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Abstract

BACKGROUND AND OBJECTIVE

Induction of labor (IOL) is a medical procedure used to initiate uterine contractions to
achieve delivery. IOL entails medical risks and has a significant impact on both the
mother’s and newborn’s well-being. The assistance provided by an automatic system
to help distinguish patients that will achieve labor spontaneously from those that will
need late-term IOL would help clinicians and mothers to take an informed decision
about prolonging pregnancy. With this aim, we developed and evaluated predictive
models using not only traditional obstetrical data but also electrophysiological

parameters derived from the electrohysterogram (EHG).

METHODS

EHG recordings were made on singleton term pregnancies. A set of 10 temporal and
spectral parameters was calculated to characterize EHG bursts and a further set of 6
common obstetrical parameters was also considered in the predictive models design.
Different models were implemented based on single layer Support Vector Machines
(SVM) and with aggregation of majority voting of SVM (double layer), to distinguish
between the two groups: term spontaneous labor (<41 weeks of gestation) and I0OL

late-term labor. The areas under the curve (AUC) of the models were compared.

RESULTS

The obstetrical and EHG parameters of the two groups did not show statistically
significant differences. The best results of non-contextualized single input parameter
SVM models were achieved by the Bishop Score (AUC=0.65) and GA at recording time
(AUC=0.68) obstetrical parameters. The EHG parameter median frequency, when
contextualized with the two obstetrical parameters improved these results, reaching

AUC=0.76. Multiple input SVM obtained AUC=0.70 for all EHG parameters.
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Aggregation of majority voting of SVM models using contextualized EHG parameters

achieved the best result AUC=0.93.

CONCLUSIONS

Measuring the electrophysiological uterine condition by means of electrohysterographic
recordings yielded a promising clinical decision support system for distinguishing
patients that will spontaneously achieve active labor before the end of full term from
those who will require late term IOL. The importance of considering these EHG
measurements in the patient’s individual context was also shown by combining EHG
parameters with obstetrical parameters. Clinicians considering elective labor induction

would benefit from this technique.

KEYWORDS

Electrohysterogram, SVM, maijority voting, labor management.
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1 Introduction

Late-term pregnancies are those that extend beyond the 40 + 6 weeks of gestational
age (GA) up to 41 GA + 6 weeks, and are associated with an increase in fetal and
maternal morbidity and mortality[1]. Induction of labor (IOL) is used before labor begins
spontaneously to incite uterine contractions during pregnancy [2]. Medical indications
for IOL are usually given in clinical situations in which the benefits of expediting birth
outweigh the risks of continuing the pregnancy, as could be the case in a late term
pregnancy [3]. There is an increasing trend in the use of IOL; from 1990 to 2012 the
ratio doubled in the United States [4] from 9.5% to 22.5%, at an estimated cost of $2

billion [4].

IOL is not without certain risks. It entails the possible consequences of excessive
uterine activity: C-section (cesarean section), risk of postpartum hemorrhage, and
adverse effects on the new-born such as fetal infection and respiratory distress
syndrome [1]. Late term pregnancies also involve risks. A review of the GA of all live
infants in the United States (1995 - 2005) [5] and the American College of
Obstetricians and Gynecologists [6] related a rise in stillbirths, neonatal and perinatal
deaths at 41 GA compared to early and full term labor. In this regard, prior knowledge
of when a pregnancy will exceed the term period would be very useful extra information
to help clinicians manage pregnancies, especially in conditions such as high-risk
gestations, advanced maternal age or human-assisted reproductive technology
gestations. Similarly, current international recommendations encourage mothers to
make an informed decision about the management of their own prolonged pregnancies
[7]. The lack of clear evidence on the outcome of each pregnancy management
strategy complicates the mother’s informed decision between the risks associated with
a late-term pregnancy and the risks associated with IOL. We develop a method that
helps to determine, in term pregnancies, if active labor will be spontaneously achieved

before the end of full term (<41 GA [6]) or if the patient will have a prolonged gestation,



120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

becoming a late-term pregnancy requiring IOL. This method would have considerable
benefits for obstetricians considering management strategies and help mothers take

decisions.

Previous studies attempted to develop models based on ultrasound technologies that
predict the labor onset type: spontaneous vs C-section [8] or predict spontaneous
vaginal delivery [9]. Other authors have used the Bishop Score (BS) and other
maternal or fetal parameters to predict failed induction [10] or time to onset of labor in
prolonged pregnancies [11]. To date, these models have shown limited predictive
accuracy. One of the alternatives now available is to use the information derived from
electrohysterographic recordings. Surface recording of the electrohysterogram (EHG)
is a noninvasive technique for monitoring the electrical activity of the myometrium and
provides reliable information on uterine contractions [12]. These contractions are the
result of bursts of myometrial electrical activity and are associated with an increase in
the intrauterine pressure [13]. The uterine electrophysiological conditions are reflected
in the characteristics of the EHG signal and their evolution along gestation[14]. A large
number of studies have used EHG parameters and classification methods mainly to
discriminate labor contractions from non-labor contractions [15], and term from preterm
deliveries [14-16], and in a minor extent to study the effect of different drugs [17, 18]
Although results have shown great potential of EHG, so far clinical application is very
limited. This is probably due to incommodities derived of some recording protocols and
equipment’s used in research studies, and also because clinicians are not familiar with
EHG signals, and physiological interpretation of some EHG parameters and analysis
procedures could also complex and not straight forward. Usually temporal and spectral
parameters are used to characterize EHG signals[14, 16, 19, 20], especially EHG
contractions bursts. Some authors also include non-linear characteristics in the EHG
study [21, 22]. There is also a recent trend on the study of coupling and propagation of

EHG by means of multichannel recordings [23-25].
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When characterizing the uterine electrophysiological condition during pregnancy and
determining the possible labor onset, it should be considered that pregnancy is
composed of two steps: preparatory (long conditioning) and active labor. In the
myometrium, this preparatory process involves changes in the transduction
mechanisms [26], and so the spectral and temporal EHG parameters exhibit a
longitudinal evolution throughout pregnancy [27], i.e. they are GA-dependent. On the
other hand, maternal age, body mass index (BMI), parity, and gestations also influence
the pregnancy and labor processes underlying the changes of the uterine electrical
activity during pregnancy. BMI and parity are good predictors of cervical ripening,
whose goal is to facilitate the process of cervical softening, thinning and dilating [28].
Also, nullparity, advanced maternal age and obesity are known to be strong risk factors
in late-term pregnancies [29]. Our hypothesis is therefore that when characterizing the
uterine electrophysiological condition by means of EHG analysis, the EHG parameters
cannot be fully explained and interpreted outside the maternal clinical context

characterized by common obstetrical parameters.

In this study, a set of individual and aggregation of support vector machines (SVM)
classifiers using EHG recordings and obstetrical parameters from term pregnancies
was implemented and compared to discern patients that will achieve active labor
spontaneously before the end of full term (<41 GA [6]) from those that will need late
term I0OL (between 41 weeks 0 days and 41 weeks 6 days [6]). We studied the
influence of the set of input variables on the performance of the classifiers with single
input and groups of i) obstetrical parameters only, ii) EHG parameters only and iii) the

combination of EHG parameters and their obstetrical parameters (clinical context).

The experimental results showed that the classifier that uses as inputs the combination
of contextualized EHG parameters in an aggregation of support vector machines with

the majority voting method gave the best performance.
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2 Material and Methods

2.1 Patients

This study was approved by the Hospital Universitario y Politécnico La Fe de Valencia
Ethics Committee and adheres to the Declaration of Helsinki. All the patients involved
signed written consent forms. Inclusion criteria were: healthy women, with singleton
pregnancy, term GA, and non-high-risk pregnancies. Patients with previous C-section,
elective cesarean, pregnancy complication either maternal or fetal, or those who
delivered in a different hospital were excluded from the study. All the patients presented
uterine dynamics when recorded and were followed up until the end of the delivery. In
accordance with ACOG Guidelines Committee Opinion No 579: Definition of Term
Pregnancy [6], each patient’s recording was assigned to one of two following
categories: those expected to achieve active labor spontaneously before the end of full

term (<41 GA) and those expected to need late term.

Of the 72 pregnant patients who consented to participate in the study, 10 were
excluded as their delivery was by elective caesarian section due to breech
presentation. Of the 62 analyzed, 38 spontaneously entered into labor before the end

of full term and 24 late term deliveries were induced by standard medical criteria.

2.2 Electrohysterography signal acquisition

For each recording session, the subject's abdominal surface was prepared with
abrasive gel (Nuprep, Weaver and Company, USA). A bipolar signal was captured from
two Ag/AgCl disposable electrodes (Kendal, USA) placed subumbilically (2.5 cm apart)
in the median axis (Figure 1). The electrodes were connected to commercial biosignal
amplifiers (ECG100C, Biopac, USA) in which the signals were amplified and filtered
between [0.05, 35] Hz to be subsequently acquired at a sampling frequency of 500 Hz.

Conventional pressure recordings on abdominal surface were also performed with a
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commercial maternal monitor Corometrics 250cx (General Electric Healhcare). All the

recording sessions lasted 30 minutes.

To eliminate low- and high-frequency interference and noise, the signals were
bandpass filtered between 0.2-1 Hz with a 5th order Butterworth filter and
subsequently down-sampled at 20 Hz [30]. All the EHG bursts were then segmented
manually according to the following rules: the EHG bursts had to correspond in time to
the contractions detected in the simultaneous uterine pressure record, and no artifact
evidence should have been observed during contraction [31]. Fig. 2 shows an example
of EHG signals recorded simultaneously with TOCO during a period of contractile
activity. It can be seen that a uterine contraction is associated with increased pressure
in the TOCO recordings and with a spike burst containing a rise in amplitude and

frequency in the bioelectrical signal (EHG recording).

2.3 Parameterization

Only EHG signals of the uterine contractions identified in the recordings (EHG burst)
were used for the analysis. A set of spectral and temporal parameters described in
previous studies [12, 32, 33] was created to characterize the EHG bursts, including:
duration (DurCT), number of contractions in the recording session (nCT), mean
frequency (MF), median frequency (mF), standard deviation of frequency (stdF),
dominant frequency (DF), subband energies normalized with respect to the total
energy (NE1: 0.2— 0.34 Hz, NE2: 0.34 — 1 Hz) [33], and subband power P1: 0.2 — 0.34

Hz, P2: 0.34 — 1 Hz.

The obstetrical parameters included were: maternal age, BMI, gestations, parity,
Bishop Score and days of gestation at recording moment. Maternal age was defined as
age in completed years at time of recording, parity as the number of previous births
including abortions at 28 GA or later, and GA was determined by prenatal ultrasound

[29]. The BS is a points system determined by cervix dilation, effacement, station of the
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fetus, consistency of the cervix and its position [34] as measured on the day of the

recording session.

Significant differences between the two sample groups were tested with a t-test for
each parameter, in which a two-sided p value less than 0.05 was considered to be

statistically significant.

2.4 Feature selection

Automatic parameter selection was carried out to achieve the maximum classifier
accuracy. The Sequential Forward Feature Selection (SFFS) algorithm was used to
determine the parameter set that maximized classifier accuracy. This is a bottom-up
search procedure in which one parameter is added at a time to the current parameter
set. The new parameter added is selected from the subset of the remaining parameters

with the aim of minimizing misclassification errors [35, 36].

2.5 Classifiers

A total of 33 classifiers were developed to predict spontaneous labor before the end of
full term or IOL in late term (Figure 3). In order to determine the ability of each
parameter to discriminate between these two groups, a first set of 16 SVM models
were implemented using non-contextualized single input parameters (NCSP,, i=1..16,
i=1..6 for obstetrical parameters and i=7..16 for EHG parameters). Secondly, based on
the idea that in medicine the patients’ signs, symptoms or information should not be
analyzed as independent parts but united and related parts of a whole biological
system; we consider that each EHG parameter can be influenced/modulated by the
patient’s obstetrical parameters and cannot be fully explained and interpreted outside
the maternal clinical context; i.e. more uterine electrophysiological information can be
derived when considering possible interactions by joining together the information
about myoelectrical activity from uterine muscle (EHG parameter) and that of cervix

condition (Bishop score), number of previous labors or gestational age for example.
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Moreover, this interaction can be different for different EHG parameters and could be
better modeled for single EHG parameters rather than considering all parameters
together (also tested later with multiple input parameters, SLMP;). Hence, so as to
complete patient anamnesis and to consider such possible interactions, a second set
of 10 SVM models with contextualized single EHG input parameters (CSPj, j=1..10)
were also implemented to assess the ability of each EHG contextualized parameter to
discriminate between the two groups. The inputs of each of these SVM classifiers were
one EHG parameter and two obstetrical parameters (BS and GA at time of recording)
for the EHG parameter contextualization. In addition, 3 single-layer SVM models with
multiple input parameter (SLMPy, k=1..3) were calculated to be able to compare the
classificatory performance when combining more than one input parameter: SLMP;
with obstetrical parameter inputs only, SLMP, with EHG parameters only, and the
SLMP; with both obstetrical parameters and EHG parameters in a global approach.
Finally, with the aim of improving the ability to discriminate between the groups, 4
aggregations for SVM models with an additional layer that included a majority voting
method were also tested. The inputs of these double layer multiple parameter SVM
classifiers (DLMP,, 1=1..4) were the multiple outputs of previous single input classifiers
— DLMP;: obstetrical parameters (6 outputs from NCSP44) — DLMP,: EHG parameters
(10 outputs from NCSP;.5), DLMP3: obstetrical parameters and EHG parameters
(6+10 outputs of NCSP4.45) and DLMP,: contextualized EHG parameters (10 outputs of

CSP1.10).

2.6 Validation methods

The Holdout Cross-Validation [37] technique was used to minimize the generalization
error. The training and test sets were selected randomly from the whole data set, 80%
of the data was designated for training, and the remaining 20% for testing [38]. The

learning and testing stages must be repeated, since the selection of the instances is
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random, so the average performance obtained from 50 trials was utilized to minimize

bias [35].

The predictive performance of each classifier was evaluated using the Receiver
Operator Curve (ROC), which is a standard technique of summarizing a classifier’s

performance based on displaying sensitivity against 1 — specificity [32].
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3. Results

Table 1 shows the obstetrical parameters. There were no statistically significant
differences for these parameters between the two groups (spontaneous <full term labor
and IOL late term labor). Furthermore, as can be seen in Table 1, the GA at the time of
recording for both groups were almost identical. Similar EHG parameters were also
obtained for both groups (see Table 2), there were no statistically significant differences

between the EHG parameters of the two groups.

Table 3 (non-contextualized column) summarizes the performance of the 16 SVM
models with a single input. Neither the obstetrical nor EHG parameters achieve good
results when used as single inputs. BS (AUC=0.65) and GA at recording (AUC=0.68) -
from obstetrical parameters- are provide the best information to the decision model
with the best results. As the AUC values from all the EHG parameters ranged between
0.46 and 0.58, we can consider that a single EHG input parameter does not provide
enough information to satisfactorily discriminate between patients that will achieve
spontaneous labor before the end of full term from those that will require late term labor

induction.

Table 3 (contextualized column) summarizes the computation of an SVM model for
each single EHG parameter contextualized with obstetrical parameters. Only BS and
GA at recording were used for contextualization, since the addition of other obstetrical
parameters did not improve the results. Contextualization significantly improves the
classifiers’ performance, with AUC values ranging from 0.69 (contextualized EHG
number of contractions) up to 0.76 (contextualized EHG median frequency). This
improvement could also be attributed to the fact that these classifiers have 3 input
parameters (1 EHG and 2 obstetrical parameters). Further information on this issue

can be deduced from the other set of classifiers.
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Table 4 shows (single layer column) the results for SVM models with multiple input
data. Three SVM models were calculated: one for obstetrical parameters, one for EHG
parameters, and the last was a combination of all the previous parameters. The SVM
model for multiple obstetrical parameters gave an AUC=0.69. The SVM model for
multiple EHG parameters achieves similar results as the obstetrical SVM model,
AUC=0.70. The combination of obstetrical parameters and EHG parameters gives an
AUC=0.76. The parameters most frequently selected by the algorithm were: BS and
GA at recording from the obstetrical parameters, and median frequency from the EHG
parameters, which is consistent with the results obtained by contextualized single EHG

parameter classifiers.

Finally, the right-hand column in Table 4 shows the results of the double-layer
classifiers that include majority voting. The SVM aggregation for obstetrical parameters
only (AUC=0.75) and EHG parameters only (AUC=0.77), and the combinations of
these two sets (AUC=0.82) shows a slight improvement with respect to the SVM
models with multiple inputs. The best performance was obtained aggregating the SVM
models for contextualized EHG parameters (AUC=0.93). This shows that the possibility
of generating a particularized contextualization transformation for each EHG parameter
(instead of an overall one for all the EHG parameters, as in SLMP; and DLMP3, which
joined obstetrical and EHG parameters together), improves the characterization of the

uterine electrophysiological condition and hence the classifier’s performance.

4. Discussion

In this study we developed and tested classifiers able to distinguish patients that will
achieve labor spontaneously before the end of their full term from those that will require
late term IOL. This information would help clinicians to better manage the final steps of
high-risk pregnancies and to optimize the use of hospital resources such as labor

wards. In the case of expected late term IOL, and if risks could increase with prolonged
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gestation, it could be decided to re-schedule I0L accordingly. This information would
also help mothers to make an informed decision about the management of a possible
prolonged pregnancy, since such decision not only affects the maternal and fetal

wellbeing but also influences the satisfaction with the delivery experience.

Lots of studies have been published showing the great potential of EHG to help to
predict labor in other important obstetrical context: prediction preterm vs term
deliveries[19, 20, 23-25, 38-40]: Lucovnik et al[40]. showed significant differences of
propagation velocity and power spectral peak for preterm patients delivering within 7
days of measurement vs those delivering more than 7 days from measurement; and
obtained an AUC of 0.96 for EHG burst analysis and 0.72 for the Bishop score;
similarly Fergus et al [38] using SVM and EHG parameters from 30 min windows
(including basal activity) achieved an AUC=0.95 for preterm delivery prediction.
However, as far as we know, no studies have yet been published specifically dealing
with predicting the onset of spontaneous labor vs late term induction by means of EHG
parameters. In contrast to preterm patients[40], in the present study no significant
differences were found in EHG parameters of patients that achieved spontaneous labor
to those that required IOL at late term. Our results showed that the electrophysiological
parameters extracted from the EHG burst should be contextualized for individual
patients, taking into account the obstetrical parameters to create a complete
anamnesis. Specifically, the best performance was achieved by the contextualized
EHG parameters in both the single-layer SVM models and aggregation SVM models

with majority voting. The latter improves the prediction capability by up to AUC=0.93.

Other studies have used ultrasound methods to investigate the labor outcome. Rao et
al [8] used a regression analysis combining cervical length and maternal characteristics
to predict spontaneous labor achieving an AUC=0.76. Vankayalapati et al [9] used the
sonographic assessment of cervical length to predict spontaneous onset of labor in a 6

to 10 day interval, obtaining an AUC=0.64. Strobel et al [11] used the BS and
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ultrasound assessment of the cervix to predict time to delivery in prolonged pregnancy,
achieving good results when the time to labor/delivery was less than 24 h and 48h
(AUC=0.94 and AUC=0.90, respectively). However, when labor/delivery was longer
than 96h, the AUC dropped to 0.66. In the present study, an AUC of 0.93 was obtained
being the average time interval from time of recording to delivery 120h in <full term and
168h in late term labor groups. Our results show that the combination of the BS,
maternal GA and EHG parameters improves the predictive performance of classifiers
that only use obstetrical parameters. We therefore consider that electrohysterography
could provide very valuable information in this clinical context. Although segmentation
of the EHG burst and its parameterization would require additional time and effort,
clinicians should be given the tools for automatic segmentation and analysis of EHG

recordings [19, 35] to facilitate their work.

Our study is not exempt from certain limitations: Firstly, so as to simplify recording
protocol only one EHG bipolar signal was analyzed in each patient. Other authors
propose multichannel recording with 16 and even 64 monopolar channels [24, 41, 42].
Such systems can provide more information, and also permit to compute bivariate
signal parameters to value EHG signal propagation and coordination. Possible
enhancement of classificatory results when including more channels and such
parameters, at the cost of a more complex recording condition, and the use of non-
linear parameters should be tested in future work. On the other hand only patients with
uterine dynamics were included in the study. To enhance the clinical applicability of the
proposed tool, it should be extended to patients who do not present uterine dynamics.
It should also be highlighted that the recordings were carried out at term (37-41 GA).
Although the results are promising and could have great clinical value, it would be
interesting to analyze the prediction performance of the classifiers in an extended
range of gestational ages, and also to test similar classifiers for the prediction of

preterm labor. Finally the combination of complex machine learning methods can yield
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good results. However, when the EHG parameters do not have an immediate
physiological interpretation clinicians may not be willing to accept these techniques.
Despite these limitations, the results indicate that this is a promising method for use in

clinical obstetrics.

5 Conclusions

Clinicians and expectant mothers should have access to the best available evidence
when deciding whether to induce labor. We have shown that measurements of
electrophysiological uterine condition by means of electrohysterographic recordings
can yield a promising clinical decision support system for distinguishing patients that
will spontaneously achieve active labor before the end of their full term from those who
will require late term IOL. We have also shown the importance of considering these
EHG measurements in the patient’'s individual context by combining EHG and
obstetrical parameters. This procedure could also be expanded and tested in other
obstetrical situations, such as preterm labor prediction. We consider that present work
and further future steps along the same lines could provide new approaches in clinical

praxis to improve obstetrical care.
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Tables

Table 1: Patient characteristics for <Full Term and Late Term labor groups.

<Full term Late term
Obstetrical parameters
(n=38) (n=24)
Gestations 2.34 +1.36 2.08+1.34
Parity 0.84 +1.02 0.54 +0.77
Bishop 242 +1.95 1.08 + 1.34
Maternal age (y) 31.4+6.2 323143
BMI (kg/m?) 28.8+4.6 28.6+3.7
GA at recording (days) 277+ 4 2805
GA at birth (days)* 282 +4 288 +2

* statistical differences (p<0.05)
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Table 2: Mean  SD values of EHG parameters for both <full term and late term labor

groups.

<Full term Late term
EHG Parameters

(n=138) (n=24)
Contraction duration (s) 85.21+46.0 85.7 £ 341
Number of contractions in 30min 2.89+245 2.25+1.56
Mean frequency (Hz) 0.36 £ 0.67 0.38£0.71
Median frequency (Hz) 0.33£0.66 0.33£0.61
Standard deviation frequency (Hz) 0.14 £0.35 0.15+£0.04
Dominant frequency (Hz) 0.32 + 0.06 0.31+£0.04
Normalized Energy [0.2— 0 .34] Hz 0.57 £ 0.17 0.54 +0.20
Normalized Energy [0.34 - 1] Hz 0.42 +0.17 0.45+0.20
Power [0.2 — 0.34] Hz 0.25+0.68 0.26 + 0.57
Power [0.34 - 1] Hz 0.09+£0.29 0.09 +0.22




545  Table 3: Area under the curve (AUC) of SVM models with single input parameters with
546 and without using obstetrical parameters for contextualization (NCSP and CSP,
547  respectively)

SUM Model Non-contextualized Contextualized
(NCSP) (CSP)

Gestation 0.54 -

Parity 0.52 --

Bishop 0.65 --

Maternal Age 0.51 --

BMI 0.40 -

GA at recording 0.68 --
Contraction duration 0.47 0.72
Number of contractions 0.48 0.69
Mean frequency 0.58 0.72
Median Frequency 0.46 0.76
Standard deviation frequency 0.47 0.73
Power [0.2 — 0.34] Hz 0.49 0.70
Power [0.34 - 1] Hz 0.46 0.71
Normalized Energy [0.2 — 0.34] Hz 0.46 0.74
Normalized Energy [0.34 - 1] Hz 0.48 0.71
Dominant frequency 0.47 0.75

548

549
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Table 4: The area under the curve (AUC) of SVM models with single layer and double
layer (majority voting) with multiple parameters (SLMP) and (DLMP) for each data set.

Single layer Majority voting
SVM Model
(SLMP) (DLMP)
Obstetrical parameters 0.69 0.75
EHG parameters 0.70 0.77
Obstetrical parameters and

EHG parameters 0.76 0.82
Contextualized EHG N 0.93

parameter




Figure 1: Electrode disposition‘in the experimental protocol
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Figure 2: Abdominal surface recording during contractile period: TOCO signal (upper),

and EHG signal (lower).
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Figure 3: Classifiers developed to predict <full'term spontaneous labor or IOL in late
term pregnancies. SVM models depicted in descending order: a) 16 NCSP: non-
contextualized single input (obstetrical and EHG) parameters (P), b) 10 CSP:
contextualized single EHG/input parameters with obstetrical parameters (Bishop Score
and GA at recording)/for contextualization, c) 3 SLMP: single layer with multiple input

parameter, d) 4 DLMP: double layer (majority voting) with multiple input parameter.



