INDEX

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUMMARY</td>
<td>14</td>
</tr>
<tr>
<td>RESUMEN</td>
<td>17</td>
</tr>
<tr>
<td>RESUM</td>
<td>20</td>
</tr>
</tbody>
</table>

1. INTRODUCTION

1.1. Fire blight of Rosaceae

1.1.1. Symptomatology of fire blight and host range of *Erwinia amylovora*
1.1.2. Economic impact
1.1.3. Global distribution
1.1.4. Situation in Spain
1.1.5. Fire blight epidemiology and control
 1.1.5.1. Fire blight cycle
 1.1.5.2. Preventive and cultural measures
 1.1.5.3. Chemical control
 1.1.5.4. Biological control
 1.1.5.5. Cultivar susceptibility and genetic control
 1.1.5.6. Integrated control in Spain and the European Union (EU)
 1.1.5.6. Legislation

1.2. Copper and field application

1.2.1. The history of the use of copper
1.2.2. Copper formulations and mode of action
1.2.3. Field applications in the EU

1.3. Copper, friend and foe for bacterial cells: targets for copper action and strategies

1.3.1. Copper and generation of reactive oxygen species
1.3.2. Copper uptake and homeostasis
1.3.3. Multicomponent copper efflux systems
1.3.4. Biosynthesis of extracellular polymeric substances (EPS)
1.3.5. The viable but nonculturable (VBNC) state can be
induced by copper

1.4. *Erwinia amylovora*, the causal agent

1.4.1. Taxonomy and general features

1.4.2. Virulence factors

1.5. *E. amylovora* genetics

1.5.1. *E. amylovora* genome

1.5.2. Plasmids

1.5.3. Genetics of host-pathogen interaction

1.5.4. *E. amylovora* under stress

1.5.5. Transcriptomic approach for gene expression evaluation

2. OBJECTIVES

3. MATERIALS AND METHODS

3.1. Bacterial strains and growth conditions

3.2. Minimal inhibitory concentration (MIC) of copper

3.3. Short-term assay for *E. amylovora* survival in AB medium supplemented with different concentrations of copper

3.4. RNA isolation

3.5. Stress-related selected genes. Primers and probes for relative quantitation of gene expression by real-time RT-PCR

3.6. Real-time RT-PCR standard curve for estimating PCR amplification efficiency of rpoS gene

3.7. Long-term assay for *E. amylovora* survival in AB medium supplemented with copper sulfate and expression of rpoS gene under these conditions

3.8. Microarray experiment

3.8.1. *Erwinia amylovora* microarray

3.8.2. Experimental set-up for preparation of samples for microarray hybridization

3.8.3. Microarray data analysis
3.9. Validation of the differentially expressed genes by quantitative real-time PCR
3.10. Mutant construction and complementation
3.11. Experiments with mutants of *E. amylovora* to evaluate the role of different genes
3.11.1. The possible role of *rpoS* gene in the survival of strain CFBP 1430
3.11.2. Assays to evaluate the possible role of *copA*, *soxS*, *arcB*, *yjcE*, *ygcF*, *yhhQ*, *galF* and EAM_3469 genes of strain *Ea*1189 after copper shock
3.11.2.1. Copper tolerance *in vitro*
3.11.2.2. Effect of introduction of target genes in the mutants
3.12. The *copA* case
3.12.1. Expression curve of *copA* in *E. amylovora* after copper-shock induction
3.12.2. Copper tolerance *in planta*

4. RESULTS
4.1. MIC for copper
4.2. Short-term assay for *E. amylovora* survival in AB medium supplemented with different copper concentrations
4.3. Efficiency of RNA extraction
4.4. Sensitivity of *rpoS*, *katG* and *dsbC* primers
4.5. Real-time PCR standard curve for *rpoS* gene
4.6. Long-term assay for *E. amylovora* survival in AB medium supplemented with copper sulfate and expression of *rpoS* gene through time
4.7. General characteristics of the *E. amylovora Ea*1189 strain transcriptome in response to a copper shock
4.8. Evaluation of differentially expressed genes under copper conditions by quantitative real-time PCR
4.9. Mutants of selected genes of *E. amylovora*
4.9.1. Assays to evaluate the possible role of *rpoS* gene
4.9.2. Assays to evaluate the possible role of *copA*, *soxS*,
arcB, yjcE, ygcF, yhhQ, galF and EAM_3469 genes
4.9.2.1. Copper tolerance in vitro
4.9.2.2. Introduction of target genes in the mutants
4.10. The copA case
4.10.1. Induced expression of copA gene
4.10.2. Involvement of the copA gene in copper tolerance in planta

5. GENERAL DISCUSSION
5.1. Survival of E. amylovora under several copper conditions and the role of a general stress regulator
5.2. Global response against a copper shock
5.2.1. Copper transport genes (copper homeostasis)
5.2.2. Oxidative stress (copper toxicity)
5.3. Response model to copper in E. amylovora

6. CONCLUSIONS

7. REFERENCES