

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS INDUSTRIALES

MÁSTER OFICIAL EN DIRECCIÓN Y GESTIÓN DE PROYECTOS

TESINA FIN DE MÁSTER

DESARROLLO DE UNA METODOLOGÍA SIMPLIFICADA PARA LA GESTIÓN DE PROYECTOS DE I+D+I EN UN CENTRO TECNOLÓGICO, BASADA EN LA ISO 21500 Y LAS NORMAS UNE DE GESTIÓN DE PROYECTOS DE I+D+I

Autora: Lorena Jiménez Chillarón

Tutor: Salvador Capuz Rizo

Fecha: abril 2017

Curso académico: 2016-2017

ÍNDICE

1. Ir	ntroducción, objetivos, justificación y antecedentes del trabajo	8
1.1.	Introducción	8
1.2.	Objetivos	10
1.3.	Justificación	11
1.4.	Antecedentes	12
1.1.	Estructura del documento	14
1.1.1.	Introducción, objetivos, justificación y antecedentes	14
1.1.2.	Estado del arte	14
1.1.3.	La innovación en la empresa	14
1.1.4.	Los proyectos del Instituto Tecnológico de la Energía	14
1.1.5.	Desarrollo de un sistema de gestión de proyectos para el ITE	15
1.1.6.	Caso de estudio, aplicación para un proyecto concreto	15
1.1.7.	Análisis de viabilidad de la certificación del sistema	15
1.1.8.	Conclusiones	15
1.1.9.	Bibliografía y referencias	15
2. E	stado del Arte de la DP de proyectos de I+D+i	16
2.1.	Estado del Arte	16
2.2.	Familia de Normas de I+D+I UNE 166000	30
2.2.1.	Norma UNE 166000. Definiciones de I+D+i	31
2.2.2.	Norma UNE 166001. Proyectos de I+D+i	32
2.2.3.	Norma UNE 166002. Sistemas de gestión de I+D+i	34
2.2.4.	Norma UNE 166006. Sistemas de vigilancia e inteligencia	37
2.2.5.	Norma UNE 166008. Transferencia de tecnología	41
3. L	a innovación en la empresa y su materialización vía proyectos de I+D+Innovación	45
3.1.	La innovación en la empresa, objetivos, necesidad, definiciones	45
3.1.1.	Definiciones	45
3.1.2.	La innovación en la empresa	46
3.1.3.	Necesidad de investigar. ¿Merece la pena investigar?	48
3.1.4.	Investigar en cooperación	49
3.2.	El espectro de la investigación aplicada	51
3.3.	Los provectos de I+D+i	54

3.3.1.	Tipologías	54
3.3.2.	Estructura	56
3.4.	Características y particularidades de la gestión de proyectos de I+D+i	57
4. Lc	os proyectos de I+D+i desarrollados en el Instituto Tecnológico de la Energía	59
4.1.	Introducción al instituto	59
4.2.	Tipologías de proyectos desarrollados	63
4.3.	Sistema de gestión de proyectos utilizado actualmente	65
	esarrollo de un sistema de gestión de proyectos de I+D+i para el Instituto Tecnológico gía siguiendo la UNE-ISO 21500 y el estándar UNE 166000	
5.1.	Objetivo del desarrollo del sistema	66
5.2.	Estructura del sistema	67
5.3.	Manual del sistema y Procedimientos operativos	68
5.3.1.	Requisitos generales	68
5.3.2.	Requisitos planificación, implementación y seguimiento	69
5.3.2.1	. Realización del Acta de Constitución del Proyecto	69
5.3.2.2	. Elaboración del Plan del proyecto	70
5.3.2.3	. Identificación de riesgos	78
5.3.2.4	. Implementación y seguimiento del proyecto	79
5.3.3.	Requisitos partes interesadas	82
5.3.4.	Requisitos documentación	82
5.3.5.	Requisitos comunicación	83
5.3.6.	Requisitos de protección y explotación de resultados	83
5.4.	Análisis crítico de la implantación de un sistema de gestión de proyectos de I+D+i	85
5.5.	Caso de estudio, aplicación para un proyecto concreto	87
6. Ai	nálisis de viabilidad de la certificación del sistema	93
7. Di	iscusión de Resultados y conclusiones de la tesina	96
8. Bi	bliografía y referencias	98
ANEXC	95	100
MANU	AL DE GESTIÓN DE PROYECTOS DE I+D+i	100
Anexo	1: Acta constitución proyecto (MODELO)	01
Anexo	1: Acta constitución proyecto	103
Anexo	2: Ficha solicitud recursos humanos (MODELO)	105
Anexo	2: Ficha solicitud recursos humanos	L07
Anexo	3: Plan del proyecto (MODELO)	10

Anexo 3: Plan del proyecto	117
Anexo 4: Adquisiciones Contrato (MODELO)	132
Anexo 4: Adquisiciones Contrato	133
Anexo 5: Control costes y plazos (MODELO)	136
Anexo 5: Control costes y plazos	137
Anexo 6: Riesgos (MODELO)	138
Anexo 6: Riesgos	139
Anexo 7: Control de riesgos (MODELO)	142
Anexo 7: Control de riesgos	143
Anexo 8: Control de cambios en el Plan del proyecto (MODELO)	146
Anexo 8: Control de cambios en el Plan del proyecto	147
Anexo 9: Partes interesadas (MODELO)	148
Anexo 9: Partes interesadas	150
Anexo 10: Requisitos comunicación (MODELO)	155
Anexo 10: Requisitos comunicación	157
Anexo 11: Formación interna (MODELO)	162
Anexo 11: Formación interna	163

ÍNDICE FIGURAS

Fig. 1: Evolución del gasto total de I+D en España (Índice 100 = 2002). Fuente: [2]	17						
Fig. 2: Esfuerzo en I+D en España, UE28 y OCDE (gasto como porcentaje del PIB) y difere	encias						
España-UE28 y España-OCDE, 2000-2014. Fuente: [2]	17						
Fig. 3: Distribución de la I+D realizada según fuente de financiación. Fuente: [2]	18						
Fig. 4: Evolución del personal para I+D, España, 2002-2014 (Índice 100=2002). Fuente: [2] Fig. 5: Evolución en España del número de investigadores por sector de ejecución (en EJC) (Índice 100=2002). Fuente: [2]							
						porcentaje (%de presencia) en el total mundial y en la Unión Europea. Fuente: [2]	20
						Fig. 7: Países con mayor producción científica en 2014 y comparación con 2004, en % pr	resencia
						en la producción mundial. Fuente: [2]	21
Fig. 8: Presupuestos públicos de I+D+i, 2002-2015 (millones de euros). Fuente: [2]	21						
Fig. 9: Monitor de la Educación y la Formación. Fuente: [2]	23						
Fig. 10: Índice sintético Cotec de opinión sobre tendencias de evolución del sistema esp	añol de						
innovación. Fuente: [2]	24						
Fig. 11: Conceptos de la dirección y gestión de proyectos y de sus interrelaciones. Fuent	te: [6].						
	25						
Fig. 12: Características proyectos I+D+i. Fuente: Elaboración propia	55						
Fig. 13: Organigrama de ITE. Fuente: Elaboración propia	60						
Fig. 14: Organigrama de Investigadores y Tecnólogos ITE. Fuente: Elaboración propia	61						
Fig. 15: Comités ITE. Fuente: Elaboración propia.	62						
Fig. 16: Requisitos planificación, implementación y seguimiento. Fuente: Elaboración pr	opia. 69						
Fig. 17: Proceso de realización del Acta de Constitución del Proyecto. Fuente: Elaboración	ón						
propia.	70						
Fig. 18: Proceso de redacción del alcance del proyecto. Fuente: Elaboración propia	71						
Fig. 19: Proceso de definición de actividades. Fuente: Elaboración propia	72						
Fig. 20: Proceso de selección de recursos humanos. Fuente: Elaboración propia	73						
Fig. 21: Proceso de adquisiciones. Fuente: Elaboración propia	74						
Fig. 22: Proceso de obtención de presupuesto. Fuente: Elaboración propia	75						
Fig. 23: Proceso de elaboración del cronograma. Fuente: Elaboración propia	76						
Fig. 24: Proceso de realización del Plan de Calidad. Fuente: Elaboración propia	77						
Fig. 25: Proceso de Identificación de riesgos. Fuente: Elaboración propia	78						
Fig. 26: Proceso de Dirección y Control del proyecto. Fuente: Elaboración propia	79						
Fig. 27: Proceso de Control de costes y plazos. Fuente: Elaboración propia	80						
Fig. 28: Proceso de protección y explotación de resultados. Fuente: Elaboración propia.	84						
Fig. 29: Análisis DAFO Sistema de Gestión de Proyectos de I+D+i. Fuente: Elaboración pr	ropia.86						
Fig. 30: Asignación de proyecto por temática. Fuente: Elaboración propia	87						
Fig. 31: Procedimiento de certificación Sistema de Gestión de I+D+i según UNE 166002:	2014.						
Fuente: Elaboración propia	94						
Fig. 32: Secuencia de actividades. Fuente: Elaboración propia	119						
Fig. 33: Estructura de descomposición de riesgos. Fuente: Elaboración propia	141						
Fig. 34: Relación entre stakeholders. Fuente: Elaboración propia	154						
Fig. 35: Diagrama Plan de Comunicaciones. Fuente: Elaboración propia	161						

ÍNDICE TABLAS

Tabla 1: Características de las tres generaciones de I+D. Fuente: Adaptación de [1]	8
Tabla 2: Agrupación de conceptos incluidos en la norma UNE 166000. Fuente: Elaboración	
propia	31
Tabla 3: Presupuesto estimado Obtención Certificado Sistema de Gestión I+D+i. Fuente:	
Elaboración propia	. 95

1. Introducción, objetivos, justificación y antecedentes del trabajo

1.1. Introducción

En el mundo en el que vivimos las empresas están obligadas a innovar si quieren ser competitivas. La innovación es el componente clave que justifica la competitividad.

El concepto de innovación ha sido definido a través del tiempo por múltiples autores: André Piatier, Sherman Gee, Pavón, Goodman, Schumpeter, coincidiendo todas ellas en que la innovación finaliza con la obtención de una posición exitosa en el mercado [1]. Este concepto se amplía en el último Informe Cotec (informe de 2016) entendiendo la innovación como todo cambio (no sólo tecnológico) basado en el conocimiento (no sólo científico) que genera valor (no sólo económico) [2]. En este sentido el papel de la persona y de la sociedad adquieren importancia en el sistema de innovación. Del mismo modo el impacto social de la innovación se ve destacado y la educación y la financiación de la empresa innovadora se convierten en dos temas clave en cualquier proceso innovador.

La innovación está correlacionada con la inversión en investigación y desarrollo (I+D), es decir, las empresas que quieren estar al frente dedican esfuerzos para disponer de empleados capacitados en la adquisición de conocimientos y desarrollar tecnologías, así como generar una base empresarial que aproveche las fuentes de conocimiento y tecnología para crear productos y procesos que sean aceptados por el mercado y ampliamente difundidos.

Si miramos atrás, entre los años 50 y los años 90, la I+D ha experimentado cambios dramáticos. Se identifican tres etapas o generaciones de I+D, según Roussel, Saad y Erickson (1991) [1].

Primera generación	Segunda generación	Tercera generación
1950-1974	1975-1990	Años 90
Centrada en los inputs de la investigación (lógica del modelo lineal)	Descentralización de la I+D	Estrategia tecnológica integrada en estrategia organizacional
	Estrategias en proyectos de I+D aislados	Mejor coordinación entre departamentos centrales y divisionales
Gestión de la I+D: dirección de los proyectos	Gestión de la I+D: Operativa solo a nivel divisional	Equilibrio entre investigación básica e investigación aplicada

Tabla 1: Características de las tres generaciones de I+D. Fuente: Adaptación de [1].

Como puede observarse en la tabla anterior, la gestión de la I+D ha ido evolucionando. Actualmente, en los países avanzados, se destinan cada vez más recursos y dinero a I+D. Además se busca una transferencia tecnológica en un tiempo relativamente corto de tiempo. Y es aquí donde interviene la disciplina de Dirección y Gestión de proyectos, como herramienta para conseguir todo ello.

Según el Project Management Institute (PMI), la disciplina del Project Management consiste en 'la aplicación de conocimientos, aptitudes, herramientas y técnicas a las actividades del proyecto, encaminados a satisfacer o colmar las necesidades y expectativas de una organización mediante un proyecto' [3]. La International Project Management Association (IPMA) define esta disciplina como 'la planificación, organización, seguimiento y control de todos los aspectos de un proyecto, así como la motivación de todos aquellos implicados en el mismo, para alcanzar los objetivos del proyecto de una forma segura y satisfaciendo las especificaciones definidas de plazo, coste y rendimiento / desempeño. Ello también incluye el conjunto de tareas de liderazgo, organización y dirección técnica del proyecto, necesarias para su correcto desarrollo' [3].

1.2. Objetivos

El objetivo general de esta tesina es el desarrollo de una metodología de gestión de proyectos de I+D+i y la aplicación de la misma a un proyecto de los que se llevan a cabo en el Instituto Tecnológico de la Energía (ITE), al cual pertenece la autora de dicha tesina.

El ITE es un Centro Tecnológico de ámbito internacional creado por iniciativa empresarial e impulsado por la Generalitat Valenciana y por la Universidad Politécnica de Valencia. Orienta sus proyectos y servicios a empresas y organismos públicos pertenecientes al sector energético en sus diferentes ámbitos: Smart Grids, Vehículo Eléctrico, Almacenamiento Energético, Energías Renovables, Green Building, Eficiencia en la Industria, Smart Metering [4].

Se trata de un Centro cuyos ingresos anuales están en torno a los 4 millones de euros, siendo el 49,8% capital público y el 50,2% capital privado.

El número de personas que conforman el Instituto es de 67, de los cuales el 50% son titulados superiores, el 30% titulados medios, el 5% son doctores y el 15% restante otros.

Aunque la tesina se centra en este tipo de proyectos, la metodología a desarrollar es de utilidad para proyectos de cualquier otro sector, por lo que sería de aplicación en otros centros tecnológicos pertenecientes, por ejemplo, al REDIT (Red de Institutos Tecnológicos de la Comunitat Valenciana): Instituto Tecnológico del Textil (AITEX), Instituto Tecnológico de la Informática (ITI), Instituto Tecnológico del Embalaje, Transporte y Logística (ITENE), etc.

Como objetivos particulares se encuentran los siguientes:

- Analizar en detalle la norma UNE-ISO 21500 'Directrices para la dirección y gestión de proyectos' (es idéntica a la Norma Internacional ISO 21500).
- Realizar una revisión detallada de la familia de normas UNE 166000 (UNE 166000 'Terminología y definiciones de las actividades de I+D+i', UNE 166001 'Requisitos de un proyecto de I+D+i', UNE 166002 'Requisitos de un sistema de gestión de I+D+i', UNE 166006 'Sistema de gestión de vigilancia e inteligencia' y UNE 166008 'Transferencia de tecnología').
- Elaborar un manual para la gestión de proyectos de I+D+i basado en las normas anteriormente citadas, el cual sea común para todo tipo de proyectos de I+D+i.
- Aplicar la metodología desarrollada a un caso / proyecto real.
- Analizar la viabilidad de certificar el sistema de gestión de proyectos desarrollado.
- Obtener conclusiones de los puntos anteriores.

1.3. Justificación

Lorena Jiménez Chillarón, Ingeniero Industrial por la Universidad Politécnica de Valencia y habiendo realizado un Máster en Dirección y Gestión de Proyectos ha escogido como tema para su tesina el desarrollo de un sistema de gestión de proyectos de I+D+i. El motivo principal de dicha elección es, por un lado, destacar la importancia de esta disciplina (Dirección y Gestión de Proyectos), la cual es clave para la gestión del desarrollo en cualquier campo y, por otro lado, mejorar la gestión actual de proyectos en el Instituto, estableciendo una metodología estándar aplicable a todos los proyectos y en todos los departamentos. En este último objetivo se contempla el análisis de certificar el sistema. La certificación puede resultar de interés al ITE por el hecho de que las empresas que contratan proyectos al Instituto podrían beneficiarse de ventajas fiscales si los proyectos estuvieran en el marco de la certificación de I+D+i.

El hecho de trabajar proponiendo, gestionando y desarrollando proyectos de I+D+i en el Instituto Tecnológico de la Energía permitirá a la autora poner en práctica los conocimientos adquiridos en el Máster, tanto las técnicas aprendidas como las herramientas de software que han sido manejadas.

1.4. Antecedentes

La Dirección y Gestión de Proyectos como ciencia enfocada al desarrollo con éxito de los mismos, data de los años cincuenta del siglo XX, empujada violentamente por los acontecimientos derivados de la II Guerra Mundial [5]. En España, se empezó a conocer y practicar a finales de los 50 cuando gracias a las grandes empresas americanas de ingeniería se inició el despegue industrial, especialmente en los campos del refino, la industria química, la energía y posteriormente la industria del automóvil y la del gas natural.

La aplicación de los conceptos de la Dirección de Proyectos a los proyectos de I+D+i se ha promovido desde:

- la investigación militar en EEUU

Puede decirse que el hito que marcó el nacimiento de la Dirección de Proyectos fue el inicio del proyecto Manhattan para fabricar la bomba atómica en 1942 [5].

El proyecto Apolo, cuyo concepto y definición fue poner un hombre en la luna, conllevó en 1969 la consolidación de los principios de la Dirección de Proyectos.

y desde los organismos financiadores civiles

En 1969 se crea, en EEUU, el Project Management Institute, PMI.

Un par de años antes, en 1967, se reunieron en Viena un grupo de directores de proyecto bajo el título de INTERNET 67. A partir de esos contactos nació en 1972 el International Management Systems Association, IMSA. Años más tarde cambió su nombre por lo que hoy se conoce como International Project Management Association, IPMA.

En España existe la Asociación Española de Ingeniería de Proyectos, AEIPRO. Activa desde 1992 y miembro del IPMA.

La Dirección y Gestión de Proyectos aunque en sus inicios estuvo vinculada a grandes proyectos espaciales y de defensa, su desarrollo la ha permitido extenderse a muchos otros ámbitos, no solo en todas las especialidades de la ingeniería sino en cualquier área del saber humano que pueda generar un proyecto [5].

La Dirección y Gestión de Proyectos ha recorrido ya un largo camino. Recientemente ha aparecido, en España, la familia de Normas UNE 166000 elaboradas por AENOR con objeto de formalizar los proyectos de I+D+i pero con una orientación a la justificación documental y económica. Por otro lado la disciplina del Project Management en la presente década ha sufrido una eclosión en estándares ([6], [7] 5 y futuro 6, [8] 4) así como un énfasis en el enfoque estratégico (PMOs, Portafolios y programas, competencias organizacionales y modelos de madurez, norma ISO de gobernanza, etc.).

Sin embargo, todavía hoy, la Dirección y Gestión de Proyectos sigue siendo una asignatura pendiente. Algunas empresas privadas emplean técnicas de esta disciplina pero muchas otras

siguen manejando los proyectos con criterios básicamente contables y no de rentabilidad. Es necesario conocer el dinero que se ha invertido en un proyecto, si éste se ha finalizado en plazo, si el presupuesto se ha ajustado o se ha disparado, incluso si el alcance y la calidad del mismo han sido los que se definieron en las especificaciones.

Y es éste el punto de partida de esta tesina basada en el establecimiento de una metodología de gestión de proyectos la cual sea aplicable a cualquier tipo de proyecto de I+D+i, considerando para ello un caso de un proyecto real de una empresa del sector energético.

1.1. Estructura del documento

La presente tesina se estructura en 9 apartados o capítulos:

1.1.1. Introducción, objetivos, justificación y antecedentes

En este apartado se introduce la disciplina de Dirección y Gestión de proyectos, correlacionándola con los conceptos de Investigación y Desarrollo (I+D) e innovación. Así mismo (apartado Antecedentes) se describe de manera resumida como nació dicha disciplina y el estado de la misma en la actualidad.

Se establecen los objetivos generales y particulares de la tesina y se justifica la elección de la misma.

1.1.2. Estado del arte

El objetivo de este capítulo es recapitular el estado actual de la dirección de proyectos de investigación, desarrollo e innovación. Se analiza la situación actual del sistema español de innovación. La Norma [6] y la familia de Normas UNE 166000 (UNE 166000, UNE 166001, UNE 166002, UNE 166006 y UNE 166008) serán objeto de desarrollo en este apartado.

1.1.3. La innovación en la empresa

En este apartado se tratan cuatro puntos fundamentales:

- La innovación en la empresa, es decir, cuál es el objetivo de realizar investigación y si realmente es necesario. Se describen conceptos importantes de este campo.
- La diferencia entre investigación, investigación y desarrollo e investigación, desarrollo e innovación.
- Los proyectos de I+D+i, incluyendo las características de los mismos, qué tipologías existen, así como la estructura que siguen.
- La gestión de proyectos de I+D+i, describiendo sus características y particularidades.

1.1.4. Los proyectos del Instituto Tecnológico de la Energía

Este capítulo está dedicado a la descripción de la empresa sobre la cual se aplica la metodología desarrollada en esta tesina.

Además de la empresa o Centro Tecnológico, se describen los proyectos que se desarrollan en él y el sistema de gestión de proyectos que se emplea en la actualidad.

1.1.5. Desarrollo de un sistema de gestión de proyectos para el ITE

El capítulo 5 integra el sistema de gestión desarrollado incluyendo, en primera instancia, la justificación de su empleo o utilidad. Además se describe en detalle la estructura del sistema y se incorpora el manual y procedimientos operativos del mismo.

Se incluye un punto donde se analiza de manera crítica la aplicación del sistema de gestión desarrollado a los proyectos del Instituto Tecnológico de la Energía.

1.1.6. Caso de estudio, aplicación para un proyecto concreto

Es en este apartado donde se pone en práctica el sistema descrito en el apartado anterior. Se detalla, por tanto, el caso de estudio considerado y se completan los Anexos del Manual para dicho caso.

1.1.7. Análisis de viabilidad de la certificación del sistema

El objetivo de dicho capitulo es realizar un análisis de viabilidad del sistema, es decir, contemplar el coste de implantación del mismo, qué beneficios aportaría, qué rentabilidad se obtendría de su implantación y considerar la posible certificación del mismo.

1.1.8. Conclusiones

El capítulo 8 integra las conclusiones obtenidas tras la realización del trabajo. Se discutirán los diferentes resultados y se obtendrán unas conclusiones generales y unas particulares del trabajo llevado a cabo.

1.1.9. Bibliografía y referencias

El capítulo 9 se dedica a la recopilación de las diferentes referencias bibliográficas empleadas para el desarrollo de la tesina.

2. Estado del Arte de la DP de proyectos de I+D+i

2.1. Estado del Arte

La Dirección y Gestión de Proyectos ha recorrido ya, como se ha indicado en el apartado *Antecedentes*, un largo camino.

En 2006 apareció la familia de Normas UNE 166000 compuesta actualmente por cinco normas (UNE 166000:2006, UNE 166001:2006, UNE 166002:2014, UNE 166006:2011 y UNE 166008:2012) desarrolladas por el Comité Técnico de Normalización AEN/CTN 166 – ACTIVIDADES DE INVESTIGACIÓN, DESARROLLO TECNOLÓGICO E INNOVACIÓN. Los objetivos principales de dicha familia de normas son: mejorar la competitividad de las empresas a través de la innovación, promover el desarrollo de las actividades de I+D+i, orientar en la planificación, organización y control eficaz de las unidades y actividades de I+D+i y proporcionar un reconocimiento a las organizaciones innovadoras en el mercado.

En los últimos diez años han surgido una serie de estándares para la Dirección y Gestión de Proyectos:

- En 2012 apareció la Norma Internacional ISO 21500 (la versión española de esta norma es la UNE-ISO 21500:2013) que constituye un estándar internacional desarrollado por la ISO. Nace como guía de gestión de proyectos dirigida a los gestores de proyectos con el objetivo de finalizar los proyectos de manera exitosa y obtener resultados en el negocio.
- Por otro lado, la Guía de los Fundamentos de Gestión de los proyectos o Project Management Body of Knowledge (PMBOK) perteneciente al Project Management Institute (PMI) cuenta ya con su versión quinta (publicada en 2013) y está prevista la sexta edición en 2017.
- La International Project Management Association (IPMA) dispone de la cuarta versión del Individual Competence Baseline (ICB) publicado en 2015.

Dichas normas y estándares nacen con la pretensión de mejorar la competitividad de las empresas a través de la innovación. Sin embargo, centrándonos en España, se observa en la actualidad una evolución negativa de los principales indicadores de innovación (gastos en I+D, esfuerzo en I+D, personal en I+D - en EJC: equivalencia a jornada completa -, investigadores - en EJC -, comercio de productos de alta tecnología y producción científica) recogidos en el 'Informe Cotec 2016'. Desde los primeros años del siglo XXI hasta unos años antes de la crisis, el gasto en I+D en España creció de manera notable. Todavía en 2008, la inversión en I+D suponía el 1,35% del PIB, a tan solo 0,45 puntos porcentuales de la UE28 [2]. Pero a partir de la crisis, debido a los recortes en gasto público y al desmoronamiento de la inversión privada, la inversión en I+D en España se ha distanciado mucho del resto de Europa. En 2014 la brecha volvía a ser de 0,72 puntos porcentuales con respecto a la UE28 y de 1,15 en relación a la OCDE [2].

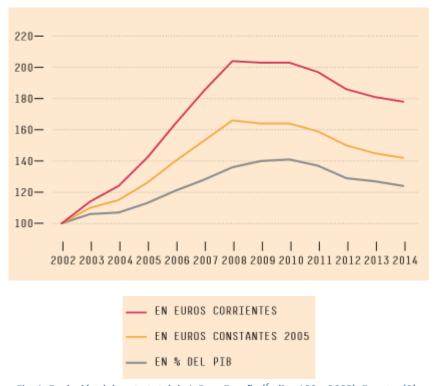


Fig. 1: Evolución del gasto total de I+D en España (Índice 100 = 2002). Fuente: [2].

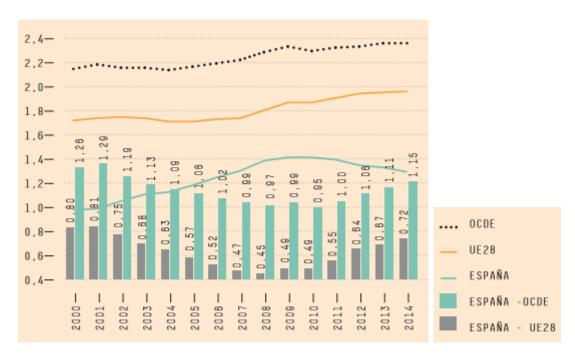


Fig. 2: Esfuerzo en I+D en España, UE28 y OCDE (gasto como porcentaje del PIB) y diferencias España-UE28 y España-OCDE, 2000-2014. Fuente: [2].

En España los fondos para las actividades de I+D proceden en un 47,1% del sector privado, un 45,5% de la administración pública y un 7,4% del extranjero [2]. La participación privada en la UE28 y en la OCDE es mayor (54 y 60%, respectivamente).

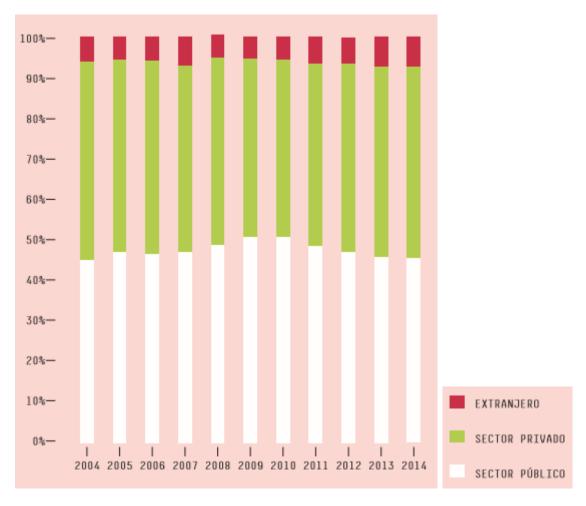


Fig. 3: Distribución de la I+D realizada según fuente de financiación. Fuente: [2].

El número de investigadores en España por cada mil empleados se encuentra 1,1 puntos por debajo del promedio europeo.

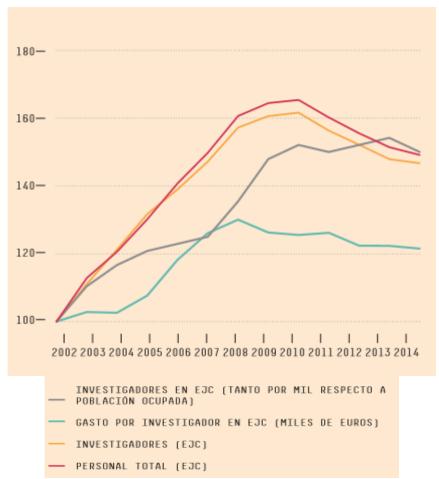


Fig. 4: Evolución del personal para I+D, España, 2002-2014 (Índice 100=2002). Fuente: [2].

Fig. 5: Evolución en España del número de investigadores por sector de ejecución (en EJC) (Índice 100=2002).

Fuente: [2].

El gasto empresarial en I+D también ha sufrido una reducción respecto a los últimos años. No obstante, se observa la existencia de un grupo de empresas que ya contemplan la I+D como una actividad necesaria en su negocio. La mayor parte de este gasto empresarial tiene lugar en las pymes.

Respecto a la producción científica y tecnológica se ha observado durante los últimos diez años un crecimiento (en 2014 España ocupaba la undécima posición en el mundo, según [2]). Referente a la propiedad industrial, tanto las solicitudes de patentes nacionales como las solicitudes PCT han descendido progresivamente. Únicamente las solicitudes de protección de diseños industriales han crecido de manera notable.

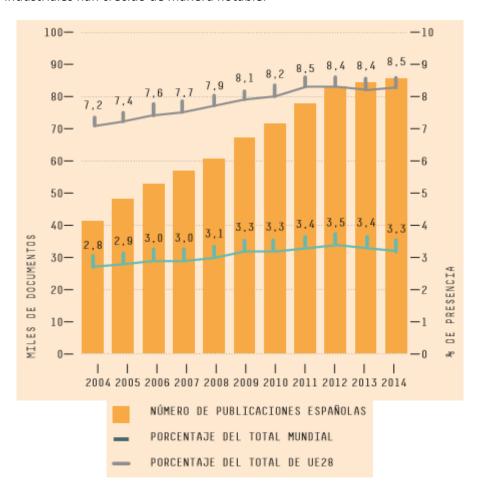


Fig. 6: Producción científica española (miles de documentos) en Scopus (2004-2014) y porcentaje (%de presencia) en el total mundial y en la Unión Europea. Fuente: [2].

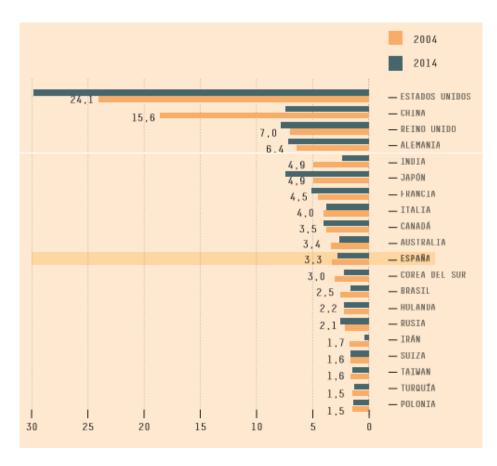


Fig. 7: Países con mayor producción científica en 2014 y comparación con 2004, en % presencia en la producción mundial. Fuente: [2].

En relación a la financiación de la innovación se observa que ha sufrido múltiples cambios, hecho que no es habitual en los países líderes en innovación (los Presupuestos Generales del Estado cayeron en 2015 más de un 30% respecto a 2009. En 2016 se incrementaron en un 0,5% respecto a 2015 [2]).

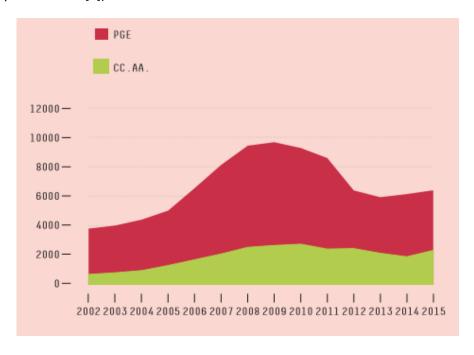


Fig. 8: Presupuestos públicos de I+D+i, 2002-2015 (millones de euros). Fuente: [2].

Por otro lado, la innovación social ha crecido en España en los últimos cinco años. Existen entidades que se dedican exclusivamente a la promoción e impulso de la innovación social. No obstante se trata de un movimiento naciente.

En Educación, si bien es cierto que España se encuentra entre los países que antes empiezan la escolarización (tanto en edad temprana como obligatoria), el rendimiento de los alumnos en Educación Primaria y Secundaria supera sólo ligeramente la media de la OCDE y la UE y lo peor, el abandono educativo es bastante más elevado (21,9% en 2014, según [2]) que en el resto de países europeos.

En España, se observa un desequilibrio entre la oferta del sistema educativo y la demanda del sistema productivo. Mientras que la tasa de sobrecualificación es del 35% (de las más altas de la EU28), la tasa de empleo de los recién graduados es de las más bajas de la UE28 (el 69% de los adultos entre 20 y 34 años estaban trabajando, según [2]).

El rendimiento en competencias básicas (comprensión lectora y matemáticas) de la población adulta ubica a España en las últimas posiciones de los 21 países participantes [2]. Esto es debido a que existen en nuestro país muchos trabajadores poco cualificados que pueden crear un clima poco favorable para la innovación.

Se muestra a continuación el Monitor de la Educación y la Formación, que realiza un seguimiento de las prioridades bajo el marco de cooperación en educación y formación 2020 y contribuye al objetivo principal en educación y formación de la estrategia Europa 2020.

OBJETIVOS PRIORITARIOS	OBJETIVOS ET 2020 Abandono educativo temprano de la educación y la formación	DEFINICIÓN Proporción de población entre los 18 y los 24 años cuyo máximo nivel alcanzado es la primera etapa de Educación Secundaria, y que declara no haber recibido ningún tipo de educación o formación en las últimas cualtro semanas precedentes a la encuesta.	EUROPEO (Objetivo a conseguir en el 2020) <10%	PUNTO DE REF. NACIONAL 15%	ET2020 <10%	EUROPA 11.1%	ESPAÑA 21.9% (2014)
	Titulación en Educación Terciaria	Proporción de la po- biación entre los 30 y 34 años que han completado estudios de Educación Tercia- ria.	>40%	44%	>40%	37.9%	42.3% (2014)
OTROS OBJETIVOS	Educación Infantil y atención a la Infancia	Proporción de la po- biación entre los 4 años y el comienzo de la Educación Pri- maria que participa en la Educación In- fantil.	95%	100%	95%	93.9%	97.1% (2013)
	Rendimiento en lectura, matemáticas y ciencias	Proporción de la po- biación de 15 años que no alcanza el ni- vel 2 de PISA en com- petencia lectora, ma- temática ni científica	15%	15%	15%	LECTURA 19.6% MATEMÁTICAS 22.2%	LECTURA 18.3% (2012) MATEMÁTICAS 23.6%
	Tasa de empleo de los reclén	Proporción de po- blación entre 20 y 34 años graduados en algún nivel superior a la segunda etapa de Educación Secun-				ciencias 17.7%	(2012) CIENCIAS 15.7% (2012)
	graduados	daria entre 1 y 3 años antes del año de re- ferencia, y que se en- cuentran empleados.	82%		82%	76.1%	65.1% (2014)
	Participación en formación a lo largo de la vida	Proporción de la po- biación entre 25 y 64 años que anirma haber participado en educación o forma- ción en las 4 sema- nas precedentes a la encuesta.	15%	15%	15%	10.7%	9.8% (2014)

Fig. 9: Monitor de la Educación y la Formación. Fuente: [2].

Tras el análisis de los problemas y tendencias del sistema español de innovación, se observa que los problemas que se perciben de mayor importancia son el 6 'el ordenamiento administrativo es un obstáculo para la transferencia de tecnología de las universidades y centros públicos de investigación a las empresas' y el 23 'los procedimientos de solicitud de ayudas públicas para el desarrollo de proyectos innovadores en las empresas son excesivamente burocráticos).

En relación a las tendencias, la T2 'Disponibilidad de fondos públicos para el fomento de la I+D+i' es la que más número de expertos considera que se deteriora. La siguiente tendencia negativa es la T1 'Importancia de las políticas de fomento de la innovación dentro de las políticas del gobierno español'.

Se concluye que el índice sintético Cotec de opinión sobre tendencias de evolución del sistema español de innovación ha aumentado su valor en los últimos tres años y, aunque todavía no es superior a uno está muy próximo. Esto significa que el índice refleja aún una apreciación de deterioro del sistema pero menos pesimista que en años anteriores [2]. Además, se ha observado un interés general manifestado en los programas electorales, en los pactos postelectorales y en el Debate Cotec por corregir de manera urgente la situación.

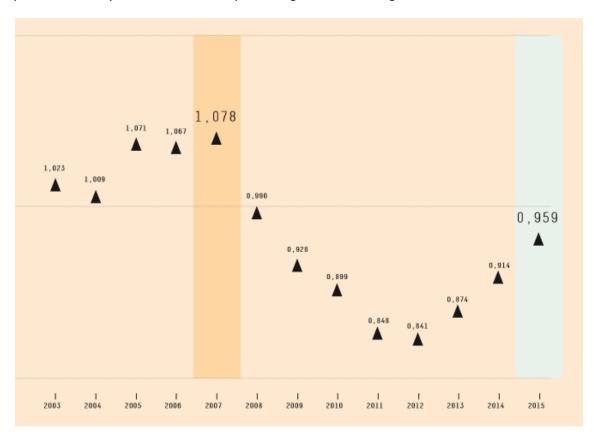


Fig. 10: Índice sintético Cotec de opinión sobre tendencias de evolución del sistema español de innovación.

Fuente: [2].

A continuación se realiza una revisión de las Normas anteriormente citadas (UNE-ISO 21500 y la familia de Normas UNE 166000):

La Norma "UNE-ISO 21500 Directrices para la dirección y gestión de proyectos" tiene el objetivo de proporcionar orientación sobre los conceptos y los procesos relacionados con la dirección y gestión de proyectos que se consideran importantes y tienen impacto en la realización de los proyectos.

Existen una serie de conceptos ligados a la Dirección y gestión de proyectos. La siguiente figura muestra cómo se relacionan entre sí los conceptos clave.

Entorno de la organización Estrategia de la organización Oportunidades Beneficios Entorno del proyecto Caso de negocio Organización de proyecto Proyecto Procesos de dirección de proyectos Procesos de productos Procesos de soporte

Fig. 11: Conceptos de la dirección y gestión de proyectos y de sus interrelaciones. Fuente: [6].

A continuación se definen dichos conceptos:

Proyecto

Es un conjunto de procesos formado por actividades coordinadas y controladas, con fechas de inicio y fin, con la finalidad de lograr los objetivos del proyecto.

Cada proyecto es único, pudiéndose diferenciar de otro en: los entregables, las partes interesadas, los recursos empleados, las restricciones, la forma en la que se adaptan los procesos para proveer los entregables.

Dirección y gestión de proyecto

Es la aplicación de métodos, herramientas, técnicas y competencias a un proyecto.

Comprende la integración de las fases del ciclo de vida del proyecto.

La gestión se lleva a cabo mediante procesos.

- Estrategia de la organización y proyectos

La estrategia se establece en base a la misión, visión, políticas y factores externos a los límites de la organización.

A partir de las metas estratégicas se identifican y desarrollan las oportunidades. Éstas pueden ser evaluadas sirviendo como base para la toma de decisiones e identificar los proyectos viables.

Los proyectos son el recurso para conseguir los objetivos estratégicos. La finalidad de éstos es crear beneficios medibles que contribuyan a la realización de las oportunidades seleccionadas.

Las metas y los beneficios pueden justificar la inversión en el proyecto y pueden contribuir a la priorización de todas las oportunidades.

Entorno del proyecto

Está constituído por los factores externos a los límites de la organización (socioeconómicos, geográficos, políticos, etc.) y por los factores internos a los límites de la organización (estrategia, cultura, madurez de la dirección, etc.).

En relación con los factores internos, los proyectos pueden organizarse dentro de programas (grupo de proyectos relacionados y otras actividades alineadas con metas estratégicas) y carteras de proyectos (conjunto de proyectos, programas y otro tipo de trabajos que se agrupan para facilitar la gestión eficaz de dicho trabajo de modo que se cumplan las metas estratégicas).

Puede afectar al desempeño y al éxito del proyecto.

Gobernanza del proyecto

Es el marco a través del cual se dirige y controla una organización..

- Proyectos y operaciones

La dirección de proyectos se ubica en el ámbito de referencia general de la gestión.

Las organizaciones trabajan para conseguir metas concretas, las cuales pueden ser operaciones (llevadas a cabo por equipos estables a través de procesos continuos y repetitivos y focalizadas en las sostenibilidad de la organización) o proyectos (realizados por equipos temporales, son no repetitivos y crean entregables únicos).

- Las partes interesadas y la organización del proyecto

Las partes interesadas, incluida la organización del proyecto, deberían detallarse minuciosamente para que el proyecto sea un éxito.

Equipo de proyecto, equipo de dirección de proyecto, director de proyecto, comité de dirección de proyecto o consejo, patrocinador, clientes, empleados, socios comerciales, accionistas, proveedores, financiadores, organismos reguladores, oficina de dirección de proyectos y grupos de interés especiales constituyen las partes interesadas en un proyecto.

- Competencias del personal del proyecto

Las personas participantes en el proyecto deberían desarrollar competencias en los principios y procesos de la dirección y gestión de proyectos con la finalidad de alcanzar los objetivos y las metas.

Estas competencias son:

- Competencias técnicas
- Competencias de comportamiento
- Competencias contextuales

Ciclo de vida del proyecto

Es el conjunto de fases del proyecto. Éstas se dividen por hitos de decisión. Al final de la última fase, deberían haberse realizado todos los entregables.

Comprende el periodo desde el inicio del proyecto hasta su fin.

Restricciones del proyecto

La duración o fecha prevista de finalización para el proyecto, la disponibilidad del presupuesto, la disponibilidad de los recursos, los factores relacionados con la salud y seguridad del personal, el nivel de exposición aceptable de riesgo, el potencial impacto social o ecológico, las leyes, reglamentos y otros requisitos legales son ejemplos de restricciones del proyecto.

La dirección y gestión de proyectos se realiza mediante procesos, pudiendo ser éstos de dirección de proyectos, vinculados con el producto o de apoyo al proyecto. La Norma UNE-ISO 21500 identifica los procesos (se centra en los procesos de dirección de proyectos) recomendables a aplicar en la totalidad de un proyecto, para las fases individuales o para ambos. La dirección y gestión de proyectos requiere una coordinación importante y, es por ello que, se requiere que cada proceso empleado esté alineado y conectado apropiadamente con otros procesos.

Para conseguir que un proyecto sea exitoso, el director del proyecto y el equipo de proyecto deberían realizar las siguientes tareas:

- Escoger los procesos apropiados requeridos para cumplir con los objetivos del proyecto.
- Emplear un enfoque definido para desarrollar o adaptar las especificaciones del producto y los planes con la finalidad de cumplir con los objetivos y requisitos del proyecto.
- Cumplir con los requisitos con objeto de satisfacer a todas las partes interesadas.
- Definir y gestionar el alcance del proyecto.
- Obtener el apoyo adecuado de cada organización ejecutora, teniendo en cuenta el compromiso de los clientes, y del patrocinador del proyecto.

Los procesos en dirección y gestión de proyectos pueden ser vistos desde dos perspectivas:

- Como grupos de procesos para la dirección del proyecto

Cada grupo de procesos consta de procesos aplicables a cualquier fase del proyecto o al proyecto.

Estos procesos son interdependientes.

Los grupos de procesos son independientes del área de aplicación o del enfoque industrial.

Los cinco grupos de procesos se citan a continuación:

- o Grupo de procesos de inicio
- o Grupo de procesos de planificación
- o Grupo de procesos de implementación
- Grupo de procesos de control
- o Grupo de procesos de cierre

La interdependencia entre los grupos de procesos implica que el grupo de procesos de control interactúe con cualquier otro grupo de procesos.

Como grupos de materias para agrupar los procesos por materia

Cada grupo de materias consta de procesos que son aplicables a cualquier fase del proyecto o al proyecto.

Los grupos de materias son independientes del área de aplicación o del enfoque industrial.

Los diez grupos de materias se citan a continuación:

o Integración

- Parte interesada
- Alcance
- o Recurso
- Tiempo
- Costo
- o Riesgo
- Calidad
- o Adquisiciones
- o Comunicación

Algunos de los procesos de gestión de proyectos que considera la Norma UNE-ISO 21500 son la elaboración del acta de constitución del proyecto, el desarrollo de los planes de proyecto, la dirección del trabajo del proyecto, la definición del alcance del mismo, la identificación y gestión de las partes interesadas, el establecimiento del equipo de trabajo, la planificación y gestión de las comunicaciones, etc.

Cada uno de estos procesos se describe en términos de propósito, descripción y entradas y salidas principales.

2.2. Familia de Normas de I+D+I UNE 166000

La familia de Normas UNE 166000 elaboradas por AENOR, la Asociación Española de Normalización y Certificación, sobre gestión de la I+D+i, está formada en la actualidad por 5 normas.

En concreto, la serie o familia de normas que están en vigor, válidas a día de hoy, son las siguientes:

- UNE 166000: terminología y definiciones de las actividades de I+D+i.
- UNE 166001: requisitos de un proyecto de I+D+i.
- UNE 166002: requisitos de un sistema de gestión de I+D+i.
- UNE 166006: sistema de gestión de vigilancia e inteligencia.
- UNE 166008: transferencia de tecnología.

Este conjunto de normas UNE están dedicadas a apoyar la optimización de la gestión de I+D+i.

2.2.1. Norma UNE 166000. Definiciones de I+D+i

La norma "UNE 166000:2006 Gestión de la I+D+i: Terminología y definiciones de las actividades de I+D+i" tiene como objetivo establecer la terminología y definiciones que se utilizan en el ámbito de las normas desarrolladas por el AEN/CTN 166 "I+D+i" [9], es decir, incluye las definiciones de los conceptos que se utilizan posteriormente en las normas de la familia de normas UNE 166000.

Los conceptos incluidos en la Norma pueden agruparse en los siguientes bloques:

Conceptos de la	Conceptos	Conceptos del	Otros (términos
I+D+i generales tecnológicos		proyecto	genéricos)
Actividades de I+D+i	Compra o adquisición	Consorcio	Comportamiento
	de tecnologías		innovador
Auditoría del sistema	Desarrollo	Diseño de ingeniería	Eficacia
de gestión de la I+D+i	Tecnológico	y diseño industrial	
Autoevaluación de la	Desarrollo de	Evaluación de la	Eficiencia
gestión de la I+D+i	tecnología propia	marcha del proyecto	
Contrato o Convenio	Prospectiva	Organización	Estado del arte
de I+D+i	tecnológica		
Mejora continua en	Recursos	Parte interesada	Gestión del
I+D+i	tecnológicos		conocimiento
Meta de I+D+i	Sistema de vigilancia	Proceso	Innovación
	tecnológica		
Objetivo de la I+D+i	Tecnología	Producto	Investigación
Plan de I+D+i	Transferencia de		Sistema
	Tecnología		
Sistema de gestión	Vigilancia tecnológica	Proyecto	
de la I+D+i			
Unidad de I+D+i		Nuevos productos o	
		procesos	
Unidad de gestión de			
I+D+i			

Tabla 2: Agrupación de conceptos incluidos en la norma UNE 166000. Fuente: Elaboración propia.

2.2.2. Norma UNE 166001. Proyectos de I+D+i

La norma "UNE 166001:2006 Gestión de la I+D+i: Requisitos de un proyecto de I+D+i" tiene como objetivo facilitar la sistematización de los proyectos de I+D+i y mejorar su gestión [10]. Por tanto, la finalidad es doble, por un lado facilitar la sistematización de las actividades de investigación, desarrollo e innovación en los proyectos de I+D+i; y por otro lado, servir como guía para definir, documentar y elaborar proyectos de I+D+i, mejorar su gestión y la comunicación a las partes interesadas.

En relación con otro tipo de proyectos, los proyectos de I+D+i se diferencian principalmente en que los resultados a los que se llegan pueden diferir sustancialmente de los objetivos de partida y no por ello dejan de ser útiles.

En ocasiones están apoyados por las Administraciones, lo cual implica seguir unas orientaciones marcadas por dichas instituciones.

La gestión del proyecto incluye la planificación, organización, seguimiento y control de todos los aspectos del proyecto en un proceso continuo con la finalidad de conseguir sus objetivos.

Los aspectos que debe contemplar, al menos, un proyecto de I+D+i son los que se exponen a continuación:

- Debe existir un responsable del proyecto, designado por la Organización, con unas funciones establecidas.
- Todo proyecto debe estar documentado en forma de 'Memoria', la cual debe estar correctamente identificada y controlada. La memoria contará con los contenidos siguientes:
 - o Objetivos y metodología para alcanzar dichos objetivos.
 - Cuál es la innovación del proyecto y qué novedades aporta respecto a lo ya existente
 - Estudio del estado del arte.
 - Avances científicos y/o técnicos que propone el proyecto.
 - Protección de los resultados del proyecto.
 - Legislación y otras regulaciones que afecten al proyecto.
- Planificación. Debe describirse la estructura del proyecto, incluyendo:
 - o Fases y tareas, y cómo interaccionan.
 - Identificación y tratamiento de riesgos y aspectos críticos.
 - Estructura organizativa y de personal.

- Medidas de control del programa de trabajo.
- Presupuesto. Basado en las estimaciones de costes y en la planificación anteriormente citada.
 - o Recursos del proyecto.
 - o Estimación y control de los costes del proyecto.
 - o Control de la documentación relativa al proyecto.
 - o Seguimiento del proyecto.

Otro aspecto a destacar de los proyectos de I+D+i es la explotación de resultados.

El plan de explotación será establecido cuando la Organización lo desee, o se exija por terceros. En él deberán definirse las acciones a realizar para la explotación, protección y diseminación de los resultados previstos en el proyecto.

Los aspectos que debe contener el plan de explotación son los siguientes:

- Identificación de un nuevo producto o proceso.
- Mercado probable.
- Protección de resultados.
- Explotación económica.
- Cuenta de explotación.
- Beneficios que aporta el proyecto.

2.2.3. Norma UNE 166002. Sistemas de gestión de I+D+i

La norma "UNE 166002:2014 Gestión de la I+D+i: Requisitos del Sistema de Gestión de la I+D+i" tiene como objetivo orientar a las organizaciones en el desarrollo, implantación y el mantenimiento de un marco sistemático para sus prácticas de gestión de la I+D+i, integrándose todo en un sistema de gestión de la I+D+i [11]. Por tanto la finalidad de dicha norma es proporcionar directrices más allá de las indicadas en otras normas de sistemas de gestión para: desarrollar un sistema de I+D+i, eficiente y eficaz, mejorar los resultados del sistema, mejorar los procedimientos internos y optimizar los procesos de innovación tecnológica.

Los principales beneficios de la implementación de un sistema de gestión de la I+D+i:

- Permite mejorar el crecimiento, los ingresos y los beneficios que proceden de las innovaciones.
- Incorpora ideas nuevas y valores a la organización.
- Obtiene valor de manera proactiva y de la cooperación con otros socios para las tareas de I+D+i.
- Permite identificar los riesgos y reducirlos, en la medida de lo posible.
- Emplea la creatividad y la inteligencia colectiva de la organización.
- Anima a los miembros de la organización y fomenta el trabajo en equipo y la colaboración.

Un sistema de gestión de la I+D+i se sustenta en una serie de aspectos:

1. Contexto de la organización.

La organización debe:

- o Identificar los aspectos internos y externos.
- o Identificar qué partes interesadas son relevantes y determinar sus necesidades, expectativas y requisitos.
- Establecer, documentar, implantar y mantener un sistema de gestión de la I+D+i y mejorar continuamente la eficacia del mismo.
- 2. Liderazgo y estrategia para la I+D+i.

La visión y la estrategia de I+D+i deben estar documentadas y estar disponibles para las partes interesadas definidas por la Dirección.

La Dirección debe:

- Establecer una política de I+D+i adecuada, que proporcione un marco de referencia, que tenga el compromiso de cumplir requisitos y que adquiera un compromiso de mejora continua.
- Liderar y comprometerse con el sistema de gestión de la I+D+i.
- o Fomentar una cultura que apoye la innovación.
- Asegurar que se asignen y comuniquen dentro de la organización las responsabilidades y autoridades para los roles pertinentes.
- 3. Planificación para el éxito de la I+D+i.

La organización debe:

- o Identificar los riesgos y oportunidades.
- Establecer objetivos de I+D+i para las funciones y niveles pertinentes.
- 4. Factores que dan soporte a la I+D+i.

La organización debe:

- Definir dos responsabilidades principales en el contexto del sistema:
 Unidad de gestión de la I+D+i y Unidad (es) de I+D+i.
- Determinar y proporcionar los recursos, tangibles e intangibles, necesarios para el desarrollo, el mantenimiento y la mejora continua del sistema.
- O Determinar las competencias requeridas de aquellas personas que desarrollen y trabajen en actividades de I+D+i.
- Ser consciente y estar motivada sobre la importancia la organización, de la política de I+D+i, de la importancia de su contribución personal a la eficacia del sistema.
- Establecer las comunicaciones internas y externas importantes para el sistema.
- Definir directrices para gestionar los activos intangibles y su propiedad intelectual e industrial.
- Definir directrices para la colaboración interna y externa que fomenten la puesta en común de ideas y de conocimiento entre diferentes personas, grupos y unidades.

El sistema debe incluir la información documentada requerida por esta norma y la determinada por la organización como necesaria para la eficacia del sistema.

El sistema de gestión de la I+D+i debe incluir un proceso de vigilancia tecnológica e inteligencia competitiva.

5. Proceso de gestión de la I+D+i.

La organización debe establecer los procesos operativos de I+D+i que cubran todas las actividades significativas.

Debe definirse una sistemática de gestión de las ideas (generación, recopilación, evaluación y selección) para garantizar un flujo estable de las mismas.

Los proyectos de I+D+i deben desarrollarse siguiendo una metodología documentada.

La protección y explotación de resultados debe realizarse aplicando la mejor opción en cada caso: cesión de activos intangibles, concesión de licencias, titularización de activos intangibles.

Para introducir un producto, proceso o servicio innovador en el mercado, la organización debe planificar las actuaciones a llevar a cabo.

El seguimiento de los procesos operativos de la I+D+i se realiza en base a los indicadores establecidos.

6. Evaluación del desempeño del sistema de gestión de la I+D+i.

La organización debe:

- Determinar los métodos de seguimiento, medición, análisis y evaluación para la evaluación del desempeño y la eficacia del sistema de gestión de la I+D+i.
- Debe realizar auditorías internas para determinar si el sistema de gestión es conforme.

La Dirección debe revisar el sistema de gestión de la I+D+i de la organización con objeto de cerciorarse de su conveniencia, actuación y eficacia continuas.

7. Mejora del sistema de gestión de la I+D+i.

La organización debe mejorar de manera continua la idoneidad y la eficacia del sistema mediante la estrategia y la política de I+D+i, el liderazgo, los objetivos y la planificación, los procesos que dan soporte a la I+D+i y la evaluación del desempeño.

2.2.4. Norma UNE 166006. Sistemas de vigilancia e inteligencia

La norma "UNE 166006:2011 Gestión de la I+D+i: Sistema de vigilancia tecnológica e inteligencia competitiva" tiene como objetivo facilitar la formalización y estructuración del proceso de escucha y observación del entorno para apoyar la toma de decisión a todos los niveles de la organización, hasta devenir en la implantación de un sistema de vigilancia tecnológica e inteligencia competitiva (VT/IC) [12]. Es decir, el objeto de la misma es proporcionar directrices más allá de las reflejadas en otras normas de sistemas de gestión para establecer un sistema de gestión VT/IC.

La vigilancia tecnológica es una herramienta clave en el marco de los sistemas de gestión de I+D+i. Permite obtener una mejora en el acceso y gestión de los conocimientos científicos y técnicos, así como en la información sobre su contexto de aplicación. Además permite comprender el significado e implicaciones de los cambios y novedades en el entorno.

La inteligencia competitiva engloba, además, el análisis, interpretación y comunicación de información de valor estratégico acerca del ambiente de negocios, de los competidores y de la propia organización.

Los requisitos que debe cumplir un sistema de vigilancia se citan a continuación:

- La organización debe establecer, documentar, implantar y mantener un sistema de VT/IC y mejorar de forma continua su eficacia.
- La documentación del sistema VT/IC debe incluir:
 - o Declaraciones documentadas de una política VT/IC y de objetivos VT/IC.
 - Los procedimientos documentados que se especifican en esta norma.
 - o Los documentos que requiere la organización.
 - o Los registros requeridos por esta norma.
- Debe establecerse un control de los documentos requeridos por el sistema VT/IC. Para ello debe realizarse un procedimiento documentado que defina los controles necesarios.
- Los registros deben establecerse y mantenerse para proporcionar evidencia de la conformidad con los requisitos así como de la operación eficaz del sistema de VT/IC.
- Deben considerarse los aspectos de confidencialidad, legalidad y éticos desde la petición de información hasta la custodia de la información generada durante la realización de la VT/IC.

Por lo que respecta a las responsabilidades de la Dirección, ésta debe:

- Comprometerse, mostrando evidencia de ello, con el desarrollo e implantación del sistema de VT/IC así como la mejora continua de su eficacia.

- Identificar a las partes interesadas y asegurar que los requisitos de éstas se determinan y se cumplen.
- Establecer una política adecuada a las características específicas de la organización y sus fines.
- Cerciorarse de que las responsabilidades y autoridades están definidas y son comunicadas internamente.
- Elegir un miembro de la Dirección que tenga responsabilidad y autoridad para asegurar que se establece, implanta y mantiene el sistema, para informar a la Dirección y para asegurar que se conocen los requisitos de las partes interesadas.
- Cerciorarse de que se establecen los procesos de comunicación adecuados dentro de la organización considerando la eficacia del sistema de VT/IC.
- Revisar el sistema de VT/IC de la organización con objeto de verificar su conveniencia,
 adecuación y eficacia contínua.

La planificación del sistema de VT/IC se realiza con el fin de cumplir los requisitos generales fijados anteriormente. Es la organización la que debe determinar los principales objetivos a cubrir por el sistema de VT/IC de acuerdo con su política de VT/IC, considerando la situación de partida de la organización.

En relación a los recursos, la organización debe:

- Determinar y proporcionar los recursos necesarios para:
 - o Establecer, implantar, mantener y mejorar la eficacia del sistema VT/IC.
 - Mejorar la satisfacción de las partes interesadas.
 - o Impulsar la colaboración interna y con entidades externas.
- Definir las competencias necesarias para las personas que realizan tareas y gestión de la vigilancia.
- Proporcionar la formación requerida o llevar a cabo otras acciones para incorporar las competencias necesarias y evaluar la eficacia de las acciones tomadas.
- Motivar y conseguir que el personal esté ilusionado.
- Determinar, proporcionar y mantener la infraestructura y recursos materiales necesarios para lograr la conformidad con los requisitos de la VT/IC.

La realización de la VT/IC considera dos enfoques de trabajo factibles y complementarios en muchas ocasiones:

- La búsqueda e investigación de lo desconocido; y
- La búsqueda y seguimiento sistemático de novedades en áreas acotadas.

Los procesos implicados en la realización de la VT/IC son los siguientes:

- Proceso de identificación de necesidades, fuentes y medios de acceso de información.
 - o Identificación de necesidades de información.
 - Identificación de fuentes de información.
 - o Planificación de la realización de la VT/IC.
- Proceso de búsqueda, tratamiento y validación de la información.
- Proceso de puesta en valor de la información.
- Productos de la VT/IC: Determinar en qué formato se confecciona y distribuye la información.

Resultados de la VT/IC: El resultado primordial de la VT/IC es el conocimiento adquirido por la organización con el objetivo de anticiparse a los cambios y tener así un menor riesgo en la toma de decisiones.

Dependiendo de las necesidades y preferencias de cada organización, ésta puede subcontratar parte de la realización de la VT/IC a proveedores de servicios.

Se requerirá la siguiente información para la contratación:

- Información proporcionada por el solicitante.
- Información proporcionada por el proveedor.

La organización debe verificar la contratación, estableciendo la inspección u otras actividades necesarias para asegurarse de que el proveedor cumple con los requisitos.

Por último, en relación a la medición, análisis y mejora, la organización debe:

- Planificar, programar e implantar los procesos de seguimiento, medición, análisis y mejora del proceso VT/IC.
- Realizar auditorías internas a intervalos planificados.
- Aplicar métodos adecuados con la finalidad de realizar el seguimiento del proceso VT/IC implantado.
- Medir y realizar un seguimiento de los resultados del proceso de VT/IC.
- Cerciorarse de que las desviaciones en los resultados esperados, se identifican y registran, para reutilizarlas posteriormente.
- Determinar, recopilar y analizar los datos apropiados.
- Mejorar de manera continua la eficacia del sistema de VT/IC empleando la política de VT/IC.

- Emprender acciones para eliminar la causa de no conformidades en el sistema de VT/IC (acción correctiva).
- Definir acciones para eliminar las causas de no conformidades potenciales en el sistema de VT/IC para prevenir su ocurrencia (acción preventiva).

2.2.5. Norma UNE 166008. Transferencia de tecnología

La norma "UNE 166008:2012 Gestión de la I+D+i: Transferencia de tecnología" tiene por objeto establecer requisitos para la realización de la transferencia de tecnología proveniente de actividades de I+D+i o necesaria para el desarrollo de éstas, incluyendo la identificación de los activos susceptibles de ser transferidos, la determinación de su valor razonable y la formalización de la transferencia [13].

El modelo de transferencia de tecnología relacionado con la I+D+i es un proceso cíclico que puede empezar con la incorporación de los activos intangibles externos necesarios para la organización, pasando por la generación de nuevos activos a través de la I+D+i, la identificación de estos activos, su protección, la determinación de su valor razonable y la posterior explotación de dichos activos mediante su transferencia.

Identificación de los activos intangibles

Un activo intangible es un recurso controlado por la organización fruto de sucesos pasados y del cual la organización espera obtener, en el futuro, beneficios, que sea identificable, de carácter no monetario y sin apariencia física.

Características comunes de los activos intangibles son aspectos como: su naturaleza no física aunque documentable, su potencial / capacidad para ser identificables por separado de los activos de otra organización, su capacidad de ser transferidos entre diferentes entidades, su capacidad de ser protegidos legalmente, su capacidad de producir un beneficio a una actividad de la organización.

Respecto a la clasificación de los mismos, se pueden clasificar en base a la existencia o no de un registro oficial, a su carácter tácito o codificado, a si son rutinarios o no rutinarios, etc.

En cuanto a la protección de los mismos, pueden ser protegidos mediante propiedad industrial, propiedad intelectual, u otros tipos de protección no legislados.

La organización involucrada en un proceso de transferencia de tecnología debe identificar de forma clara e inequívoca el activo objeto de transferencia.

Valoración de los activos intangibles

La organización involucrada en un proceso de transferencia de tecnología debe:

- Identificar los objetivos específicos de la valoración.
- Identificar factores principales y los criterios para ponderarlos que influyan en el método de valoración.

Los factores más habituales que influencian la valoración de activos intangibles son los siguientes:

Factores tecnológicos.

- o Factores de mercado.
- o Factores legales.
- Factores estratégicos y temporales
- Escoger los métodos para la determinación del valor de los activos intangible, teniendo en cuenta los objetivos y la disponibilidad de información.

Métodos de valoración de activos intangibles

Los métodos de valoración son por una parte retrospectivos (se centran en los datos históricos de ingresos y gastos) y por otra parte prospectivos (se centran en los ingresos previstos)..

Hay cuatro enfoques o formas generales de entender la valoración de activos intangibles:

- Método basado en costes.

Es el más simple de aplicar pero tiene la desventaja de no capturar los beneficios o retornos futuros resultantes de la explotación de los activos. Al realizar su evaluación se utilizan tres enfoques:

- o Estimación de costes de desarrollo o adquisición.
- o Estimación de costes de reposición o reemplazo.
- Estimación de costes de reproducción o replicación.

Es adecuado cuando el activo no es único y puede ser fácilmente reemplazable.

Método basado en el mercado o en transacciones equiparables.

Está basado en la identificación de transacciones similares entre organizaciones no vinculadas. Influyen en este método: la vinculación o independencia entre las organizaciones cedente y receptora y la información disponible sobre transacciones similares.

El análisis de transacciones similares, controladas (oficiales) y no controladas (privadas), que se conoce como "análisis de comparabilidad", constituye la base de la aplicación del método.

No será posible aplicar este método cuando los activos a valorar sean únicos o muy singulares y sea muy difícil identificar una transacción comparable.

Método basado en el ingreso / beneficio

Este método valora la contribución económica que aporta el activo en su uso actual y/o futuro para el propietario actual (y/o para el potencial comprador o licenciatario del mismo). Puede desglosarse en cinco categorías:

Método de capitalización de ganancias históricas.

- Método del componente o prima de precio.
- o Método del ahorro en costes.
- Método del cálculo del ahorro en cánones.
- Método basado en descuentos de flujos de caja futuros.

La ventaja de este último método es que permite calcular el valor de los ingresos que el activo generará para la organización y darle valor en el momento de la valoración. No obstante es un método de difícil aplicación.

Método basado en opciones

Este método integra de forma sistemática otros métodos anteriores pero teniendo en cuenta el aspecto dinámico de las decisiones en un entorno variable, considerando cualitativa y cuantitativamente los riesgos asociados.

El método se basa en comparar un activo intangible con una opción de compra (call option).

Se trata del método que abarca más ampliamente la incertidumbre y la posibilidad de tomar diferentes decisiones y alternativas en la evolución de un activo intangible, considerando la volatilidad, la flexibilidad y la contingencia en las diferentes situaciones. No obstante, es poco utilizado por su complejidad.

La selección del enfoque ha de determinarse en función de la naturaleza del activo intangible, así como del propósito de la valoración.

Formalización de la transferencia de activos intangibles

Para acceder a activos intangibles foráneos se emplean habitualmente tres vías:

- La incorporación a través de contrato.
- La captación y valorización de conocimientos de dominio público.
- La captación del conocimiento integrado en los bienes de equipo.

Respecto a la explotación de los activos intangibles, las principales vías son:

- Cesión de activos intangibles.
- Concesión de licencias de activos intangibles.
- Titularización de activos intangibles.

El acuerdo de transferencia de tecnología o proceso de negociación abarca cuatro fases:

- Preparación.

Es la fase más importante, la cual consiste en analizar las opciones existentes, establecer los objetivos propios y estimar los de la otra parte para determinar las coincidencias y divergencias.

- Discusión.

Sujeta a acuerdos de confidencialidad.

Permite analizar la documentación de la oferta.

- Propuesta.

- o Análisis de la posible relación y las principales condiciones.
- o Planteamiento de preguntas clave.
- o Verificación de posiciones.
- o Establecimiento de objetivos estratégicos.
- o Identificación de límites.

Negociación

- o Examen y relación de las cuestiones.
- o Generación de oportunidades.
- Establecimiento de objetivos ambiciosos pero realistas para proteger la propia credibilidad.

Por último, deben quedar registrados en un documento los acuerdos de transferencia de activos intangibles. Este documento debe incorporar sin ambigüedad todos los aspectos necesarios para la formalización de la transferencia de manera satisfactoria para ambas partes.

3. La innovación en la empresa y su materialización vía proyectos de I+D+Innovación

3.1. La innovación en la empresa, objetivos, necesidad, definiciones

3.1.1. Definiciones

Son muchos los autores que han propuesto definiciones de la palabra innovación:

Según [1], André Piatier define la innovación como "Una idea transformada en algo vendido o usado" (francés André Piatier). Sherman Gee afirma que "la innovación es el proceso en el cual a partir de una idea, invención o reconocimiento de una necesidad se desarrolla un producto, técnica o servicio útil hasta que sea comercialmente aceptado". Por otro lado, Pavón y Goodman según [1] indican que se trata de un "conjunto de actividades, inscritas en un determinado período de tiempo y lugar, que conducen a la introducción con éxito en el mercado, por primera vez, de una idea en forma de nuevos o mejores productos, servicios o técnicas de gestión y organización".

Las definiciones anteriores se derivan de las de Schumpeter (Economista austriaco), según el cual, la innovación abarca: la introducción en el mercado de un nuevo bien, la introducción de un nuevo método de producción, la apertura de un nuevo mercado en un país, la conquista de una nueva fuente de suministro de materias primas o de productos semielaborados y la implantación de una nueva estructura en un mercado [1].

La innovación es el elemento clave que explica la competitividad [1].

Porter, autor citado por [1], la define como "La competitividad de una nación depende de la capacidad de su industria para innovar y mejorar (Porter). Por otro lado, François Chesnais "la actividad innovadora constituye efectivamente, con el capital humano (es decir, el trabajo calificado), uno de los principales factores que determinan las ventajas comparativas de las economías industriales avanzadas".

Todas las definiciones tienen en común el hecho de que la innovación finaliza con la introducción en el mercado con éxito [1]. Christopher Freeman [1] afirma que se trata de "Un intento de innovación fracasa cuando no consigue una posición en el mercado y/o un beneficio, aunque el producto o proceso funcione en un sentido técnico"

La innovación no depende necesariamente de la tecnología. Será "tecnológica" cuando esté relacionada con la ciencia y la tecnología.

La OCDE (1982), analizando la innovación en las pymes, remarcó que la invención se convierte en innovación cuando nace un producto aceptado por el mercado y ampliamente difundido. El responsable de la invención es el científico o el técnico, mientras que el responsable de la innovación es el empresario.

3.1.2. La innovación en la empresa

En la actualidad las empresas están obligadas a ser innovadoras si quieren mantenerse vivas. No innovar implica que pronto serán alcanzadas por los competidores. Debido al corto ciclo de vida de los productos y los procesos, la presión es muy fuerte.

Esta tendencia procede de tres aspectos fundamentales:

- El progreso técnico.

El hecho de la aparición de nuevos productos con mejores prestaciones puede provocar la desaparición de los existentes. Existe un esfuerzo inmenso por localizar nuevas tecnologías o mejorar las existentes.

La internacionalización de la economía.

La competencia es cada vez mayor, además de por parte de los países vecinos de la Unión Europea, por otros países inesperados.

Desmasificación de los mercados.

Existe una tendencia a elaborar productos cada vez más personalizados, realizados a medida, para mercados específicos. Esto implica contar con una mayor flexibilidad en los procesos productivos.

Las empresas disponen de diversas herramientas para la innovación:

1. La vigilancia tecnológica [1].

Hace años la vigilancia era más sencilla, ya que las innovaciones se daban en pocos países y la velocidad del progreso técnico era más lenta.

Actualmente la situación es complicada:

- La información presenta un crecimiento exponencial.
- o Resulta complicado detectar lo que está ocurriendo.

Los costes de la I+D han aumentado tanto que ninguna empresa puede asumir ser autosuficiente tecnológicamente, por lo que debe centrarse en los desarrollos externos.

El objetivo de la vigilancia consiste en "proporcionar buena información a la persona idónea en el momento adecuado", según Callon, Courtial y Penan [1].

En primer lugar la empresa debe escoger las áreas en las que quiere estar bien informada.

En segundo lugar debe estructurar la función vigilancia. La vigilancia en la empresa debe, según Palop y Vicente [1]:

- Centrarse en los factores críticos. La vigilancia debe estar orientada a la decisión y la acción.
- Ser sistemática.
- Estar estructurada.

2. La creatividad [1].

Son múltiples las definiciones de creatividad:

Según [1] , Majaro la define como "el proceso mental que ayuda a generar ideas", Hubert Jaoui como "la actitud para crear", y también "un conjunto de técnicas y metodologías susceptibles de estimular y de incrementar nuestra innata capacidad de crear, desarrollándola y canalizándola".

Por otro lado, Díaz Carrera indica [1] que se trata de "la capacidad de generar ideas, y se mide por la fluidez, la flexibilidad y originalidad de estas ideas. La creatividad es sinónimo de inteligencia divergente".

No siempre se encuentra la innovación, tras la creatividad; las ideas son únicamente los eslabones para la innovación, pero no la producen inevitablemente. Del mismo modo, puede ocurrir que una empresa sea innovadora aun teniendo un bajo nivel de creatividad interna.

No obstante, las empresas que presentan simultáneamente mucha creatividad y alta capacidad de gestión de las innovaciones son las que cuentan con más probabilidades de éxito.

La creatividad de los empleados es siempre el activo con más valor de una empresa.

Majaro, según [1], afirma que las personas creativas requieren organizaciones creativas para poder desarrollar todo su potencial, donde encuentren un clima propicio para ello. El clima es apropiado cuando todos, al margen de su puesto en la jerarquía, hablan con entusiasmo de ideas e innovaciones.

Cabanelas, por su parte, indica [1] que un problema importante es que las organizaciones no están previstas para lo imprevisto. La innovación requiere que el directivo permita en la empresa algo de desorden y de cabida a imprevistos, incorporando la capacidad de crear y de cambiar.

Uno de los autores que más ha analizado las organizaciones innovadoras ha sido Henry Mintzberg [1]. Según este autor, la innovación exige hoy una configuración muy flexible, capaz de desarrollar proyectos ad hoc.

Es necesario que el proceso comience desde arriba, desde la alta dirección para obtener una nueva atmósfera creativa y este tipo de organización. El compromiso de los directivos debe ser máximo.

3. La previsión tecnológica [1].

La prospectiva como metodología se basa en el intento de descifrar algunos comportamientos del futuro a partir de un examen en detalle de las tendencias a largo plazo que se pueden establecer analizando el presente, la previsión de inflexiones y de rupturas y la valoración de los retos que indica el futuro y de las estrategias que se pueden adoptar.

Los trabajos de prospectiva requieren mucho tiempo y dinero por lo que únicamente están al alcance de un número limitado de organismos públicos o grandes empresas.

Recientemente la previsión tecnológica ha provocado de nuevo gran interés, sobre todo al comprobar que Japón realiza desde 1971 y cada cinco años este tipo de estudios con éxito.

Sin embargo la empresa tiende a realizar previsiones a más corto plazo. El horizonte de planificación no sobrepasa, normalmente, los cinco años. Por tanto, los métodos idóneos son los proyectivos, no los prospectivos.

El papel de la prospectiva es más iluminar la decisión actual que acertar en el pronóstico. La previsión es una disciplina tan necesaria como imperfecta (Coates, 1994).

3.1.3. Necesidad de investigar. ¿Merece la pena investigar?

En el mundo empresarial un nivel apropiado de I+D conlleva la aparición de nuevos productos y una continuada reducción de costes de producción, los cuales producen más beneficios y la consecuente reinversión.

Los costes de I+D han crecido de manera exponencial en muchos países, y la I+D se ha convertido en un algo ingobernable. Al mismo tiempo han aumentado la velocidad del cambio tecnológico, la dificultad de las nuevas innovaciones y el tiempo requerido para su desarrollo.

Las "empresas pueden quebrar si gastan demasiado en I+D, pero pueden desaparecer también si gastan demasiado poco" (William Matthews, profesor del Institute for Management Development de Lausana).

Diversos estudios han sido realizados para poder responder a las pregunta de si verdaderamente los gastos en I+D se traducen de manera automática en un aumento de rentabilidad.

Como conclusiones se extraen las siguientes:

- No hay una relación directa entre los gastos de I+D y las ventas y el consecuente aumento de los beneficios, los márgenes de beneficio o las ventas por trabajador.

- No se percibe correlación entre los beneficios sobre los activos y cualquier medida de los gastos en I+D.
- No se manifiesta que un crecimiento de los beneficios implique un aumento de las cantidades dedicadas a gastos en I+D.
- Existe, sin embargo, una relación entre la intensidad de I+D y el consecuente aumento de las ventas.
- Se percibe una correlación muy fuerte entre los gastos de I+D y los gastos de I+D por trabajador y los consecuentes márgenes de beneficio y ventas por trabajador.
- Los márgenes de beneficio están influenciados por la productividad de la empresa, y se modifican únicamente por la intensidad de I+D.

Invertir en I+D no implica asegurarse el éxito. Invertir en I+D significa asignar recursos con el objetivo de obtener unos resultados que no son totalmente apropiables, aceptar un riesgo de fracaso técnico y comercial elevado, y un período extenso de maduración de la inversión.

3.1.4. Investigar en cooperación

La cooperación entre empresas ha aumentado de forma apreciable en los últimos años debido a la lucha por la competitividad.

E. Fernandez (1991) define la cooperación como un acuerdo entre dos, o más empresas independientes, que uniendo o compartiendo parte de sus capacidades y/ o recursos, sin llegar a fusionarse, instauran un cierto grado de interrelación con el objetivo de incrementar sus ventajas competitivas. Estos recursos pueden ser de cuatro tipos: capital, tecnología de productos, capacidad de producción (know-how), ventas y redes de comercialización.

Las cooperaciones y alianzas adquieren importancia en el marco de las estrategias empleadas por las empresas para internacionalizarse. Colaboraciones, coaliciones, asociaciones, cooperación, alianzas, acuerdos, joint-ventures, son algunos de los calificativos más empleados.

Desde la perspectiva tecnológica, nos encontramos en una situación de propagación acelerada de las tecnologías. Por tanto, las empresas que no se adaptan rápidamente a los cambios quedan fuera de juego.

Las empresas no pueden confiar en ser superiores tecnológicamente durante mucho tiempo debido al ritmo actual de difusión de las innovaciones.

Innovar es arriesgado, pero no hacerlo lo es aún más [1].

Desde que la tecnología va adquiriendo, para las empresas, el rol de variable estratégica de pleno derecho, las empresas comienzan a moverse entre la cooperación y la competencia.

Existen tres direcciones a considerar cuando las empresas de alta tecnología deben decidir la estrategia tecnológica:

- La estrategia competitiva (competencia y/o cooperación) [1].
- El campo de acción (interno o externo) [1].
- La estructura (los tipos de organización de la I+D) [1].

La gestión correcta de estas tres dimensiones es uno de los grandes retos que deben afrontar las empresas.

3.2. El espectro de la investigación aplicada

I+D+i o lo que es lo mismo Investigación, desarrollo e innovación, es un nuevo concepto adaptado a los estudios relacionados con el avance tecnológico e investigativo centrados en el avance de la sociedad, siendo una de las partes más importantes dentro de las tecnologías informativas [14].

El concepto de desarrollo procede del sector económico, mientras que la innovación e investigación proceden del sector de la tecnología y la ciencia, respectivamente.

Invertir capital con la finalidad de obtener conocimiento es lo que se conoce como investigación, siendo la innovación la inversión en conocimiento para obtener dicho capital. Ello justifica de manera clara la ecuación de retorno de ciertas inversiones en investigación que una vez se convierten en innovación reportan grandes beneficios a la parte inversora [14]. Los principales canales tanto de inversión como de repercusión en el crecimiento son los países. El nivel de potencia o nivel de actividad en I+D+i en un país se calcula habitualmente por el ratio entre el inversión realizada en I+D+i y el PIB, desglosando claramente el gasto público y privado en este área.

El incremento de la actividad en I+D+i se realiza a través de subvenciones, préstamos bonificados, deducciones, etc., ya que estas inversiones se ven directamente reflejadas en el nivel competitivo de la base empresarial y productiva de dicho país. Todas estas mejoras se ven repercutidas de manera social en forma de mejora en la calidad de vida, salud, etc.

Las definiciones de estos conceptos en base a la Norma UNE 166000:2006 son las siguientes:

Investigación

Indagación original y planificada que persigue descubrir nuevos conocimientos y una superior comprensión en el ámbito científico o tecnológico.

Desarrollo Tecnológico

Aplicación de los resultados de la investigación, o de cualquier otro tipo de conocimiento científico para la fabricación de nuevos materiales, productos, para el diseño de nuevos procesos, sistemas de producción o de prestación de servicios, así como la mejora tecnológica sustancial de materiales, productos, procesos o sistemas preexistentes. Esta actividad incluirá la materialización de los resultados de investigación en un plano, esquema o diseño, así como la creación de prototipos no comercializables y los proyectos de demostración inicial o proyectos piloto, siempre que los mismos no se conviertan o utilicen en aplicaciones industriales o para su explotación comercial.

Innovación

Actividad cuyo resultado es la obtención de nuevos productos o procesos, o mejoras sustancialmente significativas de los ya existentes.

Las actividades de innovación son: incorporación de tecnologías materiales e inmateriales, diseño industrial, equipamiento e ingeniería industrial, lanzamiento de la fabricación, comercialización de nuevos productos y procesos.

Se distingue entre:

- Innovación en tecnología [9].

Se trata de la tarea de crear y revisar las nuevas tecnologías en el mercado. Una vez maduras se utilizarán para otros procesos innovadores relacionados con productos y procesos.

Innovación tecnológica [9].

Es la tarea de integrar tecnologías básicas existentes y disponibles en el mercado, en el desarrollo de nuevos productos o procesos.

- Innovación en la gestión [9].

Se trata del progreso en la forma de organizar los recursos para obtener productos o procesos innovadores.

Dentro del proceso de innovación se separa entre lo que se considera propiamente I+D (investigación y desarrollo tecnológico) del resto.

La I+D se desglosa a su vez en tres clases:

- Investigación básica o fundamental (descubrimiento).
 - Aquellos trabajos originales cuyo objetivo es adquirir conocimientos científicos nuevos sobre los fundamentos de los fenómenos y hechos observables.
 - o Resultados se publican en revistas especializadas.
 - No tienen la pretensión de conseguir ningún objetivo lucrativo en concreto.
- Investigación aplicada.
 - Trabajos originales cuya pretensión es adquirir conocimientos científicos nuevos pero orientados a un objetivo práctico determinado.
 - Resultados que se obtienen son los productos determinados, gama de productos nuevos o número limitado de operaciones, métodos y sistemas.
 - Susceptibles de ser patentados.
- Desarrollo tecnológico (desarrollo tecnológico experimental)
 - Empleo de diversos conocimientos científicos para la producción de materiales, dispositivos, procedimientos, sistemas o servicios nuevos o mejoras substanciales.

- Primer objetivo consiste en lanzar al mercado una novedad o una mejora concreta.
- Se realizan pruebas con un prototipo o una planta piloto.

En la etapa de la investigación básica, los investigadores estudian los conocimientos científicos teóricos existentes sobre los cuales se puede fundamentar las propiedades observadas y se dedican a buscar las fórmulas idóneas y leyes coherentes del comportamiento del material. En esta etapa, los científicos e investigadores formularán finalmente hipótesis, teorías y leyes tras analizar propiedades, estructuras y relaciones. Dichas hipótesis, teorías y leyes serán reconocidas por la comunidad científica internacional como un descubrimiento si han sido correctamente elaboradas y justificadas [1].

En la segunda etapa los científicos y técnicos se centran en la aplicación en la industria de los materiales con estas propiedades y de cómo pueden producirse realmente. Aparece aquí un afán de lucro. En esta fase de investigación aplicada el objetivo es conseguir una primera muestra del material, aparato o mecanismo. Si cumple todas las propiedades esperadas dispondremos de una invención (o un invento). Se contará con algunas unidades que permitan registrar la patente y adecuar la producción a escala industrial [1].

Una vez obtenida la patente el proceso continúa hasta el lanzamiento del producto al mercado. Esta fase se conoce con el nombre de desarrollo tecnológico experimental. Con el objetivo de producir el invento en grandes cantidades y con fiabilidad absoluta, garantizando las propiedades alcanzadas en la etapa previa de investigación aplicada, la empresa busca el método de fabricación apropiado. Ésta debe contar con una planta piloto o un prototipo que le permita producir el producto del mismo modo que se quiere lanzar al mercado. De esta forma la empresa posee la tecnología necesaria para fabricar el producto (know-how).

Una vez analizada la eficacia y viabilidad de la planta piloto se realizarán las inversiones necesarias para producir en grandes cantidades y vender al mercado. Este producto será una innovación, justamente en el instante en que pertenezca a una orden de producción y sea comercializado y distribuido con normalidad.

La investigación científica y técnica, el desarrollo y la innovación constituyen factores imprescindibles para el desarrollo económico de un país y son la base de su progreso y bienestar sociales. Esto explica que desde finales de la década de los noventa, en la agenda de la Unión Europea, las políticas de I+D+i han ocupado un puesto destacado contemplándose como una de las claves para la creación de empleo y el crecimiento a largo plazo, la mejora de la competitividad y la productividad y para atender los retos internacionales [15].

3.3. Los proyectos de I+D+i

3.3.1. Tipologías

Un proyecto, según [9], es un proceso único que consiste en un conjunto de actividades coordinadas y controladas con fechas de inicio y fin, llevadas a cabo para lograr un objetivo conforme con requisitos específicos, los cuales incluyen los compromisos de plazos, costes y recursos.

- Los objetivos de un proyecto deben ser: concretos, mensurables, alcanzables y retadores.
- Un proyecto individual puede formar parte de una estructura de proyectos más grande.
- La organización puede ser temporal y establecerse únicamente durante la duración del proyecto.
- El resultado de un proyecto puede ser una o varias unidades de producto.

Aunque la definición es común existen varias clasificaciones o tipologías de proyectos. El denominador común de todos ellos es la aplicación de la "Rueda de Deming", también conocida como círculo PDCA (ver apartado *Características y particularidades de la gestión de proyectos de I+D+i*). Sin embargo existen diferencias básicas entre un proyecto empresarial cuyo objetivo es la creación de una empresa nueva o el desarrollo de una empresa existente, un proyecto industrial cuya finalidad es aumentar la productividad y, por otro lado, los proyectos de I+D+i, objeto de la presente tesina.

Características

Las características generales de los proyectos de I+D+i, según [10], se enumeran a continuación:

- Los resultados que se alcanzan pueden diferir sustancialmente de los objetivos iniciales.
 - No obstante pueden resultar interesantes o innovadores.
- Estos proyectos están apoyados, ocasionalmente, por las Administraciones.
 - Deducciones fiscales y otros ayudas directas son los incentivos que reciben las empresas que desarrollan proyectos de I+D+i.

A estas dos características cabría añadir, además:

- Elevado grado de incertidumbre.

Debido a que lo que se busca es algo nuevo con el objetivo de solventar o mejorar una situación, suele ser habitual la carencia de históricos. Esto hace que los plazos, los recursos y los medios tecnológicos y científicos cambien constantemente.

- Carencia de cultura innovadora.

El riesgo, la incertidumbre y la poca confianza en el mercado hacen que las organizaciones no apuesten por el desarrollo de proyectos de I+D+i como sería deseable.

Por tanto, estos cuatro serían los aspectos que hacen diferente a un proyecto de I+D+i del resto de proyectos.

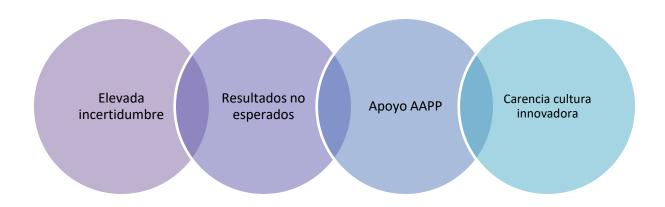


Fig. 12: Características proyectos I+D+i. Fuente: Elaboración propia.

A nivel empresarial los proyectos de I+D+i contribuyen a situar a las empresas y organismos que realizan este tipo de proyectos en una posición adecuada para afrontar los nuevos desafíos que surgen en una mercado cada vez más competitivo y globalizado. A nivel nacional, estos proyectos contribuyen a promover un planteamiento estratégico de la I+D+i en todos los sectores de la economía [7].

3.3.2. Estructura

Los proyectos de I+D+i deben desarrollarse, tal y como se indica en [11], siguiendo una metodología documentada.

A continuación se cita la estructura o aspectos mínimos que se deben considerar en el desarrollo de los proyectos:

- Metas y resultados previstos para el proyecto;
- Actividades a realizar;
- Recursos (materiales e inmateriales) requeridos;
- Hitos a cumplir, incluyendo las fechas de inicio y fin;
- Revisiones formales con objeto de valorar la progresión del proyecto;
- Determinación y gestión de riesgos;
- Control y documentación de resultados y cambios;
- Tareas de soporte requeridas para el desarrollo del proyecto (creatividad, vigilancia tecnológica e inteligencia competitiva, gestión de la propiedad intelectual e industrial, etc.)

A partir de estas pautas o aspectos el proyecto puede contener la información que el director de proyecto considere oportuna.

3.4. Características y particularidades de la gestión de proyectos de I+D+i

La gestión de proyectos es la aplicación de conocimientos, habilidades, herramientas y técnicas a las actividades del proyecto para cumplir con los requisitos del mismo [7]. Se logra mediante la aplicación e integración adecuadas de una serie de procesos agrupados, que conforman los cinco grupos de procesos: inicio, planificación, ejecución, seguimiento y control, cierre.

Una de las características de la gestión de proyectos de I+D+i es que dispone de Normativa propia: familia de normas UNE 166000.

El sistema de gestión de la I+D+i es, de acuerdo con [9], la parte del sistema general de gestión que incluye la estructura organizativa, la planificación de las actividades, las responsabilidades, las prácticas, los procedimientos, los procesos y los recursos para desarrollar, implantar, llevar a efecto, revisar y mantener al día la política de I+D+i de la organización.

La implementación de un sistema de gestión de la I+D+i permite a las organizaciones, según [11], ser más innovadoras y fomentar el éxito de sus innovaciones en productos, servicios, procesos, diseños organizativos o modelos de negocio, permitiendo de este modo mejorar sus resultados, su valor y su competitividad. El sistema incluye todas las tareas necesarias para obtener innovaciones de manera continua.

Una de las metodologías más conocidas para la gestión de proyectos, en la cual se basa el sistema de gestión de la Norma UNE 166002, es la rueda de Deming o PDCA (Plan-Do-Check-Act). Los cuatro aspectos clave de la rueda o ciclo de Deming son:

- P Plan Planificar
 - Determinar las actividades.
 - Definir los recursos.
 - o Definir las responsabilidades.
 - Establecer los plazos.
 - Determinar los indicadores adecuados para medir el cumplimiento de los objetivos.
- D Do Realizar
 - Gestionar ideas.
 - Desarrollar proyectos.
 - o Proteger y explotar resultados.

- C – Check – Comprobar

- o Determinar los métodos de seguimiento, medición, análisis y evaluación.
- o Evaluar el desempeño y eficacia del sistema de gestión de I+D+i.
- Obtener información sobre la contribución del sistema a aspectos tales como beneficios, ingresos, cuota de mercado.

- A – Act – Actuar

- o Identificar las desviaciones y/o no conformidades.
- o Establecer acciones correctivas adecuadas para eliminar sus causas.
- Establecer acciones para mejorar la eficacia y los resultados del sistema de gestión de la I+D+i.

4. Los proyectos de I+D+i desarrollados en el Instituto Tecnológico de la Energía

4.1. Introducción al instituto

El Instituto Tecnológico de la Energía, ITE, es un Centro Tecnológico privado sin ánimo de lucro cuyos fines son:

- Fomentar la investigación científica y el desarrollo tecnológico en el ámbito de la energía.
- Incrementar la calidad de producción.
- Contribuir al progreso de la tecnología en los sectores empresariales energético, eléctrico y electrónico
- Contribuir al desarrollo y aplicación de las tecnologías de la información y comunicaciones a los sectores anteriores
- Lograr una eficiencia energética óptima garantizando la defensa y conservación del Medio Ambiente

La misión de ITE es:

- Contribuir al posicionamiento de las empresas asociadas dentro de los mercados nacionales e internacionales, con una oferta de servicios tecnológicos avanzados y de I+D+i empresarial.
- Promover y articular la cooperación para maximizar el impacto de los recursos destinados a la I+D empresarial valenciana.
- Desarrollar las capacidades y estructuras organizativas necesarias para alcanzar los niveles de masa crítica, excelencia y flexibilidad necesarios para satisfacer las necesidades empresariales.

El Centro dispone de tres ubicacioness: la Sede Central, ubicada en el Parque Tecnológico de Valencia, la sede social ubicada en la Universidad Politécnica de Valencia y un laboratorio de Potencia ubicado en el Polígono Industrial Fuente del Jarro de Paterna.

Se detalla a continuación el organigrama funcional de ITE con objeto de poder comprender los apartados siguientes.

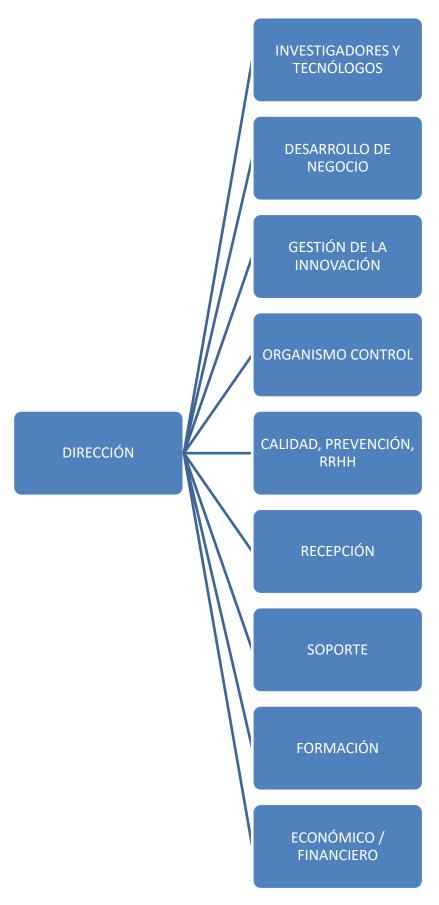


Fig. 13: Organigrama de ITE. Fuente: Elaboración propia.

A continuación se dedica un organigrama exclusivo a Investigadores y Tecnólogos, por ser los actores principales de dicha tesina.

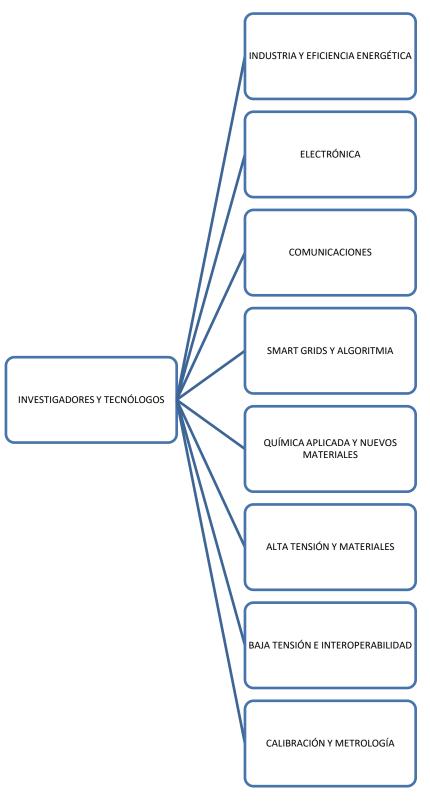


Fig. 14: Organigrama de Investigadores y Tecnólogos ITE. Fuente: Elaboración propia.

Por último, se describen los Comités en los que se organiza el Instituto Tecnológico de la Energía:

Fig. 15: Comités ITE. Fuente: Elaboración propia.

Dentro del Comité de I+D+i, que es el que presenta un mayor interés en la tesina, se encuentra una representación de cada una de las áreas especializadas (representación del área de Industria y Eficiencia Energética, del área de Electrónica, del área de Comunicaciones, de Smart Grids y Algoritma, de Alta Tensión y Materiales, etc.)

4.2. Tipologías de proyectos desarrollados

Los proyectos desarrollados en el Instituto se enmarcan dentro de las siguientes líneas de I+D+i:

- Almacenamiento Energético y Nuevos Materiales.
 - Proyectos vinculados al desarrollo de materiales carbonosos y poliméricos para electrodos, membranas y separadores, utilizables en baterías, supercondensadores y pilas de combustible.
 - o Proyectos para desarrollo de materiales piezoeléctricos.
- Bienes de Equipo para las Infraestructuras Eléctricas de Baja y Media Tensión.
 - Proyectos para el diseño de aparamenta de protección para las redes inteligentes.
 - Proyectos vinculados con el desarrollo de electrónica de potencia (convertidores, FACTS,...).
 - Proyectos de gestión de activos (descargas parciales, capacidad de los cables de alta tensión).
- Arco Eléctrico.
 - Proyectos relacionados con ensayos y desarrollo de equipos de protección individual (EPIs).
 - o Proyectos en base a entornos seguros e inteligentes de trabajo.
- Smartgrids.
 - Proyectos relacionados con la gestión de la demanda.
 - Proyectos de integración de almacenamiento, energías renovables (EE.RR.) y vehículo eléctrico.
 - o Proyectos asociados a nuevos mercados energéticos.
 - o Proyectos de microrredes.
- Movilidad y Transporte Eléctricos.
 - o Proyectos de desarrollo de sistemas de recarga de vehículos eléctricos.
 - Proyectos de desarrollo de sistemas de gestión de baterías (BMS).

- Interoperabilidad.

Proyectos de Comunicaciones con contadores de energía inteligentes.

- Inteligencia Energética y Percepción Social.
 - Proyectos de desarrollo de Sistemas de monitorización y control energético en industrias.
 - o Proyectos de implementación de Sistemas de monitorización y control energético en entornos residenciales.
 - o Proyectos de desarrollo de Sistemas de gestión de energías renovables.
 - o Proyectos vinculados con Mejora de la eficiencia energética.

4.3. Sistema de gestión de proyectos utilizado actualmente

El Instituto Tecnológico de la Energía dispone de un sistema de gestión de calidad. Establece, documenta, implementa y mantiene dicho sistema de acuerdo a la Norma UNE-EN ISO 9001:2000.

Del mismo modo, sus laboratorios de ensayo y calibración siguen el Sistema de Gestión ISO/IEC 17025. Esta norma internacional desarrollada por ISO establece los requisitos que deben cumplir los laboratorios.

Respecto a la gestión de proyectos, el Instituto cuenta con una serie de documentos internos: Procedimiento de generación de proyectos, Procedimiento de gestión de proyectos, Procedimiento de gestión del conocimiento, Procedimiento de transferencia del conocimiento, Procedimiento de vigilancia pero no dispone de un Sistema de Gestión S basado en norma.

Gestión de proyectos en el ITE

Los proyectos parten del Comité Científico. Esta oficina o Comité, responsable de las estrategias del Instituto, es quien decide qué proyectos llevar a cabo o qué proyectos descartar en función de si están alineados o no con las líneas estratégicas del mismo. Así mismo los proyectos nacen también del Comité de I+D+i. Una vez seleccionados los proyectos se redirigen a una de las áreas especializadas de I+D+i, es decir, al departamento que, por sus capacidades, mejor encaja el proyecto y se designa a la persona que será responsable de la gestión del mismo.

Para la planificación de los mismos se emplea una herramienta de desarrollo interno ('Planificador') desarrollada en Excel y vinculada con SAP. Sin embargo desde cada área la gestión se realiza de maneras diversas. Existen, por tanto, tantas metodologías en el Centro como áreas de especialización.

Esto implica que ni las herramientas empleadas son las mismas: unos responsables de proyecto emplean una hoja de cálculo (Excel) para realizar la planificación, otros hacen uso de Microsoft Project, otros simplemente gestionan el proyecto desde un editor de texto (Word), etc. ni los procedimientos seguidos son iguales.

El hecho de coexistir diferentes procedimientos, herramientas, etc. en la gestión de los proyectos llevados a cabo en el Instituto supone una serie de desventajas, tanto para la visión general de Dirección como para el cliente. Supongamos, por ejemplo, que el proyecto A para el cliente B es gestionado por el departamento C, cuyo responsable es D. Esta persona está acostumbrada a planificar el proyecto mediante MS-Project, teniendo en cuenta los recursos humanos disponibles en la empresa y los recursos materiales de la misma. Realiza controles periódicos del proyecto e informa al cliente semanalmente, acostumbra a redactar actas de reunión y las distribuye el mismo día a las personas partícipes del proyecto, e informa a Dirección mensualmente de los avances / retrasos del mismo. Imaginemos ahora que entra otro proyecto E para el mismo cliente B pero debido a la temática del mismo es asignado al departamento F, cuyo responsable es G. Este responsable realiza la planificación del proyecto en MS-Project pero al contrario que D, no informa al cliente de manera regular, las actas de las

reuniones se envían a los quince días de la convocatoria de la misma y Dirección no recibe reportes del proyecto, a no ser que las pida expresamente.

Esto podría influir en la satisfacción del cliente, por el hecho de estar habituado a recibir un feedback semanal, generará el descontento de Dirección por desconocer el estado del proyecto, etc.

5. Desarrollo de un sistema de gestión de proyectos de I+D+i para el Instituto Tecnológico de la Energía siguiendo la UNE-ISO 21500 y el estándar UNE 166000.

5.1. Objetivo del desarrollo del sistema

Las razones expresadas en el apartado anterior *Sistema de gestión de proyectos utilizado actualmente* son las que motivan a la empresa a disponer de un sistema de gestión de proyectos.

El objetivo/os de dicho sistema son claros:

- En primer lugar permitir una mejor gestión de los proyectos: seguir un procedimiento implica mantener un orden y no pasar nada por alto. Es posible que algo que llevamos en mente se nos pueda escapar pero si seguimos un manual, estaremos contemplado siempre cada punto.
- En segundo lugar, optimizar los recursos. Si la gestión de los proyectos se lleva a cabo mediante una misma sistemática, se dispondrá de las horas exactas que se requieren de cada recurso en cada proyecto, se visualizarán los posibles solapes, con lo cual el uso de recursos, tanto humanos como materiales, será óptimo.
- En tercer lugar, conseguir mejores resultados. Si se sigue una metodología de gestión de proyectos y se realiza un control exhaustivo de los mismos, es posible detectar a tiempo retrasos en plazo, sobrecostes, falta de recursos, y solventarlos antes de que sea demasiado tarde. Por tanto, los resultados finales del proyecto serán mejores.
- Por último, satisfacción tanto de la Dirección como del cliente. La satisfacción de los mismos será mejor puesto que conocerán la metodología de gestión del proyecto, que será la misma sea cual sea la temática del proyecto.

Como se ha comentado en *Características y particularidades de la gestión de proyectos de I+D+i* un sistema de este tipo permite a las organizaciones ser más innovadoras y fomentar el éxito de sus innovaciones en productos, servicios, procesos, diseños organizativos o modelos de negocio.

Entre los principales beneficios de la implementación de un sistema de gestión de la I+D+i se encuentran, como se cita en [8], el aumento de los ingresos procedentes de las innovaciones, la generación de nuevas ideas y valores a la organización, la identificación y reducción de riesgos, el aprovechamiento de la creatividad y la inteligencia en conjunto de la organización, la colaboración de todos los miembros de la organización y el trabajo en equipo.

5.2. Estructura del sistema

El sistema de gestión de proyectos de I+D+i seguirá la siguiente estructura:

- Requisitos Generales
- Requisitos de planificación, implementación y seguimiento
 - o Acta de Constitución del Proyecto
 - o Elaboración del Plan del proyecto
 - Identificación de riesgos
 - o Implementación y seguimiento del proyecto
- Requisitos de las partes interesadas
- Requisitos de documentación
- Requisitos de las comunicaciones
- Requisitos de protección y explotación de resultados

5.3. Manual del sistema y Procedimientos operativos

Sistema de Gestión de Proyectos de I+D+i

5.3.1. Requisitos generales

Este Sistema tiene como objetivo que el Instituto Tecnológico de la Energía (ITE) establezca, documente, implemente y mantenga un sistema de gestión de proyectos de I+D+i de acuerdo a las Normas UNE-ISO 21500 y la familia de normas UNE 166000 por medio de los documentos relacionados en el apartado *Requisitos documentación*.

El Instituto Tecnológico de la Energía tiene identificados los procesos para el sistema de gestión de los proyectos de I+D+i. Los procesos aplicables se han agrupado en 4 grandes grupos o bloques:

Procesos del proyecto en sí mismo

Los procesos del proyecto son aquellos totalmente necesarios para que éste se desarrolle con éxito. Son los descritos en el apartado `Requisitos planificación, implementación y seguimiento'.

Procesos relacionados con los stakeholders

Los procesos relacionados con los stakeholders o partes interesadas son los descritos en los apartados de 'Requisitos de las partes interesadas' y 'Requisitos de las comunicaciones'. El objetivo es conocer al máximo nivel de detalle los requisitos de los stakeholders y el medio, frecuencia, etc. en el que se comunicará la información. Constituyen un grupo en sí mismo por la importancia de las partes interesadas para el éxito del proyecto.

Procesos de externalización del producto o servicio

Este grupo de procesos se describe en el apartado 'Requisitos de protección y explotación de resultados' y tiene como objetivo último analizar la viabilidad de que el invento se convierta en innovación[11], es decir, encuentre un hueco en el mercado.

Procesos de documentación

Se describen en el apartado 'Requisitos de documentación' e incluyen todos los documentos que contiene el Sistema de Gestión de Proyectos de I+D+i.

5.3.2. Requisitos planificación, implementación y seguimiento

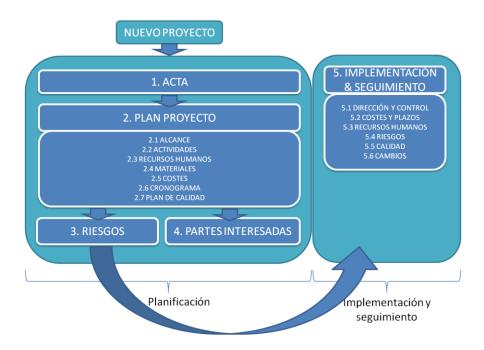


Fig. 16: Requisitos planificación, implementación y seguimiento. Fuente: Elaboración propia.

5.3.2.1. Realización del Acta de Constitución del Proyecto

Dentro del área a la cual sea asignado el proyecto se nombrará a un Responsable de proyecto que será el encargado de redactar el Acta de Constitución del mismo.

Para ello deberá completarla siguiendo el modelo que se muestra en el Anexo 1: Acta constitución proyecto (MODELO).

Este acta deberá ser remitida al Comité Científico en el plazo máximo de una semana, vía email, desde la notificación de la existencia del nuevo proyecto.

Una vez aprobada por el Comité Científico deberá ser enviada al cliente, vía email y vía postal, con objeto de que verifique que los objetivos son los correctos. El cliente deberá devolverla firmada (tanto la copia electrónica como la copia de papel).

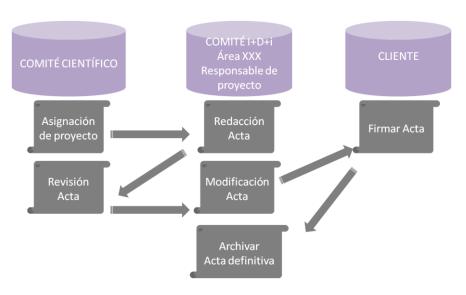


Fig. 17: Proceso de realización del Acta de Constitución del Proyecto. Fuente: Elaboración propia.

5.3.2.2. Elaboración del Plan del proyecto

Este proceso es uno de los más importantes, por lo que deberá prestarse especial atención.

Cabe decir que este Plan no debe diferir, de forma significativa, de la propuesta inicial entregada a cliente. Se trata de la matización y concreción de cada uno de los aspectos considerados en dicha propuesta.

El Responsable de proyecto será el encargado de elaborar el plan. Los pasos a seguir serán los siguientes:

Alcance

Revisar con detalle el alcance del proyecto, partiendo de la propuesta (oferta) realizada por el Instituto Tecnológico y aprobada por el cliente.

Se transcribirá este alcance, o bien la ampliación o modificación del mismo, en un nuevo documento 'Plan del proyecto' y este será el definitivo, tras la aprobación por parte del cliente.

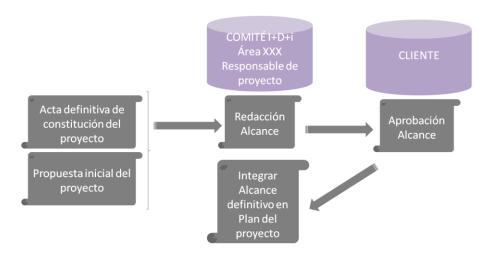


Fig. 18: Proceso de redacción del alcance del proyecto. Fuente: Elaboración propia.

Actividades / tareas

Revisar detenidamente las actividades / tareas planteadas en la propuesta. Desglosar en subtareas si se considera necesario.

- Se transcribirán las mismas o las nuevas tareas en el documento 'Plan del proyecto'.
- Así mismo se secuenciarán todas ellas de manera que todas ellas estén vinculadas mediante dependencias para producir un diagrama de red y pueda determinarse el camino crítico.
- En este punto se estimará también la duración exacta de cada una de ellas.

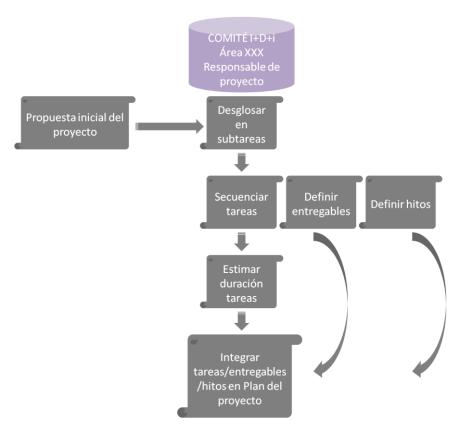


Fig. 19: Proceso de definición de actividades. Fuente: Elaboración propia.

En este punto se definirán también los entregables del proyecto, así como los hitos del mismo. Véase Anexo 3: Plan del proyecto (MODELO).

Recursos humanos

Conocidas las tareas a realizar se determinarán los perfiles necesarios para llevar a cabo el proyecto. Estos perfiles determinarán los recursos humanos que conformarán el equipo de proyecto.

Se completará una ficha con los recursos humanos necesarios, así como la disponibilidad requerida y se trasladará al Comité Científico, que será quién determine la aprobación o no de dichos recursos. Véase Anexo 2: Ficha solicitud recursos humanos (MODELO).

En caso de rechazar alguno de ellos se deberá tomar una decisión, con el siguiente orden de prioridad:

- 1. Buscar un sustituto dentro de la organización.
- Asignar las tareas de dicho recurso a otra persona del equipo.
 En ese caso se alargará el proyecto en el tiempo o bien el recurso tendrá más carga de trabajo.
- 3. Buscar un sustituto externo a la organización (subcontrata).

Es decir, se deberá escoger la primera opción. Si no es posible porque no existe otro perfil igual, se escogerá la segunda opción. Y así hasta la última opción.

Una vez que se tengan claros los recursos humanos, se documentará esta información en el Plan del proyecto, incluyendo tanto el perfil como el número de horas requerido, así como el nombre, apellidos y currículum de la persona. Véase Anexo 3: Plan del proyecto (MODELO).

En este punto se está en disposición de asignar recursos a tareas, entregables e hitos.

Se incluye en este punto un Plan de Formación de los recursos. En base al alcance del proyecto, se determinará si se requieren conocimientos adicionales para cada uno de los recursos, solicitando los cursos, jornadas, etc. necesarios para ello. Dicho Plan de Formación será trasladado al departamento de Calidad. Véase Anexo 3: Plan del proyecto (MODELO).

Aparte de los cursos, jornadas, etc. los recursos dispondrán de dos horas semanales para dedicarlas a la lectura de artículos, libros, etc. relacionada con la temática de los proyectos en los que estén involucrados. Se deberá anotar la fecha así como el título de lo que se haya trabajado cada semana, en un documento común. Véase Anexo 11: Formación interna (MODELO).

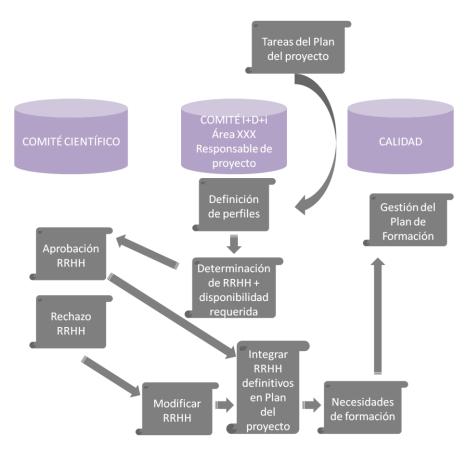


Fig. 20: Proceso de selección de recursos humanos. Fuente: Elaboración propia.

Adquisición de materiales / equipos / servicios.

El siguiente paso es determinar los materiales, equipamiento o servicios que serán requeridos en el proyecto. Se realizarán dos listados: uno de ellos con los materiales, equipos y/o servicios a contratar y otro con los materiales, equipos y /o servicios propios que van a ser empleados. Este último listado resulta útil para poder reservar o disponer del equipamiento necesario y que no sea empleado en otro proyecto.

Así mismo serán incluidos tres proveedores por cada material / equipo / servicio con objeto de poder escoger entre la oferta o propuesta más competitiva. Esta información será completada según el Anexo 4: Adquisiciones Contrato (MODELO) y remitida al departamento de Compras, pues será éste el encargado de realizar la petición de ofertas y seleccionar la opción más competitiva.

Tanto el listado de materiales, equipos y/o servicios propios como el listado con los proveedores ya definitivos serán integrados en el Plan del proyecto.

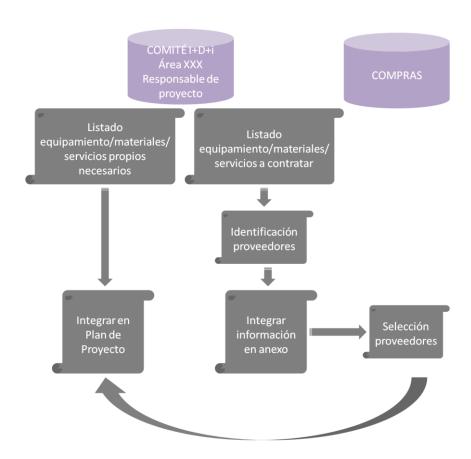


Fig. 21: Proceso de adquisiciones. Fuente: Elaboración propia.

Estimación de costes

En este punto se calculará el presupuesto ajustado del proyecto (la estimación del mismo ya se realizó en la oferta o propuesta). Cabe remarcar que dicho presupuesto no deberá desviarse, de manera significativa, de la propuesta.

Para ello, además de las horas de recursos humanos calculadas en el punto anterior, se realizará un listado de los recursos materiales a emplear y su coste.

Dicho presupuesto quedará documentado en el Plan del proyecto. Véase Anexo 3: Plan del proyecto (MODELO).

Fig. 22: Proceso de obtención de presupuesto. Fuente: Elaboración propia.

Elaboración del cronograma

Se empleará el Diagrama de Gantt. Para ello se hará uso de MS-Project, quedando reflejados en el cronograma las tareas, los hitos, los entregables a realizar y los recursos que participan en cada una de ellas. Además de formato .mpp se deberá generar una copia en formato .pdf, la cual se distribuirá al Comité Científico y al cliente.

Este cronograma será integrado en el Plan del proyecto. Véase Anexo 3: Plan del proyecto (MODELO).

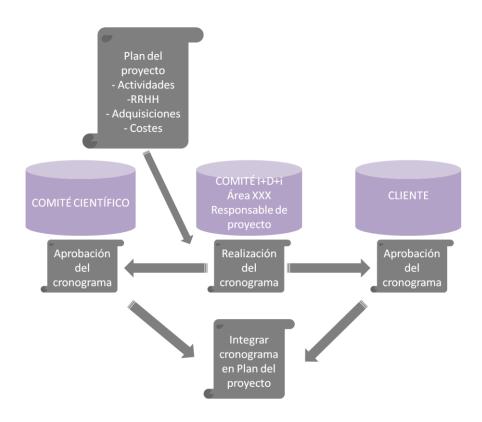


Fig. 23: Proceso de elaboración del cronograma. Fuente: Elaboración propia.

Plan de calidad

Se determinará en este punto las normas a aplicar en el transcurso del proyecto, así como los requisitos a cumplir exigidos por las mismas.

Otro aspecto a tener en cuenta aquí será la calidad de los entregables, cuyos requisitos de calidad serán definidos por el Responsable de proyecto y revisados por él y por el Comité Científico. Esta información será incorporada en el Plan del proyecto.

El Plan de Calidad, en lo referente a Normas, será consensuado con el departamento de Calidad. Véase Anexo 3: Plan del proyecto (MODELO).

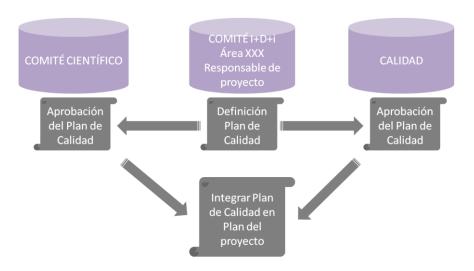


Fig. 24: Proceso de realización del Plan de Calidad. Fuente: Elaboración propia.

5.3.2.3. Identificación de riesgos

Este apartado está dedicado a identificar los posibles riesgos que puedan aparecer durante el transcurro del proyecto y las posibles propuestas para solventar dichos riesgos. Para ello Responsable de proyecto, junto con su equipo, completará el Anexo 6: Riesgos (MODELO). Este documento será remitido a las diversas partes interesadas (cliente, Comité Científico, proveedores) con objeto de contemplar todos y cada uno de los riesgos.

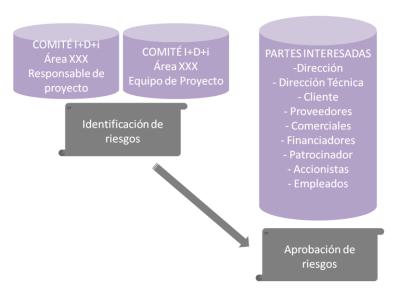


Fig. 25: Proceso de Identificación de riesgos. Fuente: Elaboración propia.

5.3.2.4. Implementación y seguimiento del proyecto

Dirección y Control del trabajo del proyecto

Será el Responsable de proyecto la persona encargada de dirigir la realización de las tareas programadas y gestionar los diversos temas técnicos y organizativos del proyecto, así como temas con proveedores.

Aunque la parte administrativa será responsabilidad del departamento Económico / Financiero y la facturación responsabilidad del departamento Comercial, ambos deberán estar coordinados con el área especializada correspondiente que gestione el proyecto, pues será quien apruebe las acciones.

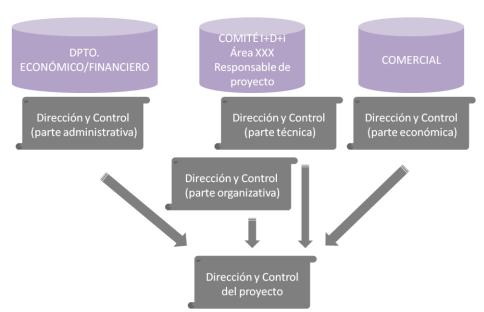


Fig. 26: Proceso de Dirección y Control del proyecto. Fuente: Elaboración propia.

Con objeto de disponer de esta información documentada, el Responsable de proyecto se encargará de elaborar informes periódicos cuyo contenido sea:

- Datos del estado del proyecto.
- Problemas ocurridos durante la realización del proyecto.

Dicha periodicidad dependerá de la duración del proyecto. Las tareas de duración cero o hitos pueden ser una buena marca de esta periodicidad.

Al final del proyecto, además, deberá elaborar un informe de lecciones aprendidas, así como un informe de finalización del proyecto.

La finalización y revisión de los entregables constituirá un medio para ir controlando el trabajo.

Control de los costes y los plazos

El Responsable de proyecto será la persona encargada de realizar el seguimiento de las variaciones de costos y plazos.

Este seguimiento se realizará de forma periódica, una vez finalizado cada hito. Para ello se recomienda hacer uso de la técnica de 'Análisis del valor ganado', mediante el programa MS-Project.

Algunos de los indicadores a calcular serían la desviación o variación de costes (DC), el índice de rendimiento de los costes (IRC). La desviación o variación de plazos (DP) y el índice de rendimiento del programa (IRP). Deberá completarse el documento Anexo 5: Control costes y plazos (MODELO). Este documento será remitido a Dirección con objeto de mantenerle informado.

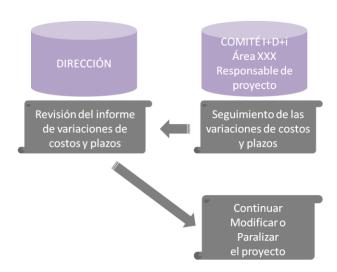


Fig. 27: Proceso de Control de costes y plazos. Fuente: Elaboración propia.

Control de los recursos

Dentro del proyecto, por cada uno de los recursos se dispondrá de un calendario, en formato Excel (.xlsx), donde se anoten las tareas a realizar cada semana (se dedicará una pestaña independiente para cada recurso, en la misma hoja Excel). Estas tareas serán consensuadas entre la persona responsable del área, la cual gestiona el proyecto, y el propio recurso.

Se mantendrán dos reuniones semanales (una al inicio de semana y otra al final) con todos los miembros del equipo de trabajo, de una duración máxima de 30' cada una, aproximadamente. En ellas se comentarán brevemente los avances del proyecto.

El Responsable de proyecto será la persona encargada de tomar notas.

Todos los recursos tendrán acceso a la información relevante del proyecto.

De esta forma además de controlar el trabajo de los diferentes recursos se controla el avance del proyecto.

Control de los riesgos

El Responsable de proyecto será la persona designada para realizar el control de riesgos.

Cuando se produzca un riesgo o bien cuando finalice un hito, se deberá revisar el listado de riesgos identificados con el objetivo de reducir todos los factores que puedan afectar negativamente al proyecto. Este seguimiento se realizará a través de la ficha del Anexo 7: Control de riesgos (MODELO).

Control de la calidad

Tomando como base el Plan de proyecto, será el Comité Científico quien verifique que los ensayos realizados o las actividades llevadas a cabo en el proyecto y los entregables cumplen con los requisitos de calidad planificados. El responsable del Comité Científico será el encargado de emitir un informe con los resultados.

Control de los cambios

Todos los miembros del equipo de proyecto serán responsables de registrar los cambios que acontezcan a lo largo del proyecto. Para ello existirá un documento normalizado donde se vayan anotando las diferentes revisiones. Véase Anexo 8: Control de cambios en el Plan del proyecto (MODELO). El responsable del mismo será el único que pueda aceptar o rechazar dichos cambios.

La evaluación de los mismos en términos de beneficio, alcance, recursos, tiempo, costo, calidad y riesgo tendrá lugar al final del proyecto y será realizada por el Responsable de proyecto junto con los miembros del equipo.

5.3.3. Requisitos partes interesadas

En este caso será el Comercial, junto con la ayuda del Responsable de proyecto, quien realice el registro de partes interesadas así como los intereses de las mismas, siguiendo para ello el modelo del Anexo 9: Partes interesadas (MODELO).

La relación entre las partes interesadas deberá quedar reflejada mediante un diagrama de bloques.

Esta tarea se realizará paralelamente a las tareas de planificación, implementación y seguimiento.

Se establecerá un calendario con objeto de revisar el cumplimiento de los intereses de los diversos stakeholders.

5.3.4. Requisitos documentación

La documentación del sistema de gestión de proyectos incluye:

- El Manual del sistema y procedimientos operativos, que tiene como objeto describir el sistema de gestión de proyectos por el que se rige el ITE y marca las líneas que deben seguir el resto de los documentos que soportan el sistema, de manera que resulten coherentes.
- Las plantillas necesarias creadas para cada uno de los procesos desarrollados en el Manual (Anexo 1: Acta constitución proyecto (MODELO), Anexo 2: Ficha solicitud recursos humanos (MODELO), Anexo 3: Plan del proyecto (MODELO), Anexo 4: Adquisiciones Contrato (MODELO), Anexo 5: Control costes y plazos (MODELO), Anexo 6: Riesgos (MODELO), Anexo 7: Control de riesgos (MODELO), Anexo 8: Control de cambios en el Plan del proyecto (MODELO), Anexo 9: Partes interesadas (MODELO), Anexo 10: Requisitos comunicación (MODELO) y Anexo 11: Formación interna (MODELO)).
- El informe de finalización del proyecto.
- El informe de lecciones aprendidas del proyecto, incluyendo el listado de equipos sobre los que invertir a la finalización del mismo.

Con objeto de llevar un control y seguimiento ordenado deberá crearse, para cada uno de los proyectos, una carpeta del proyecto con el siguiente formato: fecha_nombreproyecto_nombrecliente, donde el orden de la fecha será el año (con 4 dígitos), el mes (dos dígitos) y el día (2 dígitos) sin espacios, el nombre del proyecto en minúscula y sin espacios y el nombre del cliente en mayúscula y sin espacios.

Dentro de esta carpeta se crearán las siguientes subcarpetas:

```
CARPETA PROYECTO (fecha_nombreproyecto_nombrecliente)

00_Informacion

01_Materiales

02_Memoria

00_Entregables

03_Planos

04_Imagenes_Graficos

05_Gestion

00_Actas_reunion

01_Correos

02_Anexos_manual_gestion

06_Proteccion_Explotacion
```

La documentación de cada proyecto se conservará durante 5 años (el mínimo recomendado por [1] es de 3 años).

5.3.5. Requisitos comunicación

Para que un proyecto sea exitoso es tarea imprescindible comunicar la información del proyecto a todas las partes involucradas en él.

Por tanto, el Responsable de proyecto, partiendo del listado de stakeholders (Véase *Anexo 9: Partes interesadas (MODELO))* planificará y gestionará las comunicaciones a lo largo de todo el proyecto. Se seguirá el modelo del Anexo 10: Requisitos comunicación (MODELO).

Además de completar la información requerida en la tabla incluida en el anexo, deberá realizarse un diagrama de flujo teniendo en cuenta todos los stakeholders participantes en el proyecto.

Se establecerá un calendario con objeto de revisar que todas las partes interesadas son debidamente informadas.

5.3.6. Requisitos de protección y explotación de resultados

Finalizado el proyecto o bien durante su ejecución, debe analizarse la posibilidad de proteger los resultados del mismo,

Partiendo del Informe de lecciones aprendidas y del Informe de finalización del proyecto (ver apartado Dirección y Control del trabajo del proyecto) deberá completarse una ficha de registro con los resultados del proyecto, indicando el autor/es del mismo, el titular de la idea,

y la fecha de creación. Además se incluirá una descripción detallada del resultado o resultados del mismo, citando las novedades que aporta respecto a otros proyectos similares en el mercado. De esta forma quedará documentado el conocimiento adquirido con el desarrollo del nuevo proyecto, independientemente de que se protejan o no los resultados.

Deberá incluirse la explotación económica de los resultados, su participación en dicha explotación y cómo contribuyen los resultados del proyecto en mejorar la competitividad de la Organización.

Esta ficha será remitida tanto a Calidad como al Comité Científico, quienes evaluaran la posibilidad de proteger los resultados: invención protegible mediante patente, invención no protegible mediante patente, invención protegible mediante modelo de utilidad, invención no protegible mediante modelo de utilidad, invención protegible mediante diseño industrial. Así como la posibilidad de introducir la innovación en el mercado y realizar transferencia tecnológica.

Para ello será necesario que estos dos departamentos realicen un estudio y análisis regular del entorno, considerando aspectos del mercado, aspectos técnicos, aspectos políticos, aspectos económicos y aspectos sociales. Además deberán analizar internamente la organización: las prácticas de gestión de I+D+i, las capacidades de cada recurso, las instalaciones y equipamiento, la actitud y el compromiso de cada uno de los miembros hacia la innovación, los logros y los fracasos en los últimos años. Así pues la vigilancia tecnológica será tarea principalmente del Comité Científico y del departamento de Calidad.

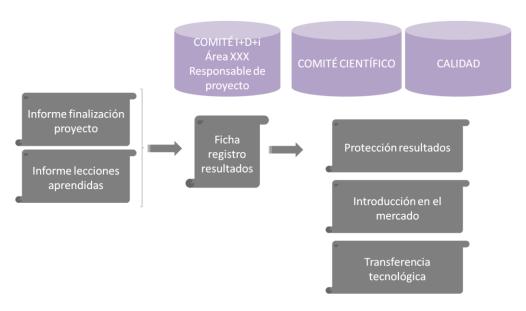


Fig. 28: Proceso de protección y explotación de resultados. Fuente: Elaboración propia.

5.4. Análisis crítico de la implantación de un sistema de gestión de proyectos de I+D+i

Implantar y seguir un sistema de gestión de proyectos de I+D+i, como el que aquí se propone, aporta muchas ventajas:

- Sirve como guía para la gestión adecuada del proyecto.
- Implica que todos los miembros de la empresa trabajen con el mismo patrón y para la Dirección del Centro y para el cliente resulta más familiar y sencillo conocer el seguimiento del proyecto.
- Permite detectar innovaciones en el transcurso del proyecto, pues se hace hincapié en documentar cada actividad realizada y se potencia la formación de los recursos humanos participantes en el proyecto.

Sin embargo, se detectan algunas dificultades que hacen que el sistema no sea tan sencillo de aplicar o no resulte tan eficiente como podría serlo:

- Los responsables de los Comité de I+D+i, así como otros recursos que vayan a ser Responsable de proyecto, deberían ser conocedores de las herramientas que aquí se citan: manejar el Microsoft Project con soltura, conocer la técnica del 'Análisis del valor ganado' y saber el significado de los diferentes indicadores, etc. En caso de no ser así, la empresa debería formarlos.
- No siempre las partes interesadas del proyecto están por la labor de ayudar, es decir, solicitar a un proveedor que verifique o amplíe la ficha de riesgos puede ser una tarea muy compleja.
- El cliente no es siempre tan receptivo como el sistema de gestión requiere. No todos los clientes verifican ese mismo día el Acta de Constitución del proyecto, revisan los entregables en un plazo corto de tiempo, etc. Todo esto puede conllevar retrasos importantes en el proyecto.
- El Comité Científico y la Dirección del Centro deben atender todos los proyectos que se están desarrollando, por lo que no siempre se recibirá respuesta inmediata de ellos. En ocasiones será necesario insistir.
- En la misma línea, el departamento de Calidad es único para todo el Centro, no para cada proyecto, por lo que no le será posible siempre revisar la Normativa de los proyectos, etc. en los plazos indicados.
- La sustitución de recursos no es tan trivial como aquí se propone. Entre miembros de la organización no es fácil encontrar un sustituto (por las capacidades y por el número de proyectos que se desarrollan a la vez en el Centro) y contratar a un recurso externo requiere su tiempo (personal interno deben realizar varias entrevistas hasta encontrar el perfil adecuado).

FORTALEZAS

- •Guía a los Directores de Proyecto para gestionar correctamente
- Unifica procedimientos
- Potencia la capacidad de los recursos humanos
- Contempla los riesgos y problemas durante todo el proyecto

DEBILIDADES

- •Se requiere participación de todos los stakeholders (esto no siempre es posible)
- •Se requiere formación específica de los Responsables de proyecto

OPORTUNIDADES

- Detección de innovaciones
- •Lanzamiento a mercado de productos y servicios

AMENAZAS

 Mayor burocracia --> retrasos en el proyecto, obsolescencia del producto/servicio

Fig. 29: Análisis DAFO Sistema de Gestión de Proyectos de I+D+i. Fuente: Elaboración propia.

5.5. Caso de estudio, aplicación para un proyecto concreto

En este apartado se lleva a cabo la aplicación del sistema de gestión desarrollado a un proyecto real. Por política de confidencialidad todos los nombres propios del proyecto serán ficticios: el cliente real, así como la denominación del proyecto, nombres y apellidos de los recursos, proveedores, etc. Los nombres de las tareas, presupuesto, cronograma, etc. son datos no reales, aunque guardan similitud en cuanto a orden de magnitud con los reales.

El proyecto 'Análisis de la duración de un cable de potencia bajo diversas sobrecargas' consiste en el desarrollo de una batería de ensayos con la pretensión de extraer conclusiones acerca de cómo se ve afectado un cable de potencia, así como sus accesorios cuando se ve sometido a diferentes niveles de corriente. El objetivo último del proyecto es poder ampliar la capacidad de los cables que actualmente se encuentran en servicio, sin correr el riesgo de que puedan verse dañados. Se trata de un proyecto de I+D+i.

El proyecto, al tratarse de alta tensión, fue asignado al área de ALTA TENSIÓN y MATERIALES, siendo la responsable del mismo Clara Martínez Jiménez. Así mismo en este caso el Responsable de proyecto es Clara Martínez Jiménez.

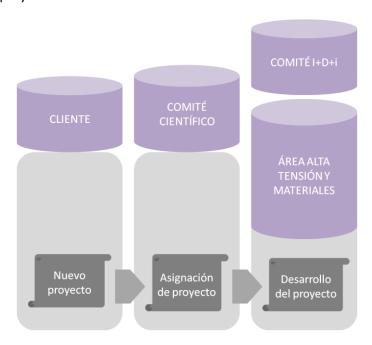


Fig. 30: Asignación de proyecto por temática. Fuente: Elaboración propia.

Siguiendo el Manual descrito en esta tesina se completan cada uno de los Anexos (1-2-3-4-5-6-7-8-9-10-11).

Anexo 1: Acta constitución proyecto

Anexo 2: Ficha solicitud recursos humanos

Anexo 3: Plan del proyecto

Anexo 4: Adquisiciones Contrato

Anexo 5: Control costes y plazos

Anexo 6: Riesgos

Anexo 7: Control de riesgos

Anexo 8: Control de cambios en el Plan del proyecto

Anexo 9: Partes interesadas

Anexo 10: Requisitos comunicación

Anexo 11: Formación interna

Como puede verse en la cabecera de los Anexos, unos corresponden a la versión 0 (V0), otros a la versión 1 (V1), etc. Si se incluyera el proyecto completo deberían mostrarse todas las versiones de cada uno de los Anexos, pero únicamente se muestra una de ellas por simplicidad.

Respecto a otra información relevante que debe completarse siguiendo el manual de gestión, se muestra:

INFORME FINALIZACIÓN DEL PROYECTO

Doña Clara Martínez Jiménez declara que el proyecto 'Análisis de la duración de un cable de potencia bajo diversas sobrecargas' ha finalizado (07/08/2016) de manera exitosa a pesar de incurrir en un retraso de 60 días. El sobrecoste del mismo ha supuesto únicamente un 0,5% del presupuesto total.

Los resultados obtenidos, así como la calidad de los entregables, y el trato con el cliente (COMEL) han resultado satisfactorios para el mismo, quien en la reunión de cierre del proyecto dio la enhorabuena al equipo de proyecto y hace una semana se puso en contacto con el ITE para contratar una segunda parte del mismo.

La organización interna ha sido un éxito y la Dirección del Centro está realmente contenta tanto con el equipo de trabajo, como con los proveedores que han intervenido, así como con el Responsable de proyecto.

Fecha 01/09/2016

Firma

Sello de la entidad

INFORME DE LECCIONES APRENDIDAS

Tras la realización del proyecto 'Análisis de la duración de un cable de potencia bajo diversas sobrecargas' se obtienen las siguientes lecciones aprendidas:

- La presión sobre los proveedores es totalmente necesaria, tanto por el departamento de Compras como por el Responsable de proyecto.
 Gracias a ello (a emails y llamadas telefónicas conforme se aproximaba la fecha de entrega) los materiales, equipos y servicios llegaron y se realizaron en plazo.
- Deben revisarse los datos registrados con una mayor frecuencia para evitar errores que conlleven retrasos excesivos. Si se hubiesen revisado los datos del registrador antes de finalizar el ensayo del Caso D el proyecto no se habría retrasado 50 días, puesto que el ensayo no se tendría que haber repetido entero.
- El hecho de proporcionar cursos de formación a los recursos durante el proyecto ha permitido avanzar más rápidamente en algunas tareas, por tanto, es totalmente recomendable cualquier formación relacionada con la temática.
- La lectura semanal de artículos científicos, libros, webs, etc. ha permitido escribir un

artículo para el congreso ERGIC a los miembros del equipo.

- El hecho de trabajar varios recursos en una misma tarea ha permitido avanzar más rápidamente en el proyecto que dedicando un recurso por tarea.
- Contar con una ficha de solicitud de recursos ha permitido al Responsable de proyecto saber en todo momento con cuantos recursos humanos disponía para organizarse.

Una vez finalizado el proyecto y revisado los equipos empleados en él se considera conveniente invertir en los siguientes:

- Reparación de la fuente Haefely (LAB-ALT-ACO2), la cual ha sufrido un arco eléctrico durante el desarrollo del proyecto.
- o Inversión en un nuevo equipo para la medida del parámetro tangente de delta, por ser éste demasiado antiguo.
- o Inversión en un nuevo registrador de temperatura, ya que es insuficiente para proyectos de este tipo contar con un único registrador. Será deseable que el nuevo equipo cuente con wifi para la transferencia de datos.

Fecha 03/09/2016

Firma

Sello de la entidad

FICHA DE REGISTRO

Proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas.							
Resultados	Modelo térmico del cable.							
	Con objeto de estimar la temperatura del conductor cuando no es posible medirla, se ha desarrollado un modelo teórico, tomando como base el que propone la norma UNE 21144.							
	Este modelo, verificado experimentalmente en los primeros ensayos del proyecto (Caso A), mejora el que propone actualmente la norma UNE, ya que incluye nuevos parámetros que dicha norma no contempla.							
	Índice de duración de la vida de un cable bajo diversas sobrecargas.							
	El índice obtenido en el proyecto tras llevar a cabo los cuatro casos propuestos (Caso A, Caso B, Caso C y Caso D) permite afirmar que es posible ampliar la capacidad de sobrecarga de los cables de potencia actualmente instalados. Se ha desarrollado un pequeño software de simulación el cual determina el % de sobrecarga admitida, según los ciclos, las condiciones a las que se encuentra el cable, los años del mismo, etc. Se trata de algo totalmente nuevo en el mercado, pues hasta ahora habían							

	ido publicados artículos relativos al índice de salud del cable pero nadie ha esarrollado un software que permita calcularlo y que además, roporcione la opción de seleccionar condiciones y otros factores externos.											
Autor	Equipo de proyecto + Responsable de proyecto - Pablo Llopis Segovia - Julián Pérez Gilbert - Marc López Camps - Javier Román Peris - Clara Martínez Jiménez											
Titular de la idea	Los titulares de esta idea, a partir de la cual surgió el proyecto como una colaboración fueron Pablo Llopis Segovia (experto en la materia de ITE) y el Director de la empresa COMEL José Lucas Martín.											
Fecha de creación												

Analizando el caso de estudio se llega a las siguientes conclusiones.

Disponer de un manual de gestión de proyectos de I+D+i con plantillas diseñadas a medida para los diversos ítems permite:

- Gestionar un proyecto de manera ordenada.
- No olvidar ningún aspecto importante del mismo.
- Dejar constancia de todas las actividades realizadas en el proyecto y por quién.
- Recurrir a cualquier problema o mal entendido, ya que todo ha quedado por escrito.
- Solventar problemas de manera eficiente (véase Anexo 6: Riesgos y Anexo 7: Control de riesgos).
- Analizar la evolución del proyecto (véase Anexo 5: Control costes y plazos y Anexo 8: Control de cambios en el Plan del proyecto).
- Permitir la trazabilidad del proyecto, debido a que se documentan los procesos realizados y se registran todas las actividades y resultados.
- Tener en cuenta a cada una de las partes involucradas en el proyecto.
- Familiarizar al cliente en futuros proyectos, ya que será posible repetir la misma metodología.
- Mejorar las capacidades de los recursos humanos participantes en el proyecto.
- Involucrar a las partes interesadas desde el principio en el proyecto.
- Lanzar al mercado más productos y servicios.

A pesar de todos los beneficios que supone, existen una serie de inconvenientes, los cuales deben ser mencionados:

- El aumento burocrático implica un tiempo mayor, sobre todo del Responsable de proyecto y, por tanto, un coste extra en la tarea de Dirección del proyecto.
- Puede resultar excesivo el número de Anexos a completar para determinados proyectos (por ejemplo, proyectos sencillos de muy bajo presupuesto y en los que intervienen muy pocos recursos). Esto se traduce en excesivo tiempo y el consecuente sobrecoste.
- Puede ser necesario formar a los Responsablees de proyecto para el manejo de determinadas herramientas de dirección y gestión de proyectos. Esto implica tiempo de los recursos y coste por parte de la empresa.

6. Análisis de viabilidad de la certificación del sistema

Los Sistemas de Gestión de la I+D+i permiten a empresas y organismos, independientemente de su tamaño o del sector económico al que pertenezcan, mejorar de manera sistemática sus actividades de I+D+i, sin encorsetarlas en reglas fijas que coarten la imaginación e inteligencia emocional de los investigadores, proporcionando directrices útiles para organizar y gestionar eficazmente este tipo de actividades [16].

La obtención del certificado del Sistema de Gestión de proyectos de I+D+i permitirá a ITE mejorar los siguientes aspectos:

- Estructurar y sistematizar sus actividades de I+D+i.
- Mostrar claridad y transparencia en las actividades de I+D+i.
- Conseguir que las actividades de I+D+i sean compartidas entre los diferentes departamentos de la empresa.
- Obtener un reconocimiento oficial del Sistema de Gestión de proyectos de I+D+i, lo cual da valor añadido a ITE y lo diferencia de otros competidores.
- Mejorar la imagen de ITE y dar una mayor confianza a sus clientes.

Para ello, los pasos a seguir son los siguientes:

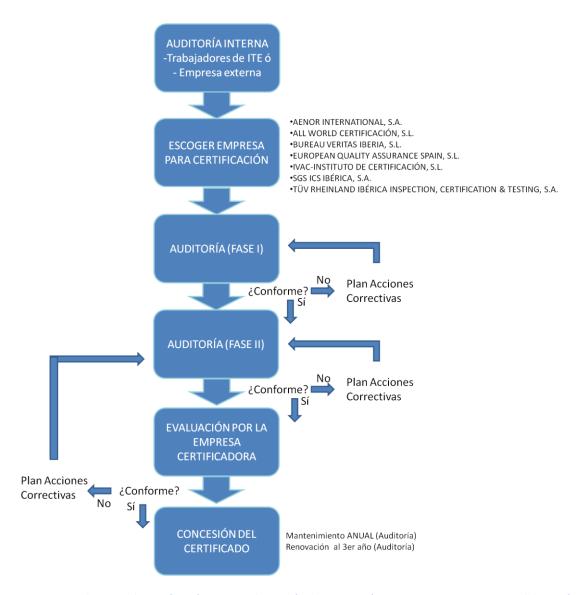


Fig. 31: Procedimiento de certificación Sistema de Gestión de I+D+i según UNE 166002:2014. Fuente: Elaboración propia.

La auditoría interna podrá ser realizada por personal interno de la empresa, siempre que la persona que audite esté cualificada para ello y no haya participado en la implantación del Sistema de Gestión. Si esto no es posible, puede contratarse una empresa externa para ello.

En la fase I el equipo auditor debe confirmar el alcance (actividades, ubicaciones, etc.) de la certificación solicitada y asegurarse de que el nivel de implantación del sistema de gestión garantiza que la organización está preparada para la auditoría de la fase 2 [17].

En la fase II el equipo auditor comprobará si el sistema de gestión, descrito en la documentación y evidenciado en los registros, está efectivamente implantado y cumple con los requisitos establecidos en el documento normativo correspondiente [17].

En el caso de que existan no conformidades la organización debe elaborar y presentar un plan de acciones correctivas con el objetivo de corregir dichas no conformidades.

Por último, citar que el Certificado tiene un periodo de validez de tres años. No obstante, cada año deberá realizarse una auditoría de seguimiento con el objetivo de mantener el Sistema de Gestión.

El coste de certificar el Sistema de Gestión de proyectos de I+D+i se estima a continuación:

FASES CERTIFICACIÓN SISTEMA GESTIÓN I+D+i	COSTE (€)
Auditoría interna	
Formación específica al Responsable de Calidad UNE 166002:2014*	2.125
Auditoría FASE I	
2 Técnicos 1 día (incluyendo dietas y desplazamiento)	3.250
Una persona de ITE	340
Auditoría FASE II	
2 Técnicos 2 día (incluyendo alojamiento, dietas y desplazamiento)	6.600
Una persona de ITE	680
TOTAL	12.995
Mantenimiento anual	1.500
Renovación	1.750

Tabla 3: Presupuesto estimado Obtención Certificado Sistema de Gestión I+D+i. Fuente: Elaboración propia.

Así pues, obtener el Certificado de Gestión de I+D+i, tiene un coste estimado de unos 13.000€ iniciales a los cuales hay que sumar 1.500€ anuales (en el caso del tercer año 1.750€). Realmente es un coste reducido para una gran empresa pero para una empresa de tamaño pequeño o mediano puede suponer un desembolso elevado, teniendo en cuenta que no se conocen los beneficios económicos que va a reportar, pues invertir en I+D no implica asegurarse el éxito. Como se comentó al inicio de esta tesina, invertir en I+D significa asignar recursos con el objetivo de obtener unos resultados que no son totalmente apropiables,, aceptar un riesgo de fracaso técnico y comercial elevado, y un período extenso de maduración de la inversión.

Destacar que no se requiere estrictamente la certificación por la norma UNE 166002:1004 para la obtención de beneficios de la implantación del Sistema de Gestión de I+D+i.

^{*}Cabe decir que la certificación del Sistema se hace en base a la norma UNE 166002:2014. No se tienen en cuenta el resto de normas de la familia UNE 166000.

7. Discusión de Resultados y conclusiones de la tesina

Tras el análisis de bibliografía realizado durante la tesina y la asistencia a la Jornada celebrada el 9 de marzo en Cámara Valencia 'La innovación, motor de crecimiento empresarial', resaltar que la innovación es el factor clave del crecimiento de una empresa. Como dijo Albert Einstein 'Si buscas resultados distintos, no hagas siempre lo mismo'.

Como ejemplo de caso de éxito de innovación [18] citar a DACSA (empresa de la industria alimentaria). Cuenta con 3 pilares a nivel de I+D+i: Gestión del talento, tendencias en el mercado y eficiencia en costes.

El primero de los pilares se basa en la mejora continua. Cuentan con varios proyectos (uno de ellos Proyecto Espiga) para mejorar los procesos de la empresa en todas las áreas. La innovación organizacional también está contemplada en este proyecto, pues realizar cambios en el organigrama puede suponer mejoras en la empresa.

El segundo de los pilares contempla el análisis de las tendencias en el mercado, DACSA se ha unido recientemente a la empresa MOLENDUM con objeto de ampliar su gama de productos, Actualmente están muy de moda cereales como la quinoa, salvado de trigo, avena, por lo que han decidido pasar de producir únicamente maíz y arroz a abarcar una amplia gama de cereales y legumbres. De este modo llegan a nuevos mercados (snacks, productos de panadería, bebidas instantáneas etc.).

Por último, el tercer pilar consiste en emplear la innovación para ahorrar en costes. La actividad principal se basa en valorizar el producto: para piensos y bioplásticos.

Destacar también que la innovación es un círculo y una vez se entra en él, la innovación genera sinergias impulsando así un crecimiento progresivo de la empresa.

Respecto a la familia de normas UNE 166000, en las cuales está basado el manual de gestión de proyectos de I+D+i que aquí se propone, además de la UNE-ISO 21500, resaltar que aunque han sido creadas para potenciar la competitividad de las empresas a través de la innovación, pues uno de los obstáculos de la economía española es que las empresas no tienen suficiente capacidad para crear productos y procesos nuevos, poseen algunas deficiencias:

- Se centran más en la documentación de los requisitos que en la importancia de los mismos.
- No hacen referencia a proyectos que deberían ser abandonados, bien porque no se consiguen los resultados y el proyecto no avanza o bien porque el producto ha quedado obsoleto en el mercado.
- No se hace hincapié en los recursos externos a la organización, cuando esto es una práctica habitual por muchas empresas.
- Las Normas analizan el proyecto como algo individual en la organización, sin tener en cuenta el programa o la cartera de proyectos de la empresa.

Por último, como conclusiones a la tesina realizada, indicar que:

- Disponer en la empresa de un Sistema de Gestión de Proyectos de I+D+i es realmente interesante y eficiente pero no asegura el éxito del producto o servicio en el mercado.
 - Permite una gestión del proyecto planificada, ordenada y perfectamente documentada.
 - Analiza la evolución del proyecto de manera continua y permite, además de la trazabilidad completa del mismo, solventar problemas ocurridos durante el transcurso del mismo.
 - Ayuda a realzar el potencial de los recursos humanos participantes en el proyecto.
 - Consigue satisfacer al cliente y a la Dirección del Centro, y en general a todas las partes interesadas, por la atención mostrada a las mismas.
- La autora de la misma ha puesto en práctica herramientas aprendidas en el Máster de Dirección y Gestión de Proyectos, como por ejemplo Microsoft Project.
- Se ha extraído información relevante de asignaturas cursadas en el Máster como Fundamentos del proyecto y de su dirección y gestión, Aprovisionamiento y contratación, Gestión de Proyectos de I+D+i, MSProject, Evaluación Económica, Información y Documentación.

En definitiva le ha servido para poner en práctica todos los conocimientos aprendidos durante la realización del Máster y para mostrar a la empresa en la que trabaja actualmente las ventajas de la implantación de un Sistema de Gestión de Proyectos de I+D+i.

8. Bibliografía y referencias

- [1] P. Escorsa y J. Valls, Tecnología e innovacion en la empresa, Barcelona: UPC, 2003.
- [2] Fundación Cotec para la innovación, «INFORME COTEC 2016: INNOVACIÓN EN ESPAÑA,» Madrid, 2016.
- [3] «http://www.aeipro.com/,» [En línea].
- [4] «www.ite.es,» [En línea].
- [5] Manuel de Cós, «La dirección de proyectos,» *Revista de Proyectos de Ingeniería, UPV,* nº 1, 2002.
- [6] AENOR, «UNE-ISO 21500: Directrices para la dirección y gestión de proyectos,» 2013.
- [7] PMI, «Project Management Body of Knowledge (PMBOK Guide),» 2013.
- [8] IPMA, «Individual Competence Baseline (ICB),» 2015.
- [9] AENOR, «UNE 166000 Gestión de la I+D+i: Terminología y definiciones de las actividades de I+D+i,» 2006.
- [10] AENOR, «UNE 166001 Gestión de la I+D+i: Requisitos de un proyecto de I+D+i,» 2006.
- [11] AENOR, «UNE 166002 Gestión de la I+D+i: Requisitos del Sistema de Gestión de la I+D+i,» 2014.
- [12] AENOR, «UNE 166006 Gestión de la I+D+i: Sistema de vigilancia tecnológica e inteligencia competitiva,» 2011.
- [13] AENOR, «UNE 166008 Gestión de la I+D+i: Transferencia de tecnología,» 2012.
- [14] «www.plannacionalidi.es,» [En línea].
- [15] Ministerio Economía y Competitividad, «Estrategia española de ciencia y tecnología y de innovación,» 2013-2020.
- [16] «www.aenor.es,» [En línea].
- [17] AENOR, «Reglamento General de Certificación de Sistemas de Gestión y sus marcas de conformidad,» 2008.
- [18] Ministerio Economía y Competitividad, INCOTEC, DACSA y GUEROLA S.A., *La innovación, motor de crecimiento empresarial*, Valencia: Cámara Valencia, 9 marzo 2017.

ANEXOS

MANUAL DE GESTIÓN DE PROYECTOS DE I+D+i

Anexo 1: Acta constitución proyecto (MODELO)

Acta constitución del proyecto Nombre Fecha <LOGO EMPRESA> prevista inicio proyecto Responsable Fecha proyecto prevista fin Cliente Revisión Evento inicial proyecto Evento final proyecto Presupuesto proyecto (€) Sinopsis del proyecto – OBJETIVO Sinopsis del proyecto – ALCANCE Sinopsis del proyecto – CARACTERÍSTICAS GENERALES Sinopsis del proyecto – CARACTERÍSTICAS ESPECIALES

Sinopsis del proyecto – RESULTADOS ESPERADOS
Responsabilidades responsable de proyecto
Autoridad responsable de proyecto
Otros comentarios
otros comentarios

Acta constitución del proyecto

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015	1	INSTITUTO TECNOLÓGICO DE LA ENERGÍA
Responsa ble proyecto Cliente	Clara Martínez Jiménez COMEL	Fecha prevista fin Revisión	07/06/2016 V0		

Evento inicial proyecto	Reunión presencial con la empresa en Barcelona, sede de la						
	empresa						
Evento final proyecto	Entregable final + Visita de COMEL a las instalaciones de ITE						
Presupuesto proyecto (€)	343.259						

Sinopsis del proyecto – OBJETIVO

El objetivo del proyecto es definir y desarrollar un conjunto de ensayos que permitan caracterizar el comportamiento de cables de potencia, en cuanto a su vida útil, cuando se somete a diversas sobrecargas. De esta forma la red podrá ser explotada por encima de su capacidad nominal en condiciones de operación totalmente seguras.

Sinopsis del proyecto – ALCANCE

Según el objetivo general, el alcance del proyecto 'Análisis de la duración de un cable de potencia bajo diversas sobrecargas' comprende desde la identificación de los parámetros que caracterizan la vida útil de un cable hasta la realización de todos los ensayos en laboratorio pertinentes que permitan establecer un umbral máximo de frecuencia de ocurrencia de las sobrecargas, eliminando cualquier impacto o riesgo en la vida útil de la instalación

El proyecto se enmarca dentro del sector eléctrico – energético, que se corresponde con una de las líneas de negocio de ITE.

Sinopsis del proyecto – CARACTERÍSTICAS GENERALES

Las características generales que definen el alcance y, por tanto, las actividades / tareas a desarrollar son las siguientes:

- Determinar los parámetros que condicionan la vida útil de un cable
- Instaurar una metodología para la ejecución de ensayos que permitan caracterizar la vida útil del cable
- Ejecución de los diversos ensayos mediante ciclos térmicos
- Desarrollo de un modelo térmico del cable que permita estimar la temperatura del conductor
- Análisis e interpretación de los resultados obtenidos
- Documentación, a través de entregables, de todos los ensayos realizados así como las conclusiones obtenidas en cada uno de ellos

- Determinación de un umbral de frecuencia de ocurrencia o índice de las sobrecargas que elimine cualquier posible impacto en la vida útil de la instalación.

Sinopsis del proyecto – CARACTERÍSTICAS ESPECIALES

- El cable objeto de estudio será de 170Kv que irá montado simulando un entronque aéreo-subterráneo, por lo que el montaje se realizará sobre dos estructuras verticales.
- La longitud del cable será de 15metros.
- Se incluirán dos empalmes en la zona central, con objeto de analizar uno de los accesorios más importantes de las líneas.
- Todos los ensayos se realizarán en tensión y con corriente.
- Se considerará el efecto de la temperatura ambiente, así como las variaciones diarias de la misma a lo largo de la duración del ensayo.
- Respecto al modelo térmico del cable se seguirá la metodología descrita en el anexo A de la IEC 61442:2005 'Test methods for accessories for power cables with rated voltajes from 6kV (Um = 7,2kV) up to 30kV (Um = 36kV).

Sinopsis del proyecto – RESULTADOS ESPERADOS

A la finalización del proyecto se espera obtener un índice que permita determinar si es posible ampliar la capacidad de sobrecarga del cable y en qué porcentaje para que durante los 40 años de vida media no se exista ningún riesgo que ponga en peligro la instalación o la vida de las personas. Este índice será expresado en número de veces al año durante 40 años.

Responsabilidades responsable de proyecto

El Responsable del proyecto (Clara Martínez Jiménez, en este caso) tendrá la responsabilidad de asegurar que dicho proyecto finaliza en plazo, no se desvía del presupuesto inicial planificado y los requisitos del cliente son satisfechos.

Será responsable, así mismo, de informar a Dirección acerca de los avances, así como problemas, del proyecto.

El Responsable de proyecto estará presente en las reuniones con el cliente, tanto telefónicas como presenciales, y será el encargado de informarle de los avances del proyecto, así como las posibles incidencias o retrasos en el transcurso del mismo.

Autoridad responsable de proyecto

El Responsable del proyecto tendrá autoridad para realizar cambios en las tareas del proyecto, permutar tareas entre sí siempre que sea posible y se requiera, dar órdenes a los recursos, solicitar nuevos materiales o equipos necesarios durante la realización del proyecto. Sin embargo no tendrá autoridad para paralizar el proyecto, aunque se produjeran desviaciones en plazo o coste (esta potestad la tiene Dirección).

Otros comentarios

Es muy importante finalizar el proyecto en plazo y con una calidad excelente debido a que se trata de un prestigioso cliente, con muchas posibilidades de futuros proyectos.

Anexo 2: Ficha solicitud recursos humanos (MODELO)

APROBACIÓN (SI/NO)

Ficha solicitud recursos humanos <LOGO EMPRESA> Nombre proyecto Fecha prevista inicio Responsable Fecha prevista fin proyecto Cliente Revisión Evento inicial proyecto Evento final proyecto Presupuesto proyecto (€) Perfiles requeridos Id Nombre y apellidos Horas totales en el proyecto (Especificar horas al mes) recurso AGO N П APROBACIÓN (SI/NO) APROBACIÓN (SI/NO) APROBACIÓN (SI/NO)

								APROBACIÓN (SI/NO)	
								APROBACIÓN (SI/NO)	
ıa	Fecl								
0:	/a Técni	esponsable	Firma Re						
h	la Entida	Sello de							
_		Jeno de							

Anexo 2: Ficha solicitud recursos humanos

Ficha solicitud recursos humanos

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015	INSTITUTO TECNOLÓGICO DE LA ENERGÍA
Responsable proyecto	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016	LA ENERGIA
Cliente	COMEL	Revisión	V0	

Evento inicial proyecto	Reunión presencial con la empresa en Barcelona, sede de la empresa
Evento final proyecto	Entregable final + Visita de COMEL a las instalaciones de ITE
Presupuesto proyecto (€)	343.259

Perfiles requeridos

Id	Nombre y apellidos recurso	Horas tot	Horas totales en el proyecto (Especificar horas al mes)										
		ENE	FEB	MAR	ABR	MAY	NOr	JUL	AGO	SEP	ОСТ	NON	DIC
1	Pablo Llopis Segovia	50 (2015)	25 (2015)	30 (2015)	32 (2015)	12,5 (2016)							
	APROBACIÓN (SI/NO)	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ
2	Julián Pérez Gilbert	70	50	55	60	60	75	25	25	50	50	75	75

		(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)
		50	50	40	65	70	10						
		(2016)	(2016)	(2016)	(2016)	(2016)	(2016)						
	APROBACIÓN (SI/NO)	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ
3	Marc López Camps		60	55	40	15	55	50	60	50	100	50	80
		60	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)
		(2016)	50	95	45	50	50						
			(2016)	(2016)	(2016)	(2016)	(2016)						
	APROBACIÓN (SI/NO)	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ	SÍ
4	Clara Jiménez Martínez	205	175	230	230	241	175	175	175	175	175	175	175
		(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)
		175	175	250	185	185	195						
		(2016)	(2016)	(2016)	(2016)	(2016)	(2016)						
	APROBACIÓN (SI/NO)	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI
5	Javier Román Peris						50	50	100	75	125	100	50
		75 (2016)	75 (2016)	50 (2016)			(2015)	(2015)	(2015)	(2015)	(2015)	(2015)	(2015)
	APROBACIÓN (SI/NO)	SI	SI	SI	SI	SI	SI	NO	NO	SÍ	SÍ	SÍ	SÍ

Fecha

29/12/2014

Firma Director/a Técnico
Sello de la Entidad

Anexo 3: Plan del proyecto (MODELO)

loml	ore proyecto	Fecha	prevista inicio	<logo empresa=""></logo>	
	onsable		prevista fin		
proye					
Client	:e	Revision	ón		
	i do ada a				
	idades Código WBS	Actividad / Tarea	Descripción	Duración (días)	
A <i>ctiv</i> i	idades Código WBS	Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	
		Actividad / Tarea	Descripción	Duración (días)	

ACLIVIU	Actividades – Secuencia							
Entreg								
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				
Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)				

Hitos							
Id	Código hito	Nombre hito	Descripción		Actividad / es asociadas (WBS)		
	os humanos – perfil	requerido			_		
Id	General		Detalles		Nº horas proyecto		
Recurs	os humanos – equipo	o de trabajo					
Id	Nombre	Apellidos		CV			
		pemaoo					

ł	Código tarea/entregable/hito	Nombre tarea/entreg	able/hito	Participantes	Responsable	Fecha	
cur	sos humanos – Plan f	formación					
t							
N	ombre y apellidos del recu	irso					
	rea /departamento						
N	ecesidad de formación (es	pecificar el					
р	royecto si es formación es _l						
0	bjetivos perseguidos con la	a formación					
N.	ladalidad vasu avida		Dynasan sial /	a distancia / indiforante			
	lodalidad requerida			a distancia / indiferente	!		
	rden de prioridad		Critica / Aita	a / Media / Baja			
IN.	ombre y apellidos del recu	irso					
Á	rea /departamento						
	ecesidad de formación (es	pecificar el					
	royecto si es formación es	•					
	-,	j ,					
0	bjetivos perseguidos con la	a formación					
	1odalidad requerida			a distancia / indiferente	1		
	rden de prioridad		Cuiting / Alte	a / Media / Baja			

Id	Materiales / Equipos / Servicios	Código ITE	Descripción					Fecha uso
<u>. </u>	Traceriales / Equipos / Servicios		2 cocripcion					
daui	isiciones – Materiales, equip	os, servicios a contr	ratar					
d	Materiales / Equipos / Servicios	Descripción	<u> </u>	Proveedor seleccion	240	Contacto prove	odor	Fecha uso
u	iviateriales / Equipos / Servicios	Descripcion		Proveedor selección	auu	Contacto prove	euoi	reciia uso
resu	puesto							
	puesto Actividad / tarea (código WBS)	Dedicación	Materiales	equinos servicios	Desn	lazamientos (£)	Coste to	ntal tarea (£)
resu d	puesto Actividad / tarea (código WBS)	Dedicación (horas hombro/mos)		equipos, servicios	Desp	lazamientos (€)	Coste t	otal tarea (€)
	-	Dedicación (horas hombre/mes)	Materiales,	equipos, servicios	Desp	lazamientos (€)	Coste to	otal tarea (€)
	-			equipos, servicios	Desp	lazamientos (€)	Coste to	otal tarea (€)
	-			equipos, servicios	Desp	lazamientos (€)	Coste to	otal tarea (€)
	-			equipos, servicios	Desp	lazamientos (€)	Coste to	otal tarea (€)
	-			equipos, servicios	Desp	lazamientos (€)	Coste to	otal tarea (€)
	-			equipos, servicios	Desp	olazamientos (€)	Coste t	otal tarea (€)

	TOTAL (€)		
Diaarar	na Gantt		

Plan de Co	Plan de Calidad								
Normativa	Normativa a cumplir Trivula Normativa a Cumplir								
Id	Título Norma	Descripción	Requisitos						
	s requisitos								
Id	Código entregable	Nombre entregable	Requisitos						

Anexo 3: Plan del proyecto

Plan del proyecto

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015	INSTITUTO TECNOLÓGICO DE
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016	LA ENERGÍA
proyecto				
Cliente	COMEL	Revisión	V0	

Alcance

El alcance del proyecto 'Análisis de la duración de un cable de potencia bajo diversas sobrecargas' comprende desde la identificación de los parámetros que caracterizan la vida útil de un cable hasta la realización de todos los ensayos en laboratorio pertinentes que permitan establecer un umbral máximo de frecuencia de ocurrencia de las sobrecargas, eliminando cualquier impacto o riesgo en la vida útil de la instalación.

El proyecto se enmarca dentro del sector eléctrico – energético, que se corresponde con una de las líneas de negocio de ITE.

Actividades

Id	Código WBS	Actividad / Tarea	Descripción	Duración (días)
1	1 T1 Dirección del proyecto S		Se trata de la dirección y gestión del proyecto. Esta tarea	370
			comenzará con el proyecto y finalizará con él.	
2	T2	Análisis del estado del arte		
3	T2.1	Análisis bibliográfico 'justificación de	Se analizarán los mecanismos generales de degradación del	10
		los daños de un cable durante su vida útil'	cable, así como la casuística de ser operado con sobrecargas.	
4	T2.2	Análisis bibliográfico 'justificación de	Se definirán los parámetros que caracterizan la vida útil del	10
		los parámetros de caracterización de	cable, justificando su elección y detallando la metodología de	

		la vida de un cable'	medida de los mismos.	
5	T2.3	Análisis bibliográfico 'justificación de los valores límite de los parámetros antes de que ocurra un daño en el cable'	Se determinarán los umbrales de cada uno de los parámetros anteriormente escogidos, antes de que el cable resulte dañado.	10
6	T2.4	Análisis bibliográfico 'modelos térmicos cable'	Se realizará un análisis de la bibliografía referente a los modelos térmicos del cable, a partir de los cuales se desarrollará el modelo a emplear para estimar la temperatura del conductor.	12
7	T2.5	Redacción estado del arte	Esta tarea incluye la redacción de las búsquedas anteriores, con objeto de plasmar dicha información por escrito.	15
8	Т3	Determinación de la metodología	Esta tarea describe en detalle la metodología a seguir para llevar a cabo los ensayos del proyecto.	8
9	T4	Definición del plan de ensayos	Se concretan con COMEL los detalles de los diversos ensayos a realizar.	8
10	T5	Aprovisionamiento materiales y equipamiento	Esta tarea permitirá adquirir todos los materiales, equipamiento, así como servicios auxiliares necesarios para llevar a cabo el proyecto. La gestión con los proveedores será realizada conjuntamente entre ITE y COMEL.	22
11	Т6	Ensayos		
12	T6.1	Acondicionamiento del laboratorio	Durante esta tarea se prepararán las instalaciones de ITE para albergar la nueva estructura del cable, y se realizarán todos los montajes necesarios para comenzar con los ensayos.	20
13	T6.2	Ensayo CASO A	Se realizará el ensayo denominado CASO A durante las horas planificadas y midiendo todos los parámetros detallados en la tarea anterior (1.2).	50

14	T6.3	Ensayo CASO B	Se realizará el ensayo denominado CASO B, durante las horas	50
			planificadas y midiendo todos los parámetros detallados en la	
			tarea anterior (1.2).	
15	T6.4	Ensayo CASO C	Se realizará el ensayo denominado CASO C, durante las horas	50
			planificadas y midiendo todos los parámetros detallados en la	
			tarea anterior (1.2).	
16	T6.5	Ensayo CASO D	Se realizará el ensayo denominado CASO D, durante las horas	50
			planificadas y midiendo todos los parámetros detallados en la	
			tarea anterior (1.2).	
17	T7	Documentación de ensayos realizados	Se documentarán, en formato de entregable, cada uno de los	30
			ensayos realizados, incluyendo fotografías y todo nivel de	
			detalle.	
18	Т8	Documentación de resultados e	Se incluirán los resultados de cada uno de los ensayos, en	25
		interpretación	formato de entregable, analizándolos e incluyendo	
			conclusiones al respecto.	

Actividades – Secuencia

Entregables

Id	Código entregable	Nombre entregable	Descripción	Actividad / es asociadas (WBS)
1	E1	Estado del arte: Cables de	Se presentará un informe recopilando la	1.2 (1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5)
		potencia	información analizada relativa a daños en los	
			cables, parámetros de caracterización, umbrales	
			de los mismos, modelo térmico cables.	
2	E2	Metodología y plan de	Se redactará en un informe la metodología a	1.3 y 1.4
		ensayos	seguir durante el proyecto, así como el plan de	
			ensayos a ejecutar.	
3	E3	Materiales y equipamiento	Este entregable recopilará el listado de	1.5
			materiales, equipamiento y servicios internos o	
			externos requeridos para ejecutar el proyecto.	
4	E4	Ensayos	Se incluirán todos los ensayos realizados,	1.6.2, 1.6.3, 1.6.4, 1.6.5, 1.7
			incluyendo imágenes, fotografías y una	
			explicación en detalle de cada uno de ellos.	
5	E5	Resultados y conclusiones	Este entregable contendrá los resultados de cada	1.8
			uno de los ensayos, así como las conclusiones	
			obtenidas al finalizar el proyecto y analizar los	
			resultados.	

Id	Código hito	Nombre hito	Descripción	Actividad / es asociadas (WBS)
1	H1	Análisis bibliográfico	La finalización de la revisión bibliográfica acerca	1.2 (1.2.1, 1.2.2, 1.2.3, 1.2.4, 1.2.5)
			de los puntos mencionados en las tareas del	
			estado del arte constituirá el primer hito del	
			proyecto.	
2	H2	Aprovisionamiento materiales y	La recepción de todos los materiales y	1.5
		equipos	equipamiento requerido para ejecutar el	
			proyecto constituirá un hito.	
3	H3	Acondicionamiento laboratorio	El acondicionamiento de las instalaciones de ITE,	1.6.1
			junto con el montaje del cable, constituirá el	
			tercer hito del proyecto. Este hito marcará el	
			comienzo de los diversos ensayos propuestos.	
4	H4	Caso A + Caso B	La finalización de los dos primeros casos	1.6.2, 1.6.3, 1.7
			propuestos (Caso A y Caso B) marcarán el hito 4	
			del proyecto.	
5	H5	Caso C + Caso D	La finalización de los casos C y D constituirán el	1.6.4, 1.6.5, 1.7
			hito 5.	
6	H6	Resultados proyecto	El informe de resultados y conclusiones del	1.8
			proyecto constituirán el hito 6 y último del	
			proyecto.	

Recur	sos humanos – perfil	requerido	
Id	General	Detalles	Nº horas proyecto
1	Doctor Ingeniero Eléctrico	Experto en la materia del proyecto y con experiencia en ensayos en cables.	150
2	Ingeniero eléctrico	Persona con experiencia en Alta Tensión para realización de ensayos y análisis de resultados.	1920
3	Ingeniero eléctrico	Persona con experiencia en Alta Tensión y gestión de proyectos para coordinar el proyecto.	3470
4	Técnico	Persona con conocimientos eléctricos para ayuda en montajes, preparación de cables, realización de ensayos, toma de muestras.	750

Recursos humanos – equipo de trabajo

Id	Nombre	Apellidos	CV
1	Pablo	Llopis Segovia	Doctor Ingeniero Industrial. Es profesor titular de la Universidad Politécnica de Valencia, en el área de Ingeniería Eléctrica. En los últimos 10 años ha trabajado en el Instituto de Tecnología Eléctrica coordinando varios proyectos relacionados con la alta tensión, los materiales, las descargas eléctricas y la electrostática.
2	Julián	Pérez Gilbert	Ingeniero Industrial, especialidad eléctrica por la Universidad Politécnica de Valencia. Actualmente trabaja en el Departamento de materiales y alta tensión del ITE.
3	Marc	López Camps	Ingeniero Industrial, especialidad eléctrica por la Universidad Politécnica de Valencia. Actualmente trabaja en el Departamento de materiales y alta tensión del ITE.
4	Clara	Martínez Jiménez	Ingeniero Industrial, especialidad eléctrica por la Universidad Politécnica de Valencia. Máster en Dirección y Gestión de Proyectos por la UPV. Actualmente trabaja en el Departamento de materiales y alta tensión del ITE.
5	Javier	Román Peris	Técnico de laboratorio. Formación Profesional especialidad eléctrica. Trabaja en ITE desde hace 6 años.

Id	Código tarea/ entregable/ hito	Nombre tarea/entregable/hito	Participantes	Responsable	Fecha
1	T1	Dirección del proyecto	Clara	Clara	07/01/15 - 07/06/16
2	T2	Análisis del estado del arte			07/01/15 – 26/03/15
3	T2.1	Análisis bibliográfico 'justificación de los daños de un cable durante su vida útil'	Julián	Pablo	07/01/15 - 20/01/15
4	T2.2	Análisis bibliográfico 'justificación de los parámetros de caracterización de la vida de un cable'	Julián, Clara	Pablo	21/01/15 - 03/02/15
5	T2.3	Análisis bibliográfico 'justificación de los valores límite de los parámetros antes de que ocurra un daño en el cable'	Marc	Pablo	04/02/15 – 17/02/15
6	T2.4	Análisis bibliográfico 'modelos térmicos cable'	Marc, Julián	Pablo	18/02/15 - 05/03/15
7	T2.5	Redacción estado del arte	Marc, Julián, Clara	Clara	06/03/15 – 26/03/15
8	E1	Estado del arte: Cables de potencia	Marc, Julián, Clara	Clara	26/03/15

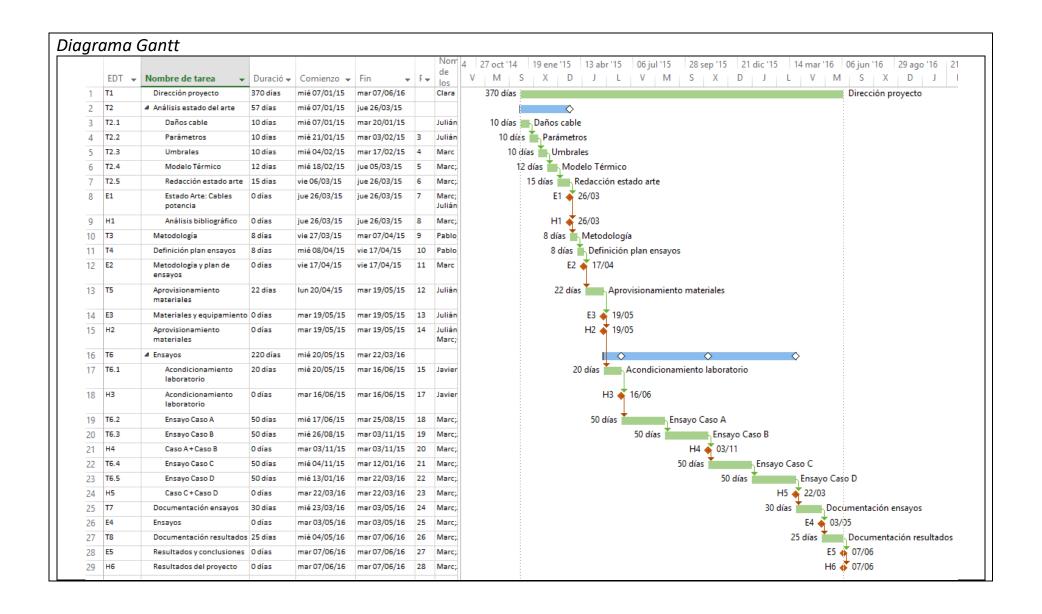
9	H1	Análisis bibliográfico	Marc, Julián, Clara	Clara	26/03/15
10	Т3	Determinación de la metodología	Pablo, Clara	Clara	27/03/15 – 07/04/15
11	T4	Definición del plan de ensayos	Pablo, Marc	Clara	08/04/15 - 17/04/15
12	E2	Metodología y plan de ensayos	Marc	Clara	17/04/15
13	T5	Aprovisionamiento materiales y equipamiento	Julián	Clara	20/04/15 – 19/05/15
14	E3	Materiales y equipamiento	Julián	Clara	19/05/15
15	H2	Aprovisionamiento materiales y equipos	Julián, Marc, Clara	Clara	19/05/15
16	Т6	Ensayos			20/05/15 – 22/03/16
17	T6.1	Acondicionamiento del laboratorio	Javier	Marc	20/05/15 – 16/06/15
18	H3	Acondicionamiento del laboratorio	Javier	Marc	16/06/15
19	T6.2	Ensayo Caso A	Marc, Julián, Javier	Julián	17/06/15 – 25/08/15
20	T6.3	Ensayo Caso B	Marc, Julián, Javier	Julián	26/08/15 - 03/11/15
21	H4	Caso A + Caso B	Marc, Julián, Javier	Clara	03/11/15
22	T6.4	Ensayo Caso C	Marc, Julián, Javier	Julián	04/11/15 – 12/01/16
23	T6.5	Ensayo Caso D	Marc, Julián, Javier	Julián	13/01/16 - 22/03/16

24	H5	Caso C+ Caso D	Marc, Julián, Javier	Clara	22/03/16
25	Т7	Documentación de ensayos realizados	Marc, Julián	Clara	23/03/16 – 03/05/16
26	E4	Ensayos	Marc, Julián	Clara	03/05/16
27	Т8	Documentación de resultados e interpretación	Marc, Julián, Pablo	Clara	04/05/16 - 07/06/16
28	E5	Resultados y conclusiones	Marc, Julián, Pablo	Clara	07/06/16
29	H6	Resultados proyecto	Marc, Julián, Pablo	Clara	07/06/16

Recursos humanos – Plan formación

Id					
	Nombre y apellidos del recurso	Marc López Camps			
	Área /departamento	Alta Tensión y Materiales			
	Necesidad de formación (especificar el	Curso intensivo de la plataforma y entorno de desarrollo LabVIEW (Proyecto: Análisis de la duración de			
	proyecto si es formación específica)	un cable de potencia bajo diversas sobrecargas).			
	Objetivos perseguidos con la formación	Aprender a manejar dicho programa con soltura para realizar las capturas de parámetros de cada uno d			
		en los ensayos programados, modificar el programa cuando sea necesario, ampliarlo, etc.			
	Modalidad requerida	Presencial / a distancia / indiferente			
	Orden de prioridad	Crítica / Alta / Media / Baja			
	Nombre y apellidos del recurso	Julián Pérez Gilbert			
	Área /departamento	Alta Tensión y Materiales			
	Necesidad de formación (especificar el	Curso de inglés oral avanzado			
	proyecto si es formación específica)				
	Objetivos perseguidos con la formación	Desenvolverse correctamente cuando deba realizar ponencias en Congresos (objetivo: difusión del			
		proyecto)			
	Modalidad requerida	Presencial / a distancia / indiferente			
	Orden de prioridad	Crítica / Alta / Media / Baja			

Nombre y apellidos del recurso	Clara Martínez Jiménez
Área /departamento	Alta Tensión y Materiales
Necesidad de formación (especificar	el Curso de inglés oral avanzado
proyecto si es formación específica)	
Objetivos perseguidos con la formac	ión Desenvolverse correctamente cuando deba realizar ponencias en Congresos (objetivo: difusión del
	proyecto)
Modalidad requerida	Presencial / a distancia / indiferente
Orden de prioridad	Crítica / Alta / Media / Baja


Adquisiciones – Materiales, equipos, servicios propios

Id	Materiales / Equipos / Servicios	Código ITE	Descripción	Fecha uso
1	Equipo: DC100 YOKOGAWA	LAB-ALT-DC01	Registrador de temperatura con 30 canales y 30 termopares.	20/05/15 -
				22/03/16
2	Equipo: Multímetro FLUKE	LAB-ALT-MUL02	Multímetro para medida puntual de temperatura ambiente.	20/05/15 -
				22/03/16
3	Equipo: Registrador ALMEMO	LAB-ALT-R01	Registrador de temperatura, humedad relativa y presión	20/05/15 -
			atmosférica.	22/03/16
4	Equipo: Medidor descargas	LAB-ALT-DP01	Medidor de descargas parciales transportable que permite la	20/05/15 -
	parciales PXDP		detección y medida, en ausencia de tensión, de descargas parciales.	22/03/16
5	Equipo: Sistema detector	LAB-ALT-DP02	Sistema desarrollado a medida en LabVIEW para medida y	20/05/15 -
	descargas parciales		localización de descargas parciales.	22/03/16
6	Equipo: Sistema medida de	LAB-ALT-CT01	Sistema desarrollado a medida para la medida de corriente (hasta	20/05/15 -
	corriente y tensión		4000A) y alta tensión (hasta 300kV).	22/03/16
7	Equipo: Fuente Haefely	LAB-ALT-AC02	Sistema de medida de tensión alterna hasta 300kV.	20/05/15 -
				22/03/16
8	Equipo: OMICRON MI600	LAB-ALT-TAN01	Sistema para medida de tangente de delta	20/05/15 -
				22/03/16
9	Equipo: Megaóhmetro	LAB-ALT-OHM03	Medidor de resistencia de aislamiento en DC	20/05/15 -
				22/03/16

Id	Materiales / Equipos / Servicios	Descripción	Proveedor seleccionado	Contacto proveedor	Fecha uso
1	Equipo: Autotransformador	Autotransformador para	URCILAS	monica.perez@urcilas.es	17/06/15-
	motorizado	elevación de corriente, hasta			22/03/16
		alcanzar los 2000A			
2	Material: Transformadores	Transformador toroidal de	NASET	técnico@naset.es	17/06/15-
	toroidales	corriente hasta 35Kva (9)		(96) 178 54 23	22/03/16
3	Material: Galgas	Conjunto de 6 galgas	AGEMO	comercial@agemo.es	04/11/15-
	extensométricas	extensométricas junto con 6			22/03/16
		puentes de Wheastone y 6			
		transductores para medida de			
		deformaciones en el cable			
4	Material: Pinza amperimétrica	Pinza amperimétrica flexible y de	FLUIKOL	antonio.garcia@fluikol.es	17/06/15-
		núcleo abierto hasta 4000A (2)			22/03/16
5	Material: Canaleta PVC	Canaleta (20metros) de	FERRETERÍA OLMOS	ferr@ferreteria.es	20/05/15 -
		diámetro 600mm		(96) 345 67 23	22/03/16
6	Material: Estructura metálica	Columnas metálicas (2 unidades)	ESTRUCTURAS LA TORRE	comercial@latorre.es	20/05/15 -
		para montaje de cable		(96) 135 65 89	22/03/16
7	Material: Muestra cable	Cable (15m) de 170kV	NAIMSYRP, S.A.	jessica.valls@naimsyrp.com	20/05/15 -
					22/03/16
8	Servicio: Carretilla	Carretilla (1 día) para montaje	CARRET, S.A.	claudio@carret.es	04/11/15
		cable		670 43 24	
9	Servicio: Montaje estructuras	Montaje del cable de 170Kv a las	GRÚAS TON	antonio@gruaston.es	20/05/15-
	metálicas	columnas verticales, mediante			27/05/15
		puente grúa			

Presu	puesto				
Id	Actividad / tarea (código WBS)	Dedicación (horas)	Materiales, equipos, servicios (€)	Desplazamientos (€)	Coste total tarea (€)
1	T1 Dirección del proyecto	3145	0	400	157650
2	T2 Análisis del estado del arte				
3	T2.1 Análisis bibliográfico	85	0	0	4250
	'justificación de los daños de un cable durante su vida útil'				
4	T2.2 Análisis bibliográfico 'justificación de los parámetros de	85	0	0	4250
	caracterización de la vida de un cable'				
5	T2.3 Análisis bibliográfico	85	0	0	4250
	'justificación de los valores límite de				
	los parámetros antes de que ocurra				
	un daño en el cable'				
6	T2.4 Análisis bibliográfico 'modelos	102	0	0	5100
	térmicos cable'				
7	T2.5 Redacción estado del arte	127,5	0	0	6375
8	T3 Determinación de la metodología	68	0	350	3750
9	T4 Definición del plan de ensayos	68	0	170	3750
10	T5 Aprovisionamiento materiales y	187	19754	0	29104
	equipamiento				
11	T6 Ensayos				
12	T6.1 Acondicionamiento del laboratorio	170	4230	170	12900

13	T6.2 Ensayo CASO A	425	750	190	22190
14	T6.3 Ensayo CASO B	425	690	190	22130
15	T6.4 Ensayo CASO C	425	450	190	21890
16	T6.5 Ensayo CASO D	425	325	190	21765
17	T7 Documentación de ensayos realizados	255	0	320	13070
18	T8 Documentación de resultados e interpretación	212,5	0	390	11015
			26199	2560	
	TOTAL (€)				343259

Plan	de Calidad					
Nori	mativa a cumplir					
Id	Título Norma		Descripción		Requisitos	
1 IEC 60502-4:2010 'Power cables with extruded insulation and their accessories for rated voltages from 1kV up to 30Kv – Part 4: Test requirements on accessories for cables with rated voltages from 6Kv UP TO 30KV		Esta norma especifica los requerimientos para los ensayos tipo de cables de potencia desde tensión nominal 3,6/6kV hasta los 18/30kV.		Los ensayos (caso A, caso B, caso C y caso D) deberán realizarse bajo esta norma.		
2 Entr		t methods for accessories for ated voltages from 6kv up to	ensayo para	especifica los métodos de testear los accesorios de e potencia entre 3,6/7kV y	Los ensayos (caso A, caso B, caso C y caso D) deberán realizarse bajo esta norma.	
Id	Código entregable	Nombre entregable		Requisitos		
1	E1	Estado del arte: Cables de po	otencia	Extensión mínima: 30 páginas. Incluir referencias bibliográficas.		
2	E2	Metodología y plan de ensay	'OS	Incluir diagramas explicando en detalle la metodología a seguir, así como el plan de ensayos.		
3	E3	Materiales y equipamiento		Se debe adjuntar un Excel, junto con el entregable en formato Word, con el listado de materiales. El entregable deberá integrar el listado de proveedores seleccionados, junto con el contacto de los mismos.		
4	E4	Ensayos		Incluir fotografías reales con alta resolución. Descripción detallada de cada una de las imágenes. Explicación individual de cada uno de los casos de ensayo.		
5	E5	Resultados y conclusiones		Discernir claramente entre lo que son resultados (objetivos) y las conclusiones (subjetivo, opiniones del equipo de proyecto o de otros expertos). Incorporar fotografías reales con párrafo explicativo. Incluir ampliaciones de las gráficas con los detalles más relevantes. Incorporar leyendas en todas las gráficas.		

Anexo 4: Adquisiciones Contrato (MODELO)

Materiales, equipos, servicios a contratar Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Revisión Cliente Materiales / Equipos /Servicios Descripción Cantidad Fecha uso Proveedor Contacto

Anexo 4: Adquisiciones Contrato

Materiales, equipos, servicios a contratar

Nombre proyecto	Análisis de la duración	Fecha prevista inicio	07/01/2015	
	de un cable de potencia			
	bajo diversas			
	sobrecargas			
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016	
proyecto				
Cliente	COMEL	Revisión	V0	

Id	Materiales / Equipos /Servicios	Descripción	Cantidad	Fecha uso	Proveedor	Contacto
1	Equipo: Autotransformador	Autotransformador para elevación de corriente, hasta alcanzar los 2000A	1		URCILAS	monica.perez@urcilas.es
	motorizado	corrience, nasta dicanzar los 2000A			TRANSFORMADORES CL	trafos@trafos.com
					YUCAT	(93) 345 68 14
2	Material: Transformadores	Transformador toroidal de corriente hasta 35kVA (9)	9		PÉREZ TRAFOS	(969) 34 61 76
	toroidales	Hasta SSKVA (9)			NASET	<u>técnico@naset.es</u> (96) 178 54 23
					YUCAT	(93) 345 68 14
3	Material: Galgas	Conjunto de 6 galgas extensométricas	6		AGEMO	comercial@agemo.es

	extensométricas	junto con 6 puentes de Wheastone y 6 transductores para medida de		GALG S.L.	técnico@galg.com
		deformaciones en el cable		FERRETERÍA OLMOS	ferr@ferreteria.es (96) 345 67 23
4	Material: Pinza amperimétrica	Pinza amperimétrica flexible y de núcleo abierto hasta 4000A (2)	2	MEDIDAS CLAUDIO	(96) 345 27 82
	umperimetrica	Hadico abierto hasta 4000/(2)		ROAM	comercial@roam.es
				FLUIKOL	antonio.garcia@fluikol.es
5	Material: Canaleta PVC	Canaleta (20metros) de diámetro 600mm	20	FERRETERÍA OLMOS	ferr@ferreteria.es (96) 345 67 23
				FERRO GARCÍA	(96) 327 23 21
				BRICOTEC	comercial@bricotec.com
6	Material: Estructura metálica	Columnas metálicas (2 unidades) para montaje de cable	2	STRUCT PACO	paco.lopez@struct.es
	Estractara metanca	montaje de cable		BRICOTEC	comercial@bricotec.com
				ESTRUCTURAS LA TORRE	comercial@latorre.es (96) 135 65 89
7	Material: Muestra cable	Cable (15m) de 170kV	1	NAIMSYRP, S.A.	jessica.valls@naimsyrp.co m
				PONS CABLES	Alejandro@ponscables.es
				TRICABLE, S.A.	comercial@tricable.es

8	Servicio: Carretilla	Carretilla (1 día) para montaje cable	1	CARRETILLAS GÓMEZ	gomezcarret@carretillas.e
					S
				CARRET, S.A.	claudio@carret.es 670 43 24
				TRANSPORTES GREGORIO	(93) 367 20 14
9	Servicio: Montaje estructuras	Montaje del cable de 170kV a las columnas verticales, mediante puente	1	GRÚAS TON	antonio@gruaston.es
	metálicas	grúa		STRUCT PACO	paco.lopez@struct.es
				BRICOTEC	comercial@bricotec.com

Anexo 5: Control costes y plazos (MODELO)

Control costes y plazos Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Cliente Revisión <HITO> Id Tarea (WBS) Duración CPTP (€) CPTR (€) CRTR (€) DC DP IRC IRP (días)

Anexo 5: Control costes y plazos

Control costes y plazos

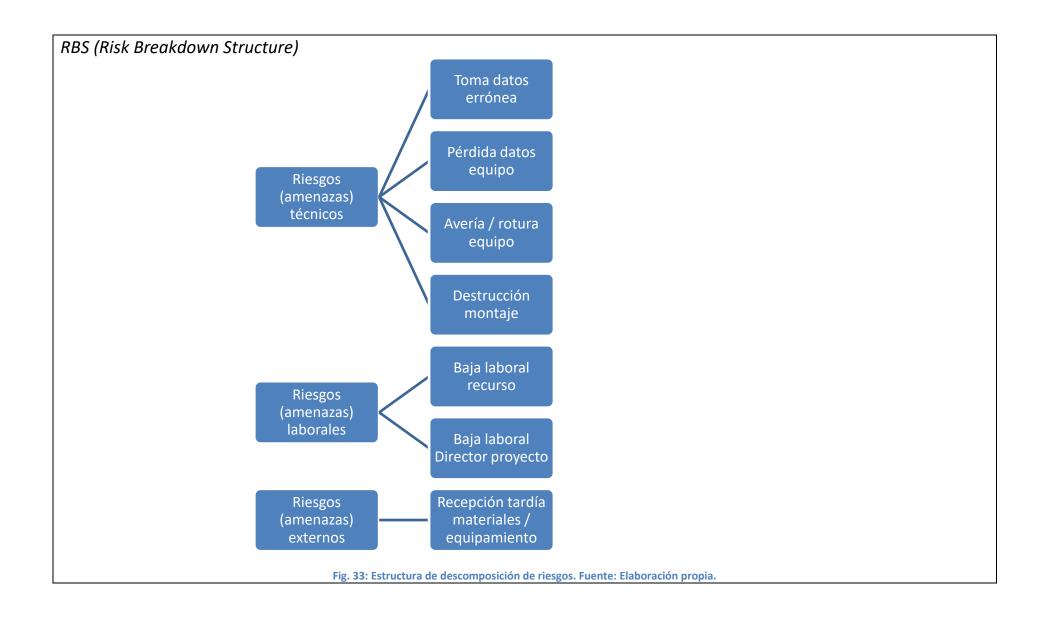
Nombre proyecto	Análisis de la duración	Fecha prevista inicio	07/01/2015
	de un cable de potencia		
	bajo diversas		
	sobrecargas		
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016
proyecto			
Cliente	COMEL	Revisión	H4

Id	Tarea (WBS)	Duración (días)	CPTP (€)	CPTR (€)	CRTR (€)	DC	DP	IRC	IRP
1	T1	370	157650	96341	95400	0	-61309	1	0,61
2	T2								
3	T2.1	10	4250	4250	4125	125	0	1,03	1
4	T2.2	10	4250	4255	4245	10	5	1	1
5	T2.3	10	4250	4250	4250	0	0	1	1
6	T2.4	12	5100	5106	5200	-94	6	0,98	1
7	T2.5	15	6375	6375	6375	0	0	1	1
8	T3	8	3750	3750	3750	0	0	1	1
9	T4	8	3750	3750	3400	350	0	1,1	1
10	T5	22	29104	29104	29850	-746	0	0,98	1
11	Т6								
12	T6.1	20	12900	12900	12900	0	0	1	1
13	T6.2	50	22190	22183	22183	0	-7	1	1
14	T6.3	50	22130	22130	22480	-350	0	0,98	1

Anexo 6: Riesgos (MODELO)

Identificación de riesgos Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Revisión Cliente Id Riesgo Impacto Probabilidad de Medida propuesta Tarea/as a las Responsable (evitar/mitigar/desviar/desarrollo que afecta (Descripción) ocurrencia planes de contingencia)

Anexo 6: Riesgos


Identificación de riesgos

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015	
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016	
proyecto				
Cliente	COMEL	Revisión	V0	

Id	Riesgo (Descripción)	Impacto	Probabilidad	Medida propuesta	Tarea/as a las	Responsable
			de	(evitar/mitigar/desviar/desarrollo	que afecta	
			ocurrencia	planes de contingencia)		
1	Baja laboral de alguno de los	Retraso en el	5%	Sustitución del ingeniero o del técnico	T2, T3, T4, T5,	Clara
	recursos (ingenieros o	plazo (hasta		por otro con capacidades similares si la	T6, T7 y T8	
	técnico).	sustitución).		baja tiene una duración de más de una		
				semana.		
				En caso contrario asumir las tareas el		
				resto de miembros del equipo.		
2	Baja laboral del Responsable	Descontrol del	5%	Sustitución del responsable/a de	Todo el	Clara
	de proyecto.	proyecto.		proyecto si la baja se prolonga más de	proyecto	
				un mes.		

3	Avería o rotura de algún equipo.	Retraso en el plazo y sobrecoste.	10%	Reparación de dicho equipo o compra de uno nuevo.	Т6	Clara
4	Destrucción del montaje (el cable no soporta las sobrecargass).	Paralización del proyecto.	1%	Intentar evitar que dicha fatalidad ocurra prestando especial atención a todos los ensayos. Si ocurre puede optarse por realizar un montaje nuevo o bien abandonar el proyecto.	Т6	Clara
5	Toma de datos errónea a consecuencia de un fallo del ingeniero.	Retraso en plazo y sobrecoste	20%	Repetir el ensayo.	T6, T8	Clara
6	Pérdida de datos en alguno de los equipos.	Retraso en plazo y sobrecoste	25%	Repetir el ensayo.	T6, T8	Clara
7	Recepción fuera de plazo de los materiales y equipamiento.	Retraso en plazo	30%	Presionar a los proveedores desde el principio para evitar que ocurra. En caso de ocurrir deberá aceptarse el retraso e intentar acortar tareas posteriores.	Тб	Clara

Anexo 7: Control de riesgos (MODELO)

Control de riesgos Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Cliente Revisión Fecha Riesgo Detalles Impacto Probabilidad Medida propuesta Tarea/as a la que afecta ¿Cuáles han sido las consecuencias? ¿Se ha aplicado la medida propuesta? ¿Sigue vigente el riesgo? Observaciones Id Fecha Riesgo Detalles Impacto Probabilidad Medida propuesta Tarea/as a la que afecta ¿Cuáles han sido las consecuencias? ¿Se ha aplicado la medida propuesta? ¿Sigue vigente el riesgo?

Observaciones

Anexo 7: Control de riesgos

Control de riesgos

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016
proyecto			
Cliente	COMEL	Revisión	V4

Id	Fecha	17/07/15	
1	Riesgo	Avería o rotura de algún equipo.	
	Detalles	El autotransformador motorizado se ha averiado debido a una sobretensión producida en el	
		laboratorio.	
	Impacto	Retraso en el plazo y sobrecoste.	
	Probabilidad	10%	
	Medida propuesta	Se ha llamado al Servicio Técnico y han venido a reparar el equipo.	
	Tarea/as a la que afecta	T6 (T6.2)	
¿Cuáles han sido las consecuencias? Retraso de 7 días mientras se repara el equipo. No ha supuesto sobrece		Retraso de 7 días mientras se repara el equipo. No ha supuesto sobrecoste porque el equipo	
		estaba en garantía.	
	¿Se ha aplicado la medida propuesta?	Sí (reparación).	
	¿Sigue vigente el riesgo?	No.	
	Observaciones		

Id	Fecha	03/11/15 (HITO 4)
2	Riesgo	No se han producido riesgos nuevos a fecha de hoy.
	Detalles	
	Impacto	
	Probabilidad	
	Medida propuesta	
	Tarea/as a la que afecta	
	¿Cuáles han sido las consecuencias?	
	¿Se ha aplicado la medida propuesta?	
	¿Sigue vigente el riesgo?	
	Observaciones	
Id	Fecha	19/11/15
3	Riesgo	Baja laboral del jefe de proyecto.
	Detalles	Baja por maternidad de la jefa de proyecto (ausente 4 meses).
	Impacto	Descontrol del proyecto.
	Probabilidad	5%
	Medida propuesta	Sustitución de Clara Martínez por Julián Pérez, recurso perteneciente al equipo de proyecto.
	Tarea/as a la que afecta	Todo el proyecto.
	¿Cuáles han sido las consecuencias?	No se han producido consecuencias en el proyecto, ya que se ha podido transferir toda la
		información de una persona a otra debido a que la baja era conocida, no un imprevisto.
	¿Se ha aplicado la medida propuesta?	Sí (sustitución del responsable de proyecto si la baja se prolonga más de un mes)
	¿Sigue vigente el riesgo?	No.
	Observaciones	Una vez regrese Clara Martínez de la baja maternal se volverá a transferir toda la información y
		será de nuevo responsablea de proyecto.
Id	Fecha	22/03/16 (HITO 5)
4	Riesgo	Toma de datos errónea a consecuencia de un fallo del ingeniero
	Detalles	En el programa en LabVIEW para registrar temperaturas se alternaron el orden de 4 sondas de
		temperatura, por lo que los datos del ensayo Caso D son incorrectos.
	Impacto	Retraso en plazo y sobrecoste.
	Probabilidad	20%

Medida propuesta	Repetir el ensayo del Caso D, aunque ello implique 50 días.
Tarea/as a la que afecta	T6, T8
¿Cuáles han sido las consecuencias?	Retraso del proyecto y sobrecoste debido a la mano de obra de los recursos y al consumo eléctrico del ensayo.
¿Se ha aplicado la medida propuesta?	Sí.
¿Sigue vigente el riesgo?	No.
Observaciones	-

Anexo 8: Control de cambios en el Plan del proyecto (MODELO)

Control de cambios Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Revisión Cliente Cambios sobre Descripción / Versión Fecha Motivo de los cambios Consecuencias Alcance/Tareas/Recursos/Coste/Cronograma/Riesgos Resumen cambios

Anexo 8: Control de cambios en el Plan del proyecto

Control de cambios

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016
proyecto Cliente	COMEL	Revisión	V3
Cheffee	CONTEL	THE VISION	• 5

Id	Cambios sobre Alcance/ Tareas/ Recursos/ Coste/ Cronograma/ Riesgos	Descripción / Resumen cambios	Versión	Fecha	Motivo de los cambios	Consecuencias
1	Cronograma	Retraso de 7 días en la tarea T6.2.	V1	25/07/15	Avería del transformador motorizado.	Este retraso en plazo supone un retraso total del proyecto, a menos que se recorten las tareas T7 y T8
2	Alcance	Se amplía el alcance inicial, incluyendo la medida de un parámetro más en el Caso D. (T6.5).	V2	12/01/16	Petición expresa del cliente.	Sin consecuencias, ya que la medida de ese parámetro no supone coste adicional y el tiempo no es significativo.
3	Cronograma	Retraso de 50 días en la tarea T6.5	V3	22/03/16	Error en la conexión de las sondas de temperatura (orden alterado)	Retraso de 50 días en la duración total del proyecto.

Anexo 9: Partes interesadas (MODELO)

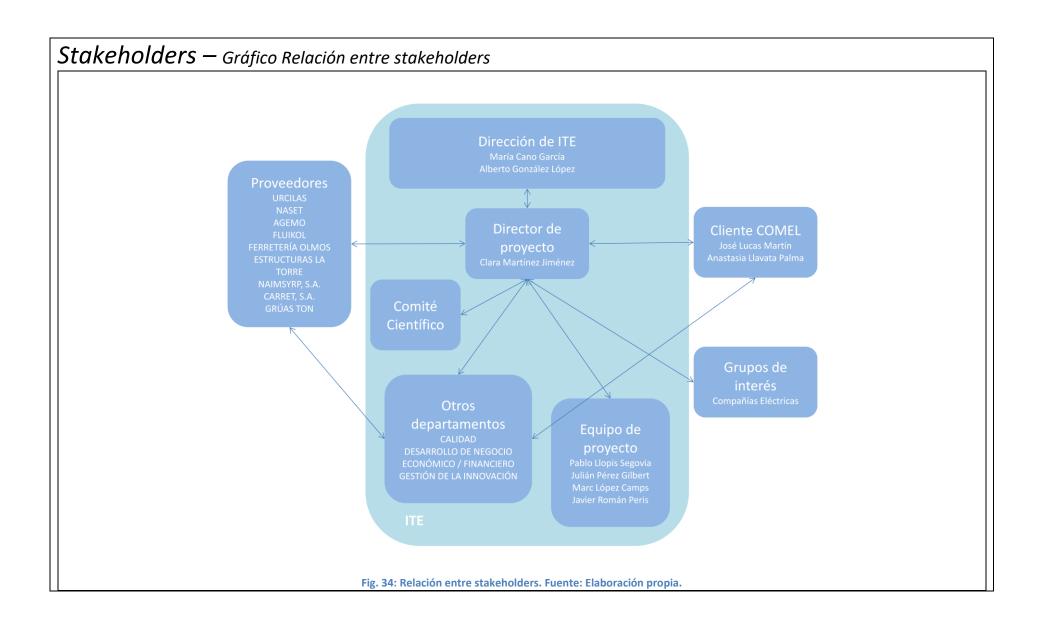
Stakeholders - Registro Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Cliente Revisión Intereses / funciones en el proyecto Responsabilidades en el proyecto Id Nombre del Descripción Contacto grupo (Organización)

S	Stakeholders — Gráfico Relación entre stakeholders					

Anexo 9: Partes interesadas

Stakeholders - Registro

Nombre proyecto	Análisis de la duración	Fecha prevista inicio	07/01/2015
	de un cable de potencia		
	bajo diversas		
	sobrecargas		
Responsable	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016
proyecto			
Cliente	COMEL	Revisión	V1



Id	Nombre del grupo (Organización)	Descripción	Contacto	Intereses / funciones en el proyecto	Responsabilidades en el proyecto
1	Equipo de proyecto (ITE)	El equipo de proyecto está compuesto por 4 personas, excluyendo al responsable de proyecto: • Pablo LLopis Segovia • Julián Pérez Gilbert • Marc López Camps • Javier Román Peris	pablo.llopis@ite.es julian.perez@ite.es marc.lopez@ite.es javier.roman@ite.es	Interés del equipo: Finalizar el proyecto con éxito para satisfacer a la Dirección de la empresa y al cliente. Función del equipo: Trabajar de manera coordinada y eficiente para que el proyecto salga adelante.	Finalizar las tareas dentro de plazo, coste y con la calidad exigida. Realizar los cursos de formación que les sean asignados. Seguir las pautas marcadas por el responsable de proyecto. Velar por la seguridad de todos sus compañeros. Informar al Responsable de proyecto de cualquier incidente o anomalía.
2	Responsable de	La Responsablea de proyecto	clara.martinez@ite.es	Interés: Conseguir que el	Es el máximo responsable del

	proyecto (ITE)	es Clara Martínez Jiménez.		proyecto finalice con éxito para satisfacer al cliente y a la Dirección de la empresa. Función: Dirigir y gestionar el proyecto, tanto los recursos humanos del mismo como el resto de actividades y relaciones.	proyecto, sobre el cual derivarán las consecuencias del mismo. Debe coordinar a su equipo de trabajo. Mantener informada a Dirección, al cliente y al resto de stakeholders. Reunirse con el cliente. Gestionar, junto con el departamento de Compras, la recepción de materiales y equipamiento.
3	Dirección del Centro (ITE)	Se trata del nivel máximo del Instituto. La Dirección del Centro está formada por la Directora y el Subdirector. • María Cano García. • Alberto González López.	maria.cano@ite.es alberto.gonzalez@ite.es	Interés: Obtener la satisfacción del cliente. Funciones: Colaborar, en la medida de lo posible, con el equipo de proyecto y el Director de proyecto, para conseguir que el proyecto sea exitoso.	Supervisar (informes enviados por el Director de proyecto) el proyecto con objeto de verificar que sigue su curso. Estar presentes en la primera reunión con el cliente con objeto de mostrar que se trata de una empresa seria y comprometida.
4	Comité Científico (ITE)	Formado por personal experto en materias de energía y electricidad. Constituyen el órgano de conocimiento y consulta de ITE.	comitetecnico@ite.es	Interés: Velar por el éxito del proyecto. Funciones: Asesorar técnicamente al equipo de proyecto y al Responsable de proyecto en cualquier duda técnica del mismo.	Responderán ante las soluciones técnicas aportadas.

5	Otros departamentos (ITE)	Los departamentos que intervienen en el proyecto son: CALIDAD CALIDAD DESARROLLO DE NEGOCIO ECONÓMICO / FINANCIERO GESTIÓN DE LA INNOVACIÓN	calidad@ite.es negociocomercial@ite.es compras@ite.es gestioninnov@ite.es	Interés: Que el proyecto sea exitoso, tanto en plazo como en costes como en resultados. Función: Colaborar con el departamento encargado del proyecto, facilitando los documentos en tiempo, presionando a los proveedores, etc.	Realizar correctamente las tareas que les han sido asignadas. Aunque el Responsable de proyecto tiene la máxima responsabilidad estos departamentos son responsables de sus actividades.
6	Cliente (COMEL)	El cliente COMEL está representado por el Director de la empresa y un técnico. • José Lucas Martín (Director Comel) • Anastasia Llavata Palma (técnico)	jose@comel.es anastasia@comel.es	Interés: Obtener unos resultados del proyecto coherentes y detallados, en el plazo acordado y con una excelente calidad. Función: Revisar los entregables recibidos por parte de ITE. Preocuparse por la evolución del proyecto.	La responsabilidad principal es supervisar que todas las tareas se van realizando a su gusto para cambiar / modificar detalles, en caso de que no fuera así.
7	Proveedores	Los diversos proveedores que participan en el proyecto se detallan en el Plan del Proyecto URCILAS NASET AGEMO	monica.perez@urcilas.es tecnico@naset.es comercial@agemo.es antonio.garcia@fluikol.es ferr@ferreteria.es comercial@latorre.es jessica.valls@naimsyrp.com	Interés: Satisfacer a su cliente, ITE, en este caso. Función: Cumplir con los plazos en la entrega de materiales, equipos y servicios. Seleccionar	Enviar correctamente el material / equipamiento y dentro de plazo. Proporcionar al cliente (ITE) un servicio adecuado y servir de apoyo.

	 FLUIKOL FERRETERÍA OLMOS ESTRUCTURAS LA TORRE NAIMSYRP, S.A. CARRET, S.A. GRÚAS TON 	claudio@carret.es antonio@gruaston.es	materiales de buena calidad.	
7 Grupos interés (otras compañías eléctricas)	Otras compañías eléctricas, ya sean nacionales o internacionales.		Interés: Les puede resultar de utilidad los resultados obtenidos en el proyecto y que decidan contratar los servicios de ITE. Función: Leer publicaciones, asistir a Congresos, ya que en dichos eventos serán publicados los resultados del proyecto.	En el proyecto no tienen responsabilidad ninguna.

Anexo 10: Requisitos comunicación (MODELO)

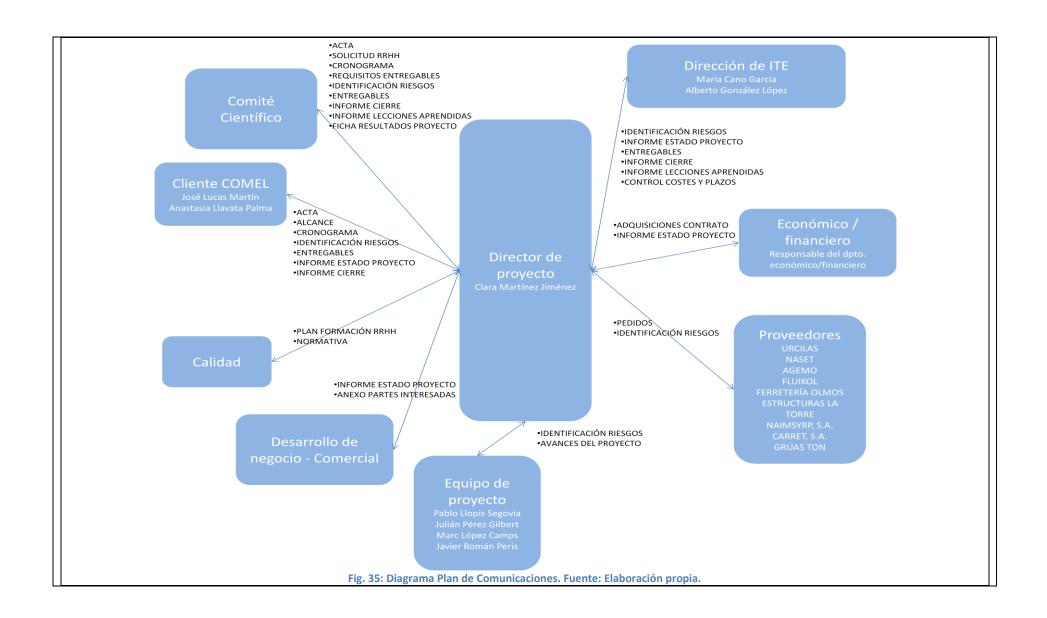
Plan comunicaciones — Requisitos comunicación Nombre proyecto Fecha prevista inicio <LOGO EMPRESA> Responsable Fecha prevista fin proyecto Cliente Revisión Id Nombre del grupo & Intereses Información a Medio de distribución Frecuencia Plazo para Responsable confirmar Contacto comunicar recepción

	lujo de información		

Anexo 10: Requisitos comunicación

Plan comunicaciones — Requisitos comunicación

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015	INSTITUTO TECNOLÓGICO DE
Responsable proyecto	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016	LA ENERGÍA
Cliente	COMEL	Revisión	VO	


Id	Nombre del grupo & Contacto	Receptor	Información a comunicar	Medio de distribución	Frecuencia	Plazo para confirmar recepción	Responsable
1	Responsable de proyecto (ITE) clara.martinez@ite.es	Comité Científico (ITE) comitetecnico@ite.es	Acta constitución proyecto	Vía email	Inicio del proyecto (primera semana)	2 días	Responsable proyecto
2	Responsable de proyecto (ITE) clara.martinez@ite.es	Cliente (COMEL) jose@comel.es	Acta constitución proyecto	Vía email + vía postal	Inicio del proyecto (una vez revisada por el Comité Científico)	5 días	Responsable proyecto
3	Responsable de proyecto (ITE) clara.martinez@ite.es	Cliente (COMEL) jose@comel.es	Alcance del proyecto (Plan del proyecto)	Vía email	Inicio del proyecto y si cuando sufra modificaciones	2 días	Responsable proyecto
4	Responsable de proyecto (ITE)	Comité Científico (ITE)	Solicitud recursos humanos	Vía email	Inicio del proyecto	1 día	Responsable proyecto

	clara.martinez@ite.es	comitetecnico@ite.es					
5	Responsable de proyecto (ITE) clara.martinez@ite.es	Calidad (ITE) calidad@ite.es	Plan de Formación de los recursos del proyecto	Vía email	Inicio del proyecto y a lo largo del proyecto cuando se considere conveniente	4 días	Responsable proyecto
6	Responsable de proyecto (ITE) clara.martinez@ite.es	Económico / Financiero (ITE) compras@ite.es	Adquisiciones contrato	Vía email	Primeras semanas del proyecto o conforme surjan nuevos pedidos	1 día	Responsable proyecto
7	Económico / Financiero (ITE) compras@ite.es	Proveedores	Pedidos	Vía email + vía telefónica	Primeras semanas del proyecto o conforme surjan nuevos pedidos	Mismo día	Responsable de Compras
8	Responsable de proyecto (ITE) clara.martinez@ite.es	Comité Científico (ITE) comitetecnico@ite.es	Cronograma del proyecto (.mpp + .pdf)	Vía email	Inicio del proyecto y cuando sufra modificaciones	3 días	Responsable proyecto
9	Responsable de proyecto (ITE) clara.martinez@ite.es	Cliente (COMEL) jose@comel.es	Cronograma del proyecto (.mpp + .pdf)	Vía email	Inicio del proyecto y cuando sufra modificaciones	3 días	Responsable proyecto
10	Responsable de proyecto (ITE) clara.martinez@ite.es	Comité Científico (ITE) comitetecnico@ite.es	Requisitos Calidad Entregables (Plan Calidad)	Vía email	Una vez, cuando sean definidos	5 días	Responsable proyecto
11	Responsable de proyecto (ITE) clara.martinez@ite.es	Calidad (ITE) calidad@ite.es	Normativa (Plan Calidad)	Vía email	Una vez, cuando sean definidos	5 días	Responsable proyecto
12	Equipo de proyecto (ITE) + Responsable proyecto (ITE) clara.martinez@ite.es	Cliente (COMEL) jose@comel.es Comité Científico (ITE) comitetecnico@ite.es	Identificación riesgos	Vía email	Cada vez que una parte interesada añada o modifique un riesgo	2 días	Responsable proyecto

13	Responsable de proyecto (ITE) + Económico / Financiero + Comercial clara.martinez@ite.es negociocomercial@ite.es compras@ite.es	Dirección (ITE) maria.cano@ite.es Proveedores Dirección (ITE) maria.cano@ite.es Cliente (COMEL) jose@comel.es	Informe estado del proyecto	Vía email	A la finalización de cada hito (Se podrá enviar con mayor frecuencia si el Responsable lo considera necesario)	1 día	Responsable proyecto
14	Responsable de proyecto clara.martinez@ite.es	Dirección (ITE) maria.cano@ite.es	Entregables de proyecto + Informe finalización proyecto + Informe lecciones aprendidas	Vía email	Según cronograma / al finalizar el proyecto / al finalizar el proyecto	5 días / 2 días / 7 días	Responsable proyecto
15	Responsable de proyecto clara.martinez@ite.es	Comité Científico (ITE) comitetecnico@ite.es	Entregables de proyecto + Informe finalización proyecto + Informe lecciones aprendidas	Vía email	Según cronograma / al finalizar el proyecto / al finalizar el proyecto	5 días / 2 días / 7 días	Responsable proyecto
16	Responsable de proyecto clara.martinez@ite.es	Cliente (COMEL) jose@comel.es	Entregables de proyecto + Informe finalización proyecto	Vía email	Según cronograma / al finalizar el proyecto	5 días / 2 días	Responsable proyecto
17	Responsable de proyecto clara.martinez@ite.es	Dirección (ITE) maria.cano@ite.es	Control costes y plazos	Vía email	Al finalizar cada hito	1 día	Responsable proyecto

18	Responsable de proyecto	Equipo de proyecto	Avances del	Reunión	Inicio y fin de cada	-	Responsable
	clara.martinez@ite.es	(ITE)	proyecto	presencial	semana		proyecto
19	Comité Científico (ITE)	Responsable de	Informe	Vía email	Según se envíen los	10 días	Responsable del
	comitetecnico@ite.es	proyecto	resultados		entregables y el		Comité
		clara.martinez@ite.es			informe finalización		Científico
					de proyecto		
20	Comercial	Responsable de	Anexo 'Partes	Reunión	Inicio del proyecto	-	Responsable
	negociocomercial@ite.es	proyecto	interesadas'	presencial			proyecto
		clara.martinez@ite.es					
21	Responsable de proyecto	Comité Científico	Ficha resultados	Vía email	Finalización	3 días	Responsable
	clara.martinez@ite.es	(ITE)	proyecto		proyecto		proyecto
		comitetecnico@ite.es					
22	Responsable de proyecto	Calidad (ITE)	Ficha resultados	Vía email	Finalización	3 días	Responsable
	clara.martinez@ite.es	calidad@ite.es	proyecto		proyecto		proyecto

Plan comunicaciones — Diagrama de flujo de información

Anexo 11: Formación interna (MODELO)

Formación interna

Nombre proyecto	Fecha prevista inicio	1	ITE
Responsable proyecto	Fecha prevista fin		INSTITUTO TECNOLÓGICO DE LA ENERGÍA
Cliente	Revisión		

	Nombre y apellidos recurso					
Fecha (Semanas)	recuiso	reduiso	recurso	recurso	recurso	apelliads recarso

Anexo 11: Formación interna

Formación interna

Nombre proyecto	Análisis de la duración de un cable de potencia bajo diversas sobrecargas	Fecha prevista inicio	07/01/2015	INSTITUTO TECNOLÓGICO DE
Responsable proyecto	Clara Martínez Jiménez	Fecha prevista fin	07/06/2016	LA ENERGÍA
Cliente	COMEL	Revisión	V3	

	Nombre y apellidos	Nombre y apellidos	Nombre y apellidos	Nombre y apellidos	Nombre y apellidos
	recurso	recurso	recurso	recurso	recurso
Fecha	Julián Pérez Gilbert	Marc López Camps	Javier Román Peris	Pablo Llopis Segovia	Clara Martínez Jiménez
(Semanas)					
Semana 1	-	'Medida descargas	-	-	-
07-14/01/15		parciales alta tensión'			
		(artículo H. Hugen)			
Semana 2	'Modelo térmico cable	'Medida descargas	-	'Tangente delta	'Modelo térmico cable
15-22/01/15	potencia' (libro A.Gil)	parciales alta tensión'		medida' (Artículo J.	potencia' (libro A.Gil)
		(artículo H. Hugen)		Johnson)	
Semana 3	'Parámetros	'Parámetros	'Manual registrador	-	'Modelo térmico cable
23-31/01/15	caracterización vida útil	caracterización vida útil	temperatura'		potencia' (libro A.Gil)
	cable' (revista High	cable' (revista High			
	Voltage)	Voltage)			