fin height (m) 2·10
-4

 

Helix angle (°)  18 

Inner Shell diameter (m) 0.131 

Tube length (m) 0.8182 

Transverse tube spacing (m) 0.01142 

Clearance between tubes (m) 0.0019 

Number of baffles 5 

Tube material Copper 
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Table 3. Summary of sensors and their uncertainty associated. 

Measured parameters Sensor installed Uncertainty 

Temperatures K-type thermocouples ±0.3K 

Pressures Piezoelectric pressure transducers ±7kPa 

Mass flow rate Coriolis mass flow meter ±0.22% 

Volumetric flow rate Electromagnetic flow meter ±0.25 % 

Compressor power consumption Digital wattmeter ±0.15% 

Compressor rotation speed Capacitive sensor ±1% 
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Table 4. Test conditions (min-max) 

 R134a R450A R404A R448A 

Evaporation pressure (kPa) 175.8-375.2 163.9-350.9 162.6-418.3 132.5-401.2 

Refrigerant mass flow rate 

(kg s
-1

) 

0.031-0.086 0.029-0.085 0.021- 

0.096 

0.009-0.075 

Refrigerant quality at 

evaporator inlet 

0.19-0.43 0.21-0.47 0.25-0.58 0.23-0.46 

Refrigerant superheat at 

evaporator exit (K) 

5.6-9.8 6.5-10.2 5.5-13.5 9.7-11.8 

Brine propylene glycol 

inlet temperature (K) 

264.8-293.4 270.2-305.0 250.3290.9 250.43-

287.88 

Brine propylene glycol 

outlet temperature (K) 

263.9-290.6 268.5-296.3 248.3-285.0 248.98-

287.25 

Secondary fluid volumetric 

flow rate (m3 h
-1

) 

1.14-1.24 1.17-1.27 1.02-1.82 1.09-1.83 
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Table 5. Equations used in the Koyama et al. correlation [38]. 

T P n b cb
     
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l

c b l l
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Table 6. Coefficients used on the Yun et al. correlation [39]. 

Coefficient 
1

C
 2

C
 3

C
 4

C
 5

C
 6

C
 7

C
 8

C
 9

C
 

Value 0.009622 0.1106 0.3814 7.685 0.51 –0.736 0.2045 0.7452 – 0.1302 
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Table 7. Statistical analysis of selected parameters of the model and experimental 

results. 

Refrigerant Parameter Correlation                

R134a Pevap Koyama 5.19% 7.43% 10.04% 82% 

  Yun 2.05% 5.28% 8.59% 82% 

  Akhavan -2.58% 7.30% 7.61% 82% 

 UATP Koyama 34.25% 34.53% 28.60% 18% 

  Yun 24.41% 24.41% 23.79% 18% 

  Akhavan 9.89% 14.84% 21.43% 59% 

 Qo,ref Koyama 0.90% 1.25% 1.61% 100% 

  Yun 0.56% 0.90% 1.48% 100% 

  Akhavan -0.32% 1.25% 1.44% 100% 

R450A Pevap Koyama 13.20% 13.20% 6.96% 32% 

  Yun 8.98% 8.98% 4.35% 59% 

  Akhavan 2.98% 3.74% 3.62% 91% 

 UATP Koyama 23.88% 24.29% 15.26% 18% 

  Yun 12.67% 13.51% 8.21% 32% 

  Akhavan -0.64% 5.45% 6.85% 82% 

 Qo,ref Koyama 2.59% 2.60% 1.57% 100% 

  Yun 2.04% 2.04% 1.12% 100% 

  Akhavan 0.93% 1.03% 0.90% 100% 

R404A Pevap Koyama 18.25% 18.25% 7.72% 17% 

  Yun 11.83% 11.83% 4.26% 33% 

  Akhavan 7.70% 7.71% 3.95% 67% 

 UATP Koyama 31.30% 31.30% 13.68% 4% 

  Yun 15.78% 15.82% 9.32% 25% 

  Akhavan 6.25% 7.53% 7.30% 79% 

 Qo,ref Koyama 4.02% 4.02% 1.78% 100% 

  Yun 3.28% 3.28% 1.31% 100% 

  Akhavan 2.41 2.41% 1.13% 100% 

R448A Pevap Koyama 14.35% 14.35% 7.59% 62% 

  Yun 9.42% 9.42% 5.49% 62% 

  Akhavan 2.68% 4.33% 5.35% 85% 

 UATP Koyama 29.71% 29.96% 20.69% 54% 

  Yun 17.04% 17.47% 16.31% 54% 

  Akhavan 1.18% 10.89% 11.80% 46% 

 Qo,ref Koyama 2.27% 2.31% 1.59% 100% 

  Yun 1.76% 1.76% 1.27% 100% 

  Akhavan 0.731% 0.96% 1.10% 100% 
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