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Abstract  

This paper compares different numerical methods for mode I stress intensity factor (SIF) 

calculations. Both 2D and 3D models are used to calculate KI for the compact tension specimens. 

J-integral and interaction integral provide relatively accurate results. The analysis of a reactor 

pressure vessel subjected to pressurized thermal shock is performed using the finite element 

method (FEM) and extended finite element method (XFEM). XFEM method shows advantages in 

modeling cracks but oscillations in 3D problems due to extraction domains for J and interaction 

integrals. The best results are obtained with domain integrals using a FEM with a refined mesh. 
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Nomenclature 

a       crack length, mm 

b       plate width, mm 

ai, biα   degrees of freedom for generalized heaviside function and the crack-tip functions  

d   a reference distance 

ds    length along an arbitrary controur Γ 

E   elastic modulus, MPa 

E’   E for plane stress, E/(1-v2) for plane strain 

error   calculation error 

f   point force 

fij(θ)    angular functions of crack-tip stress field 

Fα(x)   crack-tip functions  

G   shear modulus, MPa 

h   element size, mm 

h(x,a)   weight function  

H(x)   generalized Heaviside function 

I    set of all nodes in the mesh 

In               integration constant 

 I
I    interaction integral, MPa·m 

J   J-integral, MPa·m 

Ja   J-integral using analytical method, MPa·m 

k   3-4  for plane strain, (3- )/(1+ ) for plane stress 

K   linear elastic stress intensity factor, MPa·m0.5 

KI, KII, KIII  Mode I, II, III linear elastic stress intensity factor, MPa·m0.5 

KIex    exact KI applied using the boundary conditions 

KIIex   exact KII applied using the boundary conditions 

KIc     material fracture toughness, MPa·m0.5                

n   material hardening coefficient 

Ni(x)   nodal shape function 
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P   applied force, N 

Pij    Eshelby’s tensor 

Rq    theoretical height of the elements ring  

Sq    theoretical width of the elements ring  

r   distance from crack tip, mm 

Ti    components of the traction vector 

uy   displacement in y direction, mm 

ui, ui
L   displacement components and auxiliary displacement components 

V(s)   a domain which encloses the crack front segment 

W   specimen width, mm 

xi   crack tip local coordinates 

    Poisson’s ratio 

Γ   integration path around the crack tip 

    weight function 

Ω   defined model domain 

σij, σij
L     stress components and auxiliary stress components 

σyy     stress components in y direction 

ω   strain energy density, MPa·m-0.5                

ε   small crack front segment 

εij, εij
L           strain components and auxiliary strain components 

iu            displacement components 

θ               angular coordinate in the polar system 

δij   Kronecker delta 

CT   compact tension 

DOFs  degrees of freedom 

FE   finite element 

FEM   finite element method 

RPV   reactor pressure vessel 

SIF   stress intensity factor 
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XFEM  extended finite element method 

1. Introduction 

The stress intensity factor (SIF) K proposed by Irwin [1] is the main fracture parameter for the 

integrity assessment of the structures containing cracks. The SIF quantifies the singularity intensity 

of an elastic crack-tip stress field, which formed the foundation of linear elastic fracture mechanics, 

and is used to describe both the crack driving force and the material fracture resistance KIc. Thus, 

the SIF K has been widely used in fracture mechanics analysis and structural integrity assessment, 

e.g. of reactor pressure vessels (RPVs)[2-4]. In such calculations, the question concerning the 

appropriate method for the calculation of KI arises. In this paper, we compare and discuss some of 

the methods used for KI calculations. 

With the fracture parameter K, a simple fracture criterion is expressed as K ≥ KIc, where the K 

depends on applied loads and crack geometry and the KIc is the fracture toughness of the material 

measured under conditions in which a plane strain condition prevails. Once K is obtained, elastic 

crack assessment can be then performed. Thus determination of K is of great engineering 

significance. It is necessary to calculate K with high accuracy in order to assess the integrity of 

cracked components precisely.  

For simple cracks in specimens and components, analytical and semi-analytical solutions of K 

have been obtained and are included in different SIF handbooks, such as Murakami et al. [5], 

Newman and Raju [6] and Al Laham [7]. Based on the weight function concept, some solutions of 

K have been proposed and included in codes such as ASME Section XI [8], API 579 [9], RSE-M 

[10] or JSME Code [11]. Most of these proposed solutions take the stress distribution into account 

as a polynomial equation that extends to the third or fourth order.  

However, for an arbitrary crack in complicated structures or under complex loading conditions, 

there are no closed-form solutions for K. The finite element method (FEM) is usually resorted to 

calculate K. With the FEM, both the near-tip and full-field solutions of stresses and strains of the 

complex cracks can be determined. Lots of efforts have been made to use the FEM for calculating 

K since the 1970s.  
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The numerical methods for calculating K can be divided into the field variable methods and the 

energy release methods. The field variable methods can be further divided into displacement 

based and stress based methods. The displacement based methods consist of the displacement 

extrapolation method proposed by Chan et al. [12]. The quarter-point displacement method by 

Barsoum [13] and Henshell and Shaw [14], and the displacement correction method by Shih et al. 

[15] can be used to reproduce the theoretical linear elastic fracture mechanics stress and 

displacement fields near a crack tip. The stress based methods consist of the stress extrapolation 

method by Chan et al. [12] and the force method by Raju and Newman [16]. The energy release 

methods include the J-integral method by Rice [17], the stiffness derivative method by Parks [18], 

the virtual crack extension method by Hellen [19], and the virtual crack closure technique 

developed by Rybicki and Kanninen [20].  

Banks-Sills and Sherman [21] compared the displacement based and energy-based methods, and 

showed that the J-integral and the stiffness derivative method yielded the most accurate results, 

whereas the displacement extrapolation method was the simplest method with reasonable 

accuracy. In contrast to the displacement methods, the stress based methods are not often used in 

the K calculations because stresses are calculated from the nodal displacements in a FE 

simulation and are usually less precise [22]. The energy-based methods generally lead to more 

accurate K through subroutines implemented in the finite element (FE) software. The J-integral 

calculation is available in many commercial FE codes, e.g. ABAQUS [23] and ANSYS [24]. This 

simplifies the K calculation. Zhu [25] showed that the J-integral method in the ABAQUS determines 

accurate K values. In addition, ABAQUS adopted an interaction integral method [26] to calculate K.  

The numerical structural integrity analyses usually rely on the modeling of cracks within the FEM 

framework. The necessity of a mesh that adapts to the geometry of the component and also to the 

crack topology imposes some limitations, which entails into simplified models. However, some new 

techniques have been recently developed that allow the simplification of this kind of analysis. One 

of these techniques is the extended finite element method (XFEM) which enriches the FE 

approximation space with special functions that introduce the displacement discontinuity across the 

crack faces and the singular behavior associated with the crack front, and makes its analysis, up to 

a certain point, independent of the mesh [28-30]. Furthermore, XFEM has been implemented in the 
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commercial FE code ABAQUS [23]. It should be noted that due to the XFEM enrichments and the 

J-integral implementation some problems and inaccuracies have been reported [31-32]. 

This paper aims to compare different numerical methods for KI calculations. The interaction integral 

and field decomposition methods using XFEM are briefly analyzed. The displacement 

extrapolation, the stress extrapolation, the weight function method, the J-integral and the 

interaction integral methods are compared. The simulation is performed for 1T compact tension 

(CT) specimen, cube specimen containing a curved crack and a RPV model with ABAQUS by 

means of FE and XFEM methods. Both 2D and 3D models are compared. The main contributions 

are remarking the well-known applicability of the interaction integral for SIF computation especially 

for XFEM, and highlighting problems associated with the XFEM method that impose limitations on 

its accuracy. This study compares models and meshing techniques that correspond to practical 

examples. The convergence rate of the methods depends on the orientation between the crack 

and the element borders and the location of the crack within the elements [32, 33]. Thus, the focus 

of the study is on the applied methods, instead of convergence rate study.  

2. Numerical methods for KI calculation 

According to fracture mechanics theory, KI is a function of the far-field stress, the crack size, the 

shape and orientation of the crack, and dimensions of the geometry. The following introduces 

methods in ASTM and those used in FE codes for the calculation of SIF. 

2.1 KI calculated from ASTM geometric factor  

According to ASTM [31], KI for the CT specimen is calculated as 

2 3 4

3 2

2

0.886 4.64 13.32 14.72 5.6

(1 )

         
            

         
I

a

P a a a aWK
a W W W WB W

W

.            (1) 
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2.2 KI calculated from displacement distribution 

For a Mode I crack, the relationship between the displacement uy near the crack tip and the SIF is 

[12]: 

2I
y

K r
u sin [k 1 2cos ( )]

2G 2 2 2

 


   .                                                   (2) 

where k=3-4v for plane strain and k=(3- v)/(1+ v) for plane stress. 

Thus, SIF at θ=π (i.e. the crack faces) is expressed as 

I y
r 0

2G 2
K lim u

k 1 r





 
  

 
.                                                               (3) 

In a FE calculation, the displacement is calculated and used for SIF calculation in the vicinity of 

crack tip. The SIF is extrapolated from the displacement values at the crack faces in the vicinity of 

the crack tip. 

2.3 KI calculated from stress distribution 

For a Mode I crack, the relationship between the stress at the crack tip and the SIF at θ=0 is [12]: 

 I yy
r 0

K lim r, 2 r  


 
 

.                                                             (4) 

In a FE calculation, the stress is calculated and used for SIF calculation. KI is extrapolated by the 

stresses in the vicinity of crack tip. 

2.4 KI calculated from weight function method 

According to the weight function concept, if the weight function is known for a crack in a 

component, the SIF can be obtained by multiplying this function by the stress distribution and 

integrating it along the crack length [5, 6, 7]. If σ(x) is the normal stress distribution in the 

uncracked component along the prospective crack line of an edge crack (shown in Fig. 1), the SIF 

is given by: 

   
0

, I

a

IK x h x a dx .                                                             (5) 



 9 

The weight function h(x,a) does not depend on the special stress distribution, but only on the 

geometry of the component. One possibility to derive the weight function is the evaluation of 

numerically determined crack opening profiles which may be obtained by FE computations. The 

weight function method simplifies the modeling of the components (no need to model cracked 

components) and calculates SIF by using analytical equation. However, the precision is sometimes 

problematic. 

 

Fig. 1. One-dimensional crack model in weight function method. 

2.5 K calculated from J-integral method 

The J-integral can be used for the calculation of KI in linear elastic fracture mechanics. J-integral is 

given as [17] 

2 1[ ]i iJ dx T u ds


   ,                                                                (6) 

where ω is the strain energy density, Ti are components of the traction vector, ui are the 

displacement vector components and ds is the length along an arbitrary controur Γ. Rice showed 

that the J-integral is path independent. 

For linear elastic problems, J-integral equals to the energy release rate under a single mode 

condition. K can be calculated from J-integral according to the following equation 

'K JE ,                                                                           (7) 

where E’=E for plane stress, and E’=E/(1-ν2) for plane strain. 

In FEM codes, e.g. ABAQUS and ANSYS, the domain integral method [34] is used to calculate J-

integral. By using the divergence theorem, J-integral in Eq. (6) can be reformulated over a finite 

domain surrounding the crack tip as follows: 
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   j i ij

V

J q P d ,                                                                      (8) 

where Pij is the Eshelby’s tensor, which is defined as 

1

2
     ij kl kl ij jk j kP u ,                                                              (9) 

where ui is the displacement field, σij is the stress field, δij is the Kronecker’s delta function and qi is 

a vector which is zero on the contour of the extraction domain V and one at the point of the crack 

front where J is evaluated in a 3D problem. 

For a structure under proportional loading, good domain independence of J-integral is observed in 

different domains around the crack tip. Because J-integral is taken over a domain that usually 

includes several elements, local errors are minimized.  

Note that with J-integral, it is not possible to separate the different fracture modes KI, KII and KIII.  

2.6 KI calculated from interaction integral  

The interaction integral is used to extract the SIF under mixed mode situations [27], enabling the 

computation of KI, KII and KIII.. To achieve this goal, auxiliary fields are needed. The interaction 

integral is derived from the application of the J-integral to a problem where two stress fields are 

involved, resulting in the following decomposition 

 1 2 (1) (2)
  J J J I .                                                                (10) 

The term I corresponds to the interaction integral and includes the interaction between the two 

intervening fields. 

For a straight crack, the interaction integral is written as 

 aux aux aux

kl kl ij kj i k kj i k j i
V

I u u q d            .                                          (11) 

The fields denoted with the superscript aux are the auxiliary fields. Usually, the auxiliary fields are 

selected to be the straight crack fields, allowing the extraction of the different SIF modes. The 

fields ui, ij , qi and the Kronecker’s delta ij  are defined in the same way as in the J-integral, 

being εij the strain field. At a point of the 3D crack front, the SIF is 
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 

 I

I 2

C

E I
K

2 1 dc 


 
.    with  1

I

auxK ,
III

aux aux

IIK K 0                                  (12) 

 I
I indicates that the interaction integral is computed using an auxiliary field where only the 

corresponding mode is nonzero. In our case we only consider the existence of mode I.  

The interaction integral method has been implemented in ABAQUS to calculate KI, KII and KIII. 

2.7 Calculation of the elastic fields by XFEM  

XFEM was mainly developed to compute discontinuous and singular problems and also it 

simplifies the modeling of cracked structures and components. Therefore, XFEM can also be used 

for calculating SIF. The advantage of XFEM lies in the crack modeling, because no remeshing is 

needed in the crack growth problems and the crack path can be calculated. Discontinuities can 

also be within elements. The essential idea of XFEM is to use a displacement field approximation 

that can model any crack face discontinuity and the near crack-tip asymptotic stress field. As a 

consequence it is not necessary to modify the mesh to consider a specific crack; at most, 

moderate refinement must be introduced around the crack to achieve good accuracy. The method 

is based on the enrichment of the FE description with additional degrees of freedom (DOFs) that 

are associated with the nodes of the elements affected by the crack [28, 29, 30]. The displacement 

approximation for the extended finite element formulation used for crack modeling takes the form: 

4

XFEM i i i i i i

i I i J i K 1

( ) N ( ) N ( )H( ) N ( ) F ( ) 
   

 
    

 
   u x x u x x a x x b ,                          (13) 

where I is the set of all nodes in the mesh, Ni(x) are the nodal shape function and ui are the 

standard DOFs of node i (ui represents the physical nodal displacement for non-enriched nodes 

only). The subsets J and K contain the nodes enriched with the Generalized Heaviside function 

H(x) or the crack-tip functions Fα(x), respectively, and ai, biα are the corresponding DOFs. Fig. 2 

shows the enrichment method in XFEM.  
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Fig. 2. Enrichment method in XFEM. 

 

The solution of the elastic fields with this method can be used as input for any of the SIF extraction 

techniques reviewed above, although some techniques such as the domain integral methods are 

more suitable than others.  

3. KI analysis for CT specimen 

3.1 Specimens 

The CT specimen has been standardized by the ASTM for use in the experimental determination 

of the fracture toughness of metallic materials and is used in this study for KI calculations.  

A schematic diagram of a CT test specimen is shown in Fig. 3. Fig. 3(c) shows an example of the 

mesh and crack details for CT specimen using XFEM. A clevis and pin arrangement is used to hold 

the specimen. The precracked experimental specimen is modeled allowing the material fracture 

toughness to be determined in terms of KI or the J-integral.  

3.2 Modeling and mesh 

The linear elastic material constitutive properties are defined by the Young’s modulus E and 

Poisson’s ratio ν. The temperature-independent elastic modulus and Poisson’s ratio are assumed 

to be 200 GPa and 0.3, respectively.  
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FE simulations are conducted by ABAQUS 6.13. The 1T CT specimens having a thickness B of 25 

mm with the width W of 50 mm and the crack depth a to specimen width W ratio (a/W) of 0.5 are 

modeled. The displacement (0.3mm) is applied on a rigid pin in contact (frictionless) with the 

specimen and the applied load is obtained from the reaction force acting on the rigid body. 8-node 

brick elements and 20-node hexahedron elements are used in 2D and 3D models as shown in Fig. 

6. Plane strain is assumed in the 2D model. The total number of elements are 2500, 64000 and 

70000 for 2D, 3D FE and 3D XFEM models, respectively. Note that the element sizes in these 

models are about 0.02 mm around the crack front. J and KI are computed based on the domain 

integral using 20 contours and the interaction integral. In this FE calculation, it is observed that the 

last several contours give almost path independent values of KI and J-integral.  

 

    

(a)                                          (b) 
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                 (c) 

Fig. 3 Meshes for 2D and 3D CT specimens. (a) Mesh for 2D CT specimen with FEM, (b) mesh for 

3D CT specimen for FEM calculation and (c) mesh for 3D CT specimen for XFEM calculation. 

 

 

3.3 Modelling the crack tip singularity with Abaqus 

The stress field around the crack is characterized by a stress singularity at the crack tip [9]. The 

effect of singularity is proportional to 1 r  for elastic materials, where r is the distance from the 

crack front.  

In order to simulate the 3D stress singularity for elastic materials with FEM, a 20-node hexahedron 

(brick) element is used at the crack front but is converted to a wedge element (in ABAQUS it is 

called C3D20 element). By moving the mid-point nodes to the one-quarter point and keeping the 

nodes on the cracked face the singularity effect will follow the rule of inverse square root, i.e., 

1 r  for the crack front, hence avoiding the use of singularity elements in FEM. 
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3.4. Results 

      

(a)                                                      (b) 

 

                   (c) 

Fig. 4 2D and 3D models for the 1T specimen. (a) 2D model with FE method, (b) 3D model with 

FEM and (c) 3D model with XFEM method. 

 

The Von Mises stress distributions for the 2D and 3D CT specimens are shown in Fig. 4. A 

difference of stress distributions in these models can be seen especially at the crack tips, which is 

due to the mesh discretization. Even so, it is demonstrated in the following that KI from these 

models are in general agreement. The reason is that the domain integrals use and integrate results 

on an extraction region, which overcomes those local errors of stresses and strains. This is an 

advantage of the domain integral methods in calculating KI. 

By using the displacement extrapolation method, KI vs. r in the vicinity of the crack tip is computed 

for the 2D and 3D models and displacement extrapolation results for those models are shown in 
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Figs. 5 and 6. KI values are calculated by displacements at different r. Note that the extrapolations 

for the 3D model are made in the middle layer through the specimen thickness. From Figs. 5 and 

6, KI computed are 3487.4 and 3405.7 MPa mm0.5. In a similar way, KI is calculated using stress 

extrapolation methods, and the results are shown in Figs. 7 and 8 for 2D and 3D models. From the 

fitted equations, KI are 3372.4 and 3269.9 MPa mm0.5. 
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Fig. 5 KI calculated by displacement 

extrapolation method with 2D FE model. 

Fig. 6 KI calculated by displacement extrapolation 

method with 3D FE model. 

 

Fig. 7 KI calculated by stress extrapolation 

method with 2D FE model. 

Fig. 8 KI calculated by stress extrapolation 

method with 3D FE model. 
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In order to apply the ASTM method for KI calculation, the applied force P on the specimen should 

be obtained. By using Eq. (1), KI is calculated as 

2 3 4

5

I

0.

3 2

a
2

P a a a aWK 0.886 4.64 13.32 14.72 5.6
a W W W WB W (1 )
W

3620  MPa m

         
            

     



   

 .         (14) 

KI is also calculated by the J-integral and the interaction integral with 2D and 3D models. Results 

are compared in Figs. 9 and 10. It is seen that for the 3D models, KI varies along the thickness 

direction as the condition varies from higher constraint at the middle of the specimen to lower 

constraint near the free surfaces. Some oscillations in KI are observed with the XFEM method. This 

is due to the limitation of the enrichment function, and limitations with the integral implementation 

[31-32]. KI extraction from XFEM shows some differences from one side of the model to the other 

even on the symmetrical surfaces at different sides. This could be ascribed to derivatives used on 

the domain integral and to the limitation of the enriching functions. More reasons are still under 

discussion for the XFEM community. This behavior has been reported in different programs and 

with slightly different domain integral implementations. It constitutes the improvement of the 

domain integral implementation for avoiding or minimizing the oscillations. Therefore, the proper 

application of XFEM in fracture mechanics is a future research topic. The results from 

Fig. 9 KI solution by 2D and 3D models 

with FE methods. 

Fig. 10 KI solution by 2D and 3D models with FE 

and XFEM methods. 
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displacement and stress distribution methods are lower than those from interaction and J-integral. 

2D model results in a lower KI. Through the 3D model thickness, constraint loss occurs and thus 

plane strain condition does not hold along the crack front. We compare both the J and interaction 

integrals for KI calculation.  

It shall be noted that since in this study the meshes are relatively fine (average size 1.5 mm), a 

mesh sensitivity study is not performed.  

4. KI (J) analysis for curved crack in a cube  

In this Section, J-integral is computed with XFEM and FEM for a penny shaped crack in a cube. 

The comparison is performed using the analytical solution for this problem (e.g. [5]). For the penny 

shaped crack under remote loading in an infinite body, analytical solution of KI for this type of crack 

is 

I

a
K 2


 .                                                                        (15) 

The cube model has a width of 2b, length of 2b and height of b. The crack is located at the center 

of the cube and its radius is defined as b/5. The ratio between crack and body geometry allows the 

acceptance of the infinite domain assumption behavior. The analytical KI is converted to J-integral 

using Eq. (7). Note that the goal of the study is to show the oscillation of J-integral. The ratio of 

crack radius to cube half width is assumed not to be critical for the study. 

The meshes used in this Section are shown in Fig. 11. The XFEM model uses only symmetries in 

the x and y plane. The ABAQUS routine fails the crack definition if the symmetry plane lies on the 

crack plane. Thus the z-plane (crack plane) symmetry is not used. The XFEM mesh, as shown in 

Fig. 11 (a), is built with a regular linear hexahedrons 3D grid, with the element size of b/40. A mesh 

adapted to the crack geometry can be used to minimize the calculation error in the XFEM study. 

Fig. 11 (b) shows the mesh, adapted to the crack geometry and with the element size of b/200 at 

crack front. The FE model takes advantage of the symmetries in planes x, y and z, and 

consequently only one-eighth is considered, as shown in Fig. 11 (c). The FE mesh uses quadratic 

hexahedron and wedge elements. The elements along the crack front are quadratic wedge with a 
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size of b/200. The ring surrounding the crack is defined by a radius of b/10, and the approximate 

element size is h=b/100. 10 element rings are available for the domain integral computation.   

  

(a)                                        (b) 

  

          (c) 

Fig. 11 Meshes for cube specimen with curved crack (a) Mesh with XFEM method with 

hexahedron elements, (b) Mesh with XFEM with adapted mesh, (c) Mesh with FEM. 



 20 

 

(a)                                          (b) 

Fig. 12 Stress distributions and deformation for the cube specimen containing a curved crack (a) 

Model with XFEM model, (b) Model with FEM method. 

 

Fig. 12 shows the stress distribution and deformation shapes for the XFEM and FEM models. 

Difference of stress distributions between these two models exists. This is due to the mesh 

discretization, as described in Section 3.4. 

J-integral results along the crack front for the first 8 contours are shown in Fig. 13. J is calculated 

with XFEM and FEM and Ja is calculated analytically with Eqs. (15) and (7). It is seen that there is 

some oscillations with XFEM and in Fig. 13 (b) that an improvement in the J results can be 

observed with the adapted mesh in XFEM and also the oscillations almost disappear at crack 

points away from the border. However, the decrease of J when approaching to the boundary is not 

what is expected, because these boundaries are symmetrical, which should lead to non-

decreasing values. This may be due to the implementation of XFEM in ABAQUS. In comparison, it 

is shown in Fig. 13 (c) that with FEM, the last 7 contours result in the best convergence of J-

integrals. J-integral is considered in this comparison as it corresponds to a pure mode situation. 
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                 (c) 

Fig. 13 J-integral along the curved crack front (a) Results with XFEM method with hexahedron 

elements, (b) Results with XFEM with adapted mesh, (c) Results with FEM. 

 

Oscillation with XFEM can be ascribed to the effect of the relative topology between crack and 

mesh. This difference affects the definition of the contour ring, which varies from one location to 

another. Hence, the effective extraction domain shows oscillations as it is associated with the crack 

location. This effect can be observed in Fig. 14, where Sq and Rq define the theoretical width and 

height of the elements ring for each point of computation (P), whereas the actual extraction 

domains for the integral are shaded.  
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Fig. 14 Effective extraction domain definition. 

Fig. 15 compares the results of XFEM and FEM for the last contour ring (8th ring). In agreement 

with Fig. 13, it is shown that the XFEM case with a mesh non adapted to the crack geometry 

exhibits oscillations. Note that this is a comparison with very coarse mesh for XFEM and it’s not 

intended for industrial use. The results for the XFEM case with adapted mesh are comparable to 

the FE mesh, except at the surface border. The best results, as expected, correspond to the 

refined mesh in the FE approach. 
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Fig. 15 J/Ja for FEM, XFEM and XFEM with adapted mesh at the contour 8. 

From the above study, it is shown that the undesirable oscillation effect with XFEM can be 

minimized if a crack adapted mesh is used. It is also possible to compute the domain integrals 

using tetrahedron elements, which may improve the versatility of the XFEM method for 

complicated structures [33]. However, the analyst should be warned about strong oscillations that 

may appear in the results (this issue is not commented in the ABAQUS documentation). 
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5. KI analysis for a cracked reactor pressure vessel  

In this study, a RPV containing a crack is assumed to be subjected to pressurized thermal shocks 

initiated by a postulated medium loss-of-coolant transient. The history of the water temperatures, 

pressures and heat transfer coefficients between water and inner wall of the RPV for the transient 

are those in [4, 35]. The RPV has a radius of 1668.5 mm and thickness of 171 mm. A semi-elliptical 

surface crack with axial orientation is postulated in the RPV. The depth of the crack is 17 mm and 

the length is 102 mm. Thermal and structural analyses are performed for the whole transient. The 

thermal and stress analyses are treated as an uncoupled problem, meaning that the temperature 

field is firstly calculated, and stresses and strains are computed based on the thermal analysis. 

The thermo-mechanical properties of the base material and cladding at different temperatures are 

listed in Tab. 1. The mean coefficient of linear thermal expansion is used and the reference 

temperature, from which the total thermal expansion is defined, is 20 °C. 

 

 

 

By taking advantage of symmetry (boundary condition for structural mechanics analysis), one 

quarter of the RPV is modeled for the FEM calculation, as shown in Fig. 16. The temperature 

distribution through the vessel wall is obtained in the thermal analysis and is used for fracture 

mechanics analysis.  

The quadratic 20-node hexahedron (brick) element is used for the FE simulation. In order to 

 

Tab. 1. Thermo-mechanical properties of the base material and cladding of the RPV. 

 Base material Cladding 
Temperature [°C] 0 20 100 200 300 400 0 20 100 200 300 400 
Elastic modulus [103 MPa] 206 206 199 190 181 172 200 200 194 186 179 172 
Mean linear thermal expansion 
coefficient [10-6 °C-1] Tref=20 °C 

10.3 10.3 11.1 12.1 12.9 13.5 16 16 16 17 17 18 

Thermal conductivity [W/(m∙K)] 44.4 44.4 44.4 43.2 41.8 39.4 15 15 16 17 19 21 
Specific heat capacity [J/(kg∙K)] 450 450 490 520 560 610 500 500 500 540 540 590 

Density [103 kg/m3] 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 7.6 
Poisson’s ratio 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3 

Yield stress of the unirradiated material 
[MPa] 

 449           

Stress free temperature [°C] 280.3 
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simulate the stress singularity for elastic materials, the brick element is converted to a wedge 

element (it is called C3D20 element in ABAQUS). By moving the mid-point nodes to the one-

quarter point and keeping the nodes on the cracked face, the singularity effect will follow the rule of 

inverse square root, i.e., 1 r  for the crack front, as shown in Fig. 16. Mesh details for XFEM 

analysis is shown in Fig. 17. The XFEM mesh only uses linear hexahedrons, and is coarser that 

the FEM mesh. Furthermore, the XFEM mesh is only refined where the SIF is intended to be 

computed. 

 

               
 

 
 

Fig. 16. 3-D model of the beltline region of the RPV for FEM analysis. Due to the symmetry 

conditions, only one quarter of the model is considered. The R plane, RZ planes indicated with 
arrows are symmetrical planes. 
 

 
R 

Z 
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Fig. 17. Mesh details for XFEM analysis. 

 

Fig. 18 shows the mode I SIF vs. crack tip temperature (thermal shock history) for the whole 

transient. The SIFs calculated from FEM, weight function method and XFEM (by the interaction 

integral method, as it is not a pure mode I problem) are compared for the crack deepest point, 

where the maximum SIF is expected. Note that with weight function method, SIF is calculated 

based on 2D model. The results are quite similar for all cases, showing the good XFEM 

performance. Some differences may be due to the domain integral implementation of XFEM. 

However, the agreement between results from all the three methods at the position with maximal KI 

is rather good. Also the discrepancy seems to be acceptable in view of the additional uncertainties 

in the calculations which may lie in the transient itself, in the heat transfer coefficients and 

temperature distribution.  
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Fig. 18. Comparison of SIF calculated with conventional FEM and XFEM for an axial 

crack. 

6. Conclusions 

In this paper, five selected methods (displacement distribution, stress distribution, weight function 

method, J-integral, interaction integral) are applied to calculate and compare KI values by using the 

FE software ABAQUS. The selected methods are compared using the compact tension specimen. 

Results from FEM and XFEM calculations of a cube containing a curved crack and pressurized 

thermal shock load on a RPV are also compared. From the results, it can be concluded that:  

(1) The J-integral method and the interaction integral given by ABAQUS provide consistent K 

values with the one calculated by ASTM. Thus, they are appropriate methods to determine 

accurate K values for both 2D and 3D cracks. 

(2) The displacement and stress extrapolation method provide consistent results with reasonable 

accuracy. Both methods can be used for a SIF calculation once the stress and displacement 

distributions are available. KI values are lower than those with J-integral or interaction integral and 

similar to the surface values (lower constraint). 

(3) 3D model provides more accurate results than 2D models. The difference of stress distributions 

in 2D, 3D models using FEM and XFEM is due to the mesh discretization. However, KI from these 
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methods are in general agreement. 

(4) XFEM shows advantages in modeling crack and provides reasonable results. The KI values 

along the crack front showed oscillations, which may be due to the limitation of the enrichment 

function, and limitations of the energy release integral implementation and the extraction domains. 

The oscillations can be decreased by using the adapted mesh at the crack tip. XFEM is 

recommended in modeling complicated cracks and structures. However, care should be given to 

the oscillation of the results. 

(5) With J-integral, it is not possible to separate KI, KII and KIII. However, this disadvantage can be 

solved by using the interaction integral method. The interaction integral is the most consistent 

method. 

It is concluded that KI from different methods applied to the considered models are in general 

agreement. The better results are obtained from the domain integrals. The reason is that the 

integrating over a domain minimizes and overcomes the local errors of stresses and strains, since 

the FEM is based on weak forms and behaves better over domains. This is an advantage of the 

domain integral methods in calculating KI. 

XFEM has demonstrated its advantage in modeling multiple complicated cracks, e.g. the quasi-

laminar indications detected at Doel 3 and Tihange 2 nuclear power plants during the 2012 outage 

[36, 37]. The observed indications could be attributed to hydrogen flaking induced during the 

vessel manufacturing process. These kinds of flaws have not yet been documented in ASME code 

and not were analyzed before. We performed Integrity assessment of a RPV containing multiple 

laminar flaws using XFEM, as referred in [38]. However, there are still some discussions with 

XFEM, especially for curved and non planar cracks, which makes its applications only 

recommended when no other method is feasible. 
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Highlights: 

 

The accuracy of different numerical methods of SIF calculation is compared 

XFEM method shows advantages in modeling crack 

XFEM shows oscillations due to extraction domains for J and interaction integrals 

The best results are with domain integrals using a FEM solution with a refined mesh 

 


