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Abstract

This paper describes the Java MPI bindings that have been included in the Open MPI distribution. Open MPI is one

of the most popular implementations of MPI, the Message-Passing Interface, which is the predominant programming

paradigm for parallel applications on distributed memory computers. We have added Java support to Open MPI,

exposing MPI functionality to Java programmers. Our approach is based on the Java Native Interface, and has sim-

ilarities with previous efforts, as well as important differences. This paper serves as a reference for the application

program interface, and in addition we provide details of the internal implementation to justify some of the design

decisions. We also show some results to assess the performance of the bindings.
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1. Introduction

Since the introduction of the Java programming language, there has been a significant interest from part of the

high-performance computing community in using it due to its many appealing features. Initially, this interest cooled

down due to various problems, such as bad performance of the first versions of the Java Virtual Machine (JVM).

Most of these issues have now been solved, and the last studies [1, 2] indicate that the overhead of Java is currently

reasonable for computationally intensive applications. The performance can be improved even further by making use

of numerical libraries in Java that in some cases employ efficient native computational kernels [3, 4, 5]. For instance,

MTJ [6] can be configured to either use JLAPACK [7] or the native Fortran LAPACK.

The performance of modern JVM’s is already very high, but still it is possible to tune some components of the

Java runtime environment for best efficiency, such as the JIT compiler or the automatic Garbage Collector [8].

Several existing scientific computing codes written in Java illustrate the potential of this approach [9, 10, 11].

These kind of applications either incorporate some kind of parallelism, or point it as a subject for future development.

Roughly speaking, nowadays high-performance computing relies on three different parallel computing technolo-

gies and combinations thereof: message-passing for distributed-memory platforms (clusters), multi-threading mech-

anisms for shared-memory computers, and customized programming of accelerators (GPU’s). Java provides efficient

built-in support for threads, with cached thread pools that allows reusing inactive threads, and some numerical libraries

are based on such mechanism [12]. GPU support in Java is more incipient but can be used to some extent [13].

Regarding message-passing parallelization, there are projects that try to define their own primitives in Java [14].

However, it seems clear that adopting the MPI standard also in Java is the preferred approach. We advocate for this

in this paper, since we believe there are many benefits in doing this. On one hand, any programmer with experience

in high-performance computing (HPC) that is going to start a new development in Java will likely want to have some
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kind of MPI interface. MPI provides a rich feature set such as collective communication that are missing in more

general schemes such as sockets or RMI, both of which are more oriented to client-server applications. On the other

hand, MPI can benefit from Java because its widespread use makes it likely to find new uses beyond traditional HPC

applications.

In this work, we present Java MPI bindings implemented in the Open MPI [15] package. Integrating into a specific

MPI implementation allows the Java bindings to be simpler by reaching directly back to the relevant MPI internals.

The alternative is to only use public MPI API functionality, which can be problematic for some functionality (e.g.,

dealing with user-specified callback functions). Also, as will be discussed below, we follow a JNI-based approach in

such a way that the Java bindings are as simple as possible, confining all the complexity within the well-established

C implementation.

The rest of the paper is organized as follows. Section 2 provides an overview of MPI and Java, and surveys

projects related to ours. Section 3 shows how to use the Java bindings in Open MPI, and includes several illustrative

examples. Internal implementation details are deferred to section 4. Finally, in section 5 we show some results of the

performance evaluation we have conducted. We wrap up with some concluding remarks.

2. Preliminaries and related work

This work aims at improving the availability of the Message Passing Interface (MPI) [16] in the Java language

realm. MPI is a high-level library that is commonly used in HPC applications to abstract away many of the details of

the underlying networking(s). MPI has multiple different major flavors of communication:

• Point-to-point: a pair of MPI process peers exchange messages.

• One-sided: messages are exchaged from one process to another, with one of them not explicitly participating in

the operation apart from allowing the other peer to access its memory via the MPI window paradigm.

• Collective: a set of MPI processes synchronize and/or exchange messages.

• I/O: a set of MPI processes collectively access storage subsystems.

Each of these flavors, in both their blocking or non-blocking variants, are centered around the transfer of typed

messages to and from application-specified buffers. Messages can be simple (e.g., containing only a single intrinsic

type such as int, float, and double) or complex (e.g., containing a user-defined composite datatype comprised of

multiple intrinsic datatypes).

The MPI application programming interface (API) utilizes many types of handles that refer to underlying im-

plementation objects. For example, an MPI communicator is a set of MPI processes with a unique communication

context. Its handle type in C is MPI Comm. MPI handles can be any integer type; common implementation choices

include int and pointers. As we will see, MPI handles are naturally represented as objects in Java.

There are several MPI implementations available. Open MPI is one of the most widely used, and it is developed

as a coordinated international effort. The main goal of the project is to provide an open source MPI implementation

that delivers high performance in a wide variety of platforms and environments. This paper describes how we have

recently extended Open MPI so that it can be used from Java programs.

Java is an object-oriented programming language whose syntax is similar to C and C++. Its main distinguishable

feature is that Java source files are compiled into an intermediate bytecode that is executed on a Java Virtual Machine

(JVM). In this way, Java programs are portable to any system that has a JVM, without having to recompile. End users

run Java applications via a Java Runtime Environment (JRE) installed on their computer, which contains the JVM.

Software developers use the Java Development Kit (JDK), which contains various tools such as the compiler (javac),

debugger (jdb), class packaging tool (jar) and documentation generator (javadoc), together with an extensive

library of standard classes. These standardized classes provide a platform-independent way to access host-specific

features such as threads, graphics, file management, and networking. Java was introduced in the mid 1990’s and is

now one of the most popular programming languages.

The use of a JVM to run the intermediate bytecode may be thought of as a serious performance penalty, compared

to directly generating machine code. But JVM performance was greatly improved due to many optimizations, most
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public class Win

{

...

public Group getGroup() throws MPIException

{

MPI.check();

return new Group(getGroup(handle));

}

private native long getGroup(long win) throws MPIException;

...

}

JNIEXPORT jlong JNICALL Java_mpi_Win_getGroup(JNIEnv *env, jobject jthis, jlong win)

{

MPI_Group group;

int rc = MPI_Win_get_group((MPI_Win)win, &group);

ompi_java_exceptionCheck(env, rc);

return (jlong)group;

}

Figure 1: Example to illustrate the invocation of a JNI method from Java (top) and the corresponding JNI implementation in C (bottom).

notably Just-In-Time (JIT) compilation systems. A JIT compiler translates bytecode segments to machine code during

runtime for high-speed code execution. As a result, Java performance is often close to that of C/C++.

The Java runtime environment provides automatic memory management, so that the application developer does

not have to worry about releasing allocated memory. The programmer is responsible for creating objects and the

runtime is responsible for recovering memory once these objects are no longer in use. The Garbage Collector (GC)

determines which objects are susceptible of being freed by taking into account the number of references to those

objects. Hence the programmer must be careful not to keep references to unused objects. The use of GC reduces

memory leaks and therefore improves the software quality. One important implication of the Java memory model is

that explicit memory pointers (with pointer arithmetic) are not supported, in order to allow the GC to relocate memory

to optimize allocated space.

In this work, we make extensive use of the Java Native Interface (JNI) [17], a mechanism that allows the applica-

tion programmer to call native subroutines and libraries from Java and vice versa. Native code is typically written in

C/C++ and runs directly on the operating system where the Java virtual machine is running. In the context of scientific

computing, JNI is often used to invoke numerical kernels that are optimized for the particular machine characteristics

(e.g., a tuned BLAS) and would be much slower if implemented in Java. The downside is that JNI breaks Java’s spirit

of automatic portability, since it requires recompiling the native code whenever we want to port the application to a

new computer.

The example in Fig. 1 illustrates how to call a JNI method from Java, and also shows the corresponding JNI

implementation in C. When the JVM invokes the native method, it passes a JNIEnv pointer, a jobject variable, and

any arguments declared by the Java method. JNIEnv is a structure that contains the necessary information to interface

to the JVM. There are a number of functions available to interact with the JVM and to work with Java objects, for

instance to convert Java arrays to native arrays or to throw exceptions. The second argument of type jobject is a

reference to the Java object inside which this native method has been declared. The types jlong, jdouble, jchar,

etc. are defined in the C side in order to match Java basic datatypes. String and array arguments passed from Java have

types jstring and jintArray (in the case of integers), respectively, and the native code must use specific functions

to get access to the corresponding elements, typically with a pair of calls GetXXXArrayYYY/ReleaseXXXArrayYYY,

where XXX must be replaced with the type of the array, and YYY indicates the access variant (we will discuss some of

the variants in Section 4).

We conclude this section with a brief overview of related work. There are many projects attempting to provide

Java bindings for MPI. A recent survey [2] analyzes 9 such projects. Almost all these projects follow the pure Java

approach, that is, they provide an MPI implementation completely written in Java, without native code. The only

exception is mpiJava [18], one of the first MPI Java bindings available, which relies on JNI to invoke MPI primitives
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written in C. We took mpiJava as the starting point to develop the Open MPI bindings, although we have ended up

with a total rewrite that contains almost nothing from the original code base.

Claiming that JNI has portability problems, most efforts after mpiJava preferred to develop the Java bindings on a

pure Java basis. Examples are MPJava [19], MPJ Express [20], and F-MPJ [21], to name a few. These are based on

implementing MPI primitives by means of Java functionality such as RMI or sockets. This implies a significant coding

effort for re-implementing all of MPI, and also has potential problems related to poor performance, especially if the

standard sockets library is used for communication (which does not exploit specific networking hardware). Recent

research efforts focus on providing efficient Java communication middleware, particularly for low-latency networks

such as InfiniBand or Myrinet [22], or for the case when communication takes place via shared memory [23].

As mentioned before, portability problems of JNI must be understood in the sense that native code must be

recompiled in each different machine. Our approach is to provide the Java bindings within the Open MPI distribution,

in such a way that both the native C library and the Java bindings are built simultaneously during installation. In

our view, this satisfies portability needs in most practical situations. Furthermore, one of the main criticisms of the

original mpiJava project was the failure to interoperate successfully with a broad variety of MPI implementations; by

attaching to a particular MPI implementation, we also avoid this problem. Although our bindings are tied specifically

to Open MPI, they can be easily adopted by other MPI implementations as discussed in Section 4.6.

Most of the MPI Java implementations try to adhere to a standardized API. Two main APIs have been proposed.

One of them is the mpiJava 1.2 API [24], which mimics the MPI C++ interface defined in the MPI 2.0 specification.

However, it is restricted to the MPI 1.1 subset, and, on the other hand, the C++ bindings have been removed in the

MPI 3.0 specification. The other API was proposed by the Java Grande Forum1 and is called MPJ (message-passing

interface for Java) [25]. This API does not seem to have wide acceptance, since it has been adopted just by one project.

The two APIs differ mainly with respect to naming conventions of variables and methods. When designing the Open

MPI Java bindings, we felt that it was appropriate to divert from these two APIs and define a new one that can be more

close to modern Java programming practices. Also, we cover the MPI 3.0 specification completely.

3. User interface

We propose Java MPI bindings consisting of a thin interface on top of the C native library, which is invoked via

JNI. The Java-JNI layer just performs minimal bookkeeping required for language translation, such as wrapping MPI

object handlers with Java objects. Hence, our Java bindings essentially are a 1-to-1 mapping to the MPI C bindings—

they are not intended as a class library with higher-level semantics and functionality beyond the MPI specification.

It is desirable to avoid semantics that are not strictly necessary for the language and not part of the MPI specifica-

tion. For example, MPI handles contained in Java objects are not freed when these objects are automatically garbage

collected. Instead they must be explicitly freed by calling the corresponding MPI function because some of these

methods are collective and must be called by the application, instead of when the GC wants (which may cause race

conditions).

JNI communication usually takes place in the Java-C direction, that is, a Java method invokes an MPI primitive

via JNI and returns the result back to Java. However, we also make provision for communication in the opposite

direction, that is, when the MPI C library needs to invoke a method in the Java application code. As we will see, this

is required for callback-based functionality such as performing a reduction with a user-defined operation.

Fig. 2 illustrates the Java bindings with a simple example to compute π by numerical integration of
∫ 1

0

4
1+x2 .

Throughout this section we provide details of the class organization and how they are used in practice.

3.1. Integration into Open MPI

The Java bindings described in this paper are seamlessly integrated into Open MPI, starting from the v1.7 series.

The source code can be found under a subdirectory java at the same level where the C, Fortran and C++ user

interfaces are located.

In order to use Java bindings in Open MPI, they must be enabled during configuration. If the JDK can be found in

a standard location, the simplest way to do this is:

1http://www.javagrande.org
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public static void main(String args[]) throws MPIException

{

MPI.Init(args);

int rank = MPI.COMM_WORLD.getRank(),

size = MPI.COMM_WORLD.getSize(),

nint = 100; // Intervals.

double h = 1.0 / (double)nint,

sum = 0.0;

for(int i = rank + 1; i <= nint; i += size) {

double x = h * ((double)i - 0.5);

sum += (4.0 / (1.0 + x * x));

}

double sBuf[] = { h * sum },

rBuf[] = new double[1];

MPI.COMM_WORLD.reduce(sBuf, rBuf, 1, MPI.DOUBLE, MPI.SUM, 0);

if(rank == 0) System.out.println("PI: "+ rBuf[0]);

MPI.Finalize();

}

Figure 2: Example to illustrate the Java bindings.

$ ./configure --enable-mpi-java ...

Otherwise, it is necessary to indicate where the JDK binaries and headers are located:

$ ./configure --enable-mpi-java --with-jdk-bindir=<foo> --with-jdk-headers=<bar> ...

Java support requires that Open MPI be built at least with shared libraries (this is the default, so the --enable-shared

option need not be provided).

After configuration and compilation, a class file MPI.jar will be created. It will be copied to the destination

directory during make install. In addition to the compiled classes, the generated javadoc documentation will also

be copied.

For convenience, an mpijavac wrapper compiler has been provided for compiling Java-based MPI applications.

It ensures that all required MPI libraries and class paths are defined. Once the application has been compiled, the user

can run it with the standard mpirun command line:

$ mpirun <options> java <java-options> <my-app>

For convenience, mpirun has been updated to detect the java command and ensure that the required MPI libraries

and class paths are defined to support execution. Therefore, it is not necessary to specify the Java library path to the

MPI installation, nor the MPI classpath. Any class path definitions required for the application should be specified

either on the command line or via the CLASSPATH environmental variable.

3.2. Overall organization

We implement an mpi package that contains all classes of the MPI Java bindings: Comm, Datatype, Request,

etc., see Fig. 3. Most of these classes have a direct correspondence with objects defined by the MPI standard. MPI

primitives are just methods included in these classes. The convention used for naming Java methods and classes is the

usual camel-case convention, e.g., the equivalent of MPI_File_set_info(fh,info) is fh.setInfo(info), where

fh is an object of the class File.

The main classes of the Java bindings (those with rounded corners in Fig. 3) follow a similar hierarchy as in the

mpiJava and MPJ APIs (we have added the classes Win and File). These classes provide the core MPI functionality,

such as message passing, communicator management, or input/output. Some additional classes defined in the MPI

specification are covered as well, such as Info. Apart from these, we include a few auxiliary classes that aim at the

following purposes:
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package mpi

Group

Comm

Intracomm

CartComm

GraphComm

Intercomm

Datatype

Request Prequest

Win

File

Info Op Message Errhandler

Status

FileView

CartParms

GraphParms

ShiftParms

DistGraphNeighbors

Struct

UserFunction

Figure 3: Class hierarchy of the Open MPI Java bindings. Main classes are depicted with rounded corners. Classes shown at the bottom are minor

classes defined by the MPI specification. Classes on the upper-right corner are used when a method returns structured information. The two classes

depicted with dashed lines are abstract classes intended to be extended by the user.

1. Classes intended to aggregate several elements, to be used when a method returns structured information. For

instance, Status is defined as a C struct in the MPI specification, containing information about the received

message such as the tag or the rank of the source process.

2. Abstract classes (shown as dashed boxes in Fig. 3) intended to be extended by the user.

3. Convenience classes (not shown in Fig. 3) to handle special datatypes such as DoubleComplex.

All of them will be described in detail in the rest of this section.

Apart from the classes, the mpi package contains predefined public attributes under a convenience class called

MPI (not shown in Fig. 3). Examples are the predefined communicator MPI.COMM_WORLD or predefined datatypes

such as MPI.DOUBLE. Also, MPI initialization and finalization are methods of the MPI class and must be invoked

by all MPI Java applications, see Fig. 2. Any other MPI primitives not directly tied to a particular class, such as

MPI Buffer attach(), also belong to the MPI class.

3.3. Exception handling

MPI routines return an error code. This is natural in C, but Java has exception handling as the standard method

to treat errors. Hence, Java bindings in Open MPI support exception handling. All Java methods will throw an

MPIException if an MPI primitive invoked in the JNI C side returns with an error code different from MPI_SUCCESS.

By default, errors are fatal, but this behavior can be changed by the application programmer. The Java API will

throw exceptions if the MPI.ERRORS_RETURN error handler is set:

MPI.COMM_WORLD.setErrhandler(MPI.ERRORS_RETURN);

If this statement is added to the application code, it will show the line where it breaks, instead of just crashing in

case of an error. Error-handling code can be separated from main application code by means of try-catch blocks, as

shown in Fig. 4. The class MPIException extends the standard class Exception and hence allows for error handling

and recovery in the usual Java way.

Exception handling has some advantages. It allows separating error-handling code from main application code.

Errors can be grouped and differentiated in order to handle different kinds of errors separately.
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try

{

File file = new File(MPI.COMM_SELF, "filename", MPI.MODE_RDONLY);

}

catch(MPIException ex)

{

System.err.println("Error Message: "+ ex.getMessage());

System.err.println(" Error Class: "+ ex.getErrorClass());

ex.printStackTrace();

System.exit(-1);

}

Figure 4: Example to illustrate exception handling.

Comm comm = MPI.COMM_WORLD;

int me = comm.getRank();

if(me == 0) {

comm.send(data, 5, MPI.DOUBLE, 1, 1);

} else if(me == 1) {

Status status = comm.recv(data, 5, MPI.DOUBLE, MPI.ANY_SOURCE, 1);

int count = status.getCount(MPI.DOUBLE);

int src = status.getSource();

System.out.println("Received "+ count +" values from "+ src);

}

Figure 5: Example to illustrate point-to-point communication.

3.4. Point-to-point communication

Point-to-point communication is realized via methods of the Comm class. The standard send() and recv() op-

erations take the usual arguments: the message, consisting of the buffer, number of elements and datatype, and the

envelope, consisting of the process rank and the tag (the communicator is implicit by the object that effects the method

call). Note that, as opposed to the mpiJava and MPJ APIs, we do not add an extra argument to specify an offset within

the buffer; the rationale is to try to stay as close as possible to the standard MPI C specification (see Section 3.6 below

for a discussion on how to treat the case where only part of the buffer array must be considered for the message).

The example in Fig. 5 shows a simple communication between two processes. It also exemplifies the use of the

Status class returned by the recv() primitive. If status is not required, then it can just be omitted from the call,

and hence there is no need for an equivalent to MPI STATUS IGNORE.

Apart from the standard communication primitives, we can also use the primitives for synchronous, buffered and

ready modes, as well as the corresponding non-blocking variants. When invoking a non-blocking method, a Request

object is returned, which can be subsequently used to manage the completion of the operation. This is illustrated

in the example of Fig. 6 (in the context of collective communication), where the reader will notice that waiting for

the finalization of a request is done via waitFor() due to a name clash with the standard Java method wait(). In

addition to waitFor(), there is the waitStatus() version, that returns the Status of the completed communication,

and similarly for the test() operation. The reason for having two methods, waitFor() and waitStatus(), instead

of one overloaded method, is that the Java language does not allow overloading in the case of equal signature but

different return type. The multiple completion operations, to test or wait for all, some or any of the pending requests

(all of them also having a xxxStatus() version) must be invoked as follows

Request.waitAll(req);

where req is an array of Request objects.

The example of Fig. 6 also illustrates that it is necessary to call the free() method on objects whose class

implements the Freeable interface (such as Request). Otherwise a memory leak is produced.

Persistent communication primitives such as Comm.sendInit() return a persistent request object Prequest, that

can be used to start the actual communication at any later time with the method Prequest.start().
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Table 1: Predefined datatypes. The left panel shows the basic datatypes (discussed in Section 3.5) and their corresponding Java datatypes. The

right panels lists the composite datatypes, described in Section 3.8.

BYTE byte

CHAR char

SHORT short

BOOLEAN boolean

INT int

LONG long

FLOAT float

DOUBLE double

PACKED –

FLOAT COMPLEX

DOUBLE COMPLEX

INT2

SHORT INT

LONG INT

FLOAT INT

DOUBLE INT

The probe() and iProbe() methods allow checking for incoming messages without actually receiving them.

They take as arguments the source and the tag, and return a Status objects. We have also implemented the MPI-3

matching variants mProbe() and imProbe(), together with the matching receive primitives; all of them are methods

of the Message class.

The Intracomm and Intercomm classes extend the Comm class to represent intra- and inter-communicators, re-

spectively. Methods that are defined only for intra-communicators, such as the scan-type collective communication

primitives, are included in the former class, while the latter provides specific methods for inter-communicators, such

as getParent() or getRemoteSize(). Methods that are defined for both intra- and inter-communicators, such

as the point-to-point primitives, belong to the parent class, Comm. See Section 3.10 for additional details on inter-

communicators.

3.5. Predefined datatypes

Table 1 lists the predefined datatypes available in the Open MPI Java bindings. We distinguish between basic and

composite datatypes (the latter are discussed in Section 3.8). The length in bytes of the basic datatypes is established

by the Java language specification. In particular, the char type occupies two bytes, since it represents a Unicode

character.

In communication primitives, the datatype matching and conversion rules defined in the MPI specification apply,

since message assembly and disassembly is carried out in the C side. For instance, it is possible to send 5 MPI.DOUBLE

and receive 40 MPI.BYTE.

The special type MPI.PACKED is used for packed messages that have been assembled with pack() and unassem-

bled with unpack().

3.6. How to specify buffers

In general, in MPI primitives that require a buffer (either send or receive) the Java API admits a Java array. Since

Java arrays can be relocated by the Java runtime environment, the MPI Java bindings need to make a copy of the

contents of the array to a temporary buffer, then pass the pointer to this buffer to the underlying C implementation.

From the practical point of view, this implies an overhead associated with all buffers that are represented by Java

arrays. The overhead is small for small buffers but increases for large arrays.

An alternative is to use direct buffers provided by standard classes available in the Java SDK such as ByteBuffer.

For convenience we provide a few static methods new[Type]Buffer() in the MPI class to create direct buffers for

a number of basic datatypes. Elements of the direct buffer can be accessed with methods put() and get(), and the

number of elements in the buffer can be obtained with the method capacity(). The example in Fig. 6 illustrates its

use. When a direct buffer is created with one of the convenience methods new[Type]Buffer(), the native endianness

is always established.

Direct buffers are available for: BYTE, CHAR, SHORT, INT, LONG, FLOAT, and DOUBLE. There is no direct buffer for

booleans.
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int myself = MPI.COMM_WORLD.getRank();

int tasks = MPI.COMM_WORLD.getSize();

IntBuffer in = MPI.newIntBuffer(MAXLEN * tasks),

out = MPI.newIntBuffer(MAXLEN);

for(int i = 0; i < MAXLEN; i++)

out.put(i, myself); // fill the buffer with the rank

Request request = MPI.COMM_WORLD.iAllGather(out, MAXLEN, MPI.INT, in, MAXLEN, MPI.INT);

// do other work here

request.waitFor();

request.free();

for(int i = 0; i < tasks; i++) {

for(int k = 0; k < MAXLEN; k++) {

if(in.get(k + i * MAXLEN) != i)

throw new AssertionError("Unexpected value");

}

}

Figure 6: Example to illustrate the use of direct buffers.

import static mpi.MPI.slice;

...

int numbers[] = new int[SIZE];

...

MPI.COMM_WORLD.send(slice(numbers, offset), count, MPI.INT, 1, 0);

Figure 7: Example to illustrate slicing of buffers.

Direct buffers are not a replacement for arrays, because they have higher allocation and deallocation costs com-

pared to arrays. In some cases arrays will be a better choice, typically with small buffers. One can easily convert a

direct buffer into an array and vice versa. There is also the possibility of a non-direct Buffer, that employs an array

internally. As a user guidance, we note the following:

• The only advantage of direct buffers is to avoid a copy when changing from Java to C inside Open MPI. This

benefit will be noticed only for large buffers.

• Direct buffers should be allocated primarily for long-lived buffers. If the buffer is created and destroyed within

a loop, then the overhead will be too high.

• The indexing notation of arrays is more natural for programmers than the explicit calls to put() and get().

Even though in most cases it is possible to choose between arrays and direct buffers, there are some restrictions in

certain operations. All non-blocking methods must use direct buffers and only blocking methods can choose between

arrays and buffers (this is justified in Section 4.2). When a method in the API declares the buffer argument as an

Object, then it can be either an array or a direct or non-direct buffer.

Buffer arguments must always be either arrays or buffers. If one wants to send or receive a simple variable such

as an int it must be declared as an array: int k[] = { value }, as in the example of Fig. 2. In any communication

operation, if the buffer argument is an array (or a non-direct buffer), the datatype specified in the call must match the

type of the array elements, e.g., MPI.INT for int[]. If the call specifies a derived datatype (see discussion in Section

3.7), the basic datatype from which it was built must also match the array type.

In a C program, it is common to specify an offset in an array with &array[i] or array+i, for instance to send

data starting from a given position in the array. The equivalent form in the Java bindings is to slice() the buffer to

start at an offset, as shown in Fig. 7. Making a slice() on a buffer is only necessary when the offset is not zero. This

slicing mechanism works for both arrays and direct buffers.
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double A[] = new double[N*N]; // flattened 2D matrix

Datatype blk = Datatype.createVector(3, 3, N, MPI.DOUBLE);

blk.commit();

int rank = MPI.COMM_WORLD.getRank();

if(rank == 0) {

MPI.COMM_WORLD.send(A, 1, blk, 1, 0);

} else if (rank==1) {

MPI.COMM_WORLD.recv(A, 1, blk, 0, 0);

}

blk.free();

Figure 8: Example to illustrate the use of derived datatypes.

3.7. Derived datatypes

The Java bindings also allow the definition of derived datatypes, such as contiguous, vector or indexed. The

example shown in Fig. 8 uses a derived datatype to send the 3×3 leading block of an N×Nmatrix that has been stored

as a one-dimensional array.

When working with derived datatypes, it is often handy to query the size of the datatype (number of bytes of

the data in a message that would be created with this datatype), with getSize(), and also about extent information,

with getExtent() (and getLb() for the lower bound). The method createResized() can be used to create a

datatype with a new lower bound and extent from an existing datatype. In the definition of vector and indexed types,

the argument stride indicates the spacing between blocks as a multiple of the extent of the old datatype. We also

provide the “H” variants, such as createHVector(), in which the stride is given in bytes, rather than in elements.

The struct-like derived datatypes require a special treatment. The definition of an MPI struct in C consists

in two steps: first, creating the C struct, and second, getting the addresses of the struct attributes in order to call

MPI Type create struct(). A Java class with no methods is similar to a C struct, but in Java it is not possible

to get the addresses of class members, so creating an MPI struct derived datatype must be done in a different way.

We propose the following mechanism. A user-defined struct must be a subclass of Struct and it must have

three parts:

• A number of data fields defined using the add[Type]() methods, that return the corresponding offsets accord-

ing to the size of the type. The offsets must be stored because they will be necessary to access data.

• A subclass of Struct.Data with get/put methods to access data. These methods will need the previously

stored offsets.

• The implementation of the method newData() in order to tell the library how to create Data objects.

An example is shown in Fig. 9, where the Struct mechanism is used to represent a complex number. Once the

struct has been defined, it can be used to create an object that corresponds to the type of the struct. Structs can

define a singleton object as its type, but they could be dynamic depending on the constructor parameters.

The Struct.Data objects are references to a buffer region where the struct data is stored. They can be obtained

by calling the method Struct.getData(), followed by the corresponding get/put methods. Fig. 10 is an example

of how to access the elements of an array of complex numbers stored in a direct byte buffer. The MPI struct datatype

is created automatically (it is committed in its first use), and it can be retrieved by calling the getType() method.

Structs need byte displacements, so they can only be used with byte buffers. If buffers are direct then the perfor-

mance is reasonably good, otherwise reading and writing struct data will need serialization, with the corresponding

performance degradation.

3.8. Composite datatypes

The composite datatypes shown on the right panel of Table 1, INT2, SHORT INT, LONG INT, FLOAT INT and

DOUBLE INT, are implemented with Struct with the aim of being able to represent SHORT, INT and LONG in a way

that are compatible with the native C MPI datatypes. In this way, it is possible to use the native implementation of the

MPI MAXLOC and MPI MINLOC operations via JNI.
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public class Complex extends Struct

{

// This section defines the offsets of the fields.

private final int real = addDouble(),

imag = addDouble();

// This method tells the super class how to create a data object.

@Override protected Data newData() { return new Data(); }

public class Data extends Struct.Data

{

// These methods read from the buffer:

public double getReal() { return getDouble(real); }

public double getImag() { return getDouble(imag); }

// These methods write to the buffer:

public void putReal(double r) { putDouble(real, r); }

public void putImag(double i) { putDouble(imag, i); }

} // Data

} // Complex

Figure 9: Complex number class created as a subclass of Struct.

Complex type = new Complex();

ByteBuffer buffer = MPI.newByteBuffer(type.getExtent() * count);

for(int i = 0; i < count; i++) {

Complex.Data c = type.getData(buffer, i);

c.putReal(0);

c.putImag(i * 0.5);

}

MPI.COMM_WORLD.send(buffer, count, type.getType(), 1, 0);

Figure 10: Using complex numbers from the declaration of the Complex class in Fig. 9.
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// Each process has an array of 30 double: ain

double[] ain = new double[30];

...

double[] aout = new double[30];

int[] ind = new int[30];

int rank = comm.getRank(),

ByteBuffer in = MPI.newByteBuffer(30 * MPI.DOUBLE_INT.getExtent()),

out = MPI.newByteBuffer(30 * MPI.DOUBLE_INT.getExtent());

for(int i = 0; i < 30; i++) {

DoubleInt.Data d = MPI.doubleInt.getData(in, i);

d.putValue(ain[i]);

d.putIndex(rank);

}

comm.reduce(in, out, 30, MPI.DOUBLE_INT, MPI.MAXLOC, root);

// At this point, the answer resides on process root.

if(rank == root) {

// Read ranks out

for(int i = 0; i < 30; i++) {

DoubleInt.Data d = MPI.doubleInt.getData(out, i);

aout[i] = d.getValue();

ind[i] = d.getIndex();

}

}

Figure 11: A reduction using MPI.DOUBLE INT and MPI.MAXLOC.

The Struct.Data interfaces for these types use get/putValue() for the first value and get/putIndex() for

the INT. All of these types have a corresponding object (subclass of Struct) in the MPI class: int2, shortInt,

longInt, floatInt and doubleInt.

Fig. 11 is an example of the use of MPI.DOUBLE INT and MPI.MAXLOC. It performs a reduction of a list of 30

value-index pairs per MPI process, keeping the largest values and the rank of the process owning them. It corresponds

to the example 5.17 of [16] translated to Java.

In the original mpiJava implementation, MPI.INT2 was the only composite datatype that could be used with

MPI.MAXLOC and MPI.MINLOC. It was created with the Java binding of MPI Type contiguous(). So the old

MPI.INT2 was not really equal to the C MPI INT2 datatype, and hence, it was not possible to use the C imple-

mentation of MPI MAXLOC and MPI MINLOC. For this reason, these methods were implemented in Java.

Convenience classes. The Java language does not have a standard datatype for complex numbers, which are quite

commonly needed in scientific computing applications. In our bindings, FloatComplex and DoubleComplex are

convenience classes to access data of the MPI types FLOAT COMPLEX and DOUBLE COMPLEX. These classes provide

methods to wrap buffers as well as get/put methods to access the real and imaginary parts. The interface is similar

to Struct but the implementation is different in order to avoid data serialization in non-direct buffers.

3.9. Collective communication

Collective communication operations are very important in high-performance computing applications, since they

allow for complex data exchange patterns in a simple and efficient way. Some of the already mentioned examples

include collective primitives such as reduction (Fig. 2) and gather (Fig. 6). In Open MPI we interface to all the

available collective communications, including the non-blocking variants introduced in MPI-3.

The Java collective methods have a similar signature as in the C API. In addition, for those primitives that take

two buffers, we have added variants that only take one buffer in order to perform the corresponding operation in place.

Further details about in-place collectives are discussed in Section 4.3.

In the case of reduction and prefix operations, the MPI primitives take an argument that represents the operation

to be performed on the data. In Java, this argument belongs to the class Op, and there are several of them predefined in
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UserFunction uf = new UserFunction()

{@Override public void call(Object in, Object inOut, int count, Datatype type)

{

double[] vIn = (double[])in,

vInOut = (double[])inOut;

for(int i = 0; i < count; i++)

vInOut[i] += vIn[i];

}};

Op op = new Op(uf, true);

Figure 12: User-defined Op with arrays.

UserFunction uf = new UserFunction()

{@Override public void call(ByteBuffer in, ByteBuffer inOut, int count, Datatype type)

{

DoubleBuffer bIn = in.asDoubleBuffer(),

bInOut = inOut.asDoubleBuffer();

for(int i = 0; i < count; i++)

bInOut.put(i, bInOut.get(i) + bIn.get(i));

}};

Op op = new Op(uf, true);

Figure 13: User-defined Op with direct buffers.

class MPI: SUM, PROD, MAX, LAND, etc., as well as the ones discussed in the previous subsection (MAXLOC and MINLOC,

see Fig. 11).

It is also possible to employ user-defined reduction operations, in the same way as predefined ones. For this, a

new Op must be defined. The Op constructor requires a UserFunction as an input argument. As mentioned before,

UserFunction is an abstract class so it is necessary to override the call() method when declaring an object of

this class. Figures 12 and 13 are two analogue examples implementing a user-defined Op equivalent to the standard

MPI.SUM operation for double arguments.

A UserFunction may be implemented with arrays or with direct buffers irrespective of whether the buffers are

direct or arrays in the reduction call. This versatility is possible because user functions are called from the C side,

where the buffers are in the C heap and so it is cheap to create direct buffers from them. Therefore, it is always

recommended to use direct buffers to implement user functions.

3.10. Intra-communicators and Inter-communicators

There are two predefined intra-communicators in MPI: COMM WORLD and COMM SELF. New intra-communicators

can be created from a Group or from another intra-communicator (e.g., with split()). In both cases, the operation

may return a null communicator. This situation can be detected as in the following code excerpt:

newcomm = MPI.COMM_WORLD.split(color, key);

if (!newcomm.isNull()) { // the local process belongs to newcomm

The concept of process topologies defined in the MPI specification is closely related to intra-communicators. In

Java, they are implemented as subclasses derived from the Intracomm class. CartComm provides the functionality for

the Cartesian grid topology, where each process belonging to the grid has unique coordinates (in one, two, three or

more dimensions). The example in Fig. 14 illustrates its usage with a 2-D torus where each process sends a value to

its left neighbor. The other subclass, GraphComm, implements the more general graph topology.

For the case of inter-communicators, there are several methods that are specific to them, such as getRemoteSize(),

getRemoteGroup(), getParent(), and merge(). The latter creates an Intracomm from an Intercomm.

Inter-communicators are used when new MPI processes must be created dynamically at run time with spawn(),

as in the following code fragment:
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int size = MPI.COMM_WORLD.getSize() ;

int dims[] = { 0, 0 };

CartComm.createDims(size, dims);

boolean periods[] = { true, true };

CartComm comm = ((Intracomm)MPI.COMM_WORLD).createCart(dims, periods, false);

int me = comm.getRank();

int coords[] = comm.getCoords(me);

CartParms topoParams = comm.getTopo();

System.out.println("I have coordinates ("+ coords[0] +","+ coords[1]

+") on a grid of "+ topoParams.getDim(0) +"x"+ topoParams.getDim(1));

ShiftParms shiftParams = comm.shift(0, -1);

int src = shiftParams.getRankSource();

int dst = shiftParams.getRankDest();

int sbuf[] = { me };

int rbuf[] = new int[1];

comm.sendRecv(sbuf, 1, MPI.INT, dst, 1, rbuf, 1, MPI.INT, src, 1);

System.out.println("I am process "+ me +", received "+ rbuf[0]);

Figure 14: Example illustrating the use of the Cartesian topology.

String spawn_argv[] = {

Spawn.class.getName(), // Class to execute

"-file",

"results.dat"

};

int maxprocs = 6;

int errcode = new int[maxprocs];

Intercomm child = MPI.COMM_WORLD.spawn("java", spawn_argv, maxprocs, MPI.INFO_NULL, 0, errcode);

Note that the name of the executable must always be java (in Java MPI applications, not in the case of C/Fortran),

with the first argument being the name of the class to run (Spawn in this example).

Also, inter-communicators may be necessary in the context of MPI client-server applications, where a group of

processes connect another group via a port to establish communication. Fig. 15 shows a simple example that uses

service name publication.

3.11. Parallel I/O

Since the 2.0 specification, MPI supports parallel I/O by means of a high-level interface providing collective

operations to perform transfers of global data structures between process memories and files. In MPI, partitioning of

file data among processes and disks is expressed using derived datatypes, and the concept of file views. With this,

virtually any I/O pattern can be implemented, such as strided access, etc.

In brief, a file view is specified by a displacement relative to the beginning of the file, the elementary datatype (the

unit of data access and positioning), and the filetype that defines a template for accessing the file. Fig. 16 shows how

to use setView() in such a way that each process loads a fragment of a file. The last argument of setView() is a

string denoting the data representation, and is intended for file interoperability.

There are many data access routines available, which can be classified by the scheme that is used for positioning:

either with explicit offsets, with individual file pointers, or with a shared file pointer. For each of these categories,

there are blocking and non-blocking primitives, as well as collective and non-collective. For instance, iReadAt() is

the non-collective and non-blocking primitive for reading a file with explicit offset.

3.12. One-sided communication

In the Open MPI Java bindings we also include a Win class that provides the Remote Memory Access (RMA)

functionality offered by the MPI-2 and MPI-3 specifications. One-sided communication primitives such as put(),

get(), and accumulate() operate on an object that has been previously declared with the constructor Win(), which

specifies a window of existing memory that is exposed to RMA accesses by the processes in a given communicator.

Note that windows must always be created from direct buffers, while arrays are not supported in the context of one-

sided communication.
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if (rank == 0) {

// Server code

String portName = Intracomm.openPort();

Intracomm.publishName(serviceName, portName);

MPI.COMM_WORLD.barrier();

Comm client = MPI.COMM_SELF.accept(portName, 0);

client.recv(buf, 1, MPI.INT, 0, 1);

client.disconnect();

Intracomm.closePort(portName);

Intracomm.unpublishName(serviceName, portName);

}

else if (rank == 1) {

// Client code

MPI.COMM_WORLD.barrier();

String portName = Intracomm.lookupName(serviceName);

// connect to the server

Comm server = MPI.COMM_SELF.connect(portName, 0);

server.send(buf, 1, MPI.INT, 0, 1);

server.disconnect();

}

Figure 15: Example client-server code based on publishing a service name.

int myrank = MPI.COMM_WORLD.getRank();

int numprocs = MPI.COMM_WORLD.getSize();

File thefile = new File(MPI.COMM_SELF, filename, MPI.MODE_RDONLY);

long filesize = thefile.getSize() / 4; // num of ints in file

int bufsize = (int)(filesize / numprocs); // local num of ints to read

int buf = new int[bufsize];

thefile.setView(myrank * buf.length, MPI.INT, MPI.INT, "native");

thefile.read(buf, bufsize, MPI.INT);

thefile.close();

Figure 16: Example code that reads a binary file containing integers.

Fig. 17 shows a simple example using one-sided communication. The example uses fence() for synchronization.

Other synchronization schemes based on post()/waitFor() and lock()/unlock() are also available.

3.13. Thread support

The Java bindings are thread safe, and adhere to the level of thread safety that the underlying Open MPI provides.

We have added the MPI.InitThread() initialization method, whose parameter required indicates the desired

level of thread support, either THREAD SINGLE, THREAD FUNNELED, THREAD SERIALIZED, or THREAD MULTIPLE.

Threads in Java are created with standard mechanism, e.g., with method start() of a class that extends Thread.

We have added MPI.isThreadMain() to distinguish among the main thread and the rest. There is also support for

“M” variants of probe and receive primitives, as discussed already in Section 3.4.

4. Details of internal implementation

We now discuss some aspects of how the Java bindings are implemented under the hood. This may help to better

understand why the user interface is the way it is, and what needs to be done to achieve a certain effect on the API. In

some cases, we compare our approach with respect to the solution proposed in the original mpiJava implementation.
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int rank = MPI.COMM_WORLD.getRank();

int size = MPI.COMM_WORLD.getSize();

IntBuffer winArea = MPI.newIntBuffer(size),

putVals = MPI.newIntBuffer(size);

Win win = new Win(winArea, size, 1, MPI.INFO_NULL, MPI.COMM_WORLD);

// Set all the target areas to be -1

for (int i = 0; i < size; ++i) {

winArea.put(i, -1);

putVals.put(i, rank);

}

win.fence(0);

// Do a put to all other processes

for (int i = 0; i < size; ++i)

win.put(slice(putVals, i), 1, MPI.INT, i, rank, 1, MPI.INT);

win.fence(0);

// Check to see that we got the right values

for (int i = 0; i < size; ++i)

if (winArea.get(i) != i)

System.out.println("Unexpected value!");

win.free();

Figure 17: Simple one-sided communication example.

4.1. Constant fields and other details of the MPI class

Constant fields such as MPI.ANY SOURCE are initialized in two phases in order to make them effectively constant

(final in Java). First the C native value (e.g., MPI ANY SOURCE) is copied via JNI in a member field of a private

object of class Constant, and secondly this value is copied to the final data member. These two steps are carried

out during the static initialization of class MPI. In the original mpiJava implementation, these fields were not final,

which did not prevent their values being accidentally changed by the user. A similar process is done also for predefined

objects such as datatypes (MPI.DOUBLE) and communicators (MPI.COMM SELF).

All Java methods call MPI.check() to ensure that MPI has been initialized. If it was not, then an MPIException

is thrown. Fig. 1 shows the internal implementation of a sample method of the Java bindings.

In the original mpiJava implementation there were explicit castings in C from jint* (Java integer pointer) to

int* (C integer pointer). But the size of jint and int may be different in some systems. Our implementation fixes

this problem, see Fig. 18.

4.2. Memory management

Since the concept of pointers is not available in Java, some tricks are required for memory management.

Some garbage collectors (GC) support pinning, an operation that prevents the GC from relocating an object

until it is unpinned. This allows JNI code to obtain the real reference to a pinned object via the JNI functions

Get/Release[Type]ArrayElements(), thus avoiding unnecessary copies. Unfortunately modern GCs do not sup-

port pinning because it hinders the GC and tends to cause memory fragmentation. Therefore, these functions are not

a good solution to avoid data copies.

The functions Get/ReleasePrimitiveArrayCritical() also provide real pointer references to buffers. How-

ever, these methods have restrictions that require making copies (e.g., no JNI calls can be made between these meth-

ods). We use this mechanism only in the pack()/unpack() primitives.

As described in Section 3.6, we have opted for using direct buffers for the case that the number of data copies

needs to be reduced, but still allow the user to employ regular arrays as buffers, since accessing direct buffers may

be slower than accessing arrays. The original mpiJava package did not support direct buffers, because they were not

available at the time it was written.
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void ompi_java_getIntArray(JNIEnv *env, jintArray array, jint **jptr, int **cptr)

{

jint *jInts = (*env)->GetIntArrayElements(env, array, NULL);

*jptr = jInts;

if(sizeof(int) == sizeof(jint))

{

*cptr = (int*)jInts;

}

else

{

int i, length = (*env)->GetArrayLength(env, array);

int *cInts = calloc(length, sizeof(int));

for(i = 0; i < length; i++)

cInts[i] = jInts[i];

*cptr = cInts;

}

}

Figure 18: Internal conversion routine between Java and C integers.

The internal memory management depends on how the user has defined the buffers. If a buffer argument is an

array, in some situations it will be possible to use the JNI functions Get/ReleasePrimitiveArrayCritical(),

but in most cases it will be necessary to perform a costly copy of the contents of the array. This operation checks

if the array datatype is noncontiguous in order to avoid copying the data gaps. When the buffer is direct the method

GetDirectBufferAddress() provides the real pointer to the buffer.

The reason why all non-blocking methods in Open MPI require direct buffers is that in the case of Java arrays,

internally the Java bindings copy the whole array, so different non-blocking operations acting on different offsets of

the array would result in inconsistent results.

4.3. In-place communication primitives

MPI IN PLACE is implemented with overloaded methods instead of defining a constant for buffers, because in Java

overloading methods is preferable to passing some parameters while ignoring other ones such as the count parameter.

For example, in the class Comm, the method

void gatherv(Object sendbuf, int sendcount, Datatype sendtype,

Object recvbuf, int[] recvcount, int[] displs, Datatype recvtype, int root)

has the following in-place method for the root process:

void gatherv(Object recvbuf, int[] recvcount, int[] displs, Datatype recvtype, int root)

and the following in-place method for the non-root processes:

void gatherv(Object sendbuf, int sendcount, Datatype sendtype, int root)

Even when there is only one in-place version of a method, it must be called with certain parameters depending on

whether the process is root or not. For example, the buffer parameter in the in-place version of gather is used by the

root process to receive data, and by the non-root processes to send data.

if(myself == root)

MPI.COMM_WORLD.gather(in, i, MPI.INT, root);

else

MPI.COMM_WORLD.gather(out, i, MPI.INT, root);

4.4. Object disposal

In the original mpiJava implementation, MPI objects were stored in a list of garbage collected objects in order to

be freed in a next call of an MPI method. This feature was removed because some methods to free MPI objects are

collective and so race conditions may be provoked.
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4.5. Returning structured data

In the C language, apart from the return value, a function can give back other computed values by means of

reference arguments using pointers. In Java, the arguments of a method are always passed by value. It is only possible

to alter a method parameter if it is a mutable object, i.e., its internal representation may be changed. However, it is not

possible to return a new object using the same parameter, because the object reference is also passed by value.

Reference parameters could be simulated in Java using an object which contains the reference object inside. But

this would be against the Java philosophy. In our implementation, when a method needs to return several values, these

values are encapsulated in an auxiliary object:

• GraphParms encapsulates the topology information associated with a communicator, which can be obtained by

the method GraphComm.getDims().

• CartParms encapsulates the information related to the Cartesian topology, which is returned by the method

CartComm.getTopo().

• ShiftParms encapsulates the source and destination ranks for “shift” communication, which are computed by

the method CartComm.shift().

The Java binding of MPI Status is the Status class. When an MPI Status is created in C and returned to Java,

the whole thing is copied in order to avoid having to release Status objects and calling JNI methods to get their

values.

4.6. Specificities to Open MPI

As mentioned previously, our Java bindings benefit from accessing the internal Open MPI data structures, resulting

in a cleaner integration. However, the most part of the bindings are independent of Open MPI and could thus be

reused in an eventual migration to other popular MPI implementations, such as MPICH2. We next mention the few

implementation details that are dependent on Open MPI internals.

In different situations, the Java bindings need to use temporary memory space, for example to set up buffers in

the C side that hold elements of Java arrays passed in by the user. In order to avoid frequent calls to the system’s

memory allocation functions (malloc), we make use of a pooled memory management layer provided by Open MPI

(free list). Also, copies between the Java and the C side are optimized by making use of internal Open MPI

functions that handle non-contiguous datatypes.

When employing user-defined operations for collective operations, as shown in Section 3.9, the Java bindings must

be able to invoke the user callbacks. Open MPI maintains a list of user callback functions that is language-aware, so

we just extended it to allow calling Java code by storing all the necessary information (a reference to the object, the

JNI environment and the base type of the involved buffer).

Finally, as discussed in the previous subsection, Status objects contain a copy of all data stored in the opaque C

struct MPI Status, and hence this copy requires knowledge of the internal definition, which is not specified by the

MPI standard.

5. Performance evaluation

The Open MPI Java bindings were first presented in the EuroMPI ’13 conference [26], and were later improved

and optimized to its present form included in Open MPI version 1.8.1. In this section, we evaluate this version to

assess the performance overhead incurred by using the Java bindings rather than the underlying C library directly.

The analysis is based on basic bandwidth measurement in simple point-to-point communication, on one hand, and

on well established benchmarks, on the other. Initially, we considered the Java Grande benchmarks [27], but then

we decided to use the Java port of the NAS Parallel Benchmarks, NPB [28], since they represent better the kind of

applications we are aiming at. Our analysis is similar to the one described in [29]. In our case, we compare the Java

benchmarks against the original C/Fortran benchmarks, not against other implementations of the MPI Java bindings

2http://www.mpich.org
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Figure 19: Bandwidth expressed in Gbps of point-to-point communication for varying message size in different transports: shared memory (left),

TCP over Gigabit Ethernet (middle), and usNIC network interface (right). Plots compare native C Open MPI against the Java bindings using either

the direct buffer or the array interface.

Table 2: Latency (in µsec.) of point-to-point communication in different transports.

Shared Memory TCP usNIC

C 0.41 23.86 2.42

Java Direct BB 0.88 23.73 3.12

Java Array 1.01 23.86 3.20

(for this, see the study performed by other independent authors [30], that concludes recommending our Java bindings

for their class of applications).

The evaluation has been carried out on a cluster consisting of 32 Sandy Bridge class servers, each of them with two

8-core processors (i.e., 16 cores per server), with 128 GB of RAM. They all have 3×10 GB Cisco usNIC interfaces,

apart from a standard Gigabit Ethernet connection. The compilers used were GCC 4.8.2 and Java OpenJDK 1.6.

5.1. Bandwidth tests

In order to assess the potential performance loss of the Java bindings with respect to the native C implementation

in the context of point-to-point communication, we measure the bandwidth using the OSU MPI micro-benchmarks3

for various transports (shared memory, TCP and usNIC). We made two Java versions of the ping-pong benchmark,

one using direct buffers and the other using plain Java arrays. Figure 19 shows the bandwidth in Gbps measured for

messages up to 16 MB.

Bandwidth results indicate that the performance loss with respect to the C implementation is significant only if

using the array interface in the Java bindings. As previously discussed, this approach requires extra copies of the data,

which involves a big performance penalty especially for large messages. However, the direct buffer interface does not

incur this overhead so performance is remarkably close to the C one. The small remaining overhead can be attributed

to language change via JNI.

Table 2 shows latency, measured as the time to send a message of 1 byte. Results indicate that latency-bound

applications will see a significant performance penalty compared to the C implementation, especially in the case of

shared memory.

3http://mvapich.cse.ohio-state.edu/benchmarks
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Figure 20: Results of NPB CG benchmark, for class C (left) and D (right).
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Figure 21: Results of NPB benchmarks: MG (left) and IS (right).

5.2. NAS Parallel Benchmarks

For a more complete evaluation of the Java bindings, including collective communication primitives, we run some

of the NAS parallel benchmarks, in particular their Java ports described in [28]. We had to make minor changes in

the source code in order to adapt them to our Java bindings, which differ slightly from the MPJ API. Also, following

the bandwidth results discussed above, we adapted the benchmarks to use direct buffers in cases where message size

is potentially large.

All benchmarks are run with 1 up to 16 MPI processes, which may be placed either in the same cluster node

(shared memory) or one per node (TCP and usNIC). The benchmarks report whether the computation was successful,

together with the value of MOPS (Millions of Operations Per Second), which will be the metric used for comparison.

We use class C benchmarks (and also class D in some cases), which correspond to considerably large problem sizes.

Figure 20 shows the results for the CG benchmark, which runs the conjugate gradient iteration on a sparse linear

system of equations of size 150,000 (class C) or 1.5 million (class D). In class D, the matrix has relatively more

nonzero elements compared to class C, and this may explain why MOPS values are smaller in class D. Anyway, if

we compare the performance of the Java version against the Fortran implementation, we see a small performance loss

that does not change the trend when the number of processes is increased. Hence, in this case the Java benchmark

is doing remarkably well, in terms of the performance of MPI operations as well as in what refers to efficiency of

floating-point computation.
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Figure 22: Results of NPB benchmarks: FT (left) and EP (right).

The situation with other benchmarks is quite different. Figures 21 and 22 show results for the benchmarks MG,

IS, FT and EP. In all cases, it is evident that the Java versions of the benchmarks have lost the battle against their

native C/Fortran counterparts. A closer look indicates that the reason behind this has nothing to do with the efficiency

of the MPI bindings. For instance, EP is the embarrassingly parallel benchmark, that hardly uses MPI primitives for

communication. As expected, the Fortran version scales linearly with the number of MPI processes, but we can see

that the Java version also scales linearly, although with much smaller MOPS values. Hence, poor performance should

be attributed to how the Java compiler and runtime are managing the local computation at each process.

6. Conclusion

We have presented details of the design and implementation of the Java bindings that we provide as part of the

Open MPI distribution. The starting point for its development was the JNI-based mpiJava project, whose source code

was totally reworked, optimized, customized for the Open MPI internals, and extended to latest MPI-3 features. The

resulting interface is user-friendly from the point of view of a Java programmer. We provide two ways of managing

buffers: trivially with one-dimensional Java arrays and by creating a direct buffer object. Using one or the other will

be more appropriate depending on the context, specifically the length of the message to be sent.

The performance results for the Java benchmarks discussed in section 5 may seem disappointing. It is clear that

in a one-to-one mapping between C/Fortran code and its Java equivalent, the former is likely to reach better result

in terms of percentage of peak performance. This should not be understood as a reason for not considering Java as

a good language for high-performance computing applications. In many cases, performance of Java will be close to

that of C/Fortran, as illustrated in the CG benchmark. Furthermore, the Java MPI bindings can be very valuable for

the parallelization of applications already written in Java, irrespective of their sequential performance.

It is not our aim to compete with pure-Java offerings for MPI bindings, but just to widen the availability of the

powerful MPI functionality to Java programmers and applications. There are already users that are employing the

Open MPI Java bindings for their applications [31], and we hope the number of users will increase as newer versions

of Open MPI start to pervade many supercomputers across the world.
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