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SUMMARY 

 

 Erwinia amylovora, a quarantine organism of the European 

Union (EU), is the causal agent of fire blight. This disease causes 

substantial economic losses in all countries where it is present and its 

control turns out difficult, due to the absence of effective chemical 

and biological treatments and the ability of persistence and 

dissemination of E. amylovora. Cupric treatments constitute the base 

of the integrated management of fire blight in the European Union 

countries, because the antibiotics, although have been proved useful 

against this disease, are forbidden in the EU for plant treatments. 

This thesis, mostly performed in a P2 security lab, is aimed to 

dilucidate molecular mechanisms implicated in the response of E. 

amylovora to copper sulfate as a stress factor, considering that 

copper is a well known toxic element for bacterial cells over a certain 

threshold concentration. The global objective was first addressed 

with the study of a selection of genes that have been related in other 

bacterial models with copper stress or with stress in general. The 

quantification of the rpoS gene expression in presence of copper 

showed that, at least in long-term survival, this gene may be involved 

in the E. amylovora response to copper stress. 

Second, a transcriptomic study was performed by microarray 

after subdue the bacteria to a copper shock treatment. The analysis 

of the microarray results showed that 44 genes were differentially 

expressed in presence of this metal. Each one of these genes was 

studied by gene ontology and, after comparing them with databases 
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published in NCBI, they were classified in functional categories. The 

gene expression of twenty-five out of fourty-four differentially 

expressed genes was validated by real-time PCR. In the validation, 

copA gene was expressed more than 19-fold in presence than in 

absence of copper and, because of that, it was selected together with 

other seven genes (soxS, yjcE, ygcF, yhhQ, galF, arcB, EAM_3469), 

which also showed an increased expression, to generate mutants of 

E. amylovora. The responses of mutants to copper, and the fact that 

the wild phenotype was restored in the complemented mutants, has 

shown the role of copA, soxS, yjcE, ygcF, arcB and yhhQ genes in the 

E. amylovora in vitro survival against copper stress. Besides, the 

implication of copA gene has also been proved in planta, in copper 

treated shoots from pear trees. Finally, all the results obtained along 

this thesis have allowed to elaborate a putative model of the 

different genetic mechanisms that seem are involved in the 

interaction between E. amylovora and copper. The most important 

mechanism seems to be to face up reactive oxygen species (ROS) by 

the activation of the soxS and yjcE genes. The activity of these genes 

is supported by CopA protein, which pumps copper from inside the 

cell out to the periplasmic space. The activation of arcB gene, which 

allows the change from aerobic metabolism to anaerobic 

metabolism, would also help E. amylovora to reduce ROS. 

Taking together, the results of this thesis have allowed an 

approximation to the genetic basis of E. amylovora response to 

copper stress and they constitute a start point to move forward in 
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the knowledge of the molecular mechanisms underlying that 

response. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



20 

 

RESUMEN 

 

Erwinia amylovora, organismo de cuarentena en la Unión 

Europea (UE), es el agente causal del fuego bacteriano. Esta 

enfermedad produce grandes pérdidas económicas en todos los 

países en los que está presente y su control resulta muy difícil, 

debido a la carencia de tratamientos químicos y biológicos eficaces y 

a la persistencia y facilidad de diseminación de E. amylovora. Los 

tratamientos con compuestos cúpricos constituyen la base de la 

gestión integrada del fuego bacteriano en los países de la UE, puesto 

que el uso de antibióticos, aunque se ha demostrado útil contra esta 

enfermedad, está prohibido en la UE para el tratamiento de 

bacteriosis en plantas.  

Esta tesis, realizada en su mayoría en un laboratorio de 

seguridad biológica P2, pretende dilucidar mecanismos moleculares 

implicados en la respuesta de E. amylovora al sulfato de cobre como 

factor de estrés, ya que este metal es un elemento tóxico para las 

células bacterianas por encima de una determinada concentración 

umbral. El objetivo global se abordó, en primer lugar, con el estudio 

de una selección de genes que se han relacionado en otros modelos 

bacterianos con el estrés que produce el cobre o con el estrés en 

general. La cuantificación de la expresión del gen rpoS en presencia 

de cobre mostró que este gen puede estar implicado en la 

supervivencia a largo plazo de E. amylovora para combatir el estrés 

que produce este metal. 
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En una segunda aproximación, se realizó un estudio 

transcriptómico mediante microarray tras someter a la bacteria a un 

breve tratamiento de cobre. El análisis de los resultados del 

microarray reveló que 44 genes se expresaban de forma diferencial 

en presencia del metal. Cada uno de ellos se estudió mediante gene 

ontology y por comparación con las bases de datos publicadas en el 

NCBI, y así se clasificaron en categorías funcionales. Las categorías de 

estrés y transporte fueron las más abundantes, tanto respecto a los 

genes que aumentaron su expresión tras la aplicación de cobre como 

a los que la disminuyeron. De los 44 genes que se expresaron de 

forma diferencial, se validó la expresión de 25 de ellos por PCR en 

tiempo real. En dicha validación, el gen copA se expresó 19 veces más 

en presencia que en ausencia de cobre, por lo que fue seleccionado, 

junto con siete genes más (soxS, yjcE, ygcF, yhhQ, galF, arcB, 

EAM_3469), en los que el incremento en la expresión fue menos 

pronunciado, para generar mutantes de E. amylovora. La respuesta 

de los mutantes a la presencia de cobre, y la restauración de 

fenotipos al complementar las mutaciones generadas, han revelado 

el papel de los genes copA, soxS, yjcE, ygcF, arcB y yhhQ en la 

supervivencia in vitro de E. amylovora frente al estrés por cobre. 

Además, la implicación del gen copA se ha demostrado también in 

planta en brotes de peral tratados con cobre. Finalmente, todos los 

resultados obtenidos han permitido elaborar un posible modelo de 

los diferentes mecanismos genéticos que parecen estar implicados en 

la interacción de E. amylovora con el cobre. El mecanismo más 

importante parece ser combatir las especies reactivas del oxígeno 
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(ERO), mediante la activación de la expresión de los genes soxS e yjcE. 

La actividad de estos genes está apoyada, además, por la proteína 

CopA, que bombea cobre desde el interior celular al espacio 

periplásmico. La activación del gen arcB, que permite el cambio de un 

metabolismo aerobio a uno anaerobio, también ayudaría a la 

reducción de las ERO. En definitiva, los resultados han permitido una 

aproximación al sustrato genético de la respuesta de E. amylovora al 

estrés por cobre, y constituyen un punto de partida para avanzar en 

el conocimiento de los mecanismos moleculares implicados en dicha 

respuesta.   
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RESUM 

 

E. amylovora, organisme de quarantena a la Unió Europea 

(UE), és l’agent causal del foc bacterià. Aquesta malaltia produeix 

grans pèrdues econòmiques a tots els països on està present, i el seu 

control resulta molt difícil, a causa de l’ absència de productes 

químics i biològics eficaços i també per la capacitat de persistència i 

disseminació d’E. amylovora. Els tractaments amb composts cúprics 

constitueixen la base de la gestió integrada del foc bacterià als països 

europeus, ja que l’ús d’antibiòtics, tot i que s’ha demostrat eficaç per 

a combatre aquesta malaltía, està prohibit a la UE per al tractament 

de bacteriosi en plantes. 

 Aquesta tesi, realitzada majoritàriament a un laboratori de 

seguretat biològica P2, pretén dilucidar mecanismes moleculars 

implicats en la resposta d’E. amylovora davant del coure com a factor 

d’estrés, ja que el coure és un element tòxic per la cèl.lula per 

damunt d’una determinada concentració umbral. L’objectiu global es 

va abordar, en primer lloc, amb l’estudi d’una selecció de gens 

relacionats en altres models bacterians amb l’estrés que produeix el 

coure, o amb l’estrés en general. La quantificació de l’expressió del 

gen rpoS en presència de coure va mostrar que aquest gen pot estar 

implicat en la supervivència a llarg termini d’E. amylovora per a 

combatre l’estrés que produeix aquest metall.   

 En una segona aproximació, es va realitzar un estudi 

transcriptòmic mitjançant microarrays després de sotmetre els 

bacteris a un breu tractament de coure. L’anàlisi dels resultats dels 
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microarrays va revelar que 44 gens s’expressen de forma diferencial 

en presència del metall. Cadascun d’ells es va estudiar mitjançant 

gene ontology i, per comparació amb les bases de dades publicades 

al NCBI, es van classificar en categories funcionals. Les categories 

d’estrés i transport van ser les més enriquides, tant en els gens que 

augmentaren la seua expressió després de l‘aplicació de coure com 

en aquells que la van reduir. Dels 44 gens que s’expressaren de forma 

diferencial, es va validar l’expressió de 25 d’ells per PCR a temps real. 

En la validació, el gen copA es va expressar 19 vegades més en 

presència que en absència de coure, per aquesta raó va ser 

seleccionat junt amb set gens més (soxS, yjcE, ygcF, yhhQ, galF, arcB, 

EAM_3469), en els que l’increment de l’expressió va ser menys 

pronunciada, per a generar mutants d’E. amylovora. La resposta dels 

mutants a la presència de coure, i la restauració dels fenotips 

originals al complementar les mutacions generades, han revelat el 

paper dels gens copA, soxS, yjcE, ygcF, arcB i yhhQ en la 

supervivència in vitro d’E. amylovora davant a l’estrés per coure. A 

més a més, la implicació del gen copA s’ha demostrat també in 

planta, en brots de perera tractats amb coure. Finalment, tots els 

resultats obtinguts han permès elaborar un possible model dels 

diferents mecanismes genètics que semblen estar implicats en la 

interacció d’E. amylovora amb el coure. El mecanisme més important 

sembla ser combatre les especies reactives de l’oxigen (ERO), 

mitjançant l’activació de l’expressió dels gens soxS i yjcE. L’activitat 

d’aquestos gens és recolzada també per l’acció de la proteïna copA, 

que bombeja coure des de l’interior cel.lular a l’espai periplàsmic. 
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L’activació del gen arcB, que permet el canvi d’un metabolisme 

aerobi a un metabolisme anaerobi, també ajudaria a reduir la 

producción de les ERO. En conclusió, els resultats han suposat una 

aproximació al substrat genètic de la resposta d’E. amylovora a 

l’estrés per coure, i constitueixen un punt de partida per avançar en 

el coneixement dels mecanismes moleculars implicats en aquesta 

resposta. 
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1.1. Fire blight of Rosaceae  

Fire blight is a destructive and highly infectious disease of apple, 

pear and other plants of the Spiraeoideae subfamily of the Rosaceae. 

It is apparently indigenous to North America, as the disease was first 

noticed in the late 18th century in New York State and was not 

reported in any other country until over a century later. Thus, it was 

detected in New Zealand in 1919, Europe in 1957 and Africa in 1964 

(van der Zwet et al., 2012). Today, the most important question is 

how to stop fire blight spreading all over the world. At the present 

time, chemicals against fire blight and the cultivation of fire blight 

resistant hosts seem to be the most helpful plant protection 

measurements against this disease (Fischer, 2012). Nevertheless it is 

very important not to forget the role that ornamental plants may 

play as disease reservoirs (Giayetto and Rossini, 2011). 

1.1.1. Symptomatology of fire blight and host range of Erwinia 

amylovora 

The symptoms of fire blight are easily recognized and, with few 

exceptions, are readily distinguished from those of other apple and 

pear diseases. According to van der Zwet et al. (2012), the name fire 

blight describes the most characteristic symptom of the disease, a 

blackening of twigs, flowers, and foliage looking like they had been 

burnt by fire (Fig. 1). The disease is also known by other names, 

depending on the plant part affected, such as blossom blight, twig 

blight, fruit blight, and trunk and collar blight (Eastgate, 2000). Often, 
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when succulent shoots are affected, they bend forming the 

characteristic shepherd’s crook (van der Zwet et al., 2012) (Fig. 2).  

Blossom blight is usually the first symptom of fire blight (van 

der Zwet et al., 2012). Blossoms first appear water-soaked; they then 

wilt, shrivel, and turn brownish to black. According to van der Zwet et 

al. (2012), the blight progresses into the peduncle, which also may 

appear water-soaked and turns dark green and then black. In the 

most favorable weather conditions for fire blight development, that 

is, when it is warm and humid, ooze droplets sometimes exude from 

the peduncle. Tissues affected by fire blight turn black, appear dried 

and shriveled, but usually remain attached to the tree. This disease 

has a rapid spread using the midrib and main veins to invade 

adjacent tissues.  
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Figure 1. General view of a pear tree with a branch affected by fire blight (Photo by 
E. Marco-Noales, Spain) 
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Figure 2. The characteristic fire blight symptom of shepherd’s crook in a pear shoot 
(Photo by E. Marco-Noales, Spain) 

 

 

 



INTRODUCTION 

33 

 

Fruit also becomes blighted at any time but most commonly 

during the growing season following a severe hailstorm (van der Zwet 

and Keil, 1972; van der Zwet et al., 1974). The affected part of the 

fruit is first appearing oily or water-soaked and later, as infection 

progress, becomes brown to black. Infection spreads directly through 

lenticels in the skin, through wounds, or from an infected spur into 

the fruit (Fig. 3) (van der Zwet et al., 2012). Infected fruit, such as 

infected tissues, remains attached to the spur, with a mummified 

appearance (Fig. 4), and may even produce ooze favoured by hail 

damage and warm weather (van der Zwet et al., 2012). 

Leaves may become infected after blight bacteria enter directly 

through stomata, trichomes, and hydathodes, but more often 

through wounds caused by insects, hail, or wind whipping (van der 

Zwet et al., 2012). When infection occurs in the leaf blade, a necrotic 

section usually appears within 48h. This part of the leaf may dry, but 

infection often spreads through the secondary veins into the midrib, 

then into the petiole and the supporting stem (Fig. 5) (van der Zwet 

et al., 2012). There is often a characteristic blackening of the petiole 

and leaf midrib and ooze drops are usually present. Leaves can also 

show symptoms when the branch is infected and they can not 

receive enough nutritive substances, showing the typical necrotic 

aspect (van der Zwet et al., 2012). 
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Figure 3. Fire blight infected pear (Photo by E. Marco-Noales, Spain) 
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Figure 4. Blossom blight and ooze production (red arrow) in pear (Photo by E. Marco-
Noales, Spain)  
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Figure 5. Necrotic pear-shoot after fire blight infection (Photo by E. Marco-Noales, Spain) 
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In fire blight-susceptible hosts, the disease may advance 

downward from blossoms, shoots, or fruit through the larger scaffold 

limbs to older branches and eventually into the trunk (van der Zwet 

et al., 2012), and the advance can also be observed in the subcortex 

tissue. The disease may cause small or large cankers in limb and trunk 

tissues (Fig. 6), which consist mainly of dead and collapsed bark 

cortex and phloem tissues. For the fire blight pathogen, the main 

overwintering sites are indeterminate cankers formed at the base of 

blighted shoots and fruit spurs, water sprouts, limbs, or branches or 

trunk, staying alive usually in the healthy tissue immediately adjacent 

to the edge of the visible canker (van der Zwet et al., 2012). Often, 

when conditions are conducive, abundant ooze flows along the bark, 

accompanying the progress of infection. Flies, using the ooze to feed 

on, may be also an instrumental vehicle to spread the disease (van 

der Zwet et al., 2012; Ordax et al., 2015).  

Fire blight was first described as a disease of apple and pear 

(van der Zwet et al., 2012). Since that time knowledge of the disease 

has grown exponentially, and many more host plants have become 

known (Table 1). To determine the types and number of host plants 

susceptible to the disease, most natural blight observations and 

artificial inoculations of plants were made during the period 1925-

1935 (Rosen and Groves, 1928; Rosen, 1929; Pierstorff, 1931; 

Thomas and Thomas, 1931; Thomas and Parker, 1933; Thomas and 

Ark, 1934; Parker et al., 1956). Since that time, many more records 

have been collected. Besides genera Malus and Pyrus, 129 species in 
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37 genera of the Rosaceae family have been reported being 

susceptible to fire blight. Of these genera, six are fruit crops: Cydonia, 

Eriobotrya, Fragaria, Mespilus, Prunus and Rubus. The remaining 21 

genera, with 37 species, are nearly all ornamental host plants and 

trees (Thomas and Thomas, 1931; Shaw, 1934; Thomas and Ark, 

1934; Jock et al., 2000; Vogelsanger et al., 2006; Bastas and Sahin, 

2014). Among them, those that are most susceptible and are the 

cause of more economic loses, and usually exhibit the most severe 

blight, are species of Cotoneaster, Crataegus, Pyracantha, and Sorbus 

(van der Zwet et al., 2012) (Table 1). 
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Figure 6. Canker caused by E. amylovora in a pear tree. (Photo by E. Marco-Noales, 
Spain) 
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Table 1. Main genera and species susceptible to fire blight. 

Genus 
Main representative fire 

blight host 
Common 

name 

Fruit trees   
Malus Malus communis Apple  
Pyrus Pyrus communis Pear  
Cydonia Cydonia oblonga Quince  
Eriobotrya Eriobotrya japonica Japanese medlar 
Mespilus Mespilus germanica Medlar 
Prunus Prunus salicina Plum  

Ornamental plants   
Crataegus   
Chaenomeles   
Cotoneaster   
Photinia   
Pyracantha   
Sorbus   
Stranvaesia   
Rubus   

 

1.1.2. Economic impact  

A number of bacterial diseases are of major economic 

importance, with direct losses due to decreased agricultural 

production, both in quality and quantity, and indirect losses due to 

the implementation of expensive control measures (van der Zwet et 

al., 2012). E. amylovora has proved to be extremely destructive to 

the apple and pear industries in many countries and also to the 

cultivation of various ornamentals as mentioned before (van der 

Zwet et al., 2012). In apple and pears, the disease not only destroys 

the current season’s crops but may also lead to loss of branches and 

whole trees, leading to long-term devastation of orchards and fruit 

tree nurseries (van der Zwet et al., 2012). If during blooming there 
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have been favorable weather conditions for the pathogen, blossoms 

are affected, because of that yield is considerably reduced and in 

some cases nullified and also the next year’s productivity is 

significantly affected because of the destruction of fruiting spurs (van 

der Zwet et al., 2012). In susceptible hosts, the infection spreads so 

rapidly through the tree under favorable conditions. Once trees are 

infected, they cannot be saved even in spite of drastic and immediate 

surgery and usually die in a short time after the first visual sign of 

infection (van der Zwet et al., 2012).  

It is difficult to get information about the economic losses 

caused annually by fire blight but they are quite high (van der Zwet 

and Keil 1979; van der Zwet et al., 2012). It is necessary to add to the 

cost of direct production losses, associated costs of the control 

measures (treatments, intensive vigilance, analysis, infected trees 

destruction, etc…) and the obligatory varietal structure modification 

of the fruit growing sector. The fast dissemination of fire blight and 

the progressive death of susceptible cultivars (especially pear trees) 

have made to quit its cultivation in some areas of United States of 

America (USA) and the European Union (EU).  

To get an idea of the significance of losses, we can look at some 

numbers through years. In USA, detailed accounts of the early history 

of fire blight in California (USA) have been published, suggesting that 

two-thirds of the pear trees cultivar “Bartlett” were eliminated, at a 

cost of $5 million, during the period 1903-1908 (Woods, 1909; 

Gardner and Ark, 1924; Baker, 1971). More recently, fire blight was 
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particularly severe in 1991 in south-western Michigan, where the 

estimate of losses was $3.8 million (van der Zwet and Beer, 1995). In 

Netherland, in 1982, a particularly severe year, the combined 

economic impact of the disease on nurseries and fruit orchards and 

the total cost of eradication and control were estimated at $6 million 

(Vanneste, 2000). At the end of 1996, in Hungary more than 65,000 

trees and shrubs were eradicated by the Ministry of Agriculture at a 

total cost of $1.1 million (Vanneste, 2000). The more detailed recent 

data are those about the epidemy of Michigan (USA) in 2000, having 

an evaluation of crop costs and trees losses near to 80 million dollars 

(van der Zwet et al., 2012). In Spain, only in Aragón and in a period 

between the years 2000 and 2004, costs of the disease (inspections 

and eradications) were estimated in more than one million euros 

(Palacio-Bielsa et al., 2012). And these are only some examples of the 

economical losses caused by fire blight.  

This disease also have negative consecuences for the producers 

and the nursery sector (Lanthier, 2011), because the prohibition to 

export plants and in some cases fruits from countries with E. 

amylovora to countries that are free of the disease. 

1.1.3. Global distribution 

After its origin in the Hudson valley of New York in 1780, fire 

blight has moved into most states of the USA. This process took a 

period of more than hundred years at the same time as the 

movement of humans and the advance of industrialization (van der 
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Zwet and Keil, 1979; van der Zwet et al., 2012). By 1925 fire blight 

had spread across USA border into Canada and Mexico and had 

moved overseas to New Zealand (van der Zwet et al., 2012). From 

1925, the disease spread to 42 additional countries, and up to date it 

has been reported in a total of 53 countries (Table 2, Fig. 7). 

According to van der Zwet et al. (2012), sometime during the 1950s 

the fire blight organism was most probably disseminated, via infested 

bud wood or trees, to two different areas from North America to 

north-western Europe and to the north-east corner of Africa. Without 

a doubt, human activity has been very influential in the spread of fire 

blight and another important factor for the fast spreading of the 

disease has been the increasing use of susceptible cultivars and 

rootstocks, as well as high tree densities in nurseries and young 

planting orchards (Vanneste, 2000).  

In Europe, in 1958 the disease was first detected in England 

(Crosse et al., 1958), suggesting, although never proved, that the 

introduction was due to contaminated fruit crates, which were 

recycled in those orchards in Kent where the initial blight symptoms 

were observed in 1956/57 (Lelliott, 1959). In 1966 it appeared on the 

mainland of the European continent, in The Netherlands 

(Netherlands Plant Protection, 1966) and the Baltic coast of Poland 

(Borecki et al., 1967). It was also detected in Denmark in 1968, in 

Germany in 1971, and in Belgium and France in 1972 (Vanneste, 

2000). Because the first reports of the disease in Denmark (1968) and 

the northern coast of former West Germany (1971), Belgium (1972) 
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and France (1972) all appeared within six years, it has been suggested 

although not proved, that migratory birds may have been 

instrumental in the dissemination of the bacterium across the English 

Channel to the western and northern European coastlines (Meijneke, 

1972; van der Zwet, 1994; Billing and Berrie, 2002). 

In the early 1960s, fire blight also appeared in Egypt in north-east 

corner of the African continent (El-Helaly et al., 1964), whereas the 

first report of fire blight in Israel dates from 1985 (Zutra and Shabi, 

1985), and on the island of Cyprus from 1986 (Psallidas and Dimova, 

1986). In 1985, fire blight was reported from Turkey and the 

following year from Crete (Greece) (EPPO, 1987). Once fire blight 

became established in the Egypt-Cyprus-Israel triangle, it was only a 

matter of time before the disease appeared in neighbouring 

countries (Vanneste, 2000). By 1988, the disease was reported in 

Lebanon (EPPO, 1988), in 1990 in Jordan (Tehabsim et al., 1992), and 

in 1995 in Iran (Afunian and Rahimian, 1996). After Crete and Turkey, 

fire blight was found into the mainland areas of Greece and then into 

Bulgaria (Bobev, 1990), Romania (Baicu et al., 1994), Macedonia 

(Mitrev, 1996), and Hungary (Hevesi, 1996). Once fire blight was 

established throughout the southern Balkans, it came as no surprise 

the observation of symptoms in the southern part of Italy (Cariddi 

and Piglionica, 1992). In 1995, the first outbreak of fire blight was 

identified in northern Spain (de la Cruz Blanco, 1996). Since then, the 

disease has been reported in new countries and now E. amylovora 

has been identified in all the EU members including Finland. In 2000, 
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host plants of E. amylovora in the Royal Botanic Gardens of 

Melboune (Australia) were positive for the presence of the pathogen, 

although it was not isolated from wood samples (Jock et al., 2000). In 

2008, fire blight was first reported in Morocco on pear, apple and 

quince (Fatmi et al., 2008) and in 2013 a report showed that the 

characterization of a selection of strains from Middle Atlas 

Mountains of Morocco had notable similarities with a Spanish strain 

obtained from plants imported from Belgium (Hannou et al., 2013). 

Recently, in 2012, E. amylovora was reported from different host 

plants and locations in Serbia and Montenegro (Ivanovic et al., 2012) 

and it is also present in other countries like Tunisia, first reported in 

2014 in pear (Rhouma et al., 2014) or Algeria, that had its first 

characterization of isolates in 2012 (Laala et al., 2012). 

The last first report of E. amylovora has been on pear trees in 

Finland (Soukainen et al., 2015), that have a Protected Zone status 

against fire blight in the EU, and in Kyrgyzstan, Kazakhstan and South 

Korea (Myung et al., 2016; Zhao and Sundin, 2017). 



1.1. Fire blight of Rosaceae 

46 

 

Table 2. Countries where fire blight is present (EPPO, 2017). 

 

Area Countries 

Africa Tunisia Algeria 
 Morocco Egypt 
America Bermuda Mexico 
 Canada United States 
 Guatemala  
Asia Iran Kazakhstan 
 Israel Lebanon 
 Jordan Syria 
 Kyrgyzstan South Korea 
Europe Albania Lithuania 
 Armenia Luxemburg 
 Austria FYROM* 
 Belarus Moldova 
 Belgium Montenegro 
 Bosnia-Herzegovina Netherlands 
 Bulgaria Norway 
 Croatia Poland 
 Cyprus Romania 
 Czech Republic Rusia 
 Denmark Serbia 
 Estonia Slovakia 
 Finland Slovenia 
 France Spain 
 Germany Sweden 
 Greece Switzerland 
 Hungary Turkey 
 Ireland Ukraine 
 Italy United Kingdom 
 Latvia  
Oceania New Zealand  

*Former Yugoslav Republic of Macedonia, mentioned as Macedonia in the EPPO database. 
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Figure 7. Global distribution of fire blight (EPPO 2017). Red circle indicates countries. Red cross indicates regions or 
states inside some countries. 
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1.1.4. Situation in Spain 

In 1984, while fire blight was spreading across north-western 

Europe, Sampayo and Palazón (1984) published a detailed list of 

preventive measures to try to keep the disease out of Spain. In spite 

of this, the first report of fire blight in Spain dates from 1995 (de la 

Cruz Blanco, 1996), as mentioned before. The disease was observed 

in August 1995, mainly on cider apple trees, a few kilometers south 

of the French border, in Guipúzcoa, near the Atlantic coast. In the 

following two years, fire blight was observed in pear, apple, quince, 

loquat, and several ornamental hosts (López et al., 1999). The spatial 

and temporal distribution of the disease foci strongly suggest that 

infested plant material was responsible for the introduction of the 

disease (López et al., 2002). Moreover, molecular analysis of a large 

number of Spanish strains of E. amylovora support the hypothesis of 

several introductions in Spain of infected plant material from 

different European countries (Donat et al., 2007). 

Spain was recognized as “protected zone” (PZ) for fire blight in 

2000 (DOCE 2000). This is the most important protection considered 

in the European Union Phytosanitary legislation. Countries or places 

where a pathogen is not established and perform surveys to try to 

find it may obtain the status of PZ, and introduction of vegetal 

material and its movement are subjected to high severe quarantine 

requirements (Real Decreto 58/2005). 
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In 2011 and the following years, there were new fire blight 

outbreaks in many of the pome fruit production zones of the national 

territory. Even though measures to eradicate the disease or delay its 

establishment have been adopted in some cases, the situation today 

in 2017 is not encouraging. It is considered that the disease is 

established in the following areas that have lost, therefore, the PZ 

status: Castilla y León, Extremadura, La Rioja, Castilla La Mancha, 

Murcia, Navarra, Guipúzcoa (País Vasco), Aragón, Murcia and 

Valencia (green spots in Fig. 8). Recently, several regions of a city of 

Catalonia named Lleida lost its PZ status as well (official 

communication). 

Figure 8. Current distribution of fire blight in Spain (www.magrama.gob.es 
2017). 

 

http://www.magrama.gob.es/
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1.1.5. Fire blight epidemiology and control 

1.1.5.1. Fire blight cycle 

Fire blight bacteria hibernate in the bark at the edge of cankers 

formed during previous growing seasons. As weather becomes warm 

in the spring and temperature reach 18-30ºC the bacteria multiply 

and ooze to the surface in sticky droplets (Palacio-Bielsa and Cambra, 

2009). Under low relative humidity the bacteria can survive in the dry 

exudates for over a year (Rosen, 1938). Relatively few cankers survive 

winter, becoming active and producing bacteria in the spring. 

However, a single active canker will produce millions of bacteria, 

enough to infect an entire orchard. Cankers produce bacteria in 

droplets of ooze that are transferred to flowers by splashing rain or 

by insects, mostly bees, flies and ants (Fig. 9).  

According to van der Zwet et al. (2012), once on the flower 

stigmas, the bacteria can grow epiphytically under favorable 

circumstances and reaching 106-107 colony-forming units (CFU) per 

healthy flower. The presence of high densities of epiphytic bacteria 

on healthy flowers facilitates an efficient movement of the bacteria 

from flower to flower by rain or by any insect that visits the flowers 

(Fig. 9). Blossom infection occurs when the bacteria are washed by 

rain to natural openings at the flower base. These openings located in 

the hypanthium are specialized stomata, termed nectar glands. 

Blossoms wilt and die in about 1-2 weeks after infection occurs, and 

the bacteria that ooze from them provide inoculum for secondary 
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spread to other flowers and to young succulent shoots (Fig. 9). The 

bacteria are moved to shoots by insects and rain. Bacteria may enter 

the leaves through stomata and water pores (hydathodes) but usually 

they enter through wounds made by insects, hailstorms and other 

mechanical damage. As the season advances, shoots become 

progressively less susceptible to new infections as their growth slows 

and stops. Bacterial progression through woody tissues also slows 

and cankers are formed (Fig. 9), where some bacteria overwinter and 

renew the disease cycle the following spring. 

Hibernating bacteria occasionally move internally from 

canker margins to nearby shoots, which they infect in a systemic way. 

If bacteria reach the phloem, they are carried upward to the tip of 

the twig and to the leaves. Invasion of large twigs and branches is 

restricted primarily to the cortex. 
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Figure 9. Fire blight cycle. 
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1.1.5.2. Preventive and cultural measures 

To prevent fire blight, it is basic not to illegally introduce vegetal 

material of Rosaceae from infected areas or countries. The plant 

purchase must be made exclusively from authorized nurseries, 

requiring the phytosanitary passport which guarantees the 

requirement compliance established in the European legislation (BOE 

2005; DOCE 2000). The elimination of symptomatic or infected plants 

laid down in the Real Decreto 1201/99 (BOE 1999) as eradication 

measures has been very effective (Palacio-Bielsa et al., 2012) and it is 

necessary to carry out the eradication measures as faster as possible 

to reduce inoculum and avoid E. amylovora dissemination. 

Control of fire blight will be only possible if disease symptoms are 

detected prematurely in the orchard. It has been observed that fire 

blight progresses faster when more symptomatic plant material is 

present in an orchard or closer to it. Therefore, it is very important to 

examine the orchard during and after bloom, rain, storms and above 

all after hail. Moreover, June, July and September are in general the 

most critical months for symptom detection since trees have an 

active vegetative growth and more susceptible material is available. 

All factors that favor plant susceptibility and/or pathogen 

spreading should be controlled. Pruning is recommended only when 

trees are hibernating to remove all suspicious cankers, favoring the 

maximum ventilation of the orchard, combined with disinfecting 

frequently all the tools used, and burning the plant debris. Other 

recommended practices include the removing of secondary bloom, a 
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limited use of nitrogen fertilizer to prevent vegetative overgrowth, 

and avoidance of spraying watering.  

1.1.5.3. Chemical control  

Chemicals are applied to reduce the number of E. amylovora 

cells or, at least, inhibit their multiplication. To achieve these effects, 

it is necessary to eliminate sources of inoculum, such as 

overwintering cankers on fruit trees or alternate hosts, or to protect 

potential invasion sites, such as blossoms, shoots, leaves, or fruit, 

especially after wounding (Palacio-Bielsa and Cambra, 2009). In this 

sense, to be effective against this pathogen, any bactericide should 

be applied during the three distinct periods of the host: when the 

tree or plant is dormant, in bloom, and during the postbloom period. 

To prevent the development of new blossom infections, chemical 

agents are used during the dormant period and before budbreak, 

since E. amylovora may overwinter in cankers. During bloom the 

objective is to decrease pathogen populations and blossom necrosis 

and in the postbloom to avoid shoot infections (van der Zwet et al., 

2012). 

Two groups of chemical agents, antibiotics and copper 

compounds, have played the most important role in controlling fire 

blight of apples and pears since the 1930s. In the early 1950s, 

discovery and application of antibiotics was the most important 

development in fire blight control, due to their successful use in 

treating human diseases (van der Zwet et al., 2012). Moreover, for 
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fire blight control, in general, streptomycin gave better result than 

copper, and normally it caused no fruit russet. This lack of injury 

probably appealed to many growers even though several treatments 

are necessary and the antibiotic cost is considerably higher than that 

of copper (van der Zwet et al., 2012). In early antibiotic research, a 

widely used formulation contained 15% streptomycin sulfate and 

1.5% oxytetracycline (Terramycin) (Dunegan et al., 1954; Higdon, 

1954; Ark, 1958; Keil, 1963). Laboratory studies showed that E. 

amylovora developed resistance far more slowly with this 

combination than with streptomycin alone (English and van Halsema, 

1954). Then, it was used commercially for many years, until 

oxytetracycline was removed during the 1960s, apparently because 

the combination showed no advantage when used in the field (van 

der Zwet et al., 2012). According to Stockwell and Duffy (2013), 

streptomycin is applied in several countries of the United States to 

control fire blight before infection have place, in springtime, because 

after infection antibiotics are ineffective. Antibiotics have been 

indispensable for crop protection in USA for more than 50 years 

without reports of adverse effects on human health or persistent 

impacts on the environment, since antibiotics are active on plants for 

less than a week (Stockwell and Duffy, 2013). A study with 

streptomycin to control fire blight in experimental orchards of 

Europe was recently carried out by Walsh et al. (2014). They 

demonstrated that there was not abundance of streptomycin or 

tetracycline resistant genes in the bacteria neither a negative impact 

on the bacterial community after three streptomycin treatments. 
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Numerous copper compounds have given variable results in the 

control of fire blight, ranging from poor to excellent (Rosen, 1932, 

1934; Pinckard et al., 1936; Sherbakof and Andes, 1939; Veerkamp, 

1945; Gardiner, 1951-1957; Agrios, 1968; Hickey et al., 1998; Bastas 

et al., 2010). Copper sulfate mixed with lime (Bordeaux mixture) has 

been used more often than any other form of copper. It is applied 

only during the dormant period and the bloom period, to avoid fruit 

russet that is directly proportionate to the copper content of the 

formulation. Probably because of this fruit injury, copper is not used 

more often.  

A wide and renew overview about the use of copper in the 

management of bacterial diseases of fruit trees will be explained in 

section 1.2. 

 

1.1.5.4. Biological control 

The possibility of biological control of fire blight, using different 

microorganisms, has been investigated, discussed, and reviewed for 

more than four decades (Schroth et al., 1974; Aldwinckle and Beer, 

1979; Pusey, 2002; Stockwell et al., 2002; Ozaktah and Bora, 2004; 

Cabrefiga et al., 2014). At first, mainly antagonistic bacteria were 

tested as potential biological control agents, but since then several 

natural compounds (plant extracts and etheric oils) have also been 

assayed against the fire blight pathogen (Briffaerts et al., 1996; Zeller 

and Laux, 2006; Farkas et al., 2012). Increased research on the 

biocontrol of this disease has been motivated by the development of 
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resistance in E. amylovora to the antibiotic streptomycin, and the 

restrictions to the use of several chemicals and antibiotics in 

countries of the EU and other states (Zeller and Laux, 2001, 2002a, 

2002b; Montesinos et al., 2009; BOE 2012). 

The surface of the stigma, located on top of the floral pistil, is 

the site where bacterial bio-control agents must interact with and 

successfully antagonize E. amylovora (Hattingh et al., 1986; Thomson, 

1986; Wilson et al., 1989; Vanneste, 1995; Farkas et al., 2012). In fact, 

biological control of fire blight is successful when a bacterial 

antagonist establishes and develops a large population on the 

stigmatic surface prior to the establishment of E. amylovora (Wilson 

et al., 1992; Johnson et al., 1993; Wilson and Lindow, 1993). These 

populations, through a combination of mechanisms, can suppress the 

establishment and epiphytic growth of the pathogen (Farkas et al., 

2012). Decrease of E. amylovora population on stigmatic surfaces 

reduces the probability of floral infection and spread of the pathogen 

to other blossoms. Effective biological control requires colonization 

of the most stigmas of the flowers in the orchard by the bacterial 

antagonists (Johnson et al., 1993; Lindow et al., 1996), and requires a 

larger population of them on these surfaces (Farkas et al., 2012). Fire 

blight is a good candidate for biological control because the bacterial 

antagonists need to persist on the nutrient-rich, stigmatic surfaces 

for only about one week to suppress blossom infection effectively 

(Cabrefiga et al., 2007; Cabrefiga et al., 2011; Farkas et al., 2012; 

Cabrefiga and Montesinos, 2017). 
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1.1.5.5. Cultivar susceptibility and genetic control 

A very limited number of apple and pear cultivars are 

responsible for a large proportion of annual world production 

(Vanneste, 2000). To retain a cultivar with fruiting desirable 

characteristics and to introduce disease-resistance genes by 

conventional breeding methods is virtually impossible, because of 

apple and pear heterozygosity, long generation time and self-

incompatibility. All this make back-cross programs of several 

generation prohibitively long term and expensive (Vanneste, 2000). 

The use of biotechnology can now overcome these handicaps by 

introducing resistance genes directly into current valuable 

commercial cultivars and thereby transforming them into resistant 

forms of the same cultivars (van der Zwet et al., 2012). 

Targeting gene expression to fire blight-susceptible tissues or 

during specific developmental stages could be advantageous in 

providing resistance where and when needed (Vanneste, 2000). 

Exogenous application of plant resistance inducers (PRIs) able to 

activate plant defenses is the most novel approach for new 

integrated pest management practices (de Bernonville et al., 2014). 

1.1.5.6. Integrated control in Spain and the European Union (EU) 

Optimal control of fire blight seems to be only achieved by 

eliminating all diseased plant material and by reducing host 

susceptibility with available cultural measures (Deckers and Porreye, 

1987; Deckers et al., 1987). The disease control must be considered 
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as an integrated strategy, selecting the lower sensitivity varieties and 

applying the prophylactic measures, the cultural techniques and 

necessary treatments to reduce the inoculum amount (Johnson and 

Stockwell, 1998; Palacio-Bielsa and Cambra, 2009; Johnson and 

Temple, 2013; Smith, 2014). 

Genetic improvement of apple and pear trees to obtain resistant 

varieties with commercial interest did not provide the expected 

results despite that it has been obtained significative advances (van 

der Zwet et al., 2012). Also, transgenic and cisgenic varieties of apple 

and pear trees with significant levels of fire blight resistance have 

been obtained (Litz and Padilla, 2012), but not authorized and 

commercialized in EU yet.  

A combination of all available control measures (sanitation, 

selection of resistant varieties, and cultural practices) is the preferred 

way to keep the disease to a minimum. 

1.1.5.7. Legislation 

In Spain, the regulation against fire blight started with a Ministry 

Order in 1975 about the prohibition of host plants import from 

contaminated countries. In 1999, it was published the Real Decreto 

1201/1999 (BOE 1999) on the National Program for eradication and 

control of fire blight, that was based on the European legislation but 

adapted to the Spanish situation. This law was modified in 2005 (Real 

Decreto 1512/2005), 2010 (Real Decreto 246/2010) and 2011 (Real 

Decreto 1786/2011). The following rules were determined as 
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obligatory in disease free zones (PZ): a) official declaration of the 

disease, b) destruction of the affected vegetal material by particular 

people and public entities, and c) systematic research by the 

Autonomous Communities. Obligatory phytosanitary measures were 

established in this Real Decreto in zones where the disease was 

present, to slow down its propagation, as well as the prohibition to 

plant host ornamental species in public road and gardens in the 

hazard zones decided by each Autonomous Community (Montesinos 

et al., 1999). 

The European Economic Community (EEC) published in 1977 the 

Directive 77/93/CEE about the circulation of damaging organisms of 

plants where E. amylovora appeared as a quarantine organism 

(present in some countries of the EEC but not in all of them). 

Restrictions were imposed to the distribution of vegetal material 

coming from epidemic zones, which were considered as Protected 

Zones (PZ) for this disease, being Spain among them. The EEC 

member countries not yet affected by fire blight established a 

supervision network for maintaining these areas free of the disease. 

According to that, all the vegetal material susceptible to the disease 

must be commercialized under the phytosanitary passport with the 

initials PZ (Montesinos et al., 1999).  

In 2000, the Directive 2000/29/CE was published in the Official 

Diary of the European Economic Communities. The Directive is 

relative to the protection measures against the introduction in the 

Community of damaging organisms for the vegetables or vegetal 
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products and against their dissemination inside the Community. In 

Spain, the Plant Health law (Law 43/2002, of November 20th of 2002) 

regulates thoroughly general aspects relative to the prevention and 

fight against the different pests and diseases. The Autonomous 

Communities, basing on the Real Decreto 1201/1999 and 1512/2005, 

have adopted in Spain other complementary measures to reinforce 

the effects that are being pursued (Palacio-Bielsa and Cambra, 2009). 
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1.2. Copper and field application  

Bacterial infections of plants are some of the most difficult 

diseases to control because there is still little effective chemistry 

available (Civerolo, 1982; López et al. 2003; Janse, 2004, 2005). 

Antimicrobials for prophylactic treatment of bacterial diseases of 

plants are limited in availability, use, and efficacy, and therapeutic 

use is largely ineffective (Vidaver, 2002). One type of the products 

more frequently used are copper formulations that have been 

extensively used in agriculture since more than 200 years ago, with a 

significant track history of relative success, and nowadays the 

utilisation of different copper-based bactericides is a piece in the 

whole of controlling bacterial diseases. 

1.2.1. The history of the use of copper 

Copper is considered a unique metal known for its 

antimicrobial properties throughout millennia. It was the first metal 

used by humans, probably because of its metallic native form 

(Elguindi et al., 2011). Thus, use of copper has been reported as far as 

in ancient Chinese civilization around 2500 B.C (Yu et al., 1995); in 

ancient Egypt to sterilize drinking water and chest wounds (Dollwet 

and Sorenson 1985); by Greeks in 400 B.C., for treating pulmonary 

diseases and purifying drinking water (Dollwet and Sorenson, 1985); 

and by ancient Aztecs, in Mexico, for treating skin conditions. And 

during the circa 1850 cholera epidemic in Paris, copper workers were 

found to be immune to it (Michels et al., 2005). Throughout history, 

men have exploited the antimicrobial attributes of copper.  
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As early as the beginning of 18th century, Prevost (1807) had 

demonstrated that bunt of wheat, caused by Tilletia caries, could be 

controlled to some degree by copper sulfate. He provided the first 

scientific evidence that this compound would kill fungal structures. 

Previously, Schulthess (1761) had observed that copper sulfate could 

provide some control of bunt but did not know the mode of action 

(van Zweiten et al., 2007). It was in the latter half of the 19th century 

that chemical disease control really started to develop. Because of its 

high phytotoxicity, copper was not used as a foliar pesticide until 

1885 (Millardet, 1885), when French scientist Millardet accidentally 

observed that a mixture of copper sulfate, lime and water, that had 

been applied to grapevines near roadways in order to discourage 

thieves from stealing the grapes, was not phytotoxic but exhibited a 

fungicidal action against Plasmopara viticola (Russell, 2005). His 

vinter’s spray formulation was then the fungicide of choice in USA 

and was named “Bordeaux mixture” (Borkow and Gabbay, 2005). It 

had represented the first large scale use of a fungicide in Europe and 

America (Dunegan and Doolittle, 1953; Floyd, 1991). It later proved 

also to be a good bactericide; in fact, it has been used widely against 

bacterial diseases on different crops (Jiang et al., 2008). Already in 

one of the first publications on bacterial diseases of plants (Smith, 

1920), it is reported that the number of infections in walnut blight in 

California was reduced by 50% using Bordeaux mixture, and that in 

Italy this mixture was recommended for olive trees following hail-

storms to protect them against tuberculose.  
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1.2.2. Copper formulations and mode of action  

Copper bactericides work by coating the leaf surface with 

minute particles of copper which then react with acid and moisture 

on the surface to release copper ions that kill bacteria and prevent 

fungal spores from germinating. Over time the protective coating 

provided by copper bactericides is diluted by the action of rain, wind 

and the growth of the crop. Interestingly, despite the long-term use 

of copper as antimicrobial, its precise mode of action has not been 

fully elucidated (Dupont et al., 2011; Fones and Preston, 2012). 

The antimicrobial activity of copper is due to the soluble 

fraction of Cu++ or Cu+ metal. Copper compounds used in agriculture 

are generally composed of the active ingredient Cu++ combined with 

an anionic component to form inorganic or organic salts, or quelates. 

The other ingredients improve water miscibility, adherence and 

spreadibility to plant surfaces, and other additional properties.  

Copper, although no target specific, kills all living cells. 

Hovewer, plants are less susceptible to copper toxicity than 

microorganisms, due to tissue barriers and structures, such as leaf 

cuticle, fruit wax or trunk suber, which avoid the entry of copper. The 

role of copper for control of bacterial plant diseases is primarily 

based on its direct action on the pathogenic cells. Copper can interact 

with many vital cell structures due to reactive nature of Cu++ with 

anionic cell components. Moreover, increased intracellular copper 

levels may induce the synthesis of reactive oxygen species (ROS), 

causing an additional oxidative damage to lipids, proteins and DNA in 
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the internal structures of the bacterial cell. The result of these actions 

is a loss of the functionality of the bacterial cell envelope by 

membrane disruption, a protein-enzyme denaturation, inhibition of 

DNA replication, transcription, and protein synthesis. Therefore, 

copper exhibits a bactericidal activity. However, there is a second 

mechanism of action of copper, which is mediated by the host. It 

consists on a stress response induced by copper in the plant, with 

overproduction of ROS and increased levels of antioxidant enzymes 

(SOD, GPX, APX) (Ros-Barceló, 2006; Yadav et al., 2010).  

1.2.3. Field applications in the EU 

As described before, copper compounds through agriculture 

history have been used for vegetable and fruit crops to restrict the 

spread of plant pathogens, both bacteria and fungi. They have 

constitued for decades the main protection instrument against plant 

diseases. However, today there is a strong tendency to reduce the 

use of copper and copper-based products to minimize their 

environmental impact. Development of copper resistant bacterial 

strains and accumulation of copper in soil are detrimental effects 

derived from use of this chemical.  

In the EU, plant protection products containing copper must fulfil 

the safety requirements laid down in BOE (2012). According to it, 

several active substances were evaluated, and the following products 

were included in the Annex I of the Directive: copper hydroxide, 

copper oxychloride, copper oxide, Bordeaux mixture, and tribasic 

copper sulfate. The phytosanitary products that contain these 
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substances can be therefore authorized in the Member States. 

Nevertheless, due to the fact that the risk assessment of copper 

compounds revealed eco-toxicological concerns, a restriction on the 

inclusion period is deemed necessary to allow Member States to 

review after a shorter period copper containing plant protection 

products already on the market.  

Chemical treatments are very useful and contribute to reduce 

losses in fruit production due to bacterial infections. However, no 

complete protection can be expected by chemical treatments alone, 

but they should be considered as a part of an integrated control 

system aiming to decrease disease incidence. The objective for a 

sustainable disease management is to improve the efficiency of 

disease control while reducing the amount of copper application to 

an environmentally acceptable level. An attempt to adequately 

control diseases and limit unnecessary chemical applications is to 

select the copper compounds to be used, applying them in a strategic 

way, timed according to pathogen activity, and test alternative 

products and farming practices. 

 

 

 

 

 

 



INTRODUCTION 

67 

 

1.3. Copper, friend and foe for bacterial cells: targets for copper 

action and strategies  

Copper is a transition metal utilized by bacteria in many cellular 

processes. However, while copper plays critical roles it can be toxic 

when levels are beyond cellular needs. Bacterial cells may prevent 

copper toxicity in part by keeping copper compartmentalized in the 

cell periphery. Trace copper is sufficient for survival as there are few 

Cu-dependent enzymes and they are most often localized within the 

cell periphery. The most widespread Cu-dependent enzyme in 

bacteria is cytochrome c oxidase (Cox), located in the cell membrane 

(Festa and Thiele, 2012).  

Our current understanding of the molecular mode of action of 

copper ions against bacteria is still limited and the microorganism 

more studied is Escherichia coli. Rensing and Grass (2003) 

demostrated that the copper translocating P-type ATPase, CopA, was 

the central component in E. coli for copper homeostasis, responsible 

for removing excess copper from the cytoplasm. Macomber and 

Imlay (2009) showed that copper toxicity involved the action of ROS 

and that the primary target of copper in E. coli was the iron-sulfur 

cluster of proteins. A connection between copper and cell integrity 

was discovered when Espirito Santo et al. (2011) challenged E. coli to 

dry copper surfaces. Cells suffered extensive membrane damage 

within minutes of exposure to dry copper. 
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1.3.1. Copper and generation of reactive oxygen species 

Metals can act directly as antimicrobial toxins, and, consequently, 

they can be used directly to limit pathogen growth (Fones and 

Preston, 2012). Besides that, the ability of copper to undergo redox 

changes between Cu+ and Cu++, although makes it essential for life by 

its indispensable role in various enzymatic processes, also makes it 

dangerous since it is able to elicit the production of ROS. Aerobically, 

copper readily catalyzes reactions that result in the production of 

hydroxyl radicals through the Fenton-like and Haber-Weiss reactions 

(Cu+ + H2O2 → HO• + HO- + Cu++; O2
•- + Cu++ → Cu+ + O2) (Halliwell and 

Gutteridge, 1984, 1990; Rensing and Franke-McDevitt, 2013). The 

highly reactive oxygen intermediates are responsible for lipid 

peroxidation, oxidation of proteins and damage to nucleic acids 

(Halliwell and Gutteridge, 1984; Imlay and Linn, 1988; Stadtman, 

1992). The effect of Cu+ on generation of ROS can also be indirect, 

since free copper ions are able to oxidize sulfhydryl-groups, such as 

cysteine in proteins or the cellular redox-buffer glutathione (Stohs 

and Bagchi, 1995; Helbig et al., 2008). Moreover, Cu+ can attack and 

destroy iron-sulfur clusters realeasing iron which can in turn cause 

oxidative damage through iron-based Fenton chemistry (Keyer and 

Imlay, 1996; Rensing and Franke-McDevitt, 2013).  

It was believed that copper ion toxicity in bacteria was only 

mediated by oxidative DNA damage. However, under anaerobic 

conditions copper ions reduce the growth rate of E. coli even more 

strongly than under aerobic conditions (Outten et al., 2001).  
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Figure 10 shows a summary of the multitarget action of copper in 

a Gram-negative bacterial cell.  

Figure 10. The multitarget action of copper in a Gram-negative bacterial cell. 
IM: inner membrane, CW: cell wall, EM: external membrane, EPS: 
exopolysacharide (Courtesy of Prof. E. Montesinos, University of Girona, 
Spain). 

 

 

 

1.3.2. Copper uptake and homeostasis 

Copper compounds have been used to control bacterial diseases 

since long time ago and consequently pathogens have been under 

copper pressure all that time. They have developed detoxification 

strategies and copper-resistance mechanisms to face up to the 

bactericide properties of high level copper concentrations (Rensing 

and Grass, 2003; Teitzel and Parsek, 2003; Waldron and Robinson, 

2009; Fones and Preston, 2012).  
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Copper homeostasis must be carefully regulated in pathogens to 

allow enough metal to be available for protein assembly but below 

damage induction threshold. Within the cytoplasm, copper is 

sequestered by various proteins and molecules, including specific 

copper chaperones, to prevent cellular damage (Rae et al., 1999). 

Hernández-Montes et al. (2012) reported that the bacteria of the 

plant pathogenic genera such as Xanthomonas, Pantoea, Erwinia, and 

Pseudomonas, have proteins involved in copper homeostasis (Table 

3). They found that CopA was the most abundant protein with a 

physiological role as an internal membrane ATPase. It was identified 

in the chromosomes of 70 genera, with few exceptions, such as seven 

Xanthomonas and Xylella spp. CopA is an inner membrane pump to 

extrude copper (Cu+) from the cytoplasm to the periplasm and 

usually works with an external membrane pump that export copper 

from the periplasm to the extracellular matrix (CusC). Thus, 

pathogens can control the cell copper levels to avoid damages.  

Table 3. Copper homeostasis proteins presence in four plant pathogenic 
genera (Hernández-Montes et al., 2012). Only proteins with highest 
abundance within a genus are shown. 

Genera Proteins for copper homeostasis 

Erwinia CueO, CopA, CusC 
Pantoea YebZ, CueO, CopA, CusC 
Pseudomonas CopA, CusC 
Xanthomonas CusA, CusC 

 

Relevance of copA is also supported by Rademacher and 

Masepohl (2012), who described that upon copper addition all 

bacteria examined induced ATPase expression, even though different 
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species utilize structural and functionally different regulators to 

control ATPase gene transcription. As for the ATPase gene regulation 

and as a general rule, Gram-negative bacteria activate ATPase gene 

transcription with increasing copper concentrations, mostly by CueR-

like one-component regulator or by CusRS-like two-component 

systems (Rademacher and Masepohl, 2012). Yamamoto and Ishihama 

(2005) described that CueR from E. coli is the main system regulating 

copper-response under aerobic conditions. On the other hand, the 

CusSR system may play an important role in copper tolerance under 

anaerobic conditions because self-phosphorylation of CusS is 

activated in that situation.   

Other partners playing an important role in copper homeostasis 

are the multicopper oxidase proteins (MCOs). The most outstanding 

toxicity of copper is given when Cu+ is in the cytoplasm, whereas Cu++ 

is less toxic for the cell. In fact, many bacteria synthesize MCOs as 

additional copper defence determinants. Comparative analysis 

showed that MCOs can be found in approximately 13% of the 

bacterial genomes (Ridge et al., 2008). Although the sequence 

homology among MCOs is low, amino acid alignments show that the 

overall structures and copper-binding motifs are highly conserved 

(Reiss et al., 2013). Based on the type of substrates, several types of 

MCOs can be differentiated (Sakurai and Kataoka, 2007). MCO 

expression in Gram-negative bacteria is activated by either CueR or 

CusRS homologues as we mentioned above for copper-ATPase 

proteins. Although MCOs function occurs in the periplasm, there is 

no apparent preference for CusRS systems, which sense periplasmic 
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copper concentrations, over CueR sensors, which respond to the 

cytoplasmic copper status (Rademacher and Masepohl, 2012). 

1.3.3. Multicomponent copper efflux systems 

Resistance-nodulation-cell division (RND) superfamily efflux 

systems are responsible for the active transport of toxic compounds 

from the Gram-negative bacterial cell. Besides copper-ATPases and 

MCOs, many Gram-negative bacteria synthesize RND-type 

multicomponent copper efflux systems (Rademacher and Masepohl, 

2012). These pumps typically assemble as tripartite complexes, 

spanning the inner and outer membranes of the cell envelope. These 

complexes consist of an inner-membrane substrate-binding 

transporter (or pump), a periplasmic membrane fusion protein (or 

adaptor), and an outer membrane-anchored channel (Delmar et al., 

2013). The assembled tripartite efflux complex is responsible for 

removing toxic compound out of the cell, and mediating bacterial 

resistance to these noxious chemicals (Delmar et al., 2013). Taking E. 

coli as a model (Outten et al., 2001; Rensing and Grass, 2003), we 

know that it harbours the divergently transcribed cusCFBA and cusRS 

operons, which encode an RND-type copper efflux system and a 

copper-responsive two-component system, respectively. Membrane-

bound CusS is thought to sense the periplasmic copper status. Upon 

binding of Cu+, CusS is expected to autophosphorylate and donates 

the phosphoryl group to CusR, which in turn, activates transcription 

of the cusCFBA and cusRS operons (Outten et al., 2001; Franke et al., 

2003; Rensing & Grass, 2003; Gudipaty et al., 2012). Primarily, these 
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RND systems excrete copper from the periplasm and, maybe less 

important for copper export, from the cytoplasm. As it would be 

expected for bacteria lacking an outer membrane, copper induced 

RND systems are absent in Gram-positive species (Rademacher and 

Masepohl, 2012). 

1.3.4. Biosynthesis of extracellular polymeric substances (EPS) 

A common feature of many bacteria is the biosynthesis of EPS that 

can offer a protective barrier under environmental stress conditions. 

These extracellular polymeric substances may protect cells by binding 

toxic metal ions (Geddie and Suhterland, 1993) and, in fact, bacteria 

can increase their EPS production in the presence of toxic metals as a 

defense mechanism (Decho, 1994). Commonly, exopolysaccharides 

are composed of glucose, fructose, manose, pyruvate and fucose, as 

well as mannuronic and glucuronic-acid complexes (Brisou, 1995). In 

addition, the EPS matrix comprises a mixture of 

heteropolysaccharides, proteins and nucleic acids (Filipe et al., 1999). 

Exopolysaccharides and other biopolymers exhibit excellent metal-

binding properties with varying degrees of specificity and affinity. The 

binding of cations to bacterial biopolymers generally occurs through 

electrostatic interaction with negatively charged functional groups 

such as uronic acids, phosphoryl groups of amino acids, acidic amino 

acids and phosphate-containing nucleotides (Beech and Sunner, 

2004). It has been described that copper increases production of the 

main exopolysaccharide of E. amylovora, amylovoran (Bereswill et 

al., 1998). Amylovoran and levan contribute to long term survival of 
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this pathogen in a culturable state in presence of copper and can be 

used as carbon sources under deprivation conditions providing to E. 

amylovora survival advantage (Ordax et al., 2010). 

1.3.5. The viable but nonculturable (VBNC) state can be induced by 

copper 

Copper induces a particular physiological state, the VBNC state, in 

several plant-associated bacteria, such as Agrobacterium 

tumefaciens, Ralstonia solanacearum, E. amylovora, and 

Xanthomonas citri subsp. citri as part of the survival strategies of 

these microorganisms (Alexander et al., 1999; Grey and Steck, 2001; 

Ordax et al., 2006; del Campo et al., 2009). Effectiveness of copper to 

control bacterial plant disease is often measured by the absence of 

bacterial growth on a solid medium. However, the failure to produce 

a visible colony may not necessarily mean that the bacterial cell is 

dead. VBNC state can be induced in bacteria under some stress 

conditions, losing their culturability on nonselective solid medium but 

remaining viable and virulent, potentially creating a hidden reservoir 

of the pathogen. Induction of the VBNC state is a general mechanism 

to retain viability, at least in a proportion of cells, and it can be 

considered a long-term dormant-like survival mechanism for non-

spore-forming bacteria. Resuscitation of nonculturable cells does not 

always occur by a simple reversal of the stress that induced the 

nonculturability, and there appears to be no a universal resuscitation 

condition (Kell et al., 1998). In the case of E. amylovora and X. citri 

subsp. citri cells, resuscitation has been reported even after several 
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months under copper stress (Ordax et al., 2006; Golmohammadi et 

al., 2013). 
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1.4. Erwinia amylovora, the causal agent  

1.4.1. Taxonomy and general features 

E. amylovora was the first bacterium for which its pathogenicity 

to plants was demonstrated, and as a plant pathogenic bacterium 

was shown to be the causative agent of fire blight (Burrill, 1883). It is 

a Gram-negative bacterium belonging to the family of 

Enterobacteriaceae, which includes some human and animal 

pathogens such as Escherichia coli, Yersinia spp., Shigella spp. and 

Salmonella spp. Cells are rod-shaped, have a size of about 0,3μm x 1-

3μm, and are motile in culture media by means of two to seven 

peritrichous flagella per cell (van der Zwet et al., 2012). On the plant 

surface, the motility of E. amylovora is easily expressed (Paulin, 

2000), but no motile bacterial cells have been observed in the 

intercellular spaces of infected plant tissues (Cesbron et al., 2006). E. 

amylovora is a facultative anaerobe and is quoted as being weakly 

fermentative (Holt et al., 1994). The optimal temperature for its 

growth is 25-27ºC, although it can grow between 3-5ºC and up to 

37ºC (Billing et al., 1961).  

Its appearance on plate depends on the culture medium (Fig. 

11). For example in KB medium (EPPO, 2013) E. amylvora colonies are 

visible at 24h and are creamy white, circular and non-fluorescent 

under UV light color at 366nm after 48h (Fig. 11 A). This allows 

distinction from fluorescent pseudomonads. Colonies of E. amylovora 

on Levan medium (EPPO, 2013) are apparent at 24h and are whitish, 
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circular, domed, smooth and mucoid after 48h (Fig. 11 B). E. 

amylovora colonies on CCT medium (EPPO, 2013) are visible at about 

48h and are pale violet, circular, highly convex to domed, smooth and 

mucoid after 72h, showing slower growth than on KB and Levan 

media (Fig. 11 C). CCT medium inhibits most pseudomonads but not 

Pantoea agglomerans (EPPO, 2013) that is a frequent member of the 

native microbiota in E. amylovora host plants. KB, Levan and CCT are 

the three media recommended by EPPO to maximum recovery of E. 

amylovora from samples in poor condition. 

Figure 11. Erwinia amylovora appearance in different solid media. Courtesy 
of Laboratory of Bacteriology of IVIA, Spain. 

A)                KB medium 

 

 

 

 

 

B)                 Levan medium 
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C)              CCT medium 

 

 

 

 

 

 

According to phenotypic and genomic studies, the specie E. 

amylovora is very homogeneous at the biochemical and serological 

levels (Paulin, 2000; Smits et al., 2010), but exhibits differences 

among strains in several characteristics, including host range, 

virulence (Norelli et al., 1984; Cabrefiga and Montesinos, 2005; Wang 

and Zhao, 2009) and presence of different plasmids (Llop et al., 

2012). 

1.4.2. Virulence factors 

Pathogenicity and virulence in E. amylovora mainly depend on 

several factors (van der Zwet et al., 2012): (1) the synthesis of 

amylovoran and levan, (2) a type III secretion system, (3) the effector 

protein DspE, (4) the iron-scavenging siderophore desferrioxamine 

and (5) the presence of plasmids pEA29 and pEI70 (Llop et al., 2011). 
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Amylovoran is a polymer of a pentasaccharide repeating units 

that consists mainly of four galactose residues and one glucuronic 

acid residue (Nimtz et al., 1996). It is produced in the early stationary 

growth phase and its size varies according to environmental 

conditions (Bellemann et al., 1994; Geider et al., 1999; Li et al., 2014). 

Levan is a neutral polyfructan (β-2, 6-D-fructofuranan) synthesized by 

E. amylovora via the secreted enzyme levansucrase from 

environmental sucrose (van der Zwet et al., 2012). Lack of levan 

synthesis can result in slow symptom development on shoots of host 

plants (Bogs and Geider, 2000). E. amylovora cells moving through 

plant vessels result in bacterial aggregate and produce accumulation 

of EPS, and disruption of water flow (Sjulin and Beer, 1978). The 

bacterial aggregation causes leakage of the vessels and extrusion of 

bacteria into the parenchyma, forces bacterial ooze out of the plant 

surface, and thus causes shoot wilting (Brisset and Paulin, 1991; 

Vanneste, 1995; Zhao et al., 1996). It has been shown that virulence 

of E. amylovora is dependent on the production of EPS, since strains 

that do not have the capacity to synthesize EPS are nonpathogenic 

and are unable to move into plant vessels (van der Zwet et al., 2012).  

E. amylovora requires a functional Hrp secretion-translocation 

pathway, in order to be pathogenic (Klement, 1982; Goodman and 

Novacky, 1994). The Hrp type III secretion system (TTSS) delivers 

effector proteins into host plants (He et al., 1994; Kim et al., 1997a, 

1997b, 1997c; Bogdanove et al., 1998a, 1998b; Kim and Beer, 2000; 

Oh et al., 2005). The hrp/dsp gene cluster of E. amylovora contains 
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the hrp/hrc and the HEE regions (Oh and Beer, 2005). The hrp/hrc 

region contains 25 genes, including four regulatory genes which 

control the expression of other genes, and nine hrc (hypersensitive 

response-conserved) genes (Bogdanove et al., 1998b). The HEE 

region has seven genes including two encoding harpin proteins (hrpN 

and hrpW) and two dsp genes (Oh and Beer, 2005). HrpN is 

considered to be involved in disease development (Kim et al., 1997a). 

As for dsp genes DspA/E, Boureau et al. (2006) confirmed that they 

act as major inducers of cell death during disease and hypersensitive 

response (HR). DspA/E-mediated necrosis may be associated with an 

alteration of defense responses (Boureau et al., 2006), maybe 

inhibiting photosysthesis in young leaves. 

The production of siderophores provides an efficient strategy to 

allow pathogens to overcome conditions of iron limitation in host 

tissues, and also to protect cells against iron toxicity. In iron-limited 

environments, E. amylovora produces trihydroxamate siderophores 

belonging to the desferrioxamine (DFO) family (Feistner et al., 1993; 

Kachadourian et al., 1996). Mutants of E. amylovora CFBP 1430 

lacking a functional high affinity in the iron transport system 

mediated by DFO are impaired in their ability to initiate fire blight 

symptoms (Dellagi et al., 1998). Feistner and coworkers (Feistner et 

al., 1993; Feistner, 1995) identified and characterized the 

siderophores of E. amylovora in which proferrioxamines were found, 

with desferrioxamines D2 and E being the major siderophores of all 

strains studied.  
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The importance of the role of plasmids pEA29 and pEI70 in the 

virulence of E. amylovora has recently been demonstrated at least for 

some strains. Llop et al. (2011) proved that when pEI70 is introduced 

into strains with low levels of aggressiveness, the intensity of 

symptoms increased. On the other hand, after curing this plasmid 

from strains that showed a standard level of aggressiveness, the 

intensity of symptoms decreased to levels similar to strains without 

plasmids or cured of pEA29. Moreover, in this study, wild-type strains 

lacking pEA29, but containing plasmid pEI70, presented similar levels 

of aggressiveness compared to the reference strain CFBP 1430 that 

harbors only pEA29. In contrast, no significant effect of the 

introduction of pEA29 was detected on the incidence of infection in 

strains only harboring pEI70. This plasmid seems to provide some 

features that compensate for the lack of pEA29 and could explain the 

standard aggressiveness levels generally observed in the strains 

harboring it (Llop et al., 2011). 
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1.5. E. amylovora genetics 

1.5.1. E. amylovora genome 

The first two published genomes of E. amylovora were those of a 

North American strain isolated from apple, Ea273 (ATCC 49946) 

(Sebaihia et al., 2010) and the strain CFBP 1430 (Smits et al., 2010), 

isolated in France in 1972 from Crataegus. Afterwards, the draft 

genome of a Rubus strain, ATCC BAA-2158 (Powney et al., 2011) was 

published. Draft sequences of seven isolates from Maloideae and two 

additional Rubus strains were also generated (Mann et al., 2012), and 

raw assemblies for eight further Maloideae isolates are available 

(Smits et al., 2011). The total collection of the genomes of these 

sequenced strains provides a good overview of the diversity within 

the species. 

The genome of E. amylovora ATCC 49946 strain consists of a 

circular chromosome of 3,805,874 bp and two plasmids, AMYP1 

(28,243 bp) and AMYP2 (71,487 bp) (Sebaihia et al., 2010) (Fig. 12). 

Coding regions in the chromosome account for 85.1% of the total 

sequence, with 3,483 identified coding sequences (CDS) in 2010 

(Sebaihia et al., 2010). The smaller plasmid, AMYP1, has been 

reported as pEA29 (McGhee and Jones, 2000), with nearly identical 

sequences. The larger plasmid, AMYP2, renamed pEA72 for 

consistency in nomenclature, contains 87 predicted CDSs, with two 

predicted mobile-element-related CDSs and one pseudogene. Among 

the CDSs with annotated functions are a cluster of genes (AMYP2_49 
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to AMYP2_62) that encode a putative type IV fimbrial system (pil 

genes). 

Figure 12. Genome of Erwinia amylovora Ea273 and plasmids that harbors. 
Circular representation. http://www.plantpath.cornell.edu/labs/beer/Research.html 

 

The complete genome sequence of E. amylovora CFBP 1430 

strain consists of the 3,8Mb circular chromosome and the nearly 

ubiquitous plasmid pEA29. The genome of this strain was assembled 

against the sequence of strain ATCC 49946 (Smits et al., 2010). 

Overall, the genome sequences of the European and USA strains 

were found to be nearly identical (>99.99%), with only a low number 

of nucleotide differences, reinforcing indications of low diversity 

within this pathogen. This high genetic-homogeneity suggests that 

minimal evolution has occurred since E. amylovora global dispersal. 

The E. amylovora CFBP 1430 chromosome is 301 bp smaller than that 
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of E. amylovora ATCC 49946 and this is largely due to intergenomic 

intergenic transcribed spacer (ITS) variation. This level of 

conservation between a European and USA strain reflects the 

relatively recent dispersal of the species and indicates a low rate of 

significant evolution (Smits et al., 2010).  

The genome of all these E. amylovora strains is less than 4Mb 

long, whereas most free-living enterobacteria, including plant 

pathogens, have genomes of 4.5 Mb to 5.5 Mb. The E. amylovora 

strains have many more predicted pseudogenes than other 

enterobacteria with similar lifestyles. It has also revealed clear signs 

of pathoadaptation to the rosaceous plant environment (Sebaihia et 

al., 2010), since genome contains proteins more similar to other 

plant pathogens than proteins of closely related enterobacteria. 

Examples of this probable pathoadaptation are: the type III effectors 

are homologous to those of plant-pathogenic pseudomonads; a 

sorbitol-metabolizing cluster that may confer a competitive 

advantage for survival in rosaceous plants; or the remarkable 

reduced genome size and erosion or loss of genes involved in 

anaerobic respiration and nitrate assimilation, relative to other plant- 

and animal-pathogenic members of the Enterobacteriaceae (Sebaihia 

et al., 2010). 

Although many of the virulence factors found in E. amylovora 

are present in the genomes of other Erwinia species such as E. 

pyrifoliae and E. tasmaniensis, a comparative analysis demonstrated 

that many others are specific for E. amylovora and, therefore, may 
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contribute to the broad-spectrum and severe-disease phenotype of 

this species (Oh and Beer 2005). Currently, the major factors 

considered critical for pathogenicity or virulence on rosaceous hosts 

are those related to Hrp T3SS and the amylovoran biosynthesis 

(Bernhard et al. 1996; Oh and Beer 2005; Oh et al. 2005; Zhao et al., 

2009).  

E. amylovora can be divided into two host-specific groups: 

strains infecting a broad range of hosts within the Rosaceae 

subfamily Spiraeoideae (eg., Malus, Pyrus, Crataegus, Sorbus) and 

strains infecting Rubus (raspberries and blackberries). Mann et al. 

(2013) performed a comparative genomic analysis of 12 strains 

representing distinct populations belonging to each host-specific 

grouping, with the objective of describing the pan-genome of E. 

amylovora. This pan-genome is highly conserved relative to other 

phytopathogenic bacteria, comprising on average 89% conserved 

core genes. Analysis of the annotated sequences revealed that 86% 

of the average E. amylovora genome consists of CDS and has an 

average CDS density of approximately 1 per kb. Comparison of 

average amino acid identities (AAI) between the strains indicated 

that the core genome of E. amylovora is highly conserved (>99% AAI 

among all strains). The pan-genome of E. amylovora was calculated 

to contain 5,751 CDS of which 3,414 CDS were considered as core. 

The chromosomes of Spiraeoideae-infecting strains were highly 

homogeneous, while greater genetic diversity was observed among 
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Rubus-infecting strains, the majority of which was attributed to 

variable genomic islands.  

According to Mann et al. (2013), in comparison with other 

studies, the pan-genome of E. amylovora has a high percentage of 

CDS per individual genome classified as core. This highlights the 

relatively small amount of intra-species genetic diversity observed in 

E. amylovora even with the inclusion of the more genetically diverse 

Rubus-infecting strains. It has been speculated that E. amylovora has 

a relatively low genetic diversity (compared to other plant pathogens 

like P. syringae) because it undergoes limited genetic recombination 

and it has a high degree of specialization to a narrow ecological 

niche. In Spiraeoideae-infecting strains, the genome is exposed to 

limited selection pressure due to pome fruit breeding strategies 

favoring high-value varieties that often are highly susceptible to fire 

blight (McManus and Jones, 1995; Smits et al., 2011).  

The number of genomes required to estimate the size of a 

species’ pan-genome has been mathematically modeled (Hogg et al., 

2007; Tettelin et al., 2008), leading to the concept of “open” and 

“closed” pan-genomes. In an open pan-genome new genes are added 

to the gene repertoire of the species with every new strain 

sequenced (Tettelin et al., 2008). Based on EDGAR analysis (Blom et 

al., 2009), using two complete genome sequences and ten draft 

genome sequences of E. amylovora, its pan-genome is predicted to 

be open. Singleton development analysis estimated that 52 novel 

CDS (including plasmids) or 40 novel CDS (excluding plasmids) would 



INTRODUCTION 

87 

 

be added to the pan-genome with each additional genome of E. 

amylovora sequenced (Mann et al., 2013). 

1.5.2. Plasmids 

One of the most obvious differences among E. amylovora strains 

is the presence of different plasmids (Llop et al., 2012). Nine 

plasmids, and someone else of minor size, have been reported in E. 

amylovora up to date. The more studied is plasmid pEA29, that was 

first described by Merckaert et al. (1982) and since then the 

information about it is very abundant. Its size can actually vary from 

27.6 to 34.9 kb (Schnabel and Jones, 1998; Kim and Geider, 1999; 

McGhee and Jones, 2000), due to a variable number of short 

sequence repeats harboured. The plasmid encodes a thiamine 

biosynthesis operon and several candidate genes that could affect 

virulence and survival in plants (McGhee and Jones, 2000). It could 

play a role in the physiology or metabolism of extracellular 

polysaccharide production, and these traits are associated with full 

virulence of the pathogen (McGhee and Sundin, 2008).  

The other less studied plasmids are the following, in decreasing 

order of size. Plasmid pEA72 was described in strain ATCC 49946, and 

is considered cryptic (Sebaihia et al., 2010).  

Plasmid pEI70 (Llop et al., 2006) has characteristics that make it 

unusual: it is conjugative (Llop et al., 2011), is widespread in 11 

European countries, and induces faster development of symptoms 

when introduced in low virulence E. amylovora strains (Llop et al., 
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2008 and 2011). This plasmid is thought to provide a fitness 

advantage to the host bacterium, but its specific role has not been 

determined yet (Llop et al. 2011).  

A plasmid called pCPP60 (Steinberg et al., 1990) was renamed as 

pEA72 in strain ATCC 49946 (AMY P2 in Sebaihia et al., 2010), but it 

could be pEI70 in another ones (Llop et al., 2012).  

Plasmid pEA68 was recently discovered in E. amylovora strain 

692 (LMG 28361), isolated in Poland from Sorbus (mountain ash) 

(Ismail et al., 2014). Although the spread of pEA68 is currently limited 

to Europe, pEA68 together with pEA72 and pEA78 (both found in 

North America) belong to a new plasmid family that is present in two 

continents (Ismail et al., 2014). 

Plasmid pEL60 (Foster et al., 2004), reported in strains from 

Lebanon, may be of environmental significance related to UV radition 

tolerance.  

Plasmid pEA34 was reported from some strains with resistance 

to streptomycin (Chiou and Jones, 1991, 1993) and seems to be 

present only in strains from Michigan (USA) and plasmid pEU30 was 

reported from USA strains (Foster et al., 2004). Genetic content of 

pEU30 is similar to that of other plasmids inhabiting plant pathogenic 

bacteria, with no specific genes apparently related to virulence or 

fitness.  
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Plasmid pEA8.7 was reported from a survey in California (USA) 

looking for strains showing streptomycine resistance (Palmer et al., 

1997), and it is closely related, if not identical, to a broad host-range 

plasmid reported in a wide variety of clinical bacteria. 

1.5.3. Genetics of host-pathogen interaction 

Extensive genetic studies have been performed to identify and 

characterize the genes involved in the ability of E. amylovora to cause 

fire blight (Oh and Beer, 2005). The main virulence factors have been 

described previously in section 1.4.2. which are the protein 

secretion/translocation pathway, called the hrp type III secretion 

system (hrp-T3SS), the type 3 effector DspA/E, and the 

exopolysaccharide amylovoran (ams) and levan (rls) required for E. 

amylovora pathogenicity (Oh and Beer, 2005).  

Related to the hrp-T3SS, was reported that a hrp-T3SS mutant 

and an ams mutant can complement each other, and co-inoculation 

of both mutants restored pathogenicity (Zhao et al., 2009). The hrp-

T3SS mutant was altered in a basic attack mechanism required at the 

beginning of the infection process, whereas the ams mutant was 

blocked later on, as amylovoran is required for the bacterial 

progression in planta through biofilm formation (Koczan et al., 2009).  

The first type III effectors identified in E. amylovora were harpins 

and DspA/E. Recent data suggest that harpins HrpN and HrpW could 

be injected inside the plant cell (Bocsanczy et al., 2008; Boureau et 

al., 2011), and that HrpN localizes in the plant plasma membrane as 
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part of the translocon apparatus (Malnoy et al., 2012). DspA/E is 

central to the disease process, since it is required to block callose 

deposition (DebRoy et al., 2004) and to repress PR1 expression 

(Boureau et al., 2006), suggesting that it contributes to disease 

development inhibiting salicylic acid-dependent innate immunity 

(Malnoy et al., 2012). 

Many studies, including genome sequencing, have reached the 

conclusion that only five effector genes (eop1, eop3, avrRpt2Ea, 

dspA/E, and hopC1) exist in the genome of E. amylovora, which are 

subjected to direct hrpL regulation, a master regulator of T3SS (Zhao 

et al., 2005; Nissinen et al., 2007; Zhao et al., 2006). A fast 

transcriptional induction of hrp expression was observed within 48 

hours in flower challenge as monitored by qPCR (Pester et al., 2012); 

thereafter, expression of hrpL and hrpA genes, enconding for major 

players in T3SS, declines, which correlates well with the onset of 

transcriptional plant response (Pester et al., 2012), indicating that E. 

amylovora outcompetes plant defense in time during natural flower 

infections (Pester et al., 2012). Interestingly, hrp expression varied 

between single flowers, and this variability may mimic the natural 

conditions and thus reflect the epidemiological behaviour of E. 

amylovora (Pester et al., 2012). 

It has been recently described by Zeng and Sundin (2014) that 

small RNAs also regulate multiple virulence determinants. According 

to these authors, there is an RNA chaperone (Hfq) that enhances the 

stability of small RNAs and facilitate their regulatory function. Small 
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RNAs are important post-trancriptional regulators in bacteria and in 

this sense they found that the two of them, ArcZ and RprA, were 

required for the full virulence of E. amylovora. 

1.5.4. E. amylovora under stress 

Bacteria are constantly exposed to environmental stresses, such 

as nutritional downshifts, variations in pH and osmolarity, DNA 

damage by reactive oxygen species (ROS), etc. (Landini et al., 2014). 

Modulation of expression, as regulated by specific as well as global 

strategies, has a central role in bacterial adaptation. The global 

regulation of transcription is a general response to the environmental 

changes dependent on alternate sigma factors, histone-like proteins, 

and other transcriptional regulators (Hildebrand et al., 2006).  

Copper stress is caused because copper ions, although essential 

for life, are very toxic when allowed to accumulate to levels beyond 

cellular needs. The fact that copper resistance mechanisms are 

frequently found among pathogens, and required for virulence, 

suggests that this is an important aspect of survival in the host (Festa 

and Thiele, 2012). Pathogenic microorganisms implement tightly 

controlled copper homeostatic mechanisms to utilize copper yet 

resist its toxicity (Festa and Thiele, 2012). Organisms avoid free 

copper ions within the cell by developing copper translocation routes 

based in precise sequences of specific protein-protein interactions 

(Djoko et al., 2007; Bagai et al., 2008). In most cases, expression of 

the genes for the copper resistance factors acting in the periplasm is 
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under the control of a two-component regulatory system (Munson et 

al., 2000; Franke et al., 2001; Yamamoto and Ishihama, 2005; 

Gudipaty et al., 2012). In enterobacteria, three mechanisms are used 

to prevent the toxic action of copper ions in the periplasm: oxidation, 

sequestration and efflux (Nies and Herzberg, 2013).  

Regarding the response to copper conditions of E. amylovora, in 

the context of its survival under this stress, and according to other 

bacterial models, we can hypothesize the involvement of some genes 

related with a general stress response (rpoS) (Battesti, et al., 2011; 

Landini et al., 2014), an oxidative stress response (katG) (Madar et 

al., 2013) and a specific copper stress response (dsbC) (Hiniker et al., 

2005): 

-rpoS: The general stress response is governed by the alternative 

sigma factor σs. The rpoS encoding σs is associated with RNA 

polymerase and, through transcription of genes belonging to the rpoS 

regulon, allows the activation of a “general stress response”, which 

protects bacterial cells from harmful environmental conditions 

(Landini et al., 2014). 

-katG: This gene codes a periplasmic catalase which is under s 

regulon control. This enzyme removes reactive oxygen species that 

are produced in some stress conditions and that are detrimental for 

the bacterial survival (Loewen et al., 1985). The VBNC state has been 

related with the oxidative stress (Bloomfield et al., 1998). 
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-dsbC: Copper, a redox-active metal, catalyzes periplasmic 

disulfide bond formation under aerobic conditions. The primary role 

of DsbC may be to rearrange incorrect disulfide bonds that are 

formed during certain oxidative stress (Hiniker et al., 2005). 

E. amylovora faces to copper exhibiting survival strategies like 

the VBNC state (Ordax et al., 2006, 2008, 2010), but the molecular 

level of this interaction is still unrevealed. In other enterobacteria, 

such as E. coli, the transcriptional response under copper stress has 

been reported, using DNA microarray and in vivo and in vitro 

transcription assays (Yamamoto and Ishihama, 2005). In this case, 

microarray analysis indicated that at least 29 genes (28 up-regulated 

and one down-regulated) were marked and specifically affected 

(Yamamoto and Ishihama, 2005), suggesting that copper homeostasis 

in E. coli is maintained mainly by controlling the export of excess 

copper out of the cells. In this sense, copA gene, that codes for Cu+-

translocating P-type ATPase pump, and cueO gene, encoding the 

enzyme that is considered to convert periplasmic Cu+ into the less-

toxic oxidative form Cu++, were more than threefold up-regulated by 

copper (Yamamoto and Ishihama, 2005). Copper-responsive genes 

seem to be organized into a hierarchy of the regulation network, with 

several regulons which sense and respond to different concentrations 

of external copper (Yamamoto and Ishihama, 2005). 
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1.5.5. Transcriptomic approach for gene expression evaluation 

Studying which genes are induced or not in E. amylovora under 

copper stress can help us to understand how this pathogen is 

affected at molecular level by the presence of this toxic metal. With 

the development of microarray technology, it is possible to examine 

how active thousands of genes are at any given time. 

According to Pallás et al. (2008), in order to build a microarray, 

first it is necessary to immobilize thousands of molecules of DNA 

above an inert substrat (generally a glass of a microscope slide size),  

placed in an organized way (hence the term microarray or 

micromatrix) and with a high density. Each microarray point belongs 

to one molecule, generally one gene (or an oligonucleotide whose 

sequence is contained in a gene). These immobilized acid nucleic 

points will be subjected to hybridization with labelled molecules of 

acid nucleics from biological samples. If the immobilized molecule of 

one microarray point, meet complementary labelled molecules, 

those will be selectively retained, while those unable to hybridize will 

be removed during the washed process. The label process is made by 

union of fluorescent molecules. Afterwards, the hybridized slide must 

be read by a scann that bombs the slide with a determined 

wavelength laser and captures the emitted light by the fluorescence 

of each point. The final result is a table that can provide us an 

estimation of the expression level of each gene in a particular 

biological sample. The key of the process lies in using at the same 

time two kinds of probes labelled with two different fluorofores and 
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coming from two different physiological situations. Since the scann 

can read the slides in more than one wavelength, the final result 

allow us to compare the relative amount of each gene in the two 

mentioned situations, considering that this amount  is variable 

depending on the situation, whatwill be reflected in the degree of 

hybridization with its complementary sequence. Therefore, we will 

have the response to the question of what genes are differentially 

expressed in the two compared situations. 

The availability of complete genome sequences of E. amylovora 

has enabled genome-level transcriptomic studies utilizing different 

types of oligonucleotide microarrays. One of the most used includes 

3,483 chromosomal sequences from E. amylovora ATCC 49946 and 

483 sequences from known E. amylovora plasmids (McNally et al., 

2012). A hrpL mutant of E. amylovora Ea1189 was used to validate 

the array and revealed that 19 genes exhibited positive direct or 

indirect regulation by HrpL and five genes were negatively regulated 

(McNally et al., 2012). This work also identified novel genes of the 

HrpL regulon of E. amylovora, including EAM_2938, which encodes a 

putative membrane protein and has a strong virulence phenotype 

when mutationally interrupted (McNally et al., 2012).  

A second study utilized this same microarray to define the RcsB 

and RcsC regulons of E. amylovora during immature pear infection, 

identifying 648 differentially regulated genes, which include those 

related to amylovoran biosynthesis, cell wall proteins, and cell 

membrane proteins (Wang et al., 2012). Of particular interest was 
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the identification that the RcsBCD phosphorelay system regulates the 

expression of EAM_2938, also regulated by HrpL as described above 

(Wang et al., 2012). 

Microarray experiments greatly facilitate studies focused on a 

deeper, more comprehensive understanding of E. amylovora 

pathogenesis, a broader identification of virulence gene regulatory 

circuit, and the discovery of new virulence genes (Malnoy et al., 

2012). And, in general, not only limited to pathogenesis issue, 

microarray techonology allows to go further in many other aspects of 

the E. amylovora biology.  
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To accomplish the general objective of determining underlying 

mechanisms of the E. amylovora response facing copper stress 

conditions, we planned the following partial objectives: 

 

1. To evaluate the expression of rpoS gene in the survival of E. 

amylovora strain CFBP1430 in the presence of 0.005mM 

copper sulfate. 

 

2. To analyze the differential gene expression of E. amylovora 

strain Ea1189 after a copper sulfate shock of 0.5mM through 

a transcriptomic study. 

 

3. To assess the real role of copA gene in E. amylovora strain 

Ea1189 survival during copper exposure in planta conditions. 
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3.1. Bacterial strains and growth conditions 

The bacterial strains and plasmids used are listed in Table 4. In the 

experiments performed at IVIA, that is, survival studies and the 

specific evaluation of expression of rpoS gene, the French reference 

strain CFBP 1430 was used.  The Spanish strain IVIA-1892 was also 

included as a control for minimal inhibitory concentration (MIC) 

determination. For the transcriptomic study performed in Michigan 

State University, the obtention of mutants and their evaluation, the 

German strain Ea1189, which has been deeply studied there by Dr. 

Sundin team since long time ago, was selected.  To assess the role of 

some genes differentially expressed in this study, mutants of strain 

Ea1189 were built with the helper plasmid pKD46.  

Besides E. amylovora, a bacterial strain of E. coli was used for the 

cloned process. Strain S-17 of E. coli and a total of six genes 

separately cloned into plasmid pBBR1-MCS-1 were employed for 

complementation assays of the mutants.  

In order to identify the importance of selected genes for E. 

amylovora survival after copper sulfate exposure, one mutant of E. 

amylovora strain CFBP 1430 and eight mutants of strain Ea1189 were 

challenged to copper sulfate .  

E. amylovora strains were routinely cultured at 26-28ºC in King’s B 

(KB) (King et al., 1954) or Luria–Bertani (LB) (Bertani, 1951) media, 

unless otherwise stated. Mutants were cultured in the same media 

supplemented with 100μg/mL ampicillin, 20μg/mL chloramphenicol 
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or 30μg/mL kanamycin. E. coli strain S-17 was cultured in LB at 37ºC. 

Copper sulfate used for all the experiments was pentahydrated 

(Sigma-Aldrich C7631). 

Because of the quarantine status of E. amylovora in the EU, the 

experiments of this thesis performed in Spain, were made inside a P2 

security lab. 

3.2. Minimal inhibitory concentration (MIC) of copper  

To know the copper concentration that constitutes the growth 

threshold for E. amylovora cells in our conditions, we performed an 

assay to determine the MIC of copper in a non bounding copper solid 

medium. To select the medium to be employed, first the free copper 

ion bounding ability of casitone yeast extract (CYE) (Zevenhuizen et 

al., 1979, Al-Daoude et al., 2009, Sholberg et al., 2001), LB and KB 

media was compared by using Copper Test MQuantTM strips (Merck; 

Darmstadt, Germany) which provide a semi-quantitative measure of 

Cu+ and Cu++ ion concentrations. Then, for MIC assays, drops of 10μl 

of bacterial suspensions of approximately 1x108 CFU/ml of E. 

amylovora strains Ea1189, CFBP 1430 and IVIA-1892 were spotted on 

CYE and KB media containing copper sulfate at different 

concentrations from 0 to 4mM. Plates were incubated at 26ºC for 

72h.  
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Table 4. Bacterial strains and plasmids used in this thesis. 

Strains and plasmids Relevant characteristics* Source or reference 

Strains   
Erwinia amylovora   

Wild type   
IVIA-1892 Wild type strain isolated from 

Pyrus communis 
Donat et al., 2007 

CFBP 1430 Wild type strain isolated from 
Crataegus sp. 

Collection Française 
de Bactéries 

Phytopathogènes 
Ea1189 Wild type strain isolated from 

apple 
Burse et al., 2004 

Mutants   
CFBP 1430∆rpoS rpoS deletion mutant, Km

R
 Santander et al., 2014 

Ea1189∆arcB arcB deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Ea1189∆copA copA deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Ea1189∆galF galF deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Ea1189∆EAM_3469 EAM_3469 deletion mutant, 
Amp

R
, Cm

R
 

This thesis 

Ea1189∆soxS soxS deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Ea1189∆ygcF ygcF deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Ea1189∆yhhQ yhhQ deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Ea1189∆yjcE yjcE deletion mutant, Amp
R
, 

Cm
R
 

This thesis 

Escherichia coli   
S17-1 Pro

-
 Res

-
 Mod

+
 recA; 

integrated copy of RP4-
Tet::Mu-Kan::Tn7; Mob

+
 Tp

R
 

Simon et al., 1983 

Plasmids   

pKD46 λ red recombinase helper 
plasmid; Amp

R
 

Datsenko and 
Wanner, 2000 

pBBR1-MCS-2 RK2-based broad-host-range 
cloning vector; Km

R
 

Kovach et al., 1995 

pArcB 2,829-pb PCR fragment This thesis 
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*Mob+ mobilizes transfer of other plasmids; TpR, AmpR, CmR and KmR indicate resistance to 
trimethoprim, ampicillin, chloramphenicol and kanamicine, respectively. 

 

 

containing the arcB ORF 
(2,340pb) cloned into pBBR1-
MCS-2 that complements the 
corresponding arcB mutation; 
Km

R
 

pCopA 2,703pb PCR fragment 
containing the copA ORF 
(2,508pb) cloned into pBBR1-
MCS-2 that complements the 
corresponding copA mutation; 
Km

R
 

This thesis 

pSoxS 682-pb PCR fragment 
containing the soxS ORF 
(333pb) cloned into pBBR1-
MCS-2 that complements the 
corresponding soxS mutation; 
Km

R
 

This thesis 

pYgcF 813-pb PCR fragment 
containing the ygcF ORF 
(672pb) cloned into pBBR1-
MCS-2 that complements the 
corresponding ygcF mutation; 
Km

R
 

This thesis 

pYjcE 2,271-pb PCR fragment 
containing the yjcE ORF 
(1,650pb) cloned into pBBR1-
MCS-2 that complements the 
corresponding yjcE mutation; 
Km

R
 

This thesis 

pYhhQ 1,009-pb PCR fragment 
containing the yhhQ ORF 
(666pb) cloned into pBBR1-
MCS-2 that complements the 
corresponding yhhQ 
mutation; Km

R
 

This thesis 
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3.3. Short-term assay for E. amylovora survival in AB medium 

supplemented with different concentrations of copper 

Containers with 250mL of AB medium (Alexander et al., 1999) were 

supplemented or not with copper sulfate at four concentrations 

chosen below the MIC: 0.005, 0.01, 0.05 and 0.5mM and then 

inoculated with a suspension of CFBP 1430 E. amylovora strain at a 

final concentration of 107CFU/mL. Containers were incubated for 7 

days at 26ºC without shaking. Culturability of E. amylovora cells after 

copper exposure was measured by plating serial ten dilutions on KB 

at different time points and plates were incubated at 26ºC for 72h.  

3.4. RNA isolation 

For the gene expression assays detailed in 3.5., five different 

commercial kits to extract total RNA were tested with the purpose of 

selecting that yielding enough and highest quality RNA: RNeasy Mini 

Kit (Qiagen), PureLink RNA mini kit (Invitrogen), RiboPure bacteria 

isolation kit (Life technologies), mirVana miRNA isolation kit 

(Invitrogen) and RealTime ready cell Lysis kit (Roche). Total RNA was 

extracted with each different kit, from a suspension of approximately 

109 CFU/mL of strain CFPB 1430 growed in KB medium for 72h and 

then measured with NanoDrop 2000 UV-Vis spectrophotometer 

(Thermo Scientific). Since only the last kit included a final step to 

remove DNA, for the rest of kits we added this step with the TURBO 

DNA-free kit (Life Technologies). With this exception, in all cases, kits 

were used according to manufacturer directions. 
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3.5. Stress-related selected genes. Primers and probes for relative 

quantitation of gene expression by real-time RT-PCR 

For an overview of stress-related genes potentially playing a role 

in E. amylovora survival under copper conditions, we selected rpoS, 

katG and dsbC genes for expression evaluation assays in presence of 

copper. These three genes, previously described in section 1.5.4, are 

involved in the response to general (rpoS), oxidative (katG) and 

copper (dsbC) stresses, in other bacterial models (Battesti, et al., 

2011; Landini et al., 2014; Madar et al., 2013; Hiniker et al., 2005). 

Primers and probes (TaqMan) for target sequences of these genes 

were designed based on the genome sequence of the European 

reference E. amylovora strain CFBP 1430 (Smits et al., 2010) and 

using Primer Express® Software v.3.0.1. (Applied Biosystems): 

- rpoS gene: forward primer, 5’–GTTTTGGCCTGTTAGGCTATGAA-3’; 

reverse primer, 5’–CTCACGGGTCAAACCAATTTC-3’; probe: FAM-

CGGCCACGCTGGAAGATGTAGGC-TAM.  

- katG gene: forward primer, 5’–CCCGCTCAATGTGAATTTCA-3’; 

reverse primer, 5’–CAGTGATTTGAGGTCGGCTTTA-3’; probe: FAM-

ATGAGTTCCGCAAACTGGATTATTCCCAG-TAM.  

- dsbC gene: forward primer, 5’–TATCCGGCAGTCGTTAAGCA-3’; 

reverse primer, 5’–TGGCGAAGGTTGGATCTCA-3’; probe: FAM-

ACTGGGCTTACAACAGA-TAM. 
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The RNA used for real-time RT-PCR assays had different origins. To 

test the sensitivity of the amplification protocol, RNA was extracted 

from a suspension of approximately 109 CFU/mL of strain CFBP 1430 

growed in KB medium for 72h, in the case of the elaboration of 

standard curve for real-time RT-PCR (section 3.6.), RNA was obtained 

from a transcription reaction with MEGAscript T7 transcription kit 

(Life Technologies) and in the case of section 3.4 and 3.7., RNA was 

extracted from strain CFBP 1430 cells incubated 7 or 50 days in 

containers with AB medium and different concentrations of copper.  

The real-time PCR assay was performed in a 12µL reaction mixture 

containing 2μL RNA, 6μL 2X TaqMan AgPath-ID MasterMix (with ROX) 

(Life Technologies), 0.5μL M-MLV reverse transcriptase (Life 

Technologies), 0.12μL each of forward and reverse primers (100μM), 

and 0.3μL of probe (6μM). Amplification and detection were 

performed with a LightCycler Real-Time PCR detection system 

(Roche) under the following conditions: RNA was reverse transcribed 

at 45ºC for 10min, followed by PCR activation at 95ºC for 10min and 

45 cycles of amplification (95ºC for 15sec and 60ºC for 45sec). 

Analysis of assays was conducted with LightCycler 480 software 

(version 1.5; Roche). 
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3.6. Real-time RT-PCR standard curve for estimating PCR 

amplification efficiency of rpoS gene 

The rpoS gene was selected to follow amplification efficiency because 

of its possible potential role in survival of E. amylovora under copper 

stress. To addres the performance of the standard curve for rpoS 

gene we used two strategies. 

In a first strategy, based on clonning the rpoS gene into a vector, the 

fragment contained the ORF and the entire promoter region of the 

gene was amplified using new designed external forward primer (5’-

TGAACTCAACGCCAAGCAGC-3’) and reverse external primer (5’-

ATTTCACGCAGACGACGCAG-3’) from CFBP 1430 strain using Primer 

Express® Software v.3.0.1. (Applied Biosystems). The PCR product 

was cloned into pGEM-T easy vector system (Promega) and then 

introduced in E. coli according to the manufacturer instructions. The 

transformant colonies of E. coli were confirmed by PCR. Cloned 

pGEM-T was extracted from E. coli with Real Miniprep turbo kit 

(REAL) and digested with Not1. The multiple copies of rpoS DNA were 

transcribed to RNA with MEGAscript T7 transcription kit (Life 

Technologies). Serial 10-fold dilutions of rpoS RNA were prepared and 

stored at -80ºC prior to use in standard curve generation. 

In a second strategy, rpoS gene was amplified using the external 

forward primer described above but cointaining the promoter of T7 

RNApol (5’-TAATACGACTCACTATAGGGTGAACTCAACGCCAAGCAGC-

3’) and the reverse primer as described before. The PCR product was 
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cleaned with UltraClean PCR Clean-up kit (MoBio). Then, rpoS DNA 

was transcribed to RNA with MEGAscript T7 transcription kit and 

purified with MEGAclear transcription Clean-up kit (Life 

Technologies). Serial 10-fold dilutions of rpoS RNA were prepared and 

stored at -80ºC prior to use in standard curve generation. 

In all cases, the quantity of RNA transcripted was measured with 

NanoDrop 2000 UV-Vis spectrophotometer (Thermo Scientific), 

Quant-iT RiboGreen RNA assay kit (Life Technologies) and Qubit® 

Fluorometric Quantitation (Life Technologies) device.  

The real-time RT-PCR assay was performed as described before in 

3.5. 

PCR amplification efficiency is the rate at which a PCR amplicon is 

generated (ABI Guide, 2004), commonly presented as a percentage 

value. If a particular PCR amplicon doubles in quantity during the 

geometric phase of its PCR amplification then the PCR assay has 

100% efficiency. The slope of a standard curve is commonly used to 

estimate the PCR amplification efficiency of a real-time PCR reaction. 

A real-time PCR standard curve is graphically represented as a semi-

log regression line plot of CT value vs. log of input nucleic acid. A 

standard curve slope of -3.32 indicates a PCR reaction with 100% 

efficiency (ABI Guide, 2004). A calculation for estimating the 

efficiency (E) of a real-time PCR assay according to ABI Guide is: 

E= (10-1/slope) X 100 
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3.7. Long-term assay for E. amylovora survival in AB medium 

supplemented with copper sulfate and expression of rpoS gene 

under these conditions 

Containers with 250mL of AB medium were supplemented or not 

with copper sulfate at 0.005mM and then inoculated with a 

suspension of CFBP 1430 E. amylovora strain at a final concentration 

of 107CFU/mL. This copper concentration was selected when the 

results of section 3.3. were obtained. Containers were incubated for 

50 days at 26ºC without shaking. Culturability of E. amylovora strain 

CFBP 1430 cells after copper exposure was measured by plating serial 

ten dilutions on KB medium at different time points. Plates were 

incubated at 26ºC for 72h. To determine if nonculturable cells were 

dead or still viable and have entered in the VBNC state, aliquots from 

containers were stained with the bacterial viability kit LIVE/DEAD 

(BacLight, Life Technologies) according to manufacturer instructions, 

and then observed with a Nikon ECLIPSE E800 epifluorescence 

microscope. 

At each time point, an aliquot from containers was saved with 

glycerol at -20ºC. When appropriate, RNA was extracted from those 

samples with RNeasy Mini Kit (Qiagen), cleaned with TURBO DNA-

free kit (Life Technologies) and analyzed by real-time RT-PCR with 

primers for rpoS gene. Primers, probes and protocol to run these RT-

PCRs were described before in section 3.5. This experiment was 

repeated twice. 
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Data were stadistically analyzed using general linear model 

technique. It is possible to perform this using regression analysis by 

dichotomizing all factors. This technique is similar to regression 

models but the idea behind it is a generalization of analysis of 

variance models. P-value used for rejecting the null hypothesis was 

0.05 as is usual in other studies of the discipline. 

3.8. Microarray experiment 

As a more powerful approach to the objective of studying the gene 

expression under copper stress conditions, we selected a 

transcriptomic tool that could provide a general view of the genes 

affected when E. amylovora faces a copper shock.  

3.8.1. Erwinia amylovora microarray 

The microarray used was previously designed at the James Hutton 

Institute (JHI; formely Scottish Crop Research Institute (SCRI)) and 

synthesized by Agilent Technologies, Inc. (Palo Alto, CA, USA), it 

contains 3,483 target sequences (annotated genes and pseudogenes) 

of the main E. amylovora ATCC 49946 genome (accession 

NC_013971; Sebaihia et al., 2010), in a design on a single 8 x 15k 

format slide (McNally et al., 2012). 

Each slide contained eight arrays and each array had nearly 12,000 

spots, containing the probes in triplicate. Besides the 3,483 target 

sequences of the E. amylovora ATCC 49946 genome, a further 483 

target genes or simple gene predictions from five sequenced 
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plasmids were present: plasmids 1 and 2 for the same strain 

(accessions NC_013972, NC_013973; McGhee and Jones 2000; 

Sebaihia et al., 2010), pEL60 and pEU30 (accessions NC_005246, 

NC_005247; Foster et al., 2004) and pEI70 (accession NC_018999, 

from the Spanish strain E. amylovora IVIA-1614-2a; Llop et al., 2011). 

Up to five sense orientation candidate probes per target were 

designed with the Agilent eArray webtool, using temperature 

matching methodology, a preferred probe melting temperature of 

80ºC, no 3’ bias and a target length of 60bp. Any short probes were 

later extended to 60bp using the Agilent linker. BLASTN (Altschul et 

al., 1997) and Biopython (Cock et al., 2009) were used to identify 

potential cross-hybridization in order to rank the candidate probes. 

The selection of one probe per genome target, and up to five probes 

per plasmid target, allowed all of the probes to be present in 

triplicate. 

We performed experiments using two microarray slides to evaluate 

the transcriptomic response of E. amylovora strain Ea1189 after a 

copper shock. Each slide contained the RNA extraction of the strain 

after being treated or not with 0.5mM copper sulfate. Moreover, 

RNA came from two different bacteria cultures (biological replicates) 

submitted to the same experimental conditions. Therefore, three 

independent experiments were carried out with a total of six 

replicates (two replicates from slide 1 and four replicates from slide 

2). The experimental array design of each single 8 x 15k format slide 

is detailed in Table 5. 
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Table 5. Experimental design of the array to evaluate E. amylovora gene 
expression after copper shock. NT means non-treated, T means treated, BR 
means biological replicate. Time of copper exposure, 0 or 5min. 

 

SLIDE 1 

 

NT0  NT5  

T0  T5  

 

SLIDE 2 

 

NT0 NT0 NT5 NT5 

T0 T0 T5 T5 

 

 

 

3.8.2. Experimental set-up for preparation of samples for 

microarray hybridization  

As described, all these molecular assays were run with strain Ea1189 

of E. amylovora. A suspension from five colonies coming from a plate 

of LB medium growed 72h was obtained. Then, a flask with 100mL of 

LB broth was inoculated with 100μL of the suspension and incubated 

16h at 28ºC and 200rpm to a density of approximately 109CFU/mL. 

After that period of time, the culture was splited in two fractions of 

50mL. One fraction was copper-shock challenged to 0.5mM CuSO4 for 

5 min, whereas the other one was used as control (not copper 

BR 1 

BR 2 BR 2 

BR 1 
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challenged). This copper concentration was selected according to 

Yamamoto and Ishihama (2005). Cells were then treated with 

RNAprotect (Qiagen). Total RNA from 1mL culture was extracted by 

using SV Total RNA Isolation System (Promega) (Fig. 13). It was 

quantified with NanoDrop 2000 UV-Vis spectrophotometer (Thermo 

Scientific) and quality checked using an RNA 6000 Nano Kit on a 2100 

Bionalyzer (Agilent Technologies). Fluorescent labelling of total RNA 

was performed as described by Venkatesh et al. (2006) (Fig. 13). The 

design incorporated a dye-swap and balanced labelling of all samples. 

Levels and efficiencies of labelling were estimated using the 

NanoDrop spectrophotometer mentioned before. Microarray 

hybridization, washing and scanning were performed at the JHI 

Sequencing and Microarray Facility of Michigan State University 

(USA) as described previously (Stushnoff et al., 2010) (Fig. 13). They 

were conducted according to the manufacturer’s protocols (Agilent 

Two-Color Microarray-Based Gene Expression Analysis, version 5.5). 

Briefly, 20µl labeled samples were added to 5µl 10X blocking agent 

(Agilent 5188-5242), heat denatured at 98ºC for 3 min, and then 

cooled to room temperature. GE hybridization buffer HI-RPM 2X 

(25µl) was added and mixed prior to hybridization at 65ºC for 17h at 

10 rpm. Array slides were dismantled in Wash 1 buffer (Agilent, 5188-

5327) and washed in Wash 1 buffer for 1 min, then in Wash 2 buffer 

(Agilent, 5188-5327) for 1 min, and centrifuged dry. Hybridized slides 

were scanned using an Agilent G2505B scanner at resolution of 5µm 

at 532nm (Cy3) and 633nm (Cy5, for two-channel analysis) 

wavelengths with extended dynamic range (laser settings at 100% 
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and 10%) (Fig. 13). Microarray images were imported into Agilent 

Feature Extraction (FE) (v.9.5.3) software and aligned with the 

appropriate array grid template file (021826_D_F_20081029). 

Intensity data and quality control (QC) metrics were extracted using 

the recommended FE protocol (GE2-v5_95_Feb07). Entire FE 

datasets for each array were loaded into GeneSpring (v.7.3) software 

for further analysis. 

Figure 13. General view of an oligonucleotide microarray performance. 
http://www.u.arizona.edu/~gwatts/azcc/help_old.html RNA is extracted from control 
and test cells. Then, the isolated RNA is labeled differently and hybridized 
with a microarray. The detection of the different fluorescence from different 
hybridized probes is detected by a scan. 
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3.8.3. Microarray data analysis 

Data were normalized using default settings: for two-channel arrays, 

data were transformed to account for dye-swaps and data from each 

array were normalized, according to McNally et al. (2012), using the 

Lowess algorithm to minimize differences in dye incorporation 

efficiency. Unreliable data flagged as absent in all replicate samples 

by the FE software were discarded. Significantly changing gene lists 

were generated from combined replicate datasets for each time 

point using volcano plot filtering (fold-change ratio >1.5x; Student’s t-

test with P value <0.05). In each independent experiment, technical 

replicates were analyzed individually. A gene was classified as 

differentially expressed when it was present at least in one biological 

replicate of both independent experiments and not in opposite 

expression in any other replicates. Since fold-change ratios were 

lower than 1.5, we selected genes with values ≥1 for up-regulated 

genes and values ≤1 for down-regulated genes, in a way similar to the 

study of Mitchell et al. (2010). Those genes differentially expressed in 

both independent experiments were selected for further analysis. 

Functional classification of the differentially expressed genes was 

based on the gene ontology using the GPRO v1.1.0 software. 

3.9. Validation of differentially expressed genes by quantitative 

real-time PCR  

Twenty-five out of fourty-four genes differentially expressed after 

copper shock were selected for quantitative real-time PCR validation. 
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These validation assays were performed in collaboration with 

Estación Experimental del Zaidín (EEZ), Granada, Spain. Those genes 

were selected attending to its up-regulation and/or product 

description obtained from data bases, regarding their possible 

relation with the response of E. amylovora to copper stress. The 

selected genes are described in Table 6. 

Table 6. Selection of E. amylovora genes differentially expressed after 
microarray analysis for validation through quantitative real-time PCR.  

Gene Product description according to NCBI 

copA Copper exporting ATPase 
ygcF Conserved hypothetical protein 
yhhQ Hypothetical protein 
tatC Twin-arginine protein translocation system 
soxS Transcriptional regulator 
galF UTP-glucose-1-phosphate uridylyltransferase 
apt Adenine phosphoribosyltransferase 
ydhC Inner membrane transport 
cheA Chemotaxis protein 
nodT RND efflux system, multidrug resistance protein CusA-like 
EAM_1634 Hypothetical protein 
gltI Glutamate and aspartate ABC transporter 
rimI Ribosomal-protein-alanine acetyltransferase 
arcB Aerobic respiration sensor-response protein 
tag3 3-methyl-adenine DNA glycosylase I 
EAM_2853 Putative helicase/relaxase 
yjcE Na

+
/H

+
 exchanger 

uspA Universal stress protein 
smdB Multidrug efflux pump ABC transporter 
yfcA Inner membrane protein 
EAM_3469 Phage holin 
tufA Protein chain elongation factor ET-Tu 
dfoA Desferrioxamine siderophore biosynthesis 
oppA Oligopeptide ABC 
ppc Phosphoenolpyruvate carboxylase 
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Gene expression was measured by quantitative real-time PCR 

performed in triplicate using new RNA samples taken from cultures 

of strain Ea1189 treated with copper as described above for the 

microarray hybridization assays. RNA was extracted as described in 

section 3.8.2. and after its quality was confirmed, it was transcribed 

to cDNA using SuperScript II Reverse transcriptase (Invitrogen) 

according to the manufacturer’s protocol. The optimization of 

quantitative real-time PCR was set up first using the 16S gene as an 

internal control at the melting temperature of each primer, using the 

iQSybrGreen Supermix (BioRad) (Pffafl, 2001). Primers were designed 

using Primer Express® Software v.3.0.1. (Applied Biosystems) based 

on the genome sequence of the North American strain isolated from 

apple, Ea273 (ATCC 49946) (Sebaihia et al., 2010), they were used at 

20μM and the sequences are listed in Table 7. All reactions were 

conducted with a real-time PCR System iQ5 (Bio-Rad) and 

amplification was carried out with one cycle at 95°C for 5 min, 

followed by 40 cycles of denaturation at 95°C for 30s and annealing 

at 63°C for 30s. Nonspecific primer activity was monitored using a 

dissociation curve and the resulting threshold cycles (CT) were 

determined using Bio-Rad iQ5 Software 2.1 (Bio-Rad). The 16S rDNA 

gene was used as an endogenous control in quantitative real-time 

PCR to calculate the relative expression. Data of CT were analyzed 

quantitatively via the comparative cycle threshold (∆∆CT) method 

(Pffafl, 2001) to generate relative fold-change values comparing WT 

and mutant strains. Each quantitative real-time PCR analysis was 

performed in triplicate.  



MATERIALS AND METHODS 

121 

 

Table 7. Primers used for validation of microarray expressed genes by 
quantitative real-time PCR. 

 

Gene Sequence (5’-3’) 

Forward Reverse 

copA CCG GCG CAA CAG AGT GA CAC ATT GTG CAA CGC ATT CC 

ygcF CAT TGC ACG GCG GAA AC CGC ACT AAC GCC TGG TTG A 

yhhQ AGC GGC ATG GTG GAT AGC AAC GGA TCG CTG CTT TGA T 

tatC CAC CCC GAT CAA GCT AAC CA GCG CTC GTG GCG ATA GAG 

soxS CGA GCA AAA CGA TTA TGG CTA TC GAA CAC CCG CTG GAA ACA CT 

galF GCT GCA TGA TGA AGC GTT TG TCG CCG CCA GGT TGT AAC 

apt AAC CGG CGG CAC CAT T TCG CCA CTG AGG TCA AAC AA 

ydhC GGG TCT TTC ACC TGC CGA TA AGC GCA CGA CAG CTA AAG C 

cheA GAC GTT GCG CGT CCT GAT A CAG CAC GCT AAA CCC AAA GG 

nodT CGA GCG GGC AAA GAT CAC CAG ATG CGA TTC GGC AGT AA 

EAM_1634 CAG AAA CGC CAA CAC AGG AA GCC GTC ATG CGT TTG GTT 

gltI CGT CCG TCC CCT TCT CCT A CCT GGA GAT CGG GTT TGT TC 

rimI GCG GTA GAT CCG GCA TTT C CCT CCA GCC ACA GGG TCA T 

arcB AGA TGT CGC GGC GTG AA TCA AGA AAA GAG CGC AGA AAT G 

tag3 CGG CTC CAC CAC CTG TTA CT TGT CGG GAT GGC GAA AAC 

EAM_2853 TTG CAG GAG GCA CGG TTA C GCG GAG GAA TAT GGC CTG TT 

yjcE GCG GAA CAT ATT GGC GTT TC CGG AGC ATG GCG AAT AAT G 

uspA CGG TGA ATC GCC TGC TAA AA AAT GCG CAC ATC GAC CAG TA 

smdB TGG CAG GTG AGC GAA TTT TC TCA GGT CGC GAA TGT CGA T 

yfcA TGC TGT TTC TCG TGG CGT TA CAG GGC GGG AAC CGT TA 

EAM_3469 TGG CGT TCT GGC TCA ATG T CCC CGA GAT TTG CCA GAG TA 

tufA CCA CGC CGA CTA TGT GAA AA GGC ATT GGG CCG TCA GT 

dfoA AAC GGC GTT TTT CTC GAT CA GGC GCT TTC CAG CAT CAT 

oppA GAA GGC GTA ACG GAA TCG AA GCC GCC CTC TTT GCT TTC 

ppc GGG CCC CGC TGT ATA CCT GCA CGC CAA AGC ACT TCA C 

16S TCC CTA GCT GGT CTG AGA GGA T GCT GCC TCC CGT AGG AGT CT 
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3.10. Mutant construction and complementation 

Standard recombinant DNA techniques were used as described by 

Sambrook et al. (1989). To make specific mutants of E. amylovora 

Ea1189 strain, non-polar chromosomal mutations were generated 

using the phage λ red recombinase system (pKD46) previously 

described (Datsenko and Wanner 2000; Zhao et al., 2009; McNally et 

al., 2012). We decided to make mutants in copA, soxS, arcB, yjcE, 

ygcF, yhhQ, galF and EAM_3469 genes, because their higher 

expression level as measured by quantitative real-time PCR and/or 

their interest as potentially related to the response of E. amylovora 

facing copper stress. Single-gene recombinatorial deletions were 

confirmed by PCR using the primers described in Table 8, based on 

the genome sequence of the North American strain, Ea273 

(ATCC49946) (Sebaihia et al., 2010). Afterwards, we selected copA, 

soxS, arcB, yjcE, ygcF and yhhQ mutants to confirm that their 

phenotypes were due to the absence of the target gene. Thus, 

fragments containning copA, soxS, arcB, yjcE, ygcF or yhhQ genes 

were obtained by PCR amplification of genomic DNA from strain 

Ea1189 using a specifically designed primer set (see Table 8), and 

cloned between the XbaI and SacI sites of the broad-host-range 

vector pBBR1-MCS-2 (Kovach et al., 1995). These fragments 

contained the ORF and the entire promoter region of each gene (see 

corresponding plasmids in Table 4). These recombinant plasmids 

were introduced into the pertinent Ea1189 mutant by bi-parental 

cross-streak mating using E.coli S17-1 harboring the plasmid of 
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interest as the conjugative donor (Simon et al., 1983; Abarca-Grau et 

al., 2012). The phenotype of these complemented mutants was 

checked as described in section 3.11. 
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Table 8. Primers used for mutant construction and complementation of 
genes of E. amylovora strain Ea1189. 

 

 

 

Name Sequence (5’-3’)  

Mutant construction  

arcB_F 
arcB_R 

AAATATTCGCTCCGATGCAC  

GCAGGCGAATGATTCAAAAT  

copA_F 
copA_R 

TAAAAGCGGATTGCTTTGCT  
CACCTCTTGCGCTTATTTCC  

soxS_F 
soxS_R 

GCC TTTTATCGCGGAGTAGA  
TGAAGAGTGCTGTTGCAAGG  

ygcF_F 
ygcF_R 

TATCCGTGCAATCTGCCATA  
AACCCGTTCAGCCCTTTTAT  

yhhQ_F 
yhhQ_R 

TGAAGGACAGGACTGGGTTC  
ATC GGT TTT GAT GCT TCA GG  

yjcE_F 
yjcE_R 

CGCTTAACGCACTTCCTGTT  
GGGATGGGAGTAGCCATTCT  

EAM_3469_F 
EAM_3469_R 

TGTTCCGTGGAAAGGTAAGG  
TTGCTGCCTGTAGTGCAATC  

galF_F 
galF_R 

CGAAGCCCGCTGTATTTTT  
CACGGCTGTGCTCAGATTT  

Gene cloning 
Product 
size (pb) 

copA(XbaI)_F 
copA(SacI)_R 

CCATCTAGAATGTTCATGGTTTCCCCTTG 
2,703 CCAGAGCTCAATAACCGCAAAGCCATCTG 

soxS(XbaI)_F 
soxS(SacI)_R 

CCATCTAGACTAAGGCGTAGCTGGCAGAG 
687 CCTGAGCTCGCTGTTGCAAGGAGTGTCAA 

arcB(XbaI)_F 
arcB(SacI)_R 

CCATCTAGAAAAAAGGCGACAAGCCATTA 
2,829 CCTGAGCTCGGTTACCAATTTCCCTGGTG 

yjcE(XbaI)_F 
yjcE(SacI)_R 

CCATCTAGACCAGTTTGGGGCCGTAATTT 
2,271 CCTTCTAGACTGTTTTCCATGCCAAGCCT 

ygcF(XbaI)_F 
ygcF(SacI)_R 

CCATCTAGAACATCCTGTATGGGGAGACG 
813 CCTGAGCTCATGAGTGCGGACTTGACTTG 

yhhQ(XbaI)_F 
yhhQ(SacI)_R 

CCATCTAGACGGTAATATGCCGCAAAAGT 
1,009 CCTGAGCTCCTGAAGCCATCGGTTTTGAT 
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3.11. Experiments with mutants of E. amylovora to evaluate the 

role of different genes 

3.11.1. The posible role of rpoS gene in the survival of strain CFBP 

1430 

E. amylovora CFBP 1430∆rpoS mutant was kindly provided by R.D. 

Santander (Santander et al., 2014). Containers with 4mL of AB 

medium were supplemented or not with copper sulfate at 0.005, 

0.01 and 0.5mM trying to simulate the conditions of section 3.3. and 

then inoculated with a suspension of mutant strain at a final 

concentration of 108CFU/mL. Containers were incubated for 64h at 

26ºC without shaking. Culturability of wild type and mutant strains 

throughout copper exposure was monitored by plating serial ten 

dilutions from the containers on KB medium at different time points. 

Plates were incubated at 26ºC for 72h. 

3.11.2. Assays to evaluate the posible role of copA, soxS, arcB, yjcE, 

ygcF, yhhQ, galF and EAM_3469 genes of strain Ea1189 after copper 

shock 

3.11.2.1. Copper tolerance in vitro. Wild type E. amylovora strain 

Ea1189 was grown 16h in LB broth at 28°C in a shaking incubator to a 

density of approximately 109CFU/mL and the culture was then splited 

in two fractions as indicated in section 3.8.2. One fraction was 

copper-shock challenged for 5 minutes to different copper sulfate 

concentrations ranged from 0.5 to 35mM, to determine the maximal 

copper concentration that had no impact on its culturability, whereas 



MATERIALS AND METHODS  

126 

 

the other fraction was used as control (not copper challenged). Then, 

an aliquot from each fraction was washed once with PBS and the 

culturability of wild type was measured by plating serial ten dilutions 

on LB medium. Plates were incubated at 26ºC for 72h. 

Then, the concentration of copper sulfate which did not affect the 

growth of E. amylovora Ea1189 (10mM) was selected to test the 

culturability of selected mutants. Each mutant from a 72h culture 

was grown 16h in LB broth at 28°C in a shaking incubator to a density 

of approximately 109CFU/mL and the culture was then splited in two 

fractions, as described before for wild type strain. One fraction was 

challenged to 10mM copper sulfate for 5 minutes and the other one 

used as control. An aliquot from each fraction was washed once with 

PBS and the culturability was measured by plating serial ten dilutions 

on LB medium supplemented with 100μg/mL ampicillin and 20μg/mL 

chloramphenicol. Plates were incubated at 26ºC for 72h.  

3.11.2.2. Effect of introduction of target genes in the mutants. Six 

out of the eight genes selected to make mutants in E. amylovora, 

were chosen to be introduced in the mutant strains (complemented 

mutants). We selected those genes because of their product 

description from data bases and their possible relation with the 

response of E. amylovora to copper stress. After recombinant 

plasmids containing the ORF and the entire promoter region of each 

target gene, copA, soxS, arcB, yjcE, ygcF and yhhQ were introduced 

into each corresponding E. amylovora Ea1189 mutant 

(Ea1189∆geneX), the phenotypes were tested challenging each 
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complemented mutant (Ea1189∆geneX(pGenX)) to 10mM copper 

sulfate. Thus, E. amylovora Ea1189 wild type, the six mutants in the 

target genes, and the new six complemented mutants were grown in 

separate flasks with LB broth for 16h at 28°C in a shaking incubator. 

Then, the culture of each strain was splited in two fractions. One 

fraction was copper-shock challenged to 10mM copper sulfate for 5 

min, whereas the other one was used as control. An aliquot from 

each fraction was then washed once with PBS and the culturability 

was measured by plating serial ten dilutions on LB medium 

supplemented or not with 100μg/mL ampicillin and 20μg/mL 

chloramphenicol. Plates were incubated at 26ºC for 72h.  

3.12. The copA case. 

As in the quantitative real-time PCR validation assays, copA gene 

exhibited the highest expression of all genes tested, and it is reported 

that it codes for a copper exporting ATPase, we selected it for further 

studies.  

3.12.1. Expression curve of copA in E. amylovora after copper-shock 

induction. Wild type strain of E. amylovora Ea1189 was grown 16h in 

LB broth at 28°C with shaking to a density of approximately 

109CFU/mL. Then, aliquots of 10 mL were subjected to copper shock 

with different copper sulfate concentrations ranging from 0.005 to 

0.5mM for 5 minutes in a rocking shaker, with one fraction used as 

untreated control (not copper-challenged). A volume of 0.5 mL of 

each culture was treated with 1 mL of RNAprotect (Qiagen) and total 
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RNA was extracted using the miRNeasy Mini kit (Qiagen) with an on-

colum RNAse-free DNAse treatment (Qiagen). cDNA was synthesized 

from 1µg of purified RNA using TaqMan reverse transcription (RT) 

reagents (Applied Biosystems), according to the manufacturer’s 

protocol. Quantitative real-time PCR was used to determine the 

relative expression levels of copA after induction with the different 

treatments; 16S rDNA gene was used as an endogenous control. 

qPCR was performed on a CFX96 Real-Time PCR Detection System 

(BioRad Laboratories) with the SYBR® Green PCR Master Mix (Applied 

Biosystems).  Efficiencies for each primer set were obtained from a 

standard curve using ten-fold dilution series up 106 of one cDNA 

sample of the untreated control at the melting temperature of the 

copA primer. Primers of copA and 16S rDNA genes were the same 

used for validation expression after microarray assay (section 3.9) 

and the sequences are listed in Table 7. Optimization of primer 

concentration was carried out by qPCR using combinations of 

different primer concentrations (50, 300 and 900 nM) and the 

undiluted cDNA sample of the untreated WT strain. Optimal 

concentration was selected as the combination with the lowest Ct 

value.  The thermal cycling conditions were one cycle at 95°C for 5 

min, followed by 40 cycles of denaturation at 95°C for 30s and 

annealing at 63°C for 30s. Each biological replicate was run in 

triplicate. Melting curves were generated to evaluate primer 

specificity and rule out primer dimer formation. CT values were 

analyzed quantitatively via the comparative cycle threshold (∆∆CT) 

method (Pffafl, 2001) to generate relative fold-change values 
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comparing WT and copper-shock induced WT strains. Each 

quantitative real-time PCR analysis was performed in triplicate.  

3.12.2. Copper tolerance in planta. Wild type Ea1189, mutant 

Ea1189∆copA and complemented mutant Ea1189∆copA(pCopA) 

were assayed at the same time in this experiment. 

Fresh in planta pear shoots taken from 8 years old pear trees cv. 

‘Conference’ growing inside a mesh were inoculated in a P2 security 

lab by immersion in a suspension of aprox. 109 CFU/mL of each E. 

amylovora strain, potted in closed flask of approx. 13cm diameter 

and with 1% agar. These flasks were incubated at 25ºC in a climate 

chamber at 8h light-16h darkness for 24h. Then, after 24h 

inoculation, 4mL of a solution of copper sulfate at 10mM was sprayed 

on leaves, and the first sampling was made (time 0). Pots were again 

incubated in the climate chamber and periodically sampled at 

different time points throughout 29 hours. The procedure of sample 

processing at each time point was as follows: one leaf was pull out 

and two square pieces of aproximatelly 1cm2 were cut with a sterile 

scalpel. Leaf pieces were crushed in 1mL PBS 0.5X. Culturable cell 

counts were then determined by plating ten serial dilutions on LB 

medium and incubating the plates at 26ºC. CFU counts were 

performed after 72h.  

Data were statistically analyzed using a generalized mixed model 

technique (McCulloch and Searle, 2001), where sprout nested in 
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experiment was a random effect while the rest of factors were 

considered fixed. P-value was 0.05. 
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4.1. Minimal inhibitory concentration (MIC) for copper 

To evaluate which medium was the most recommendable to perform 

the MIC assays, we tested three media, CYE, LB and KB for copper 

bounding ability. Out of the three tested growth media, LB and KB 

bounded each of them 60% of the copper added, whereas CYE 

medium did not exhibit ability to bound it, as measured by Copper 

test Microquant. CYE medium was then selected to assay the MIC for 

copper sulfate compared to KB medium. 

A suspension of each strain of E. amylovora (CFBP 1430, Ea1189 and 

IVIA-1892) was prepared and plotted on CYE and KB media 

supplemented or not with copper sulfate. All the strains grew at 

copper sulfate concentrations below 1mM on KB and CYE media, but 

only the strains plotted on KB medium grew at this concentration 

(Fig. 14). Therefore, the concentration of 1mM was established as the 

MIC for copper sulfate in E. amylovora under assayed conditions in 

CYE medium. 

Figure 14. MIC for copper in two media. Left side, CYE medium with no 
growth at 1mM copper sulfate of the strains assayed. Right side, KB medium 
with growth of all strains at 1mM copper sulfate. 
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4.2. Short-term assay for E. amylovora survival in AB medium 

supplemented with different copper concentrations  

Once determined the MIC for copper sulfate on solid medium, 

culturability of E. amylovora strain CFBP 1430 in liquid AB medium at 

concentrations lower than 1mM was assayed. As shown in Fig. 15, 

culturable cells decreased in approximately one and a half 

logarithmic order through the seven days of the experiment, from 

107 CFU/mL to 4.5 x 105 CFU/mL, in absence of copper. Treatment 

with 0.005mM copper sulfate resulted in a loss of culturability of 

almost three orders of magnitude in the same time period, dropping 

to 2 x 104 CFU/mL at day seven (Fig. 15). At the other copper sulfate 

concentrations of 0.01, 0.05 and 0.5mM, culturability of E. amylovora 

CFBP 1430 was under the detection limit just after 24 hours of 

exposure (Fig. 15). 

4.3. Efficiency of RNA extraction 

In all the experiments, performed with strain CFBP 1430, no 

differences either in quantity or in quality were found between the 

five commercial kits used for RNA extraction after repeated trials 

with each of them and under the same conditions. Then, considering 

its simplicity and easy to use, we selected RNeasy Mini Kit (Qiagen) 

for all the RNA extractions, followed by a treatment with TURBO 

DNA-free kit (Life Technologies) to remove DNA from RNA. 
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Figure 15. Short-term assay of the E. amylovora survival in AB medium supplemented with copper. 
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4.4. Sensitivity of rpoS, katG and dsbC primers 

The sensitivity of the protocol for detection of strain CFBP 1430 by 

the primers from rpoS and katG genes by real-time PCR was 

103CFU/mL, as observed in amplification curves of the different cell 

concentrations (Fig. 16 A and B). The amplification with katG primers, 

however, showed not good reproducibility. 

Figure 16. Primers sensitivity of stress-related genes in E. amylovora CFBP 
1430 strain. A) rpoS and B) katG by real-time PCR. Fluorescence means wave 
length emited by TaqMan probe at each decimal dilution. C) Sensitivity of 
dsbC primers by conventional PCR. In A, B and C, decimal numbers indicate 
CFU/mL.  
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For primers of dsbC gene, no amplification by real-time PCR was 

obtained because some problems intrinsic to probe design, but their 

sensitivity were 104CFU/mL in conventional PCR (Fig. 16 C). 

However, due to the problems associated to katG and dsbC 

amplification protocols we did not continue to work with them and 

we focused on the rpoS gene, which amplification protocol was 

running well in sensitivity and reproducibility and besides it is a 

master regulator of the general stress response. 

4.5. Real-time PCR standard curve for rpoS gene 

The two strategies assayed to generate RNA standards for rpoS gene 

didn’t turn out equally efficient. The first strategy, based on cloning 

rpoS PCR product into pGEM-T easy vector system, introducing it into 

E. coli, and then transcribing multiple copies of the target gene, was 

finally discarded because some problems at the final step of the DNA 

to RNA transcription that were difficult to solve. Thus, although many 
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modifications were introduced in the protocol, an insufficient 

amount of digested plasmid was achieved.  

Therefore, we finally chose the second strategy, based on 

amplification of rpoS gene using the external forward primer 

containing the promoter of T7 RNApolymerase, which avoids an 

excessively long clonation process since the amplification product of 

the gene is directly transcribed to RNA. This strategy worked very 

well and it did not present any handicap.  

The quantity of RNA was comparatively measured with NanoDrop 

2000 UV-Vis spectrophotometer (Thermo Scientific), Quant-iT 

RiboGreen RNA assay kit (Life Technologies) and Qubit® Fluorometric 

Quantitation (Life Technologies) device. Finally, the last one 

demonstrated to have the most reliable measure because of its 

accuracy based on the detection of RNA-specific fluorescence, and it 

was used to quantifying RNA in the standard curve for rpoS gene.  

The semi-log regression line of CT values versus log of input nucleic 

acid is represented in Fig. 17. According to this standard curve, the 

efficiency of PCR amplification for rpoS gene was around 82%, since a 

100% efficient reaction will yield a 10-fold increase in PCR amplicon 

every 3.32 cycles during the exponential phase of amplification 

(log210 = 3.3219), and the slope of the standard curve for rpoS gene 

in our assay was -2.71, more positive than -3.32 characteristic of 

100% efficiency. 
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Figure 17. Calibration curve, using RNA standards for rpoS gene, graphically 
represented as a semi-log regression line plot of Ct (cycle threshold) value vs 
log of input nucleic acid. 

 

 

4.6. Long-term assay for E. amylovora survival in AB medium 

supplemented with copper sulfate and expression of rpoS gene 

through time 

The lowest copper concentration assayed in short-term survival 

assays (0.005mM) which allowed the maintining of culturability in the 

short-term (Fig. 15), was selected for long-term assays. At long term, 

culturability of E. amylovora CFBP 1430 strain decreased in more 

than three logarithmic orders after 50 days in AB medium with no 

copper, whereas viability only went down one log order in the same 

time period (Fig. 18 A).  
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Figure 18. E. amylovora strain CFBP 1430 survival in AB medium 
supplemented with 0.005mM copper sulfate and expression of the rpoS 
gene through time. CT means cycle threshold.  
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However, in the presence of copper the reduction in population 

numbers was more drastic than in absence of copper, both in 

culturability and viability, since culturable cells decreased in five log 

orders and viable cells in approximately two from the time 0 (Fig. 18 

B). The trend of the respective curves for both culturable (p=0.0472) 

and viable (p=0.0099) cells was, in fact, significantly different 

between copper and no copper treatments. 

Throughout this long-term period, expression of rpoS gene was 

evaluated by real-time PCR at each time point. The number of CT in 

AB medium with no copper increased the first 15 days from 22.9 to 

29.8, and then remained approximately constant until day 50 (Fig. 18 

A). In contrast, in the presence of copper the value of CT, after a slight 

initial increase, remained approximately constant around 25 (Fig. 18 

B). This increase in CT, regardless the presence of copper, indicated a 

reduction in rpoS expression throughout the time. However, the fact 

that the value of CT was lower in presence than in absence of copper 

all the time assayed (p<0.0001) suggests a higher level of expression 

of the gene under copper stress.  

4.7. General characteristics of the E. amylovora Ea1189 strain 

transcriptome in response to a copper shock 

After the study of the role of rpoS gene in copper survival of E. 

amylovora strain CFBP 1430 and in order to have a more complete 

picture of the expressed genes by copper stress, a two-color whole 

genome microarray approach was used to identify differentially 
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regulated genes under exposure to copper but in strain Ea1189. After 

microarray hybridization, we decided to analyze data corresponding 

only to chromosomic genes due to difficulties in finding match 

sequences for plasmids in databases. The analysis of the results of 

the first slide revealed 79 induced genes and 46 repressed genes and 

in the second slide, 85 genes were induced and 120 repressed. The 

combined analysis of the two experiments as a group (six replicates) 

identified 44 genes, out of 3,500 chromosomal genes included in the 

oligonucleotide microarray, that were differentially expressed after a 

copper shock.  

Those 44 differentially expressed genes were classified in six 

categories according to several features. For this purpose, genes 

were submitted to databases and analyzed according to their gene 

ontology with GPRO software. Then, they were classified in transport, 

stress, metabolism, movement, programmed cell death and catch-all 

group named as others, as shown in Fig. 19 and Table 9. 

Figure 19. Functional categories obtained by gene ontology of the 44 
differentially expressed genes after a copper shock in E. amylovora Ea1189 
strain. 
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Table 9. Genes differentially expressed in E. amylovora Ea1189 in response 
to a copper shock. Bold words indicate up-regulated genes. 

Functional 
categorya 

Gene IDb Gene 
namec 

Product description 
Fold 

changed 

Transport EAM_0320 yjcE Na+/H+ exchanger  1.2 

EAM_1003 smdB Multidrug efflux pump ABC 
transporter 

1.5 

EAM_1136 gltI Glutamate and aspartate 
ABC transporter  

1.3 

EAM_1661 ydhC Inner membrane transport 
protein  

1.6 

EAM_1897 oppA Oligopeptide ABC 
transporter  

1.3 

EAM_2340 yfcA Inner membrane protein  1.7 

EAM_2748 nodT RND efflux system, 
multidrug resistance protein 
(partial) detox protein CusA-
like 

1.3 

EAM_0222 secE Preprotein translocase 
subunit 

-1.3 

EAM_0954 proY Proline-specific permease -1.2 

EAM_1044 copA Copper exporting ATPase -1.1 

EAM_1612 spy Periplasmic protein 
spheroplast protein Y 

-1.2 

EAM_1884 ompW Outer membrane protein -1.2 

EAM_3433 tag3 3-methyl-adenine DNA 
glycosylase I 

-1.3 

Stress EAM_0207 tatC Twin-arginine protein 
translocation system  

1.2 

EAM_0221 tufA Protein chain elongation 
factor EF-Tu 

1.6 

EAM_0360 dfoA Desferrioxamine 
siderophore biosynthesis 

1.1 

EAM_0568 rimI Ribosomal-protein-alanine 
acetyltransferase 

1.2 

EAM_1023 apt Adenine 
phosphoribosyltransferase 

1.2 

EAM_2126 galF UTP-glucose-1-phosphate 
uridylyltransferase 

1.2 

EAM_3348 soxS Transcriptional regulator  1.2 

EAM_0073 rpmB 50S ribosomal protein L28 -1.4 

EAM_0127 rpmE 50S ribosomal protein L28 -1.4 

EAM_1116 cspE Cold shock-like protein  -1.5 

EAM_2370 uspA Universal stress protein -1.2 
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a) Functional category obtained by gene ontology study using GPRO software v1.1.0. 
b) Number of the gene according to E. amylovora ATCC 49946 sequencing genome. 
c) Gene name according to highest similarity query with protein BLAST database. Genes in bold black are 

those that were up-regulated. 
d) Obtained with a p-value ≤ 0.05. 

 

Transport category contained 13 genes whose functions were related 

with exchangers, ABC transporters, membrane proteins and efflux 

systems. We found several interesting genes as copA gene, coding for 

SERP1273 

EAM_2853  Putative helicase/relaxase -1.5 

Metabolism EAM_0136 ppc 
Phosphoenolpyruvate 
carboxylase 

1.2 

EAM_0704 lpxC UDP-3-O-acyl N-
acetylglucosamine 
deacetylase 

-1.4 

EAM_0861  Hypothetical polysaccharide 
deacetylase  

-1.1 

EAM_2964  1-acyl-sn-glycerol-3-
phosphate acyltransferase 

-1.1 

EAM_3110 arcB Aerobic respiration sensor-
response protein 

-1.5 

Movement EAM_2538 cheA Chemotaxis protein 1.9 

Programmed 
cell death 

EAM_3469 
 

Phage holin 1.1 

Others EAM_2701 ygcF Conserved hypothetical 
protein 

1.3 

EAM_0537  Hypothetical protein  1.8 

EAM_2645  Hypothetical protein  1.2 

EAM_2818  Hypothetical protein  1.4 

EAM_3301 yhhQ Hypothetical protein  1.2 

EAM_3421  Hypothetical protein  1.3 

EAM_0684  No significant similarities 
found 

-1.7 

EAM_0927 psiF Phosphate starvation-
inducible protein 

-1.3 

EAM_1312 ybjP Putative lipoprotein -1.2 

EAM_1634  Hypothetical protein  -1.1 

EAM_2851  Hypothetical protein  -1.1 

EAM_3016  Hypothetical protein  -1 
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a copper exporting ATPase; yjcE gene, coding for a Na+/H+ exchanger; 

two inner membrane proteins YdhC and YfcA and one outer 

membrane protein OmpW; smdB gene, coding for a multidrug efflux 

pump ABC; nodT gene, coding for a RND efflux system; oppA gene, 

coding for a oligopeptide ABC transporter; gltI gene, coding for a 

glutamate and aspartate ABC transporter or tag3 gene, coding for a 

3-methyl-adenine DNA glycosylase I. Fold-changes expression of 

these genes ranged between -1.1 and 1.7 (Table 9).  

Stress category contained 12 genes whose functions were related 

with translocation systems, elongation factors (EF-Tu), siderophore 

biosynthesis, transcriptional regulators or stress proteins. We 

considered the transcriptional regulator soxS the most relevant gene 

of this category. However, we also found other interesting genes 

such as dfoA gene involved in desferrioxamine biosynthesis; cspE 

gene, coding for a cold shock-like protein or uspA coding for a 

universal stress protein; tatC gene, coding for a twin-arginine protein 

translocation system; tufA gene, coding for a protein chain 

elongation factor; rimI gene, coding for a ribosomal-protein-alanine 

acetyltransferase; apt gene, coding for a adenine 

phosphoribosyltransferase; galF gene, coding for a UTP-glucose-1-

phosphate uridylyltransferase and EAM_2853 gene, coding for a 

putative helicase/relaxase. Fold-changes expression range was 

between -1.5 and 1.6 (Table 9). 

Metabolism category was smaller than the previous ones because it 

only contained 5 genes whose functions were related with Krebs’s 



RESULTS  

146 

 

cycle and a respiration sensor-response protein. This last function, 

coded by arcB gene, was apparently the most important founded in 

this category because it is related to an aerobic-anaerobic switch that 

could be connected with an answer to redox events produced by 

copper. Most of the genes in this category were down-regulated with 

fold-changes ranging from -1.1 to -1.5. Only ppc gene, coding for a 

phosphoenolpyruvate carboxylase that catalizes the β-carboxilation 

of phosphoenolpyruvate (PEP), was 1.2fold-change up-regulated. This 

is a high energetic reaction that supplies dicarboxilic acids to the 

tricarbolixic acid’s cycle (Krebs’s cycle) (Table 9). 

Only one gene, cheA, coding for a chemotaxis protein, was allocated 

to movement category. And only other gene, EAM_3469, was 

classified in the group of programmed cell death since it codes for a 

phage holin. Both genes were up-regulated with fold-changes of 1.9 

and 1.1, respectively (Table 9). 

No function was found for twelve out of the 44 genes differentially 

expressed after copper shock. We classified them inside a category 

named “others”. Only the sequences for ygcF, yhhQ, psiF and ybjP 

genes were annotated but others like the one for EAM_1634 gene 

were not and were classified only as hypothetical proteins. We 

selected ygcF and yhhQ for further analysis because they were up-

regulated and, in the case of ygcF, also due to be conserved. We also 

selected EAM_1634 gene because it was down-regulated (Table 9). 
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4.8. Evaluation of differentially expressed genes under copper 

conditions by quantitative real-time PCR 

To validate gene expression patterns observed in our microarray 

analysis by an specific and independent technology, the expression of 

25 genes, selected among those identified as differentially expressed, 

was examined by  quantitative real-time PCR after optimizing RNAs 

according to 16S rRNA levels. According to the formula E=10-1/slope, in 

an ideal situation, the quantity of PCR product should duplicates in 

each amplification cycle. As it is shown in Table 10, the optimization 

of each pair of primers for quantitative real-time PCR is around 2, 

what means they have 100% efficiency. Selection of genes was made 

according to their probable relation with the function resulted from 

the annotation with databases and GPRO software, and the putative 

function in the case of the hypothetical proteins. These genes were: 

yjcE, smdB, gltI, ydhC, oppA, yfcA, nodT, copA and tag3 from 

transport category; tatC, tufA, dfoA, rimI, apt, galF, soxS, uspA and 

EAM_2853 genes from stress; ppc and arcB genes from metabolism; 

cheA gene from movement; EAM_3469 gene from programmed cell 

death; and ygcF, yhhQ, and EAM_1634 genes from “others” 

category.  

Expression of selected target genes by real-time PCR upon exposure 

to copper was not completely in accordance with the microarray 

results. The most remarkable divergence was the copA gene, which 

exhibited down-regulation in the microarray analysis but had the 

highest up-regulation when its expression was measured by 
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quantitative real-time PCR, with a value of more than 19-fold 

increase (Fig. 20). Other genes that showed down-regulation in the 

microarray but were induced as monitored by PCR were EAM_1634, 

arcB, tag3, EAM_2853 and uspA, with values of induction of 1.79-, 

1.60-, 1.51-, 1.49- and 1.37-fold increase, respectively (Fig. 20). 

The relative expression of the rest of the analyzed genes ranged from 

0.96-fold induction for gene dfoA to 3.82-fold induction for gene 

ygcF, and all of them were confirmed as up-regulated (Fig. 20). 

Finally, only oppA and ppc genes, both up-regulated in the 

microarray analysis, were revealed as down-regulated by quantitative 

real-time PCR in response to copper.  
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Table 10. Efficiencies of the PCR optimization with the 16S gene as internal control at 
the melting temperature of each primer. 

 

Gene name Target gene 
efficiency 

16S gene 
efficiency 

copA 1.984 2.029 
ygcF 2.013 2.029 
yhhQ 1.989 2.040 
tatC 2.022 2.029 
soxS 2.029 2.040 
galF 1.989 2.040 
apt 2.048 2.040 

ydhC 2.038 2.029 
cheA 1.975 2.040 
nodT 2.015 2.030 

EAM_1634 2.044 2.040 
gltI 1.979 2.040 
rimI 2.006 2.029 
arcB 2.036 2.040 
tag3 2.040 2.040 

EAM_2853 2.035 2.040 
yjcE 2.010 2.030 
uspA 2.016 2.029 
smdB 2.010 2.030 
yfcA 2.011 2.029 

EAM_3469 2.004 2.030 
tufA 2.021 2.029 
dfoA 2.037 2.040 
oppA 2.032 2.029 
ppc 2.010 2.030 
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Figure 20. Relative expression of 25 differentially expressed genes in E. amylovora Ea1189 after a copper shock. Color 
indicates the functional category assigned before in section 4.7. For more info also see Fig. 19 and table 8. 

 
 

The 16S rDNA gene was used as an endogenous control in quantitative real-time PCR to calculate the relative expression. Data of CT were analyzed 
quantitatively via the comparative cycle threshold (∆∆CT) method (Pffafl, 2001) to generate relative fold-change values comparing WT and mutant strains.  
* Inactivated genes for further studies.
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4.9. Mutants of selected genes of E. amylovora 

4.9.1. Assays to evaluate the posible role of rpoS gene 

A mutant of CFBP 1430 strain in rpoS gene (Santander et al., 2014), 

was used to evaluate its role in culturability in the presence of 

copper. As shown in Fig. 21, mutant culturability was lower than that 

of wild type, even in AB medium with no copper (Fig. 21). Whereas 

the wild type strain remained near 108 CFU/mL for more than 60 days 

(Fig. 21 A), the mutant dropped two logarithmic orders in the same 

period (Fig. 21 B).  

The difference between the wild type and the mutant was more 

pronounced in the presence of copper. At the lowest copper 

concentration (0.005mM) culturability of the mutant was reduced in 

more than six log orders, and at 0.01mM it already was under the 

detection limit at 24h (Fig. 21 B). This was contrasting to the 

culturability of the wild type, which was decreasing gradually through 

time (Fig. 21 A). At the highest copper concentration (0.5mM) the 

culturability of both the wild type and the mutant was under the 

detection limit already at 24h (Fig. 21).  
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Figure 21. (A) Survival of the E. amylovora CFBP 1430 wild type incubated in 
AB medium supplemented with copper sulfate along 64 hours. (B) Survival 
of the E. amylovora CFBP 1430 rpoS

-
 mutant incubated in AB medium 

supplemented with copper sulfate along 64 hours. 
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4.9.2. Assays to evaluate the posible role of copA, soxS, arcB, yjcE, 

ygcF, yhhQ, galF and EAM_3469 genes 

4.9.2.1. Copper tolerance in vitro. To investigate which genetic 

systems can operate in E. amylovora after a copper shock, Ea1189 

mutants in eight selected up-regulated genes were evaluated for 

copper tolerance. Selected genes were: copA, soxS, arcB, yjcE, ygcF, 

yhhQ, galF and EAM_3469. Culturability was not affected in the wild 

type strain after treatment with copper sulfate below 20mM, but at 

20mM and higher concentrations it was severely reduced (Fig. 22 A). 

Then, mutants were challenged with the maximal copper 

concentration with no effect on the wild type strain, that was, 10mM. 

As shown in Fig. 22 B, the culturability of all the mutants decreased 

drastically between 4 and 7 orders of magnitude, depending on the 

inactivated gene, respect to untreated controls.  

Figure 22. (A) Culturability of E. amylovora strain Ea1189 growing in liquid 
media after treatment with copper at different concentrations. Arrow 
indicates the maximal Cu

++
 concentration with no effect in culturability of 

the Ea1189 wild type. (B) Copper sensitivity of selected E. amylovora strain 
Ea1189 mutants treated with 10mM copper sulfate. Down, the name of the 
inactivated genes. 
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4.9.2.2. Introduction of target genes in the mutants. The ORF of 

each selected gene as well as the upstream mutagenic region were 

amplified by PCR, cloned into pBBR1 and introduced into each 

respective Ea1189 mutant. The cloned copA gene restored almost 

completely the culturability of the mutant, which dropped more than 

six orders of magnitude after a copper shock respect to no copper 

treatment and respect to that of wild type strain under the same 

copper shock conditions (Fig. 23 A). Culturability of arcB, soxS and 

yhhQ mutants decreased approximately by two orders of magnitude 

respect to wild type strain (Fig. 23 B, C, E), whereas that of ygcF and 

yjcE mutants was reduced about four orders of magnitude (Fig. 23 D, 

F). When the respective genes were introduced in each mutant, the 

wild phenotypes were restored in all cases (Fig. 23), indicating an 

important role of copA, arcB, soxS, yhhQ, ygcF and yjcE genes for E. 

amylovora survival facing copper shock.  
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Figure 23. Genes confirmed to have a role in the defense of E. amylovora 
against a copper shock. A) copA gene B) arcB gene, C) soxS gene, D) ygcF 
gene, E) yhhQ and F) yjcE gene. Down, WT means wild type, Ea1189∆geneX 
means mutant strain and Ea1189∆geneX(pGeneX) means complemented 
mutant. 
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The genes EAM_3469 and galF were not complemented due to lack 

of time in the period of this thesis but we will keep them in mind for 

future research. 

4.10. The copA case 

4.10.1. Induced expression of copA gene 

In order to assess the differential expression of copA gene in E. 

amylovora strain Ea1189, a relative quantification by real-time PCR 

was performed after submitting the strain to a copper-shock 

induction. As shown in figure 24, copA gene was induced in the 

presence of copper. A very low copper concentration of 0.005mM 

increased the expression of copA 1.5-fold compared with the 

expression at no copper exposure (1-fold). Interestingly, the relative 

expression of copA gene was observed to raise as soon as the copper 

concentration was increased, reaching 16.8-fold expression when the 

strain was challenged with copper sulfate 0.5mM (Fig. 24). 

Figure 24. Relative expression curve of copA gene in E. amylovora after 
copper-shock induction. 
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4.10.2. Involvement of the copA gene in copper tolerance in planta 

Due to its high expression level in the presence of copper (Fig. 20), 

coupled with its demonstrated role in copper tolerance in vitro (Fig. 

23 A), copA gene was selected to further investigate whether it also 

plays a role in copper tolerance in vivo in E. amylovora Ea1189. The 

culturability of copA mutant in planta was firstly assayed without 

copper treatment, and it was slightly lower than that of wild type 

(Fig. 25, blue and pink dashed lines), but the trend of  both curves, 

those of wild type and mutant, through time was not significantly 

different (p=0.12). Interestingly, when the cloned copA gene was 

inserted in the mutant, the numbers of culturable cells recovered 

those of wild type (Fig. 25, green dashed line). Then, the effect of 

copper was comparatively evaluated in the three bacterial 

populations: the wild type, the copA mutant and the mutant 

complemented with copA gene. As seen in Fig. 25, copper affected to 

both mutant (blue continuous line) and wild type (pink continuous 

line) strains, but this effect was more drastic for the mutant. Thus, 

culturability of wild type was decreased in planta after two hours of 

copper exposure (Fig. 25, pink continuous versus pink dashed lines), 

reducing its population almost two orders of magnitude and 

mantaining at this level throughout the experiment. As for the 

mutant strain, significant differences in culturability were observed 

respect to wild type strain at 29h after the copper exposure 

(p=0.009), with a loss of about four orders of magnitude from the 

inoculation time (Fig. 25, blue continuous line). However at this time, 
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the culturability of the mutant was restored when the cloned copA 

gene had been introduced (Fig. 25, green continuous line). Although 

this restoration was only partial, as occurred in in vitro assays, the 

survival of wild type and the complemented mutant was not 

significantly different (p=0.25) through time, confirming the effect of 

copper in copA mutant.  
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 Figure 25. Role of copA gene in E. amylovora strain Ea1189 to 10mM copper sulfate in planta. Dashed lines means untreated and 
continuous lines means after being treated with 10mM of copper sulfate. Wild type strain is represented by a pink circle, mutant 
Ea1189∆copA is represented by a blue rhombus and complemented mutant Ea1189∆copA(pCopA) is represented by a green 
triangle.
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 Copper-based compounds are among the antibacterial agents 

most widely used in agriculture, and they have been extensively 

employed for decades to deal with the devastating plant disease fire 

blight (van der Zwet et al., 2012). But it has also been described that 

they are not completely efficient to control the disease because, 

when plants are treated with copper, E. amylovora can develop a 

survival strategy that allows it to persist in time: the viable but 

nonculturable (VBNC) state (Ordax et al., 2006). In fact, the role of 

copper as a stress factor for E. amylovora was described by the 

research group in which the present thesis was performed (Ordax, 

2008), so the goals of this work were planned as a continuation of the 

previous findings. Thus, once determined that copper triggers a 

survival response in E. amylovora, we were interested in unraveling 

the molecular mechanisms involved in this interaction. 

 First, we addressed this issue by selecting some genes, such as 

the Sigma factor rpoS, that were previously described as important in 

the bacterial response to several stresses (Battesti et al., 2011; 

Landini et al., 2014), although not specifically reported in relation to 

copper. Secondly, we decided to go forward with a transcriptomic 

study to evaluate the global response of E. amylovora to copper, 

taking advantage of the customized microarray for E. amylovora by 

courtesy of Ian Toth (The James Hutton Institute (JHI), formely 

Scottish Crop Research Institute (SCRI)). The experimental design, 

based on the work of Yamamoto and Ishihama (2005) for another 

enterobacterium, E. coli, consisted on challenging E. amylovora to a 
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copper sulfate shock and to assess the genes induced under this 

stressful condition.  

 All the data obtained from the microarray allowed designing 

experiments to evaluate the role of some selected genes in vitro and 

lately in vivo. We made a selection of genes differentially expressed 

by copper to validate their expression using quantitative real-time 

PCR. Then, we constructed E. amylovora mutants in those genes 

exhibiting a higher expression level as measured by quantitative real-

time PCR and/or their interest as potentially related to the response 

of E. amylovora facing copper stress.  Then, we tested the phenotype 

of these mutants after challenging them to copper and we 

complemented the mutants with the introduction of the 

corresponding gene and verified that the phenotype of the wild type 

strain was restored. Finally, we selected one of the genes to test its 

role also in vivo. In fact, the validation in planta of the role of copA 

gene in the survival of E. amylovora to copper exposure is one of the 

most relevant results of this work. Nevertheless, other remarkable 

result is the general overview of the genes involved in the survival of 

E. amylovora to copper stress. Up to date, the global transcriptional 

response of E. amylovora against copper had not been elucidated 

yet. The type of copper stress selected in this study was a rapid shock 

of 5 min, not only reproducing the conditions of a previous work with 

E. coli (Yamamoto and Ishihama, 2005) but also to avoid the influence 

of long-term exhaustion of nutrients, the production of toxic 

metabolites coming from the active metabolism or other factors that 

could interact with the direct copper effect.  
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 The information provided by this work constitutes a first step in 

the way of a future research about possible targets for more efficient 

chemical treatments for fire blight disease. According to the data 

obtained, it is possible that a  treatment against fire blight based on a 

combination of copper sulfate and an inhibitor of CopA protein would 

be more effective than copper alone. It is an issue for future 

research.  

 

 After summarizing the global sense and the main achievements 

of this thesis, the different tasks addressed in the whole work are 

discussed in detail. As a previous step in the study of the molecular 

response of E. amylovora to copper, the minimal inhibitory 

concentration (MIC) of this metal was firstly determined to decide 

the range of copper concentrations to be assayed. On one side, since 

King’s B (KB) and Luria Bertani (LB) media bounded copper at the 

same extent, we selected KB for comparative purposes because it 

was used in previous MIC studies with E. amylovora (Ordax, 2008). 

On the other side, we used CYE medium (Zevenhuizen et al., 1979) 

and our results confirmed those reporting its usefulness for MIC 

determination since it does not bind any copper (Sholberg et al., 

2001; Al-Daoude et al., 2009). In fact, the MIC obtained in CYE, 1mM, 

was lower than in KB because KB has a greater ability to bind copper, 

then reducing the amount of free copper that can affect bacterial 

cells. Ordax (2008) also obtained a MIC higher than 1mM in KB 

(2.5mM), even in liquid cultures, where all components, including 

copper, are more accessible to cells, what usually leads to a decrease 
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of the MIC, but not in KB due to its copper complexing ability. 

Therefore, the MIC for the three studied strains was established in 

CYE at 1mM, pretty similar to that obtained in other studies 

performed using E. amylovora isolates from other geographical 

origins, such as Syria (Al-Daoude et al., 2009) and British Columbia 

(Sholberg et al., 2001), which were considered as copper tolerant 

strains (growth at 1.2mM copper sulfate). 
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5.1. Survival of E. amylovora under several copper 
conditions and the role of a general stress regulator  

 
 The survival of E. amylovora in the presence of two copper 

concentrations below the established MIC (0.005 and 0.5mM) was 

studied. The lowest copper concentration assayed (0.005mM) was 

found to cause a significant decrease of two logarithmic orders in 

CFBP1430 strain population, while the shock with higher copper 

concentrations (up to 0.5mM) caused a more severe decrease. In 

long-term survival assays in distilled water without addition of 

copper, numbers of culturable cells were reduced in approximately 

three logarithmic orders after 50 days due to the effect of nutrient 

starvation (Biosca et al., 2006; Ordax et al., 2006). When adding 

copper (0.005mM), the culturability dropped five log orders in the 

same time period. In both cases (in absence or presence of copper) a 

percentage of the population adopted the VBNC state, as previously 

reported (Biosca et al., 2006; Ordax et al., 2006). This was indicated 

by the fact that the number of viable cells, according to a culture-

independent method (Live & Dead), was not reduced at the same 

extent as the number of culturable ones. Nevertheless, the fraction 

of bacterial population in VBNC state was higher in presence of 

copper due to the joined effect of two stress factors, copper and 

starvation. The induction of this state by copper has not only been 

demonstrated in E. amylovora (Ordax et al., 2006) but also in other 

phytopathogenic bacteria (Alexander et al., 1999; Ghezzi and Steck, 

1999; del Campo et al., 2009; Um et al., 2013). The present results 
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are, therefore, consistent with those previously obtained by Ordax et 

al. (2006). Interestingly, copper at all the assayed concentrations did 

neither cause cellular lysis nor kill E. amylovora cells in other way 

(Ordax et al., 2006). Bacteria are able to face up to stress through 

adaptation responses, and many of these responses involve specific 

pathways that include a given regulator and a set of regulated genes 

(the regulon) which helps the cell to survive to the stress (Battesti et 

al., 2011). In consequence, it is very interesting to evaluate the role 

of these genes to elucidate molecular mechanisms underlying the 

response of E. amylovora to copper stress. As a first approach, we 

analyzed the expression of the general stress response regulator 

gene, rpoS, because RpoS regulon has been reported as playing a 

critical role in E. coli survival against acid (Small et al., 1994), heat 

(Hengge-Aronis et al., 1991), oxidative stress (Sammartano et al., 

1986), starvation (Lange and Hengge-Aronis, 1991), and near-UV 

exposure (Sammartano et al., 1986). In E. amylovora, an altered 

expression of this gene under starvation stress has been recently 

described (Santander et al., 2014), but nothing is known about its 

relation with copper stress. In other Enterobacteriaceae as E. coli, the 

RpoS regulon comprises 10% of its genes (Lacour and Landini, 2004; 

Patten et al., 2004; Weber et al., 2005; Dong et al., 2008; Dong and 

Schellhorn, 2009), what gives an idea of its relevance.  

 We observed that when E. amylovora was exposed to copper, the 

level of rpoS expression was significantly higher than in absence of 

copper. In both cases, with and without copper, there was a 
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progressively reduction of rpoS expression through time, probably 

because cells needed to save energy since they were maintained in a 

non chemostat container with mineral medium for a very long period 

(50 days). However, the reduction in the rpoS expression was 

significantly less pronounced in the presence of copper, indicating 

that this gene was more active than in absence of the metal. The link 

between rpoS and copper is probably related to oxidative stress 

provoked by copper excess. In E. coli, it has been described that 

copper overload induces the expression of RpoS, OxyR and SoxRS 

regulons (Macomber et al., 2007), and in P. aeruginosa that there is 

an increase of a periplasmic protein as a reaction to copper 

imbalance, leading to oxidative stress (Vijgenboom et al., 1997; 

Raimunda et al., 2013). Moreover, our results are in accordance with 

previous works on the role of the RpoS in the defense response of E. 

amylovora (Santander et al., 2014) and also in other phytopathogenic 

bacteria such as Xanthomonas campestris and Pseudomonas 

fluorescens (Rao and Sureshkumar, 2000; Stockwell et al., 2009) in 

defense against reactive oxygen species (ROS). 
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5.2. Global response against a copper shock 

 
With the aim to dig into the entire system of E. amylovora 

genome-wide response to external copper, we carried out a search 

for copper-responsive genes by a transcriptomic approach. The 

experimental design was based on a study performed with copper 

and the model bacterium E. coli (Yamamoto and Ishihama, 2005), 

another member of Enterobacteriaceae, because no previous work 

with E. amylovora on this issue has been reported.  

We first carried out a systematic search for copper-

responsive genes by using DNA microarray technique. A copper shock 

markedly activated 23 genes of the pathogen, being ca. 50% of those 

induced genes classified into the categories of transport (yjcE, smdB, 

gltI, ydhC, oppA, ycfA and EAM_2748) and stress (tatC, tufA, dfoA, 

rimL, apt, galF and soxS), and some also into metabolism (ppc), 

movement (cheA), and programmed cell death (EAM_3469), 

remaining 6 as unclassified genes (EAM_0537, EAM_2645, ygcF, 

EAM_2818, yhhQ and EAM_3421).  

In the transcriptional assay previously conducted with  E. coli 

(Yamamoto and Ishihama, 2005), 30 copper-shock activated genes 

were identified and classified into their putative regulons: 5 genes 

were classified into the CusR regulon, 6 into the CueR regulon, 11 

into the CpxR regulon and another 8 genes remained unclassified. 

That previous study concluded that the copper stimulon is formed by 

the activated genes under the control of at least four regulons: CueR, 
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CusR, CpxR and YedW, in a hierarchical regulation network to 

maintain copper homeostasis. Most of the genes identified in our 

study differ from those identified in the E. coli copper shock 

microarray study (Yamamoto and Ishihama, 2005). If the conditions 

of each study are compared, although we isolated mRNA 5 min after 

the copper shock, as in the E. coli study, the growth phase of the 

challenged cells was different. Transcriptome of E. coli was obtained 

in exponential growth while that of E. amylovora was obtained in late 

exponential growth or beginning of the stationary phase. This 

difference may have contributed to observed differences in gene 

expression. However, both our current study with E. amylovora and 

the previous study with E. coli included the hitherto identified copA 

gene encoding a Cu+-translocating P-type ATPase pump, which 

exports copper from the cytoplasm to the periplasm and is directly 

involved in maintaining copper homeostasis in E. coli (Rensing and 

Grass, 2003; Yamamoto and Ishihama, 2005). Besides copA, the 

transcription factor for superoxide response regulon SoxS is copper-

activated both in E. coli (Yamamoto and Ishihama, 2005; Pletzer et 

al., 2014) and in E. amylovora, as showed in the present work. 

In plant pathogenic bacteria, there are no previous studies 

evaluating transcriptional gene expression after copper stress. The 

present study raises for the first time the association between copper 

stress and its effects in the plant pathogenic bacterium E. amylovora, 

copper homeostasis and production of oxidative radicals. 
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5.2.1. Copper transport genes (copper homeostasis) 

As it was described before, copper ion can be a toxic element 

if it is present over a certain threshold, so metal homeostasis has an 

essential role in bacterial survival. As a consequence of an aerobic 

metabolism, copper catalyzes Fenton-like and Haber-Weiss reactions 

that result in the production of hydroxyl radicals (Cu+ + H2O2 → HO• + 

HO- + Cu++; O2
•- + Cu++ → Cu+ + O2) (Halliwell and Gutteridge, 1990, 

1984; Rensing and Franke-McDevitt, 2013). The main pool of 

intracellular copper ions, as reported in E. coli, is located in the 

periplasm (Outten et al., 2001), and the reactive oxygen species 

(ROS) produced by copper do not reach the cytosolic targets 

(Macomber et al., 2007; Lemire et al., 2013). However, if the 

accumulation of ROS in the periplasm is over a certain threshold, a 

leakage of these toxic species could happen into the cytosol, where 

they trigger the activation of the ROS defense systems. To avoid 

these events in cascade, metal efflux and uptake systems are 

transport mechanisms displayed by bacterial cells to achieve copper 

homeostasis.  

The copper homeostasis protein repertoire described in E. 

coli comprises two systems: one CueR-regulated, which plays a key 

role in aerobic copper tolerance (Grass and Rensing, 2001; Outten et 

al., 2001), and other regulated by cusSR for anaerobic conditions 

(Outen et al., 2001). According to Hernández-Montes et al. (2012), 

this dual copper homeostasis protein repertoire is only present in 3% 

of all organisms tested (among others 268 gamma proteobacteria, 
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two strains of E. amylovora (TAX552 and ATCC 49946), one strain of 

E. pyrifoliae and one strain of E. tasmaniensis).  

A recent phylogenomic study revealed that the genomes of 

two E. amylovora strains (ATCC 49946 and TAX552) encode at least 

three periplasmic proteins involved in copper homeostasis: CopA, 

CueO and an orphan CusC (Hernandez-Montes et al., 2012). While 

CopA pumps out excess copper from the cytoplasm to the periplasm, 

CueO oxidizes Cu+ to Cu++ in the periplasm thereby reducing the 

concentration of the more toxic Cu+ ion (Grass and Rensisng, 2001). 

In E. coli, under anaerobic conditions the two-component regulatory 

system CusSR activates the transcription of the cusCBAF operon that 

encodes for a complex that pumps Cu+ from the cytoplasm directly to 

the extracellular space (Grass and Rensisng, 2001). In most bacteria, 

this complex consists of the inner membrane pump CusA, the 

periplasmic protein CusB and the outer membrane protein CusC, 

forming a channel through the periplasm (Hernandez-Montes et al., 

2012). In the genome of E. amylovora, only an orphan cusC gene is 

present but, surprisingly, it is located in an operon together with two 

other putative multidrug efflux transporter genes, emrB and emrA. 

Thus, it is possible that they may form another complex pump also 

dedicated to extrude Cu+ directly from the cytoplasm to the external 

space, as the cusCBAF system does. However, since we did not 

observe an upregulation of either emrB or emrA, these multidrug 

efflux transporter genes may not respond to copper in aerobic 

metabolism in E. amylovora, confirming that described for E. coli 

(Yamamoto and Ishihama, 2005). It is important to note here that, in 
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contrast to other enterobacteria, E. amylovora is not very efficient in 

anaerobic metabolism (Sebaihia et al., 2010).  

In this study, seven genes classified into transport category 

were over-expressed in the presence of copper. Expression analyses 

clearly show that copA gene is that most remarkably induced by 

copper. This gene codes for a Cu+-translocating P-type ATPase pump 

that exports copper from the cytoplasm to the periplasm. Although 

Cu++ was added to the medium, it is reasonable to assume that it was 

reduced to Cu+ intracellularly, and that Cu+ was the actual inducer of 

a response (Rensing et al., 2000). The relevance of copA among the 

mechanisms developed by E. amylovora against copper agrees with 

results observed in previous studies with different gamma 

proteobacteria: Hernández-Montes et al. (2012) found that CopA is 

the most abundant protein for copper homeostasis in bacteria, with 

an important physiological role as an internal membrane ATPase. It 

was identified in the chromosomes of 70 bacterial genera, also the 

genus Erwinia and it was found in all organisms cited before (among 

others 268 gamma proteobacteria, two strains of E. amylovora 

(TAX552 and ATCC 49946), one strain of E. pyrifoliae and one strain of 

E. tasmaniensis) as the core protein for copper homeostasis. It is 

interesting to note that CopA protein was also found in other genera 

belonging to Enterobacteriaceae family as Dickeya, Pantoea, 

Pectobacterium or Pseudomonas, which contain plant pathogenic 

bacteria; on the contrary, it is not present in the genome of other 

phytopathogenic bacteria, such as four strains of Xylella fastidiosa 

and seven out of nine strains of Xanthomonas spp. The remarkable 
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induction of copA gene by copper is in agreement with other gene 

expression studies after copper exposure in non phytopathogenic 

bacteria, such as Acidithiobacillus ferrooxidans, Streptococcus 

pneumoniae or Listeria monocytogenes (Salazar et al., 2013; Shafeeq 

et al., 2011; Corbett et al., 2011). Moreover, recently, Zhao et al. 

(2014) have shown that copper homeostasis also plays an important 

role in oxidative resistance of Deinococcus radiodurans and that this 

role is played, among others, by copA.  

We did observe some differences in gene expression 

between the microarray results and qPCR for a few of the genes 

examined, most notably copA. These differences could be due to the 

limitations of the microarray technique. The analysis of the global 

expression of one genome at a specific point in time is the result of 

all genes from the genetic pool in that particular time. Then, the 

results of a massive transcriptomic analysis technique should not be 

taken to do an analysis of the differential expression of each 

individual gene of the genetic pool, since some discrepancies can rise, 

as has been described in other bacterial models (Thieme et al., 2008; 

Karunakaran et al., 2009).  

 

Expression analysis clearly showed that the copA gene in E. 

amylvora is not only remarkably induced by copper but also fine-

tuned regulated. Three lines of evidence suggest that the expression 

of copA is regulated by copper through the transcriptional regulator 

CueR. First, sequence analysis outward from copA gene revealed that 

in E. amylovora strain Ea1189 both genes are contiguous in the same 
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locus, and they are transcribed in opposite directions (Figure S1). 

Second, CueR activates transcription of copA in the presence of 

copper ion in E. coli (Outten et al., 2000). And third, the CueR binding 

site, including the CueR-box sequences, where the Cu+-CueR 

transcriptional factor binds to the copA promoter, is known in E. coli 

(Yamamoto and Ishihama, 2005). Sequence analysis revealed that the 

copA promoter of E. amylovora strain Ea1189 contains the CueR box 

consensus sequence, including the inverted repeat with just one 

mismatch (Figure S2).  

Our gene-disruption studies confirmed for the first time a 

biological role of copA gene in E. amylovora survival after copper 

shock because it was partially complemented in vitro and in planta by 

addition of the copA gene with its native promoter in trans. In the E. 

amylovora chromosome, copA is located adjacent to cueR, the main 

gene involved in copA regulation, and it its possible that the genetic 

context of copA may be important in this case. The 10-100% 

reduction in survival of the wild type Ea1189 in planta upon 

treatment with copper is a typical result observed following 

treatment of a coper-sensitive bacterial pathogen on plant surfaces 

with a copper bactericide (ex. Garrett and Schwartz 1998; Quesada et 

al., 2010). Further reductions in survival of the ∆copA mutant could 

be a reflection of increasing availability of copper on the plant 

surfaces over time. These results suggest that the copA gene plays an 

important role for survival of E. amylovora against copper both in 

vitro and in planta.  
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The present study also showed that other differentially 

expressed genes classified into the transport family may direct or 

indirectly be also involved in maintaining copper homeostasis in E. 

amylovora. Concretely, the ydhC and smdB genes, belonging to drug 

resistance efflux transporter family, and the transmembrane protein 

YfcA might act reducing toxicity in the cytoplasm due to ion copper 

effect. Further gene disruption studies will be required to 

demonstrate their current role in copper tolerance in E. amylovora. 

This is also the case of yjcE gene, coding for a Na+/H+ exchanger (NHE) 

with similarity to NHEs in eukaryotes (Verkhovskaya et al., 2001) and 

having a potential role in eliminating excess acid from cells. 

Expression analysis and gene disruption studies with yjcE show that it 

should play a role for copper tolerance in E. amylovora; this could be 

accomplished through maintaining pH homeostasis in cells which 

could reduce the cycling of Cu+ and Cu++ ions. It has also been 

demonstrated in human cells (Akram et al., 2006) that an increase in 

intracellular superoxide anion induces synthesis of an NHE that 

strongly correlates with the resistance of cells to death.  

 

 

 

 



GENERAL DISCUSSION      

178 

 

5.2.2. Oxidative stress (copper toxicity) 

The strong relationship between the presence of a stress 

factor and the production of superoxide radicals has been reported 

by microarray studies in other bacterial models as Pyrococcus 

furiosus, Nitrosomonas europaea, Herminiimonas arsenicoxydans or 

Bacillus cereus (Williams et al., 2007; Park and Ely, 2008; Cleiss-

Arnold et al., 2010; Mols et al., 2010). In the case of E. amylovora, the 

effect of copper in previous studies on culturability led to conclude 

that this metal acts as a stress factor also for this pathogen (Ordax et 

al., 2006). Besides maintaining copper homeostasis, bacteria also 

have to overcome its toxic effect. As commented before, the main 

toxicity of copper could derive from the production of reactive 

oxygen species (ROS), as previously described by Halliwell and 

Gutteridge (1984) in E. coli (see section 1.3.1. of the Introduction), 

since copper dissociates the oxygen peroxide produced by an aerobic 

metabolism into hydroxyl radicals. This is genetically supported by 

the fact that, in the present study, seven differentially-expressed 

genes were stress-related and they may direct or indirectly be 

involved in overcoming the toxic effect of this metal in E. amylovora.  

We identified three ROS related genes that were 

differentially expressed after a copper shock. A gene-disruption study 

was performed for the AraC family DNA-binding transcriptional 

regulator, SoxS, and the ∆soxS mutant was highly affected in copper 

tolerance, losing more than six orders of magnitude in population 

numbers. It is well known that copper sulphate is a powerful inducer 
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of the soxRS regulon of E. coli through oxidative stress (Greenberg et 

al., 1990; Kimura and Nishioka, 1997). An intracellular redox signal 

activates SoxR, a superoxide response sensor protein encoded by 

soxR. It binds to DNA at a specific site activating the expression of 

soxS gene, and SoxS protein is a direct inducer of target genes of 

bacterial response to oxidative stress (Lushchak, 2011). The soxS 

gene has been already characterized in E. amylovora (Pletzer et al., 

2014) and its regulon was identified in E. coli (Martin and Rosner, 

2002). This study shows that copper is one of the signals for 

activation of soxRS system in E. amylovora and that some SoxRS-

regulated genes of its regulon should play and important role in its 

copper tolerance.  

Another ROS-related gene found in this work was arcB. 

Expression analysis and gene disruption studies with arcB show that 

the two-component regulatory system ArcAB is activated by copper 

and it is required for copper tolerance in E. amylovora. ArcB activates 

its cognate transcriptional regulator ArcA to repress genes 

contributing to aerobic metabolism and activates genes necessary for 

anaerobic metabolism (Loui et al., 2009). Thus, in an anaerobic 

habitat, bacteria avoid more ROS production and, consequently, 

oxidative damage. This study shows that copper is one of the signals 

for activation of ArcAB system and that some ArcAB-regulated genes 

of its regulon should play an important role in copper tolerance in E. 

amylovora. It seems that, for E. amylovora, this strategy to avoid ROS 

production is not preferred because anaerobic metabolism is not the 

optimal one for an efficient growth in E. amylovora. The fact that this 
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gene appears in previous studies related to ROS in the bacterial 

model E. coli (Luchi and Weiner, 1996; Loui et al., 2009) may support 

the hypothesis that ArcAB system is a metabolic strategy against 

copper toxicity in E. amylovora not described before. 

The third ROS-related gene has been described above, yjcE. It 

is also connected with copper homeostasis. Our observation that E. 

amylovora ∆yjcE mutant was also strongly affected after copper 

shock supports the hypothesis that pH homeostasis can affect copper 

sensitivity.  

Another interesting gene classified into the stress category is 

galF. The enzyme GalF is involved in the formation of UDP-glucose 

from α-D-glucose-1P, which is essential for polysaccharide 

production. Up to date, no direct relation between this gene and 

copper or others stress factors had been described. However, we 

observed an increase of almost 3-fold expression in this gene and the 

reduced culturability of the ∆galF mutant strain for more than six 

orders of magnitude after copper exposure, suggesting that this gene 

is in fact involved, at least indirectly through protection by 

exopolysaccharide production, in the response of E. amylovora 

against copper stress. 
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5.3. Response model to copper in E. amylovora 
 

The data obtained show that E. amylovora responds to 

copper shock by over-expressing several genes related to two genetic 

systems that represent two complementary strategies: (i) the control 

of copper homeostasis through the expression of, at least, the copA 

gene, and (ii) the overcoming of copper toxicity due to oxidative 

stress through the expression of some ROS-related genes.  

All results together allowed us elaborating a putative model 

of the different genetic mechanisms that probably are involved in the 

interaction between E. amylovora and copper in the assayed 

conditions (Figure 26). Copper probably crosses the external 

membrane and enters periplasm via porins, as in E. coli (Teitzel et al., 

2006) and many others Gram-negative bacteria (de Brujin, 2016), and 

then  reaches the cytoplasm crossing the inner membrane via certain 

transport proteins. Once in the cytoplasm, copper generates ROS 

through Fenton-like reactions. In order to prevent the oxidative 

damage, E. amylovora displays several mechanisms. The most 

important one seems to be a compendium of actions aimed to 

maintain copper homeostasis and to face up ROS by the activation of 

soxS (Fig. 26A) and yjcE (Fig. 26B) gene expression. The first one 

activates the expression of other genes related with the elimination 

of ROS, and the second one contributes to neutralize the acid pH 

generated by ROS inside the cytoplasm. The activity of these genes is 

supported by the action of CopA protein (Fig. 26C), which exports 

copper from inside the cell to the periplasm space. Besides, the 
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activation of arcB gene (Fig. 26D) allows changing from aerobic to 

anaerobic metabolism, which would drastically reduce the 

production of ROS. Finally, the role of the two hypothetical proteins 

YgcF and YhhQ (Fig. 26E) remains to be elucidated.  

The results of this thesis have constituted an approach to the 

genetic substrate of E. amylovora response against copper stress, and 

they are a starting point to make progress in the knowledge of the 

complex molecular mechanisms involved in the copper response of 

the fire blight pathogen. 
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Figure 26. Putative model of the effect of copper stress in Erwinia amylovora 
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This work was designed to improve the knowledge of the 

molecular mechanisms involved in the response of E. amylovora to 

copper stress, a topic not previously afforded in plant pathogenic 

bacteria. The new results obtained are summarized in the following 

conclusions: 

1. Copper, even at very low concentrations such as 0.005mM, 

constitutes a stressful factor for E. amylovora and triggers a 

response, observed at least as a reduced culturability, with a genetic 

substrate constituted by the coordinated action of several genes 

belonging to different functional categories. 

2. The general stress response regulator gene rpoS contributes to the 

survival of E. amylovora under copper exposure, since its expression 

was consistently higher in presence than in absence of copper when 

E. amylovora was challenged to copper and starvation stressful 

conditions. 

3. A set of at least fourty four genes exhibit a differential expression 

after copper shock. Twenty-five of them belong to functional 

categories of transport and stress. Genes related to metabolism 

(five), movement (one) and programmed cell death (one) also show 

an altered expression. The validation of the differential expression of 

twenty-five selected genes showed that twenty-three of them 

increased its expression after copper shock. 

4. The genes arcB, copA, EAM_3469, galF, soxS, ygcF, yhhQ and yjcE 

are involved in the survival of E. amylovora when it is exposed to 
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copper sulfate, from concentrations as low as 10mM. The role of six 

of these genes, arcB, copA, soxS, ygcF, yhhQ and yjcE, was confirmed 

under in vitro conditions, since the complementation of the mutants 

in those genes restored the wild type phenotype. 

5. The differential expression under copper shock of seven genes 

related to transport suggests its direct or indirect involvement in 

maintaining copper homeostasis in E. amylovora. Genes ydhC and 

smdB, that have concern in drug efflux, and YfcA, that is a 

transmembrane protein, probably act reducing the toxicity of copper 

present in cytoplasm, whereas yjcE gene coding for a Na+/H+ 

exchanger probably acts neutralizing the acid pH generated by 

reactive oxygen species provoked by copper.  

6. From the seven transport genes differentially expressed under 

copper exposure, the copA gene, which codes for a Cu+-translocating 

P-type ATPase pump that exports copper from the cytoplasm to the 

periplasm, is the most remarkably induced by copper and even fine-

tune regulated, playing an important role as defense mechanism of E. 

amylovora against copper stress both in vitro and in planta. The 

expression of copA gene seems to be transcriptionally regulated by 

copper through the regulator CueR but not through CusSR. 

7. The increased expression of soxS gene, involved in superoxide 

resistance, under copper shock confirms its connection with oxidative 

stress and it also shows, for the first time, that copper can be one of 

the signals for activation of SoxRS system.  



CONCLUSIONS 

189 

 

8. The induction of arcB gene after activation of ArcAB system 

triggered by copper suggests another strategy, complementary to the 

role of soxS, to stop reactive oxygen species production through an 

aerobic/anaerobic switch, since ArcB activates ArcA to repress genes 

contributing to aerobic metabolism and activates those necessary for 

anaerobic one.  

9. The gene galF is also involved in the response of E. amylovora 

against copper probably through an increased production of 

exopolysaccharide that confers protection to the bacterial cell against 

copper and other kinds of stress. 

10. A putative model of response of E. amylovora against copper 

stress has been elaborated following the experimental evidences 

from this work. It involves at least two complementary strategies: 

one aimed to control copper homeostasis, and the other to reduce 

copper toxicity by counteracting the production of ROS.  
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