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Abstract

A system of coupled free boundary problems describing American put option

pricing under regime switching is considered. In order to build numerical so-

lution firstly a front-fixing transformation is applied. Transformed problem is

posed on multidimensional fixed domain and is solved by explicit finite differ-

ence method. The numerical scheme is conditionally stable and is consistent

with the first order in time and second order in space. The proposed approach

allows the computation not only of the option price but also of the optimal stop-

ping boundary. Numerical examples demonstrate efficiency and accuracy of the

proposed method. The results are compared with other known approaches to

show its competitiveness.
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1. Introduction

Valuation of derivatives uses to be based on the assumption of a stochastic

process for the underlying asset and the construction of a dynamic, self-financing

hedging portfolio to minimize the uncertainty (risk). Using the absence of arbi-

trage principle, the initial cost of constructing the portfolio, typically given by5
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a partial differential equation (PDE), is then considered to be the fair value of

the derivative, [18].

When the stochastic process for the asset is too simple, assuming constant

parameters, like [4] the model does not replicate the market price. This draw-

back has been overcome with stochastic volatility, jump diffusion and regime10

switching models.

Since Buffington and Elliot’s seminal paper [6] the switching model has at-

tracted much attention due to its capacity of modelling non-constant real sce-

narios when market switches from time to time among different regimes.

Furthermore, regime switching models are computationally inexpensive com-15

pared to stochastic volatility jump diffusion models and have versatile appli-

cations in other fields, like electric markets [3], valuation of stock loans [35],

forestry valuation [7], natural gas [8] and insurance [17].

In this paper we consider a continuous time Markov chain αt taking values

among I different regimes, where I is the total number of regimes considered in20

the market. Each regime is labelled by an integer i with 1 ≤ i ≤ I. Hence, the

regime space of αt is M = {1, 2, ..., I}. Let Q = (qi,j)I×I be the given generator

matrix of αt. From [33] the entries qi,j satisfy:

qi,j ≤ 0, if i 6= j; qi,i = −
∑
j 6=i

qi,j , 1 ≤ i ≤ I. (1)

Under the risk-neutral measure, see Elliot et al. [15] for details, the stochastic

process for the underlying asset St is25

dSt
St

= rαt
dt+ σαt

dB̃t, t ≤ 0, (2)

where σαt is the volatility of the asset St and rαt is the risk-free interest rate.

Here we consider the American put option on the asset St = S with strike

price E and maturity T < ∞. Let Vi(S, τ) denote the option price functions,

where τ = T − t denotes the time to maturity, the asset price S and the regime
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αt = i. Then, Vi(S.τ), 1 ≤ i ≤ I, satisfy the following free boundary problem:30

∂Vi
∂τ

=
σ2
i

2
S2 ∂

2Vi
∂S2

+riS
∂Vi
∂S
−riVi+

∑
l 6=i

qil(Vl−Vi), S > S∗i (τ), 0 < τ ≤ T, (3)

where S∗i (τ) denote optimal stopping boundaries of the option. Initial conditions

are

Vi(S, 0) = max(E − S, 0), S∗i (0) = E, i = 1, ..., I. (4)

Boundary conditions for i = 1, .., I are as follows

lim
S→∞

Vi(S, τ) = 0, (5)

Vi(S
∗
i (τ), τ) = E − S∗i (τ), (6)

∂Vi
∂S

(S∗i (τ), τ) = −1. (7)

Several different numerical methods for solving problem (3) have been pro-

posed. Lattice methods [19, 26] are popular for practitioners because they are

easy to implement, but they have the drawback of the absence of numerical

analysis and subsequent unreliability, because the lack of numerical analysis35

may waste the best model. The penalty method [18, 22, 23, 34] uses a coupling

of the penalty term and the regime coupling terms. Both, the lattice and penalty

methods do not calculate the optimal stopping boundary that has interest from

the practitioners point of view.

The challenging task of the free boundary as another unknown into the PDE40

problem is not new in the literature. In fact, since Landau’s ideas [25] the so-

called front-fixing method has been used in many fields [13] and by [1, 10, 11,

24, 30] for American option problems without switching.

In this paper we address the numerical solution of the coupled PDE system

(3). Firstly, in section 2 by extending the ideas developed in [10], the PDE45

system (3) is transformed into a new PDE system on a fixed domain where the

free boundaries S∗i (τ), 1 ≤ i ≤ I, are incorporated as new unknowns of the

system. This allows the computation not only of the prices, but also of all the

optimal exercise prices.
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In spite of the apparent complexity of the transformed problem due to the50

appearance of new spatial variables , one for each equation, the explicit numeri-

cal scheme constructed in section 3 becomes easy to implement, computationally

cheap and accurate when one compares with the more relevant existing meth-

ods. Implicit weighted schemes have been developed in this section for the sake

of performance comparison.55

Stability and consistency of the numerical method are treated in section 4.

Numerical results are illustrated in section 5. Paper concludes with a conclusion

section 6.

2. Multivariable Fixed Domain Transformation

Fixed domain transformation techniques inspired in Landau ideas [25] have60

been used by several authors ([32], [30], [27], [10]) for partial differential equa-

tions modelling American option pricing problems. To our knowledge this trans-

formation technique has not been applied before for a partial differential system

with several unknown free boundaries, one for each equation.

Based on the transformation used by the authors in [32], [10] for the case of65

just one equation, let us consider the multivariable transformation

xi = ln
S

S∗i (τ)
, 1 ≤ i ≤ I. (8)

Note that the new variables xi lie in the fixed positive real line. Price Vi of

i-th regime involved in i-th equation of the system and i-th free boundary are

related by the dimensionless transformation

Pi(x
i, τ) =

Vi(S, τ)

E
, Xi(τ) =

S∗i (τ)

E
, 1 ≤ i ≤ I. (9)

Value of option l-th regime appearing in i-th coupled equation, l 6= i, be-

comes

Pl,i(x
i, τ) =

Vl(S, τ)

E
. (10)
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Since from (9), Vl(S,τ)
E = Pl(x

l, τ) and taking into account transformation

(8) for indexes i and l one gets that

Pl,i(x
i, τ) = Pl(x

l, τ), (11)

and it occurs when the variables are related by the equation

xl = xi + ln
Xi(τ)

Xl(τ)
, 1 ≤ i, l ≤ I. (12)

From (8) - (11) the problem (3) - (7) for 1 ≤ i ≤ I takes a new form:70

∂Pi
∂τ

(xi, τ) =
σ2
i

2

∂2Pi
∂(xi)2

(xi, τ) +

(
ri −

σ2
i

2
+
X ′i(τ)

Xi(τ)

)
∂Pi
∂xi

(xi, τ)

−riPi(xi, τ) +
∑
l 6=i

qil(Pl,i(x
i, τ)− Pi(xi, τ)) = 0, xi > 0, 0 < τ ≤ T,

(13)

with initial and boundary conditions

Pi(x
i, 0) = max(1− ex

i

, 0) = 0, (14)

Xi(0) = 1, (15)

Pi(0, τ) = 1−Xi(τ), (16)

∂Pi
∂xi

(0, τ) = −Xi(τ), (17)

lim
xi→∞

Pi(x
i, τ) = 0. (18)

Note that from equation (12) xl could be negative if Xl(τ) > Xi(τ) and this

means that due to the equation (8) S < S∗l (τ), and in this case the value of the

option at l-th regime agrees with the payoff, i.e.

Pl,i(x
i, τ) = Pl(x

l, τ) = 1−Xl(τ)ex
l

, xl ≤ 0. (19)

3. Discretization and numerical schemes construction75

Dealing with numerical solutions of the transformed problem (13) - (18) a

bounded numerical domain must be defined.
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A numerical solution has to be found on infinite domain [0;∞)× [0;T ] for all

regimes. In accordance with [21], [31] the domain in original variable S can be

truncated about three or four times the exercise price. It is sufficient to take the80

numerical domain for the transformed problem (13)-(18) as [0;xmax], xmax = 3.

The computational domain is covered by an uniform grid with common step

sizes h = xmax

M and k = T
N . Nodes of the grid are denoted as follows

xj = jh, 0 ≤ j ≤M ; τn = nk, 0 ≤ n ≤ N. (20)

Let us denote uni,j ≈ Pi(xj , τ
n) the approximation of Pi in i-th equation at

mesh point (xi = xj , τ = τn) and ũnli,j ≈ Pl,i(xj , τ
n) be the approximation of Pl

in i-th equation evaluated at the point (xi = xj , τ = τn). The discretization of

the transformed optimal stopping boundary is denoted by Xn
i ≈ Xi(τ

n). Then

an explicit finite difference scheme can be written in the form

un+1
i,j − uni,j

k
=
σ2
i

2

uni,j+1 − 2uni,j + uni,j−1
h2

+(
ri −

σ2
i

2
+
Xn+1
i −Xn

i

kXn
i

)
uni,j+1 − uni,j−1

2h
−

riu
n
i,j +

∑
l 6=i

qil(ũ
n
li,j − u

n
i,j),

(21)

where

ũnli,j ≈ Pl,i(xj , τ
n) = Pl

(
xj + ln

Xn
i

Xn
l

, τn
)
, (22)

are obtained by linear interpolation of values unl,j at the point xj +ln
Xn

i

Xn
l

known

from the previous time level n,85

ũnli,j =


1−Xn

i e
xj , xj < − ln

Xn
i

Xn
l

;

αnl,ju
n
l,j0

+ βnl,ju
n
l,j0+1, − ln

Xn
i

Xn
l
≤ xj ≤ xmax − ln

Xn
i

Xn
l

;

0, xj > xmax − ln
Xn

i

Xn
l
.

(23)

Note that in the first situation of (23), xj < ln
Xn

i

Xn
l

, means that in the original

variables S < S∗l (τn) where the option price is payoff value. In the second case
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we use the linear interpolation where the positive coefficients are given by

αnl,j =
h(j0 + 1)− hj − ln

Xn
i

Xn
l

h
, βnl,j =

hj + ln
Xn

i

Xn
l
− hj0

h
. (24)

where j0 = j0(i, l, j), is the biggest integer number such that

hj0 ≤ hj + ln
Xn
i

Xn
l

< h(j0 + 1), (25)

Finally, in the last case we assign to ũnli,j = 0 due to condition (18).

From the properties of the model for any regime i one gets∑
l 6=i

qil = −qii, qii < 0, (26)

and denoting constants90

ai =
σ2
i

2

k

h2
−
(
ri −

σ2
i

2

)
k

2h
, (27)

bi = 1− σ2
i

k

h2
− (ri − qii)k, (28)

ci =
σ2
i

2

k

h2
+

(
ri −

σ2
i

2

)
k

2h
, (29)

the scheme (21) can be presented for j = 1, ..,M − 1, i = 1, .., I, n = 0, .., N − 1

as follows

un+1
i,j = aiu

n
i,j−1+biu

n
i,j+ciu

n
i,j+1+

Xn+1
i −Xn

i

2hXn
i

(
uni,j+1 − uni,j−1

)
+k

∑
l 6=i

qilũ
n
li,j .

(30)

From the boundary conditions (16), (18) we have

un+1
i,0 = 1−Xn+1

i , un+1
M = 0. (31)

Boundary condition (17) can be discretized by using the second order one-

side-difference approximation :

−3un+1
i,0 + 4un+1

i,1 − u
n+1
i,2

2h
+Xn+1

i = 0. (32)

Since number of unknowns M + 2 is equal to the number of the equations

of the system of (30), (31) and (32), it is closed and can be solved.95
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Thus, the unknown optimal stopping boundary can be derived from (30),

(31) and (32):

Xn+1
i =

ξni
ηni
, (33)

where

ξni = 3− 4aiu
n
i,0 − (4bi − ai)uni,1 − (4ci − bi)uni,2 + ciu

n
i,3

+
4(uni,2 − uni,0)− (uni,3 − uni,1)

2h
− k (4Σ1 − Σ2) , (34)

ηni = 3 + 2h+
4(uni,2 − uni,0)− (uni,3 − uni,1)

2hXn
i

, (35)

and Σj =
∑
l 6=i qilũ

n
li,j

.

In order to compare the performance of the proposed explicit difference

scheme (21) and for the sake of comparison we also introduce a modification of

the well known θ-family of implicit finite difference schemes, so-called weighted

average approximation [28], but making explicit in the coupled regimes term to

save computational cost. Thus, for each fixed regime i = 1, .., I equation (13) is

discretized with previous notation as follows:

un+1
i,j − uni,j

k
=
σ2
i

2

[
θ
un+1
i,j+1 − 2un+1

i,j + un+1
i,j−1

h2
+ (1− θ)

uni,j+1 − 2uni,j + uni,j−1
h2

]
+

(
ri −

σ2
i

2
+
Xn+1
i −Xn

i

kXn
i

)[
θ
un+1
i,j+1 − u

n+1
i,j−1

2h
+ (1− θ)

uni,j+1 − uni,j−1
2h

]
−

(ri − qi,i)
[
θun+1

i,j + (1− θ)uni,j
]

+
∑
l 6=i

qilũ
n
li,j , j = 1, ..,M − 1, n = 0, .., N − 1,

(36)

where θ ∈ [0, 1] is the weight parameter.100

The boundary conditions are taken in the form (31)-(32). As implicit method

is employed for the numerical solution, the optimal stopping boundary is fully

involved in the system, but has not an isolated expression like (33)-(35). The

closed system of M + 2 equations (31)-(32) and (36) is solved by using the well

know iterative Newton’s method for every regime i = 1, .., I.105
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Since the system is solved for a fixed regime, let us skip out the index of

regime i and introduce the unknown vector Un

Un =
(
Xn, un0 , un1 , . . . , unM−1

)T
. (37)

For the sake of simplicity the value unM = 0, n = 0, .., N is excluded of the

system. Thus, the system takes the following vector form

An+1Un+1 = Bn, (38)

where the matrix of coefficients An+1 and vector Bn are given by110

An+1 =



1 1 0 0 0 0 . . . 0 0

−2h 3 −4 1 0 0 . . . 0 0

0 an+1
1 an+1

2 an+1
3 0 0 . . . 0 0

0 0 an+1
1 an+1

2 an+1
3 0 . . . 0 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 0 0 0 0 0 . . . an+1
1 an+1

2


, (39)

Bn =



1

0

bn+1
1 un0 + bn+1

2 un1 + b3u
n
2 + k

∑
l 6=i qilũ

n
li,1

...

bn+1
1 unM−2 + bn+1

2 unM−1 + k
∑
l 6=i qilũ

n
li,M−1


. (40)

Coefficients an+1
j and bn+1

j , j = 1, 2, 3 are derived from the scheme (36) as

follows

9



an+1
1 = −σ

2

2
θ
k

h2
+

(
r − σ2

2
+
Xn+1 −Xn

kXn

)
θ
k

2h
, (41)

an+1
2 = 1 + (r − qi,i)θk + σ2θ

k

h2
, (42)

an+1
3 = −σ

2

2
θ
k

h2
−
(
r − σ2

2
+
Xn+1 −Xn

kXn

)
θ
k

2h
, (43)

bn+1
1 =

σ2

2
(1− θ) k

h2
−
(
r − σ2

2
+
Xn+1 −Xn

kXn

)
(1− θ) k

2h
, (44)

bn+1
2 = 1− (r − qi,i)(1− θ)k + σ2(1− θ) k

h2
, (45)

bn+1
3 =

σ2

2
(1− θ) k

h2
+

(
r − σ2

2
+
Xn+1 −Xn

kXn

)
(1− θ) k

2h
. (46)

Let us write the j-th step of the Newton iteration process as

Gj = An+1
j Un+1

j −Bnj = 0. (47)

The solution Un is taken as initial guess Un+1
0 and the next iteration Un+1

j+1

for known Un+1
j is calculated by

Un+1
j+1 = Un+1

j − (J(Gj))
−1Gj . (48)

Because of the dependence of the entries of matrix An+1
j on the stopping bound-

ary Xn+1
j , Jacobian of the system (47) J(Gj) can be expressed by115

J(Gj) = An+1
j + Y Jn+1

X . (49)

Here Y is the sparse matrix

Y =



0 0 . . . 0

0 0 . . . 0

1 0 . . . 0
...

... . . .
...

1 0 . . . 0


, (50)
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Jn+1
X =

1

2hXn




0 −1 0 . . . 0 0

1 0 −1 . . . 0 0

. . .
. . .

. . .
. . . 0 −1

0 0 0 . . . 1 0


[
θŨn+1

j + (1− θ)Ũn
]
+

1

2hXn

[
θũn+1

0 + (1− θ)un0
]


1

0
...

0

 ,

(51)

where the vector of the solution at interior points, i.e. with spatial indexes

1, ..,M − 1 is denoted by Ũn+1
j , Ũn = [un1 , ..., u

n
M−1] and the j-th iteration of

the solution at the point (0, τn+1) by ũn+1
0 .

As usual, the stopping criteria is that norm of vector ∆Un+1 = Un+1
j+1 −U

n+1
j

is smaller than chosen tolerance ε.120

4. Numerical Analysis

4.1. Stability analysis

In this section we study the stability of the proposed explicit scheme follow-

ing von Neumann analysis approach originally applied to schemes with constant

coefficients. However, such approach can be used also for the variable coefficients125

case by freezing at each level (see [29], p. 59, [14], [16]).

In order to avoid notational misunderstanding among the imaginary unit

with the regime index i used in previous section, here we denote the regime

index by R.

An initial error vector for every regime g0R, R = 1, .., I is expressed as a finite130

complex Fourier series, so that at xj the solution uni,j can be rewritten as follows

unR,j = gnRe
ijθ, j = 1, ..,M − 1, R = 1, .., I, (52)

11



where i = (−1)1/2 is the imaginary unit and θ is phase angle. Then the scheme

is stable if for every regime R = 1, .., I the amplification factor GR =
gn+1
R

gnR

satisfies the relation

|GR| ≤ 1 +Kk = 1 +O(k), (53)

where the positive number K is independent of h, k and θ, see [28], p. 68, [29],

p. 50.

For the sake of simplicity of the notation the index of the regime R is skipped

in the unknowns, the coefficients and the parameters, supposing that the cal-135

culations are done for every regime. Using boundary conditions (32) and (52),

one gets

Xn =
gn+1

(
3− 4eiθ + e2iθ

)
2h

, (54)

and consequently
Xn+1 −Xn

Xn
= G− 1. (55)

Then the numerical scheme (30) takes the following form

gn+1eijθ = agnei(j−1)θ + bgneijθ + cgnei(j+1)θ

+

(
gn+1

gn
− 1

)
gn

2h

(
ei(j+1)θ − ei(j−1)θ

)
(56)

+k
∑
l 6=R

qR,lg
n
l

(
αnl,je

ij0θ + βnl,je
i(j0+1)θ

)
.

Let us denote

z =
∑
l 6=R

qR,l
gnl
gn

(
αnl,je

i(j0−j)θ + βnl,je
i(j0+1−j)θ

)
, (57)

then dividing both parts of (56) by gneijθ, and taking into account (55), one

gets

G = ae−iθ + b+ ceiθ +
i sin θ

h
(G− 1) + kz. (58)

According to properties of the linear interpolation, αnl,j +βnl,j = 1 (see (24)),

and (57) can be bounded by140

|z| ≤
∑
l 6=R

qR,l

∣∣∣∣gnlgn
∣∣∣∣ ≤ max

l 6=R

∣∣∣∣gnlgn
∣∣∣∣ |qR,R| = ∣∣∣∣gnl0(n)gn

∣∣∣∣ |qR,R| = C(n), (59)

12



where C(n) is independent of θ, h and k and depends only on the frozen index

n. From (58), (59) and (27)-(29) it follows that

|G|
∣∣∣∣1− i sin θ

h

∣∣∣∣ ≤ |A(k, h, θ)|+ C(n)k, (60)

where

|A(k, h, θ)|2 =

(
1− 2

σ2k sin2 θ
2

h2
− (r − q)k

)2

+

sin2 θ

h2

((
r − σ2

2

)2

k2 − 2k

(
r − σ2

2

)
+ 1

)
. (61)

Thus, in agreement with (53) the scheme is stable, if

|A(k, h, θ)|2 ≤ 1 +
sin2 θ

h2
. (62)

It is easy to check that (62) holds true, if
σ2k

(
(r − q)− σ2

h2

)
− σ2 ≤ 0,((

r − σ2

2

)2
+ (r − q)σ2

)
k − 2r ≤ 0.

(63)

(63) occurs when

k ≤ min

(
h2

σ2 + (r − q)h2
,

2r(
r − σ2

2

)2
+ (r − q)σ2

)
. (64)

Summarizing the following result can be established:

Theorem 4.1. With previous notation the scheme (30) is conditionally stable

under the constraint

k ≤ min
1≤R≤I

 h2

σ2
R + (rR − qR,R)h2

,
2rR(

rR −
σ2
R

2

)2
+ (rR − qR,R)σ2

R

 . (65)

4.2. Local truncation error and consistency

For the sake of clarity of the presentation and in accordance with [28], p.145

40 we recall the definition of consistency of the scheme (21) with the equation

(13).

13



Let P = {P1, ..., PI} and X = {X1, ..., XI} be the sets of values of price and

optimal stopping boundaries of all the regimes respectively. Let us denote the

numerical solution of the scheme (21) by u =
{
uni,j
}

. Moreover, the PDE (13)150

can be written in the form Li(X,P ) = 0.

Definition 4.1. With the previous notation let us write the difference equation

(21) at the mesh point (xj , τ
n) for i-th regime in the form Fni,j(X,u) = 0 and

the discretization of boundary conditions (32) as fni (X,u) = 0. If (X,u) is

replaced by exact solution (X∗, P ) at the mesh points of the difference equation155

then the values of Fni,j(X
∗, P )− Li(X∗, P ) and fni (X∗, P )− ∂Pi

∂xi (0, τ)−X∗i (τ)

are called the local truncation error at the mesh point (xj , τ
n) for i-th regime for

the equation (13) and boundary condition (17) respectively. If both Fni,j(X
∗, P )

and fni (X∗, P ) tend to zero as the step sizes h and k tend to zero the difference

system (21), (32) is said to be consistent with the problem (13), (17).160

Theorem 4.2. Assuming that the solution of the PDE problem (13)-(18) admits

two times continuous partial derivative with respect to time and up to order four

with respect to space, the numerical solution computed by the scheme (21) with

(32) is consistent with the equation (13) and boundary condition (17) of the

second order in space and the first order in time.165

Under hypothesis of the theorem using Taylor’s expansion about (xj , τ
n) the

local truncation error takes form

Fni,j(X
∗, P )− Li(X∗, P ) = kEni,j(3)− σ2

2
h2Eni,j(2) +

(
ri −

σ2
i

2

)
h2Eni,j(1)

−kEnj (4)
∂Pi
∂x

(xj , τ
n)− h2

X̂n
i

Eni,j(1)
dXi

dτ
(τn) (66)

−kh2Eni,j(4)Enj (1)−
∑
l 6=i

qilE
n
l,j(5),

14



where

Eni,j(1) = 1
6
∂3Pi

∂x3 (ξ1, τ
n), xj−1 < ξ1 < xj+1, (67)

Eni,j(2) = 1
12
∂4Pi

∂x4 (ξ2, τ
n), xj−1 < ξ2 < xj+1, (68)

Eni,j(3) = 1
2
∂2Pi

∂τ2 (xj , η3), τn < η3 < τn+1, (69)

Eni,j(4) = 1
2X̂i

d2Xi

dτ2 (η4), τn < η4 < τn+1, (70)

Enl,j(5) = ũnl,j − Pl,i(xj , τn), l 6= i. (71)

Taking into account that the error of linear interpolation is O(h2) (see [12],

p. 53) and (66)-(71), the local truncation error is O(k) +O(h2).170

Since for discretization of boundary condition (17) the one-side difference of

the second order (32) is used, it is easy to check using Taylor’s expansion that

the local truncation error of boundary conditions is the second order in space.

This fact completes the proof.

5. Numerical Examples175

In this section numerical results are presented to show the properties of the

proposed method as well as comparison with other known approaches. In exam-

ple 1 the stability condition (65) cannot be removed and numerical solution is

compared with results of well recognized penalty and lattice methods presented

in [23]. The implementation of the schemes has been done by using MatLAB180

R2015a on processor Pentium(R) Dual-Core CPU E5700 3.00 GHz.

5.1. Example 1.

Let us consider an American Put option in 2-regime switching model with

the parameters (see Example 1 in [23]):

r =

(
r1
r2

)
=

(
0.1

0.05

)
, σ =

(
σ1
σ2

)
=

(
0.8

0.3

)
, Q =

 −6 6

9 −9

 , T = 1, E = 9.

(72)

Taking h = 10−2 and k = 10−4 stability constraints (65) are fulfilled and

the option prices for both regimes and payoff function are presented on the
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Figure 1: American put option price curves at τ = T and its payoff.

.

Fig. 1 while the optimal stopping boundary is shown in Fig. 2. However,185

when h = 10−2, k = 1.6 · 10−4 stability condition is broken and Fig. 3 reveals

undesired unstable solution.

In order to compare the solution with penalty and lattice methods described

in [23], Table 1 contains option prices for different values of asset price S com-

puted by: our proposed front-fixing explicit method (FF-expl), the exponential190

time differencing Crank-Nicolson scheme (ETD-CN) and the binomial tree ap-

proach developed by Liu in [26] (Tree). This binomial tree model has the good

property that tree only grows linearly as the number of time steps increases

allowing the use of large number of time steps to compute accurately prices of

options. This binomial tree model has been used as an option pricing refer-195

ence value by other relevant authors, and in particular by Khaliq et al. for the

regime switching model in [23]. Table 1 shows that our results are close to both

methods especially to the binomial model of [26].

Efficiency of explicit scheme in comparison with implicit theta methods is

demonstrated in Table 2. The option price at the point S = E for the data (72)200

and CPU time of the methods are presented. The Newton’s algorithm runs I

16



0 0.2 0.4 0.6 0.8 1
3

4

5

6

7

8

9

Time to maturity

O
pt

im
al

 s
to

pp
in

g 
bo

un
da

ry

 

 
Regime 1
Regime 2

Figure 2: Optimal stopping boundary for

regime 1 and regime 2 (stability condition is

fulfilled).

Figure 3: Optimal stopping boundary for

regime 1 and regime 2 (stability condition is

broken).

Regime 1 Regime 2

S FF-expl ETD-CN Tree FF-expl ETD-CN Tree

9.0 1.9713 1.9756 1.9722 1.8817 1.8859 1.8819

9.5 1.8049 1.8089 1.8058 1.7141 1.7181 1.7143

10.5 1.5177 1.5213 1.5186 1.4265 1.4301 1.4267

12.0 1.1796 1.1825 1.1803 1.0915 1.0945 1.0916

Table 1: Comparison of American put option prices in a two-regime model.

times at every time step. Therefore computational cost of implicit method is

higher even if the time step k is greater. Note that the results of Crank-Nicolson

method are close to the results of penalty ETD-CN method from the Table 1.

Next example deals with numerical convergence rate of the scheme and the205

computational cost. Efficiency comparison with well reputed methods such as

a fitted finite volume method based on penalty approach developed in [34] and

an iterated optimal stopping as well as a local policy iteration methods in [2].

17



h = 10−1, k = 10−2 h = 10−2, kexpl = 10−4, kimpl = 10−2

Method Regime 1 Regime 2 CPU time, sec. Regime 1 Regime 2 CPU time, sec.

Explicit 1.9543 1.8636 0.1248 1.9713 1.8818 4.9140

Crank-Nicolson 1.9756 1.8863 0.1248 1.9720 1.8824 49.2004

Fully implicit 1.9956 1.9073 0.1092 1.9712 1.8817 34.8817

Table 2: Comparison of explicit and implicit methods. Time step of explicit and implicit

methods are denoted correspondingly by kexpl and kimpl.

5.2. Example 2: Convergence rate and efficiency

Convergence rate is studied numerically in terms of root mean square error

(RMSE). The RMSE for every regime is computed by the following formula:

RMSEh =

√∑
(u∗(xi, T )− uh(xi, T ))2

M
, (73)

where uh(xj , T ) is calculated value in the point (xj , τ
N ) by the proposed scheme.210

In accordance with [23] the reference value u∗(xj , T ) is chosen to be the solution

by the binomial tree method of Liu with 1000 steps.

For the sake of simplicity the two-regime model with parameters (72) is

considered. The analogous technique can be used for any I-regime model.

In order to compute convergence rate in space approximate solutions are

calculated for different step sizes h using a fixed time step k. Convergence rate

can be found by using the following formula

γ(h1, h2) =
lnRMSEh1 − lnRMSEh2

lnh1 − lnh2
. (74)

In Table 3 the results are presented. Time step k is chosen to guarantee sta-215

bility for all tested space steps h. The convergence rate in space γh is calculated

as the mean value of all combinations of h1 and h2:

γh = 1.86. (75)

Analogous procedure is done for fixed h = 10−2 and various space steps

k. The results are collected in the Table 4. Computational time is linearly

18



h 0.08 0.04 0.02 0.01

Regime 1 2.664e-2 5.601e-3 1.489e-3 8.669e-4

Regime 2 3.216e-2 8.729e-3 1.955e-3 1.742e-4

Average 2.939e-2 7.165e-3 1722e-3 5.206e-4

CPU time, sec. 1.2948 1.4976 1.7472 2.5584

Table 3: RMSE and computational time for fixed k = 10−4 and various h.

k 10−4 5 · 10−5 2.5 · 10−5 1.25 · 10−5

Regime 1 8.669e-4 4.163e-4 2.168e-4 1.234e-4

Regime 2 1.742e-4 1.009e-4 2.885e-5 7.973e-6

Average 5.206e-4 2.586e-4 1.228e-4 6.569e-5

CPU time, sec. 2.5584 4.5708 8.9389 17.9870

Table 4: RMSE and computational time for fixed h = 10−2 and various k.

increasing with growth of the number of time levels. The average RMSE is220

proportional to the time step. Using the formula (74) in terms of time steps and

taking the mean value of all combinations, one gets the following convergence

rate in time:

γk = 1.15. (76)

Numerical results and CPU time for two-regime model with the parameters

(72) computed by a fully implicit fitted finite volume (IFV) method based on225

penalty approach are available in [34]. Table 5 shows the error of both front-

fixing (FF) and IFV methods for both regimes on different meshes with respect

to the binomial tree method in Table 1 of [22] as well as computational time.

This fact proves the efficiency of the proposed method.

Recently authors in [2] compare iterated optimal stopping (IOS) and local230
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IFV, 1601× 1281 FF, 300× 4 · 104

Error (regime 1) 2.00e-4 2.94e-4

Error (regime 2) 6.00e-4 4.89e-5

CPU-time, sec. 34.96 8.94

Table 5: Comparison of the efficiency of the IFV and proposed method (FF).

µ Value CPU-time, sec.

1.56 1.1743801593 2.23

0.6 1.1748081977 3.88

0.5 1.1748742268 4.69

0.46 1.1748890632 4.94

Table 6: Option values at S = 10.0 in Regime 1 for various mesh ratios µ = k
h2 and spatial

step h = 10−2.

policy iteration (LPI) methods for regime-switching model with the parameters:

r =

(
0.05

0.05

)
, σ =

(
0.3

0.4

)
, Q =

 −3 3

2 −2

 , T = 1, E = 10. (77)

Numerical solutions provided by both IOS and LPI methods for data (77)

are presented in [2] showing that prices grow as the step sizes are refined. For

the highest refinement the values are as follows

IOS: 1.174888119,

LPI: 1.174888084.
(78)

Table 6 reveals the oncoming of our results to the values (78) as time step

decreases and space step is fixed including CPU-time.

As the study of the Greeks is an important issue in option pricing because

they show relevant properties of the price (see in [20], chapter 14), in Fig. 4 and235

5 we focus in particular on two of the most used ones. The Delta and Gamma

20



of the option are presented at holding region for both regimes of option with

parameters (77) showing similar behaviour of Greeks as in [34].
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Figure 4: Delta of option with parameters (77)

for both regimes.
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Figure 5: Gamma of option with parameters

(77) for both regimes.

In the last example we apply the proposed method to the four-regime case.

Numerical option values and optimal stopping boundaries are presented as well240

as comparison with efficient recent results given in [23].

5.3. Example 3.

The four-regime option is considered. The model parameters are chosen as

r =


0.02

0.10

0.06

0.15

 , σ =


0.9

0.5

0.7

0.2

 , Q =


−1 1

3
1
3

1
3

1
3 −1 1

3
1
3

1
3

1
3 −1 1

3

1
3

1
3

1
3 −1

 , T = 1, E = 9.

(79)

The numerical domain is truncated at the point xmax = 3, step sizes are

as in Example 1, h = 10−2, k = 10−4. The option price for every regime and

optimal stopping boundaries are presented on the Figures 6 and 7.245

Comparison with penalty method [23] and tree method is presented in Table

7 by computing the numerical solution at several values of asset price S. It is

shown how close the results are.
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Figure 6: American put option price curves at τ = T for four regime model and its payoff.
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Figure 7: Optimal stopping boundary for four regime American put option with parameters

(79).
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Regime Method S = 7.5 S = 9.0 S = 10.5 S = 12.0

1 FF-expl 3.1421 2.5563 2.1047 1.7524

ETD-CN 3.1513 2.5641 2.1113 1.7578

Tree 3.1433 2.5576 2.1064 1.7545

2 FF-expl 2.2313 1.5827 1.1406 0.8368

ETD-CN 2.2384 1.5884 1.1451 0.8404

Tree 2.2319 1.5834 1.1417 0.8377

3 FF-expl 2.6739 2.0559 1.6004 1.2614

ETD-CN 2.6813 2.0623 1.6057 1.2658

Tree 2.6746 2.0568 1.6014 1.2625

4 FF-expl 1.6573 0.9850 0.6546 0.4700

ETD-CN 1.6664 0.9903 0.6580 0.4725

Tree 1.6574 0.9855 0.6553 0.4708

Table 7: Comparison of American put option prices in a four-regime model

6. Conclusions

A new efficient numerical method for solving a class of complex PDE systems250

with a free boundary arising in the American option pricing problem under

regime-switching models is developed.

The method is based on multivariable front-fixing transformation. This ap-

proach allows to calculate the optimal exercise boundary as a part of the solution

that to our knowledge is the first time that occurs for regime switching. The255

explicit finite difference scheme that is quick and accurate is used for the nu-

merical solution. Numerical analysis is provided to study qualitative properties

of the method. Von Neuman stability analysis shows that the scheme is condi-

tionally stable with the conditions (65). It is consistent with the PDE with the

second order in space and the first order in time. Convergence rate is calculated260

numerically and confirms the theoretical result.

Apart from the proposed explicit difference scheme, implicit weighted schemes

family has been developed showing that these schemes do not improve the CPU

23



time of explicit one for a similar level of accuracy. This behaviour is not sur-

prising and it was anticipated in the introduction of [9].265

Numerical tests illustrate efficiency of the proposed method. It is compared

with the best published methods based on LCP formulation of the problem.

Acknowledgements

This work has been partially supported by the European Union in the FP7-

PEOPLE-2012-ITN program under Grant Agreement Number 304617 (FP7270

Marie Curie Action, Project Multi-ITN STRIKE-Novel Methods in Compu-

tational Finance) and the Ministerio de Economı́a y Competitividad Spanish

grant MTM2013-41765-P.

References

[1] J. Ankudinova, M. Ehrhardt, On the numerical solution of nonlinear Black-275

Scholes equations, Computers and Mathematics with Applications 56 (2008)

799–812.

[2] J. Babbin, P. A. Forsyth, G. Labahn, A comparison of iterated optimal stop-

ping and local policy iteration for American options under regime switching,

J Sci Comput 58(2014) 409–430.280

[3] M. Bierbrauer, S. Truck, R. Weron, Modeling electricity prices with regime

switching models. Computational ScienceICCS 2004, vol. 3039 of Lecture

Notes in Computer Science, (2004) 859–867.

[4] F. Black, M. Scholes, The pricing of options and corporate liabilities, Journal

of Political Economy 81(1973) 637–654.285
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[30] D. Ševčovič, An Iterative Algorithm for Evaluating Approximations to

the Optimal Exercise Boundary for a nonlinear Black-Scholes Equation. J.

Canadian Applied Mathematics Quarterly, 15(1) (2007) 77–97.

[31] J. Toivanen, Finite Difference Methods for Early Exercise Options, Ency-350

clopedia of Quantitative Finance (2010).

[32] L. Wu, Y.-K. Kwok, A Front-Fixing method for the Valuation of American

Option.The Journal of Financial Engineering, 6(2) (1997) 83–97.

[33] G.Yin and Q. Zhang, Continuous-time Markov chains and applications: a

singular perturbation approach, Springer, 1998.355

[34] K. Zhang, K. L. Teo, M. Swartz, A Robust Numerical Scheme For Pric-

ing American Options Under Regime Switching Based On Penalty Method.

Computational Economics, 43(4) (2014) 463–483.

[35] Q. Zhang, X.Y. Zhou, Valuation of stock loans with regime switching, SIAM

Journal on Control and Optimization, 48(2009) 1229–1250.360

27


