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Abstract: 

Yb3+ doped ZnO/MgO nanocomposite were prepared by combustion synthesis method. The samples 

were further heated to 1000 ºC to improve their crystallinity and photoluminescent efficiency. The 

concentrations of Yb3+ and Mg2+ were varied between 1 to 2% and 5 to 70% respectively in prepared 

samples. The nano-powders were characterized by Scanning Electron Microscopy and X Ray 

Diffraction for morphology and structural determination. XRD studies have revealed the wurtzite 

structure for MgxZn1–xO for Mg concentrations below 30 %. Higher concentrations of Mg results in 

Yb3+ doped ZnO/MgO nanocomposite containing three phases; the wurzite hexagonal phase typical of 

ZnO,  the cubic phase of MgO and a small amount of cubic Yb2O3 phase. As expected, the amount of 

cubic phase in nano-powders increased with the increase of Mg concentration in ZnO. The crystallite 

size of ZnO/MgO composites decreased from 55 nm to 30 nm with increase of Mg content. SEM 

images of Yb3+ doped ZnO/MgO nanocomposite with higher Mg content (> 50%) showed clearly 

distinct hexagonal and cubical shaped nano-particles.  Photoluminescent emission   showed a broad 

band in the range (435 nm to 700 nm). Pure ZnO nano-phosphor showed an emission peak around 545 

nm, which is blue shifted with Mg content. The photoluminescence intensity increased with increase of 

Mg content in ZnO and it became maximum with 30% Mg concentration. Time resolved decay curves 

of photoluminescence indicated decay time in microsecond time scale.   

Keywords: ZnMgO, Yb doping, Combustion method, Photoluminescence, Nanocomposites. 
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1. Introduction 

ZnO is a versatile material and used widely as a semiconductor with a wide band gap of 3.3 eV at room 

temperature. ZnO has numerous applications in many fields like solar cells, piezoelectric transducers, 

phosphors, chemical and gas sensors. In a wide gap semiconductor, the addition of anionic or cationic 

impurities often induces appreciable changes in its electrical and optical properties. Various ZnO 

nanostructures doped with different elements (e g. Al, Ga, In, Co, Sb) has been synthesized by several 

investigators [1-4]. The band gap energy of ZnO can be further increased by doping with Mg2+ to 

produce a ternary semiconductor like MgxZn1–xO or a mixed oxide as ZnO/MgO [5]. Since the atomic 

radii of Zn2+ (0.6 Å) and Mg2+ (0.57 Å) are similar [6], the substitution between these two atoms in the 

structure does not change the lattice constant of MgxZn1–xO significantly but causes a substantial 

change in optical and electronic properties of ZnO. In addition, the crystal defect structure of ZnO can 

be minimized by doping with Mg2+ [7]. 

However, fabrication of MgxZn1–xO is practically limited because of the demarcated solubility of MgO 

in ZnO. On the basis of the phase diagram of ZnO and MgO binary systems, the thermodynamic solid 

solubility of MgO in ZnO is less than 4% since the crystal structure of MgO (cubic, a = 4.24 Å) and 

ZnO (hexagonal wurtzite, a = 3.24 Å and c = 5.20 Å) are different [8, 9]. The production of an enlarged 

band gap in MgxZn1–xO with the replacement of Zn2+ species with Mg2+ has however been achieved by 

some groups using a variety of techniques including pulsed laser deposition (PLD), molecular-beam 

epitaxy (MBE), metalorganic vapor-phase epitaxy (MOVPE), magnetron sputtering, sol–gel, chemical 

vapor deposition, and electron beam evaporation [10-13]. 

Up to 33% of Mg solubility in ZnO has been reported in reference [14]. The Mg doping can be 

increased further and up to 67% at high temperature and pressure [15]. It has been predicted that the 

high temperature microwave assisted combustion route leads to a wurtzite phase even for a large Mg 
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concentration (80 %) in ZnO samples [16]. Mg doped ZnO nanostructures have been prepared by 

various methods i.e. nanowires, ZnO/MgZnO quantum wells by PLD [17-18], nanorods, nanowires and 

dendritic nanostructure by thermal evaporation [19-20]. Red luminescence is produced when ZnO is 

doped with Li, Na, Bi or Cu [21-22]. However, no attempts have been made to fabricate 

nanocrystallites of the mixed oxides MgxZn1–xO doped with Yb3+ to observe the down conversion or 

down shifting property due to Yb3+ at about 980 nm. It is expected that a thin layer of this material over 

solar cell will enhance the conversion efficiency of the cell.   

In the present work, we report on a simple approach to develop tuned band gap MgxZn1–xO: Yb3+ nano-

powders with different Mg2+ content via combustion synthesis method. The combustion synthesis 

method had been earlier used by us to prepare phosphor materials consisting of ZrO2, BaZrO3 and 

MLn2O4 (M=Ba or Sr, Ln=Gd or La) doped with Eu3+ and Tb3+ ions [23, 24]. This method provides an 

interesting alternative over other elaborated techniques because it offers several attractive advantages 

such as: simplicity of experimental set-up; surprisingly short time between the preparation of reactants 

and the availability of the final product; and being cheap due to energy saving. The main point of this 

method is the rapid decomposition of the rare earth nitrate in the presence of an organic fuel. During 

the reaction, many gases, such as CO2, N2, NO2 and H2O as well as a large amount of heat are released 

in a short period of time before the process terminates with white, foamy and crisp products. Many 

times final products are found to be composed of nanosized particles [25]. 

    A systematic study of the effect of Mg2+ and Yb3+ content on morphology, crystalline microstructure, 

and optical properties on MgxZn1–x-yO: Yby
3+ nano-powders are investigated by using various analytical 

techniques. The results from this investigation show that MgxZn1–x-yO: Yby
3+  nanocrytallites exhibit 

higher crystalline defect structures than ZnO nanocrystallites and enhanced optical properties, 
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rendering them as promising nanostructured materials for potential use in optoelectronic devices. The 

effect of ytterbium doping in MgxZn1–xO phosphor has also been analyzed. 

2. EXPERIMENTAL 

 High purity [Mg (NO3)2], [Zn (NO3)2], [Yb (NO3)3] and urea from Sigma Aldrich were used as starting 

material. The calculated amount for the formation of Mg(x) Yb(y): Zn (1-x-y) O: complex were taken and 

mixed with a calculated amount of urea and a paste material was prepared. The paste of mixture was 

transferred to preheated furnace at 600 ºC. The urea amount was calculated using total oxidizing 

reducing valences [25]. At high temperature the material undergoes rapid dehydration, combustion and 

a voluminous solid is formed with the generation of combustible gases. The solid obtained is again 

annealed at 1000 ºC for 3 h to increase the crystalline character.  

The morphology of the crystals was studied by scanning electron microscope (SEM) using JEOL 

JSM6300 model operating at 10 kV. Photoluminescence (PL) experiments were performed in 

backscattering geometry using a He–Cd laser (325 nm) with an optical power of 30 mW for excitation. 

The emitted light was analyzed by HR-4000 Ocean Optics USB spectrometer optimized for the UV–

Vis range. For photoluminescence measurements and decay lifetimes, 0.05 g powder samples were 

pressed into pellets (10 mm diameter and 1 mm thickness) and then exposed to a 325 nm He-Cd laser. 

All measurements were carried out at room temperature. The structural characterization was performed 

by high resolution X-ray diffraction (XRD) using Rigaku Ultima IV diffractometer in the T��T 

configuration and using Cu KD radiation (1.54184 Å). 
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3. Result and Discussion 

3.1 XRD studies  

XRD patterns of Yb3+ doped ZnO/MgO nanocomposites synthesized by combustion method at 600 ºC 

and further annealed for three hours at 1000 °C are shown in Fig. 1a, which shows the presence of 

wurtzite ZnO peaks, cubic MgO peaks and also Yb2O3 peaks in the detection limit. The crystallite size 

of the Yb3+ doped ZnO/MgO composites was estimated by Scherrer equation to be ∼29–53 nm. The 

crystallite size decreases with the increase of Mg content (Fig. 1b), but not in a regular manner. For the 

samples prepared with 20% Mg or more, ZnO and MgO phases were clearly identified by the presence 

of wurtzite ZnO (1 0 1), (1 0 0), (0 0 2) [JCPDS Card No. 36-1451] and cubic MgO (1 1 1), (2 0 0), 

(2 2 0) [JCPDS Card No. 4-0829] and Yb2O3 diffraction peaks [JCPDS Card No.00-041-1106]. The 

peaks due to Yb2O3 phase are very small but definite.  This fact indicates that the synthesized product 

was not a single phase but a composite. Strong evidence of incorporation of MgO in ZnO phase, 

however, comes from the fact that (0 0 2) XRD peak shifted to higher angles (2θ) from 34.43 for ZnO 

to 34.63 (Fig. 1c) for ZnO/MgO composite (70 mol% Mg). This indicates shortening of c-axis length 

by 0.58%, as also reported by many authors due to incorporation of Mg in wurtzite ZnMgO lattice [26-

30]. Small change in lattice parameter is probably due to similar ionic radius of Zn2+ (0.60 Å) and Mg2+ 

(0.57 Å). Energy Dispersive X-ray Analysis (EDAX) of Yb3+ doped ZnO/MgO nanocomposites (Table 

1) shows that the samples having > 10% Mg doping are deficient in Zn. The results not only indicate 

incorporation of Mg in ZnO lattice but also the manifestation of the high vapour pressure of Zn at high 

temperature [2, 30-31]. Zinc evaporation happens at temperatures exceeding 400 °C as melting point of 

zinc is 419 °C and zinc can be desorbed more easily than Mg at high growth temperature. Hence, from 

EDAX and XRD results, we can say that the prepared samples are ZnMgO alloy with some segregated 

cubic MgO phase at higher Mg concentration. The presence of Yb2O3 phase in all ZnO/MgO 



6 
 

composites indicates the difficult incorporation of even 1% Yb3+ in ZnO phase. Photoluminescence 

studies have also confirmed the same fact (Section 3.3).    

3.2 SEM micrograph analysis 

A representative SEM micrographs of Yb3+ doped ZnO/MgO composite with 5, 10, 20, 30, 50 and 70% 

Mg is shown in Fig. 2. It shows that the particles with low Mg content have severe aggregation but still 

appear to be hexagonal, ellipsoid and spherical in shape on an individual basis. The particle size of 

samples increases with the increase of Mg content. The sample 5e and 5f have larger particle size with 

distinct hexagonal and cubical shaped morphology with good crystalline quality.  

 3.3 Photoluminescence properties  

The PL spectra of ZnO/MgO nanocomposites doped with Yb (1% or 2%) were measured with a U .V. 

excitation source of 325 nm and are presented in Fig. 3 a, b. All the samples with different 

compositions of Mg from 5% to 70% show a broad visible luminescence band. The intensity of band is 

maximum for ZnO/MgO (30% Mg, 1% Yb).  The undoped ZnO shows a broad band at band maximum 

545 nm. When Mg (5%) and Yb (1%) are doped in ZnO there is a blue shift in the emission band and 

the band maximum shifted from 545 to 516 nm. Further increase of Mg content results in a gradual red 

shift of PL peak, which shifts from 532 nm in ZnO/MgO (20% Mg, 1% Yb) to 538 nm in ZnO/MgO 

(30% to 70% Mg, 1% Yb). The PL spectrum of pure ZnO is related to the intrinsic defect in ZnO 

crystal. During the synthesis of material some defects, such as oxygen vacancies or interstitial zinc or 

zinc vacancies may appear in the lattice, which is the origin of visible emission [32-33]. As EDAX 

analysis has shown that Yb3+ doped ZnO/MgO nanocomposites samples with 5% and 10% Mg are 

deficient in oxygen content, some defects such as oxygen vacancies (V0) or interstitial zinc (Zni) may 

appear in the samples, but nanocomposites having Mg content >10% are deficient in zinc hence many 

zinc vacancies (VZn) exist in nanocomposites and they can act as acceptor centres. The transition of an 
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electron from the conduction band or a shallow level close to conduction band to an empty state in VZn 

or defect level about 2 eV below the conduction band would give rise to visible emission in ZnO/MgO 

nano composite. This shallow donor may be Zn or Mg in interstitial position. The position of emission 

peak in oxygen deficient samples shifts to a shorter wavelength (516 nm) and it is gradually red shifted 

with Zn deficient samples (539 nm). It is the manifestation of the fact that the separation between 

defect levels in oxygen deficient samples is more than that of Zn deficient composites.  As Mg content 

is more than stoichiometric amount of Mg, in Zn deficient composites, interstitial Mg (Mgi) might be 

forming shallow donor states. In pure ZnO, green emission at 545 nm is mostly believed to arise from 

oxygen vacancy related defect centres. One possible mechanism could be recombination between Zni 

and oxygen vacancy/antisite oxygen. As Zni is fewer in number, PL intensity is very small. In Yb3+ 

doped ZnO/MgO nanocomposites, as number of Mgi defect increases, intensity of emission increases 

due to Mgi/VZn recombination. The process reaches its optimum value in 30 mol% Mg above which 

MgO phase probably separates. PL emission characteristics for 50 and 70 mol% Mg in ZnO/MgO 

nanocomposites, remain the same but with diminished intensity as can be seen from Fig. 3a. Gaussian 

fitting results of PL spectra of Mg0.30 Zn0.69Yb0.01O composition are shown in Fig. 3c. The PL band 

shows three peaks situated at 507, 553, 592 nm. These three peaks are attributed to oxygen vacancies in 

ZnO crystal lattice [34]. The oxygen vacancies are influenced by the particle size. When the particles 

size increases the surface defects are reduced due to decrease in surface area. Thus photoluminescence 

decreases. This may have happened in the compositions Mg0.50 Zn0.49Yb0.01 O and Mg0.70 

ZnO0.29Yb0.01O  because their particles size are bigger than the other compositions (Fig. 2 e, f) so the 

intensity of these compositions are very low. The other reason for decrease in photoluminescence 

intensity with increase in Mg content could be the formation of heterojunction of ZnO/MgO [35]. 
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It may be observed from Fig. 3b that increase of Yb3+ doping has little effect on the position of 

emission band but it affects PL intensity. 5% Mg doping in ZnO causes increase of PL intensity with 

blue shift. 1% Yb with 5% Mg doping in ZnO enhances PL emission but it decreases to half with 2% 

Yb doping. Probable reason may be the increase of defects with introduction of trivalent Yb in place of 

bivalent zinc. At least one defect will be created in the lattice with the introduction of a Yb3+ in place of 

Zn2+, but the 2% Yb doping seems to causing concentration quenching or radiation less recombination 

of defects. 

It has been shown [36, 37] that Yb3+ doped ZnO in glass and glass ceramics, an emission band near 

1000 nm coming from the Yb3+: 2F5/2 → 2F7/2 transition and an intense blue emission band ranging from 

300 to 500 nm related to ZnO defect are observed. Moreover, the excitation bands of the blue emission 

overlapped with the excitation bands of Yb3+, giving the evidences of energy transfer between the ZnO-

related defects to Yb3+. In the glass ceramic containing ZnO nanocrystals, the excitation bands of Yb3+ 

were located at near-UV-blue region, with peak at 390 nm. Excited by 390 nm, intense yellow emission 

at about 590 nm and near-IR emission around 1000 nm of Yb3+ were observed. The yellow emission, 

involved in the recombination of the excited electrons and deeply trapped holes, was usually obtained 

in ZnO crystals or films that were prepared under oxygen-rich conditions [38-40]. Similar energy 

transfer between ZnO and Yb3+ has been reported in ZnO-LiYbO2 phosphor [41], in which Li+ related 

defects enabled higher energy transfer efficiency between ZnO and Yb3+. We were also expecting 

similar behavior of energy transfer in Yb3+ doped ZnO/MgO nanocomposites to obtain an intense peak 

near 1000 nm corresponding to Yb3+: 2F5/2 → 2F7/2   transition. Of course a weak emission peak in 

Mg0.05Zn0.94O:Yb3+
0.01 nanocomposite (Fig. 3b) confirms the energy transfer from ZnO/MgO lattice 

defects transitions to Yb3+: 2F5/2 → 2F7/2 transition. But its low conversion efficiency put a question 

mark to use them as a down-conversion material in solar cells. Absence of emission peak near IR 
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region in other Yb3+ doped ZnO/MgO compositions with Mg>5% and Yb>1% doping indicate 

interference of Mg2+ and Yb3+ for efficient energy transfer.  

The decay curves for Yb3+ doped ZnO/MgO nanocomposites are shown in Fig. 4. The decay curves 

clearly showed that the decay time of Yb3+ doped ZnO/MgO nanocomposites with 1% Yb and 10, 20, 

30 % Mg concentration (Samples labelled as B4A, B5A and B6A in Table 1 and Figure 4) is almost 

same and it is in the range of milliseconds. The decay curves could be fitted in to single exponential 

decay. The time resolved decay measurements suggested that the photophysical processes in ZnO/MgO 

nanocomposites include excitation of charge carriers followed by redistribution in trap states and 

subsequent recombination in time scale of tens to hundreds of μs (Fig. 4). The measured luminescence 

decay times for the measured samples are in the range 93-125 microseconds as displayed in the inset of 

Fig. 4.  

Conclusion  

Yb3+ (1% or 2%) doped ZnO/MgO nanocomposites up to 70% Mg were prepared by combustion 

synthesis method. XRD studies reveal the presence of wurtzite structure of MgxZn1–xO phase below 

30% Mg concentrations. Higher concentrations of Mg results in several crystalline phases in Yb3+ 

doped ZnO/MgO nanocomposites with the wurzite phase of ZnO, the cubic phase of MgO and a small 

amount of cubic phase of Yb2O3. The crystallite size of ZnO/MgO composites decreased from 55 nm to 

30 nm with increase of Mg content.  SEM images of Yb3+ doped ZnO/MgO nanocomposites with 

higher Mg content (> 50%) showed clearly distinct hexagonal and cubical shaped nanoparticles with 

larger size and a good crystalline quality.   

Photoluminescent green emission in Yb3+ doped ZnO/MgO nanocomposites increases up to 30% with 

Mg doping, then there is a gradual decrease of intensity with increase of Mg concentration. This fact 

has been assigned to the segregation of Mg over the ZnO particles. Oxygen deficient Yb3+ doped 
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ZnO/MgO nanocomposites are blue shifted to greater extent than that of Zn deficient composites. The 

enhancement of luminescence is also associated with a fast decay component, which could be due to 

large number of traps created in the high Mg (up to 30%) ratio nanocomposites. A weak emission peak 

in Mg0.05Zn0.94O:Yb3+
0.01 nanocomposite confirms the energy transfer from ZnO/MgO lattice defects 

transitions to Yb3+: 2F5/2 → 2F7/2 transition. But its low conversion efficiency put a question mark to use 

them as a down-conversion material in solar cells.     
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FIGURE CAPTIONS 

Fig. 1a.  XRD pattern of Mg2+: Yb3+: ZnO nanophosphor powder (a) Mg(5%)Yb(1%):ZnO, (b) 

Mg(10%)Yb(1%):ZnO, (c) Mg(20%)Yb(1%): ZnO, (d) Mg(30%)Yb(1%):ZnO, (e) Mg(50%)Yb(1%):ZnO, (f) 

Mg(70%)Yb(1%):ZnO. 

Fig. 1b. The variation of crystallite size in Yb3+ doped ZnO/MgO nanocomposites calculated from 

Scherrer equation. 

Fig. 1c. Position of 002-diffraction peak of ZnO in Yb3+ doped ZnO/MgO nanocomposites. 

Fig. 2. SEM images of Yb3+ doped ZnO/MgO nanocomposites: (a) Mg(5%)Yb(1%):ZnO, (b) 
Mg(10%)Yb(1%):ZnO, (c) Mg(20%)Yb(1%): ZnO, (d) Mg(30%)Yb(1%):ZnO, (e) Mg(50%)Yb(1%):ZnO, (f) 
Mg(70%)Yb(1%):ZnO. 

Fig. 3a. PL emission spectra ZnO: Mg2+: Yb3+  nanocomposites. 

Fig. 3b. PL emission spectra of ZnO: Mg2+: Yb3+ nanocomposites.    

Fig. 3c. Gaussian fitting of Photoluminescence emission peak of ZnO/MgO (30%Mg, 1%Yb) 

Fig. 4.   Time decay luminescence curve of Yb3+ doped ZnO/MgO nanocomposites.  
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Fig. 1a.  XRD pattern of Mg2+: Yb3+: ZnO nanophosphor powder (a) Mg(5%)Yb(1%):ZnO, (b) 

Mg(10%)Yb(1%):ZnO, (c) Mg(20%)Yb(1%): ZnO, (d) Mg(30%)Yb(1%):ZnO, (e) Mg(50%)Yb(1%):ZnO, (f) 

Mg(70%)Yb(1%):ZnO 
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Fig. 1b. The variation of crystallite size in Yb3+ doped ZnO/MgO nanocomposites calculated from 

Scherrer equation. 
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Fig. 1c: Position of 002 diffraction peak of ZnO in Yb3+ doped ZnO/MgO nanocomposites. 
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Fig.2 SEM analysis of Yb3+ doped ZnO/MgO nanocomposites: (a) Mg(5%)Yb(1%):ZnO, (b) 
Mg(10%)Yb(1%):ZnO, (c) Mg(20%)Yb(1%): ZnO, (d) Mg(30%)Yb(1%):ZnO, (e) Mg(50%)Yb(1%):ZnO, (f) 
Mg(70%)Yb(1%):ZnO. 
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Fig. 3a. PL emission spectra ZnO: Mg2+: Yb3+  nanocomposites 
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Fig. 3b. PL emission spectra of ZnO: Mg2+: Yb3+ nanocomposites    
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Fig. 3c. Gaussian fitting of Photoluminescence emission peak of ZnO/MgO (30%Mg, 1%Yb). 
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 Fig. 4: Time decay luminescence curve of Yb3+ doped ZnO/MgO nanocomposites.  
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TABLES 

Table 1: Stoichiometric composition and as calculated from EDAX analysis of Yb3+ doped ZnO/MgO 
nanocomposites. 

  

Starting composition in the initial 
mixture (Atomic %)  

Final composition according to 
EDAX measurements (Atomic %) 

Sample 
id Composition O Zn Mg Yb TOTAL O Zn Mg Yb TOTAL 

B1A Mg(5%)Yb(1%)Zn(94%)O 50 47.0 2.5 0.5 100.0 45.3 49.1 4.3 1.3 100.0 

B4A Mg(10%)Yb(1%)Zn(89%)O 50 44.5 5 0.5 100.0 48.7 42.1 7.6 1.6 100.0 

B5A Mg(20%)Yb(1%)Zn(79%)O 50 39.5 10 0.5 100.0 50.0 34.8 14.0 1.2 100.0 

B6A Mg(30%)Yb(1%)Zn(69%)O 50 34.5 15 0.5 100.0 50.4 27.7 21.1 0.8 100.0 

B7A Mg(50%)Yb(1%)Zn(49%)O 50 24.5 25 0.5 100.0 52.6 8.9 37.8 0.7 100.0 

B8A Mg(70%)Yb(1%)Zn(29%)O 50 14.5 35 0.5 100.0 51.3 6.2 42.1 0.4 100.0 
 

 

 

 


