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ABSTRACT: Using a combination of experimental and computational methods, mainly FTIR and DFT calculations, new insights 
are provided here in order to better understand the cleavage step of the C-C bond taking place during the complete oxidation of 
ethanol on platinum stepped surfaces. First, new experimental results pointing out that platinum stepped surfaces having (111) 
terraces promote the C-C bond breaking are presented. Second, it is computationally shown that the special adsorption properties of 
the atoms in the step are able to promote the C-C scission, provided that no other adsorbed species are present on the step, which is 
in agreement with the experimental results. In comparison with the (111) terrace, the cleavage of the C-C bond on the step has a 
significantly lower activation energy, which would provide an explanation for the observed experimental results. Finally, reactivity 
differences under acidic and alkaline conditions are discussed using the new experimental and theoretical evidences. 

INTRODUCTION 

Ethanol presents a higher energy storage density than single-
carbon fuels (such as methanol or formic acid) and can be 
produced directly as a biofuel. In return, the complete oxida-
tion of ethanol to water and CO2 requires of the C-C bond 
cleavage. On platinum electrodes, ethanol oxidation reaction 
takes place through a dual path mechanism.1-2 The desired path 
leads to the cleavage of the C-C bond, forming adsorbed CO 
which is eventually oxidized to CO2 exchanging 12 electrons 
in the whole process. In the other path, acetaldehyde is pro-
duced which is subsequently oxidized to acetic acid. Acetic 
acid is stable upon oxidation, since it can be only oxidized to 
CO2 only above 1 V at room temperatures.3 Moreover, it can 
be also considered as an inhibitor of the reaction, since it is 
adsorbed strongly on the electrode surface as acetate in acidic 
media, hindering the oxidation reaction.4-5 In any case, in the 
oxidation to acetic acid, only 4 electrons are exchanged, losing 
2/3 of the available energy. Thus, the success of ethanol based 
fuel cells depends on finding efficient catalysts capable of 
breaking the C-C bond at low overpotentials. Under acidic 
conditions, the major product of the ethanol oxidation on the 
investigated metallic electrodes at low temperatures is acetic 
acid.6 This observation implies that the cleavage of C-C bond 
on such electrodes is a reaction step with high activation ener-
gy. Additionally, as pH increases, the efficiency in the CO2 
formation diminishes,7 until eventually no CO2 is formed 
under alkaline conditions.8-9 In some cases, CO2 has been 
detected in alkaline media by FTIR. However, in such cases 
the formation of CO2 is probably related to a severe change in 
the pH of the solution in the thin layer configuration required 
to measure the IR spectra.10  

To understand the conditions under which the C-C bond can 
be broken, experimental results obtained on single crystal 
electrodes have provided valuable insights.  First, it has been 
shown that the Pt(111) surface is inactive for this reaction 
step, since the amount of CO2 detected can be related to the 
presence of defects on the electrode surface.4 Second, and 
more important, it has been observed that the existence of 
(110) steps on the (111) terrace promote the cleavage of the C-
C bond in acidic environments even at low overpotentials.4, 11-

14 Thus, stepped surfaces with (111) terraces provide a very 
controlled environment where the scission of the C-C bond 
can be studied. Using isotopically labeled ethanol, it has been 
possible to identify two fragments produced after the cleavage 
of the C-C bond at low potentials:11-13 adsorbed CO, which is 
oxidized above 0.5 V to CO2, and adsorbed CHx. This latter 
fragment can be oxidized to adsorbed CO above 0.4 V and 
subsequently to CO2.

15 Additionally, some of the CHx frag-
ments can be lost by desorption and subsequent reaction with 
the solvent, or even being reduced to CH4 at potentials close to 
0 V, as DEMS experiments demonstrate.16-18 On the other 
hand, it is clear that the solution pH plays an important role in 
the outcome of the reaction, since the oxidation of ethanol on 
alkaline solutions yields almost exclusively acetate as final 
product, independently of the surface structure of the elec-
trode.8, 10 

In order to determine the role played by the step symmetry, 
adsorption properties and solution pH in the ethanol oxidation 
reaction on platinum stepped surfaces, new spectroelectro-
chimical experiments and DFT computations were carried out.  
The results reported here provide new insights into the proba-



 

ble mechanism for the cleavage of the C-C bond and the effect 
of the adsorbed species and pH in this process. 

EXPERIMENTAL AND THEORETICAL METHODS. 

Electrochemical experiments. Platinum single crystal elec-
trodes were oriented, cut and polished from small single crys-
tal beads (ca. 2 mm in diameter for the voltammetric experi-
ments and ca. 4.5 mm for the spectroelectrochemical meas-
urements) following the procedure described by Clavilier and 
co-workers.19-20 The electrodes were cleaned by flame anneal-
ing for 30 s in an oxygen/propane flame, cooled down in a 
H2/Ar atmosphere and protected with water in equilibrium 
with this gas mixture to prevent contamination before immer-
sion in the electrochemical cell, as described in detail else-
where.20-21 The single crystal electrodes used in this work are 
the Pt(111) surface and stepped surfaces having (110) or (100) 
monoatomic steps. In table 1, the Miller indexes and the corre-
sponding step-terrace notation is given.22 

Table 1: Notation of the different surfaces used in this 
work. 

Step symmetry Step-terrace notation Miller indices 

(110) 

Pt(S)[16(111)×(110)] Pt(17,17,15) 

Pt(S)[5(111)×(110)] Pt(332) 

Pt(S)[4(111)×(110)] Pt(553) 

(100) 

Pt(S)[16(111)×(100)] Pt(17,15,15) 

Pt(S)[5(111)×(100)] Pt(322) 

Pt(S)[4(111)×(100)] Pt(533) 

 

Voltammetric experiments were carried out using a waveform 
generator (EG&EG PARC 175), together with a potentiostat 
(Amel Model 2053) and a digital recorder (eDAQ ED401). 
For the spectroelectrochemical measurements Nicolet 8700 
spectrometer equipped with a MCT (mercury cadmium tellu-
ride) detector was used. The spetroelectrchemical cell was 
equipped with a CaF2 prism beveled at 60º.23-24 IR spectra 
were collected with a resolution of 8 cm-1 and 100 interfero-
grams for increasing the signal-to-noise ratio. A p-polarized 
light was used in all the FTIR experiments. The spectra are 
presented as absorbance measurements (A=-log (R1-R2)/R1), 
where R2 and R1 are the reflectance values for the single beam 
spectra recorded at the sample and the reference potential, 
respectively. Positive bands in the spectra correspond to spe-
cies formed at the sample potential, whereas negative bands 
are referred to species consumed. The sample spectra were 
collected after applying successive potential steps of 100 mV 
between 0.10 and 0.95 V. 

Solutions were prepared using ethanol absolute (Merck p.a.), 
NaOH (NaOH monohydrated 99.99% Merck Suprapur®), 
perchloric and sulfuric acid (Merck Suprapur®), and ultrapure 
water (Elga Purelab Ultra 18.2 MΩ cm). Ar (N50, Air 
Liquide) was used for desoxygenating the solutions. All the 
experiments were carried out at room temperature in a three-
electrode electrochemical cell. A platinum wire was used as a 
counter-electrode and a reversible hydrogen (N50, Air 
Liquide) electrode was used as a reference electrode (RHE).  

Computational methods. All DFT calculations were carried 
out using numerical basis sets,25 semicore pseudopotentials26 
(which include scalar relativistic effects) and the RPBE func-

tional27 (which was specifically developed for catalysis appli-
cations) as implemented in the Dmol3 code 28. Solvation ef-
fects were taken into account by the COSMO model.29 The 
effects of non-zero dipole moments, in the supercells, were 
cancelled by means of external fields.30 Transition states were 
searched for using a generalization of the linear synchronous 
transit method,31 for periodic systems, combined with a quad-
ratic synchronous transit method in a complete protocol as 
implemented in Dmol3. In addition, the relevant transition 
states were confirmed estimating the minimum energy reac-
tion paths, between reactants and products, by means of the 
nudged elastic band method.32  

The Pt(111), Pt(553) and Pt(533) surfaces were modeled by 
means of periodic supercells comprising 64, 76 and 64 Pt 
atoms (four layers of metal atoms), respectively, and a vacuum 
slab of 20 Å. The bottom 32, 36 and 32 Pt atoms were frozen 
in their bulk crystal locations, respectively. The remaining 32, 
40 and 32 Pt atoms were completely relaxed joint to the ad-
sorbates, respectively. The shortest distance between periodic 
images was 11.32, 10.96 and 11.32 Å, respectively. 

Optimal configurations (adsorbent/adsorbate, reactants, prod-
ucts and transition states) were searched for using numerical 
basis sets of double-numerical quality. For this phase of the 
calculations, the optimization convergence thresholds were set 
to 2.0×10-5 Ha for the energy, 0.004 Ha/Å for the force, and 
0.005 Å for the displacement. The SCF convergence criterion 
was set to 1.0×10-5 Ha for the energy. Assuming the previous-
ly optimized configurations, reaction energies and barriers 
were estimated using numerical basis sets of double-numerical 
quality plus polarization. In this case, the SCF convergence 
criterion was set to 1.0×10-6 Ha for the energy. 

An orbital cutoff radius of 4.5 Å was always used in the nu-
merical basis set for all the atoms. Brillouin zones were al-
ways sampled, under the Monkhorst-Pack method,33 using 
grids corresponding to distances in the reciprocal space of the 
order of 0.04 1/Å. Convergence was always facilitated intro-
ducing 0.002 Ha of thermal smearing, though total energies 
were extrapolated to 0°K. The value 78.54 was taken, as die-
lectric constant for water, in the continuous solvation model. 

RESULTS AND DISCUSSION 

Previous results on platinum stepped surfaces have indicated 
that the (110) step on the (111) terrace is very active for the 
cleavage of the C-C in acidic media, whereas (100) steps on 
the same terrace have lower activity.11 Those results were 
obtained using the SPAIRS technique (single potential altera-
tion infrared spectroscopy) in sulfuric and perchloric acid 
solutions.11 In this technique, IR spectra collection was cou-
pled with the voltammetric sweep at 2 mV s-1. In order to 
verify those results, the FTIR spectra under the same condi-
tions has been now recorded after applying successive poten-
tial steps of 50 mV in the positive direction from 0.1 to 0.9 V 
to obtain a better signal-to-noise ratio. The time required to 
record each spectra is ca. 60 s, which is equivalent to a scan 
rate of ca. 0.8 mV s-1, which implies longer accumulation 
times the sampling potentials with respect to previous results. 
Figure 1 shows the FTIR spectra for four different stepped 
surfaces having 16 and 5 atom (111) wide terraces and (110) 
and (100) monoatomic steps at different potentials and using 
the spectrum acquired at 0.1 V as reference (for the notation of 
the stepped surfaces see table 1). The observed bands and 
associated vibrational modes are summarized in table 2. For 



 

the Pt(17,17,15), a positive band at ca. 2050 cm-1 associated 
with linearly bonded CO is already visible at 0.2 V and grows 
up to a potential of 0.5 V. A diminution of the band intensity 
is observed at 0.6 V, coinciding with the appearance and 
growth of the CO2 band. Additional bands related to the for-
mation of acetaldehyde, acetic acid and adsorbed acetate can 
be detected in the spectra, as has been described elsewhere.4, 11-

13 The appearance of the CO band at low potentials indicates 
that the cleavage of the C-C bond takes place at those poten-
tials. For the other three electrodes, the qualitative behavior is 
essentially the same, showing a high CO formation rate. In the 
previous experiments, the surfaces with (100) steps (in this 
case the Pt(17,15,15) and Pt(322)) showed lower CO accumu-
lation below 0.5 V.11 These differences should be attributed to 
the different experimental conditions. In the present experi-
ments, the potential is maintained constant during the spectra 
acquisition and the acquisition time is longer than in the previ-
ous experiments, improving the signal-to-noise ratio. It should 
also be taken into account that the spectra measured at a given 
potential is the result of the accumulated species on the inter-
face at lower potentials plus the effect of this potential to 
species present on the interface. The longer accumulation 
times in this case allows the C-C bond breaking step to pro-
ceed further than in the previous experiment. Thus, it can be 
concluded that the (100) steps also activate the C-C bond 
breaking process, but at a lower accumulation rate than that 
measured for the (110) steps. As will be shown later, this 
lower accumulation is related to a lower potential window in 
which the cleavage can take place.  
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Figure 1. FTIR spectra of the different electrodes in 0.1 M 
HClO4+0.2 M EtOH. The reference spectrum is taken at 0.1 V. 

To quantitatively analyze the results corresponding to the 
different stepped surfaces, the integrated band intensities for 

the CO2 production and for linearly adsorbed CO (using as 
reference the spectra at 0.1 and 0.95 V, respectively) are plot-
ted in figure 2. Since the integrated absorbances for the differ-
ent electrodes are not directly comparable due to small chang-
es in the thin layer configuration for each experiment, the 
normalized intensities with the maximum signal are represent-
ed. Several clear trends can be observed in the figure 2. First, 
the relative amount of CO at low potentials (E<0.3 V) is high-
er for the surfaces with (110) steps, as the qualitative analysis 
and previous experiments suggested. Second, the onset for 
CO2 formation from the oxidation of adsorbed CO is displaced 
to negative values as the step density increases. This later 
result is in agreement with the catalytic role assigned to the 
steps (or defects) in the oxidation of adsorbed CO on (111) 
terraces.34-35  

Table 2. Observed IR frequencies in the spectra for etha-
nol oxidation in H2O. 

H2O/cm-1 Functional group Mode 

Acidic solutions 

2340 CO2 O-C-O asymmetric stretching 

2030-2070 Adsorbed CO Linearly bonded 

1715 COOH or CHO C=O stretching 

1550 COO- O-C-O asymmetric stretching 

1410-1420 Adsorbed -COO- C-O symmetric stretching 

1385 -CH3 CH3 deformation in acetic acid 

1355 -CH3 CH3 deformation in acetalde-
hyde 

1280 COOH Coupling C-O stretching + OH 
deformation 

Alkaline solutions 

1550 -COO- O-C-O asymmetric stretching 

1415 -COO- O-C-O symmetric stretching 
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Figure 2. Integrated and normalized intensities of the CO and 
CO2 bands using the spectra of figure 1. For the CO band, the 
reference spectrum is that acquired at 0.95 V, whereas the spec-
trum at 0.1 V has been used for the CO2 band. 



 

On the other hand, the observed behavior in alkaline solutions 
is completely different. As can be seen in figure 3 for the 
Pt(17,17,15) electrode, the only observed bands are those 
related to acetate, similarly to what is observed for the low 
index planes.8 No adsorbed CO can be detected in the region 
of ca. 2050 cm-1, clearly indicating that the cleavage of the C-
C bond is not taking place at low potentials in this medium. 
The spectra for the other stepped surfaces used in this work 
have no significant differences with that presented in figure 3. 
The detection of carbonate in this media (the final oxidation 
product under alkaline conditions) is complicated due to the 
fact that the carbonate band at 1390 cm-1 overlaps with that 
related to acetate at 1415 cm-1. However, the ratio between the 
intensity of the two bands related to acetate in the spectra 
(those at 1415 and 1550 cm-1) is almost the same than that 
observed in alkaline solutions of acetate,8 which indicates that 
the total formation of carbonate (if any) is very small, and that 
acetate is the major product of the oxidation. 
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Figure 3. FTIR spectra for the Pt(17,17,15) electrode in 0.1 M 
NaOH+0.2 M EtOH. The reference spectrum is taken at 0.1 V. 

The experimental results reported here clearly indicate that the 
steps in (111) terraces are key elements in the cleavage of the 
C-C bond in acidic solutions and that a large reactivity change 
occurs when pH increases. However, the voltammetric profiles 
of the electrodes in perchloric acid, sulfuric acid and sodium 
hydroxide in the absence of ethanol show only small changes 
(figure 4). In perchloric acid and sodium hydroxide hydrogen 
and OH adsorption on the (111) terraces takes place in the 
same potential window in the RHE scale; between 0 and 0.35 
V for hydrogen and between 0.7 and 0.9 V for OH adsorp-
tion.36 In sulfuric acid solutions, hydrogen adsorption on the 
(111) terraces occurs at the same potentials than in perchloric 
acid solution. Since the adsorption of sulfate on the (111) 
terrace is stronger than that of the hydroxyl anion, sulfate 
adsorption on the terrace gives rise to the wave that appears 
between 0.4 and 0.6 V. Adsorption processes on the steps give 
rise to a well-defined peak, whose potential depends on the 
step symmetry and solution pH. In acidic solutions, the peak 

for the steps appear at 0.13 and 0.27 V, whereas in alkaline 
solution, peak potentials are 0.27 and 0.42 V for the (110) and 
(100) steps, respectively. The process associated to the peaks 
clearly involved hydrogen adsorption on the steps, with a 
possible competition with anion adsorption (OH, or sulfate). 
The very small changes in the peak potential/sharpness be-
tween perchloric and sulfuric acid solution indicates that the 
adsorption of both anions (sulfate and hydroxyl) is weak or 
even not taking place and/or the adsorption strength of sulfate 
on the steps is very close to that of hydroxyl. On the other 
hand, the peak potential increase as pH increases in the RHE 
scale. The potential shift with pH follows a non-nernstian 
value of ca. 50 mV in the SHE scale per pH unit,37 which 
complicates the analysis of the participant species in the peak.  
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Figure 4. Voltammetric profiles of two stepped surfaces in differ-
ent supporting electrolytes. Scan rate: 50 mV s-1. 

In order to understand the C-C bond cleavage mechanism and 
the effect of the surface steps, DFT calculations were carried 
out. Adsorbed CH2

-CO  bonded to two adjacent Pt atoms in an 
on top position (bidentate configuration) is considered as the 
starting point, because it has been previously proposed as the 
configuration from which the investigated bond cleavage 
would take place.38 As has been shown, a successive reaction 
steps take place to reach that configuration. Those reaction 
steps can be summarized as follows: 
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fies the adsorption mode of ethanol so that ethanol cannot be 
adsorbed in a bidentate mode.  

Although other explanations have been proposed,37 a recent 
study indicates that the voltammetric peak for the steps is only 
due to the hydrogen adsorption process, without the competing 
adsorption of other anions.40 Thus, displacement of the peak to 
more positive potentials in the RHE scale should be attributed 
to the effects of the water structure/electrode charge. This 
interpretation is in agreement with the theoretical calculations 
and experimental results presented here, since the presence of 
any adsorbed species on the step would hinder the cleavage of 
the C-C bond. Thus, the most probable explanation for the 
differences between acidic and alkaline media is that the pH, 
that is, the surface charge of the electrode and water structure, 
significantly affects the adsorption modes of ethanol, prevent-
ing the adsorption in a bidentate position. This implies that the 
same effect that is displacing the peak for the steps in figure 3 
is also affecting the ethanol oxidation reaction. In this respect, 
it should be reminded that ethanol is a very weak acid (pKa 
close to 14), and as the pH increases, the formation of EtO- is 
facilitated. This fact could favor the adsorption of ethanol 
through the oxygen atom, preventing the formation of the 
bidentate adsorbed species, which is required for the cleavage 
of the C-C bond. Additionally, a high yield for CO2 production 
has been found for ethanol oxidation reactions using anion 
exchange membranes as electrolytes,41 which suggests that 
water has a relevant role in the adsorption process. 

CONCLUSIONS 

The experimental and computational results reported here 
indicate that steps on (111) terraces play a very important role 
in the cleavage of the C-C bond. On the one side, the activa-
tion energy for this process on the steps would be significantly 
lower than that on the (111) terrace. On the other side, the 
investigated cleavage mechanism imposes two conditions: the 
step should be free from other adsorbates and ethanol should 
be adsorbed in a bidentate arrangement through the carbons. 
Both observations would contribute to explain the experi-
mental results. In acidic media, the cleavage takes place only 
at potentials where adsorbed hydrogen has been desorbed from 
the step. In alkaline media, it has been proposed that ethanol is 
preferentially adsorbed through the oxygen, which prevents 
the cleavage, justifying the absence of CO and CO2/carbonate 
formation in these solutions.  
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