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Stabilization of positive linear continuous-time systems
by using a Brauer’s theorem
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Abstract. In this paper we study the stability property of positive linear
continuous-time systems. This property is useful to study the asymptotic be-
havior of a dynamical system and specifically, in positive systems. Stabilization of
linear systems using feedbacks has been deeply studied during the last decades.
Motivated by some results, in this paper we find conditions on the system such
that the eigenvalues of the closed loop system are in the open left half plane of
the complex plane C. We do this by applying a Brauer’s theorem.
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1. Introduction

Positive systems are often found in the modeling of biology, hydrology, en-
gineering and industrial processes whose variables represent quantities that
don’t make sense unless they are nonnegative; for example, time in stochastic
game algorithms, money and goods in Leontief model, data packets flowing
in a network, quantity of bacteria in a epidemiological model, etc. (see for
example [2, 12] and the references therein). The practical importance of these
systems is widely visible, as the nonnegative property occurs quite frequently
in numerous applications and in nature [9].

Stability is one of the most important topics discussed in control systems
and it is not different for the case of positive systems. The use of state-
feedbacks for the stabilization of linear systems has been considered during the
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last decades. For example, a feedback stabilization for linear time-invariant
control systems with saturating quantized measurements is given in [4, 6].

It is known that the results obtained for linear systems cannot be applied
to positive linear systems. Note that the theory of positive systems is more
complicated by the nonnegativity restrictions. Nevertheless there are several
papers on positive systems. For example, the evolution of the disease in an
epidemiological model is treated in [1], the study of reachability and controlla-
bility properties is carried out in [7, 10] and a survey of the topics on positive
systems is given in [11].

In this paper we consider a linear continuous-time system. It is known that
a linear system is said to be positive if for every nonnegative initial state and
for every nonnegative control sequence its trajectory is nonnegative [9]. This
system is asymptotically stable if and only if the real parts of all eigenvalues
of the state matrix A are negative. A linear continuous-time invariant system
(LTI) is exponentially stable if and only if the system has eigenvalues with
strictly negative real parts [13].

In [5] we use an application of a Brauer’s theorem to stabilize a SISO
positive linear discrete-time system. In this paper, we give a condition to
stabilize a positive continuous-time system using a state-feedback. That is,
we find conditions on the system such that the eigenvalues of the closed loop
system are in the open left half plane of the complex plane C.

From now on the following notation will be used. The set of n × m
real matrices with nonnegative entries will be denoted by Rn×m

+ , therefore
A = [aij ] ∈ Rn×m

+ if all its entries are nonnegative, i.e. aij ≥ 0 for i =
1, . . . , n; j = 1, . . . ,m. A real square matrix M = [mij ] ∈ Rn×n is called
Metzler matrix if all its off-diagonal entries are nonnegative, i.e. mij ≥ 0,
with i 6= j. The set of n×n Metzler matrices will be denoted byMn. Finally,
the identity n× n matrix will by denoted by In.

The paper is organized as follows: in Section 2 spectral properties of
Metzler matrices are considered and the problem is presented. In Section
3 some conditions to stabilize a positive linear continuous-time system are
obtained. Finally, the conclusions and remarks are in Section 4.

2. Positive linear continuous-time system

It is well known that Metzler matrices are connected with positive continuous-
time dynamical systems. In addition, the spectrum of the state matrices plays
an important role in the behaviour of the positive dynamical systems.

We recall the definition of a positive linear continuous-time system (see,
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for instance, [11]). Consider the system described by the following equation

ẋ = Ax+ bu. (1)

The system (1) is positive if and only if for any initial condition x0 ∈ Rn
+ and

every control vector u ∈ Rm
+ , we have the state vector x ∈ Rn

+. The system
(1) is positive if and only if the state matrix A = [aij ] ∈ Mn and the control
matrix b = [bi] ∈ Rn×m

+ .

Metzler matrices have some interesting properties and in this paper we
show some useful properties for our study (for more information see [14]).

Let ρ(A) = max {|λ| ; λ ∈ σ(A)} be the spectral radius of the matrix A
and let µ(A) = max {Reλ; λ ∈ σ(A)} be the growth constant of A. Now, we
give the following result.

Proposition 1 [15] Consider A ∈Mn. Then

(i) µ(A) is an eigenvalue of A and there exists a nonnegative eigenvector
x ≥ 0, x 6= 0, such that Ax = µ(A)x.

(ii) If λ 6= µ(A) is any other eigenvalue of A then Reλ < µ(A).

(iii) Given α ∈ R, there exists a nonzero vector x ≥ 0 such that Ax ≥ αx if
and only if µ(A) ≥ α.

(iv) For some t ≥ 0, (tIn − A)−1 exists and it is nonnegative if and only if
t > µ(A).

A system (1) is stable if the state matrix A is a Hurwitz matrix. Recall
that a matrix A ∈ Rn×n is Hurwitz or stable if all the eigenvalues of A are in
the open left half of the complex plane C.

From now on we consider that the system (1) is not stable and we give
some conditions in order to construct a state-feedback F ∈ Rn×1, for the
control law

u = −F Tx,

such that the closed-loop system

ẋ = (A− bF T )x

be positive and asymptotically stable. That is, the closed-loop matrix A−bF T

would be Metzler and Hurwitz.
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3. Stabilization problem

In this section we present our main results to solve the stabilization problem
presented in Section 2. To that end, we consider the Brauer’s Theorem that
gives the relationship among the eigenvalues of an arbitrary matrix A and the
updated matrix Ā by a rank-one additive perturbation.

Theorem 1 [16] Let A be an n × n arbitrary matrix with the eigenvalues
σ(A) = {λ1, λ2, . . . , λn}. Let xk be an eigenvector of A associated with the
eigenvalue λk, and let q be any n-dimensional vector. Then, the matrix Ā =
A+ xkq

T has the eigenvalues {λ1, . . . , λk−1, λk + xTk q, λk+1, . . . , λn}.

This theorem was used in [3] to stabilize control systems, including the
case when the system is noncontrollable.

Proposition 2 [3] Consider the pair (A, b) that represents a single-input single-
output linear time invariant control system. Let σ(A) = {λ1, λ2,. . . ,λn} and
let xk be an eigenvector of AT associated with λk. If bTxk 6= 0, then there exists
a vector F such that σ(A+ bF T ) = {λ1, . . . , λk−1, λk + xTk b, λk+1, . . . , λn}.

Using these results we solve the stability problem for the system (1). With-
out loss of generality, we consider that λ1 is an eigenvector of the state matrix
A such that Reλ1 ≥ 0.

Proposition 3 Consider the positive linear continuous-time system given by
(1). Let x1 ∈ Rn×1 be an eigenvector of A associated with the eigenvalue λ1.
If there exists α ∈ R, with F = αx1, for the control law

u = −F Tx,

the closed-loop system
ẋ = (A− bF T )x

satisfies the following conditions:

a) b̂ = bTx1 6= 0,

b) for each row of A with zero elements, the corresponding element of the
vector b is equal to zero,

c) and

max

{
−aij
bixT1j

}
i 6= j
i 6= 0

≤ α < −ρ
b̂
,

i = 1, . . . , n, j = 1, . . . , n, bix
T
1j
6= 0.
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then the closed-loop system is positive and asymptotically stable.

Note that the first assumption of the above Proposition is needed only to
assure the change of an specific eigenvalue. Otherwise no eigenvalue changes.
When this condition holds for all eigenvectors of AT , then it is said that the
pair (A, b) is completely controllable and, in this case, the solution of the
system (1) is unique [8].

4. Conclusions

In this paper we apply a statistics result proved by A. Brauer to solve the
stabilization problem of a positive linear continuous-time system. For that,
we use a state-feedback and give some sufficient conditions for the matrices
that characterize the control system. Note that the result does not only include
the asymptotically stabilization but also the positivity conditions.
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