
 

Document downloaded from: 

 

This paper must be cited as:  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The final publication is available at 

 

 

Copyright 

 

Additional Information 

 

http://dx.doi.org/10.1039/c6cy00040a

http://hdl.handle.net/10251/81753

Royal Society of Chemistry

Rutkowska, M.; Macina, D.; Piwowarska, Z.; Gajewska, M.; Díaz Morales, UM.; Chmielarz,
L. (2016). Hierarchically structured ZSM-5 obtained by optimized mesotemplate-free method
as active catalyst for methanol to DME conversion. Catalysis Science and Technology.
6(13):4849-4862. doi:10.1039/c6cy00040a.



Journal Name  

ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 1  

Please do not adjust margins 

Please do not adjust margins 

1Jagiellonian University, Faculty of Chemistry,  Ingardena 3, 30-060 Kraków, Poland 
2AGH University of Science and Technology, Academic Centre for Materials and 
Nanotechnology, Mickiewicza 30, 30-059 Kraków, Poland 
3 Instituto de Tecnología Química, UPV-CSIC, Universidad Politécnica de Valencia, 
Avenida de los Naranjos, s/n, 46022 Valencia, Spain 
 
*Corresponding author. Tel.: +48 126632096, fax: +48 126340515. E-mail address: 
rutkowsm@chemia.uj.edu.pl (M. Rutkowska) 

Received 00th January 20xx, 

Accepted 00th January 20xx 

DOI: 10.1039/x0xx00000x 

www.rsc.org/ 

Hierarchically structured ZSM-5 obtained by optimized 
mesotemplate-free method as active catalyst for methanol to 
DME conversion 

M. Rutkowska1*, D. Macina1, Z. Piwowarska1, M. Gajewska2, U. Díaz3, L. Chmielarz1 

In the presented studies, a new synthesis method of hierarchical porous materials with ZSM-5 zeolite properties was 

applied. The proposed method is based on the acidification of the zeolite seeds slurry using HCl solution, followed by 

hydrothermal treatment enabling the aggregation of zeolite nanoseeds with the formation of the interparticle 

mesoporous structure. An influence of duration of zeolite parent mixture aging before and after acidification on the 

resulting properties of the samples was investigated. The physicochemical properties of the obtained micro-mesoporous 

samples were analyzed using techniques such as: N2-sorption measurements, X-ray diffraction, TG analysis, NH3-TPD and 

electron microscopy. In a second part of the studies an influence of the modified zeolite sample parameters (such as 

porosity, acidity and crystallinity) on their catalytic activity for dimethyl ether (DME) synthesis from methanol was studied. 

DME is considered as a future clean diesel fuel alternative and a develop in its synthesis methods is currently under high 

scientist interest. It was shown that modification of the porous structure and acidity of the zeolitic samples strongly 

influences their catalytic activity, selectivity and stability for process of DME synthesis. The micro-mesoporous samples, 

despite significantly lower acidity, exhibited high catalytic activity (similar to conventional ZSM-5 zeolite) and enhanced 

selectivity to DME as well as high stability in a long term catalytic test (higher resistance for the formation of coke 

deposits) in comparison to standard MFI-type zeolites. 

1. Introduction 

Hierarchical zeolites, containing both micro- and mesopores are a 

new and rapidly developing group of materials. Among this group, 

special scientist’s interest was devoted to generation of mesopores 

in the ZSM-5 zeolite structure (MFI topology), which is known to be 

very active in many catalytic reactions. It is expected that the 

presence of mesopores should minimalize internal diffusion 

limitations and enhance the overall effectiveness of the catalytic 

processes. During recent years different approaches were applied 

to synthesize micro-mesoporous ZSM-5 zeolite. One of the most 

widely studied methods were based on destructive post-synthesis 

treatments - desilication and dealumination (controlled removal of 

framework Si and Al in basic and acidic medium, respectively) [1-4]. 

Moreover, many constructive methods were proposed in the 

literature, such as carbon, polymer or soft (surfactant) templating 

[5-7] or methods based on the synthesis and controlled alignment 

of ZSM-5 sheets. The group of prof. Ryoo [8, 9] synthesized MFI 

nanosheets of 2 nm thickness using an organic surfactant 

functionalized with a diquaternary ammonium group in the head 

(e.g. C22H45-N+(CH3)2-C6H12-N+(CH3)2-C6H13) as a structure directing 

agent for intercalation of silica pillars into the zeolite interlayer 

space. The diameter of mesopores generated in the interlayer space 

could be tailored by the modification of the surfactant structure, 

especially hydrocarbon tail length. Zhang at all. [10] reported 

successful synthesis of self-pillared nanosheets of MFI (using one-

step hydrothermal synthesis method) with the house-of-cards 

structure and mesopores in the range of 2-7 nm.  

From the economic and environmental point of view the most 

promising seems to be the one-pot synthesis methods, resulting in 

obtaining of hierarchical materials in a one-step procedure without 

the use of expensive surfactants for the mesopores formation. One 

of the possible options is a mesotemplate-free method, basing on 

the controlled aggregation of zeolite nanoseeds [11] with the 

formation of the interparticle mesoporous structure. This approach 

was previously applied by Rutkowska et al. [12, 13] and Van Oers et 

al. [14, 15] and concerned the synthesis of micro-mesoporous 

materials with Beta zeolite properties. In this work authors 

presented a new method of micro-mesoporous ZSM-5 synthesis 

using mesotemplate-free method and the catalytic efficiency of the 

obtained materials in the synthesis of dimethyl ether (DME) from 

methanol.  

Dimethyl ether, due to its unique properties such as high cetane 

number, lack of C-C bond, vapor pressure similar to LPG and 

atoxicity, gained a great scientist attention as a promising clean 
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alternative fuel [16, 17]. DME can be used as an LPG (similar 

physico-chemical properties allow the use of existing infrastructures 

for transportation and storage) and diesel fuel substitute (lower 

soot emission in comparison to conventional fuels). Moreover, DME 

can be used as a petroleum gas for heating and home cooking 

(burning with visible blue flame) or as a substrate of many chemical 

reactions (low-poisoning alternative of methanol) e.g. being 

converted to light olefins or aromatics. DME can be synthesized 

directly from syngas (produced from natural gas, coal or biomass) 

using bifunctional catalyst (2CO + 4H2 → CH3OCH3 + H2O) or by 

indirect method from methanol using acid catalyst (2CH3OH → 

CH3OCH3 + H2O). Concluding, a growing awareness of climate 

change, air pollution and continuously increasing energy 

consumption make DME an attractive green alternative to cut down 

the greenhouse gases emission and to recycle the stored resources 

of CO2 (in case of direct synthesis method). 

ZSM-5 zeolite was found to be active and stable catalyst of MTD 

process (methanol to DME), especially in the presence of water. The 

high catalytic activity of this zeolite results from the presence of 

Brönsted acid sites, responsible for adsorption and conversion of 

methanol [18]. The strength of acid sites is very important in MTD 

process because too strong acid sites may result in carbonaceous 

species deposition, which hinder the access of methanol to active 

centers and block the pores of zeolite. This undesired effect can be 

overcome by the modification of the porous structure and acidity of 

ZSM-5 zeolite [19, 20]. 

To the best of our knowledge only a few of papers regarding the 

catalytic performance of micro-mesoporous systems with ZSM-5 

zeolite properties in the synthesis of DME were published. In our 

previous studies [21] we examined micro-mesoporous ZSM-5 

obtained by desilication of parent zeolite with 0.1 M solution of 

NaOH for 1, 2 and 4 h.  Desilicated samples exhibited higher 

catalytic activity and stability in DME synthesis in comparison to 

conventional zeolite. Wei et al. [22] investigated catalytic activity of 

desilicated ZSM-5 (using 0.2 M NaOH) with different Si/Al ratio and 

reported an improvement of selectivity to DME. This effect was 

related to the enhanced diffusion capability in the micro-

mesoporous samples. Yang et al. [23] examined hierarchical ZSM-5 

synthesized using simultaneously two kinds of templates for micro- 

and mesopores generation (tetrapropylammonium hydroxide and 

dimethyldiallyl ammonium chloride acrylamide copolymer, 

respectively). Mesoporous ZSM-5 obtained by this method 

exhibited better stability (higher resistance for coke formation) in 

comparison to conventional ZSM-5. Another interesting group of 

micro-mesoporous catalysts for MTD reaction are ZSM-5/MCM-41 

composites (showing better selectivity to DME in comparison to 

conventional ZSM-5), prepared by hydrothermal technique using 

nanosized ZSM-5 particles [24-26].  

Taking into account the benefits resulting from the presence of 

mesopores in the structure of the catalyst with MFI topology in 

MTD reaction, a new one-step method of hierarchical ZSM-5 

synthesis was proposed. In this work an influence of the 

hydrothermal synthesis parameters on the physicochemical 

properties of the micro-mesoporous samples and their activity, 

selectivity and stability for dimethyl ether synthesis from methanol 

was studied. 

2.  Experimental methods 

2.1. Catalysts preparation 

The samples with ZSM-5 zeolite properties were prepared 

according to the modified procedure described in ‘Verified 

Synthesis of Zeolitic Materials’ for high alumina ZSM-5 [27]. 

Tetrapropylammonium hydroxide (TPAOH, 20% in H2O, Sigma-

Aldrich) was used as a structure-directing agent, while tetraethyl 

orthosilicate (TEOS, 98%, Sigma-Aldrich) and NaAlO2 (Sigma-Aldrich) 

as silica and aluminium sources, respectively.  

In a first stage seeding gel was prepared by mixing of TPAOH with 

an aqueous solution of NaOH, followed by a dropwise addition of 

TEOS. The resulting slurry was mixed for 1 h and then 

hydrothermally aged in autoclaves at 100°C for 16 h.   

In a second step the synthesis gel was prepared by mixing of 5 g of 

the obtained earlier seeding gel with a water solution of NaOH and 

NaAlO2, followed by a dropwise addition of TEOS. The resulting 

solution with the molar composition: SiO2 : 0.03 Al2O3 : 0.11 Na2O : 

30 H2O (exclusive of seeding gel) was hydrothermally treated at 

150°C for 7 days (in case of conventional ZSM-5) and for 24, 48 or 

72 h (in case of the hierarchical porous samples). After appropriate 

time (24, 48 or 72 h) of hydrothermal aging the protozeolitic seeds 

were acidified in a proportion of 5 mL of concentrated HCl per 10 

mL of the nanoseeds slurry. Subsequently, the acidified slurries 

were hydrothermally treated for the second time at 150°C for 144, 

120 or 96 h, yielding micro-mesoporous ZSM-5 zeolite. After aging 

periods all the autoclaves were quenched and the samples were 

filtered, washed with distilled water, dried in ambient conditions 

and calcined at 600°C for 6 h.  

The as-synthesized samples were denoted as follows: as-ZSM-5 

(aging duration before acidification -24, 48 or 72 h/ aging duration 

after acidification -144, 120 or 96 h). The aging duration after 

acidification was adjust to keep the total aging duration of 7 days 

(as in case of conventional ZSM-5). Among this group of the 

samples an optimum aging duration before acidification of 48 h was 

chosen. For this sample an influence of the aging duration after 

acidification on its physico-chemical properties was determined. 

This series of the samples was denoted as as-ZSM-5 (48/ aging 

duration after acidification – 24 or 48). All the sample codes and the 

parameters of their synthesis are presented in Tab.1. 

 

Table 1 Sample codes and synthesis conditions 

Sample code Aging duration 
before 

acidification 
/h 

Aging 
duration after 
acidification 

/h 

Total 
aging 

duration 
/days 

as-ZSM-5 --- --- 7 

as-ZSM-5 (24/144) 24 144 7 

as-ZSM-5 (48/120) 48 120 7 

as-ZSM-5 (72/96) 72 96 7 

as-ZSM-5 (48/24) 48 24 3 

as-ZSM-5 (48/72) 48 72 5 

 

The as-synthesized samples (in Na-forms in case of the hierarchical 

samples partially H-exchanged during acidification) were triple 
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exchanged with a 0.5 M solution of NH4NO3 (Sigma-Aldrich) at 80°C 

for 1 h, filtered, washed with distilled H2O and dried in ambient 

conditions. Finally, the samples were calcined at 600°C for 6 h to 

convert them to H-forms. 

2.2. Catalysts characterization 

Textural properties of the samples were determined by N2 sorption 

at -196°C using a 3Flex v1.00 (Micromeritics) automated gas 

adsorption system. Prior to the analysis, the samples were degassed 

under vacuum at 350°C for 24 h. The specific surface area (SBET) of 

the samples was determined using BET (Braunauer-Emmett-Teller) 

model according to Rouquerol at al. recommendations [28]. The 

micropore volume and specific surface area of micropores were 

calculated using the Harkins and Jura model (t-plot analysis, 

thickness range 0.55-0.85 nm). Mesopore volume was calculated 

from desorption branch using BJH model (Kruk-Jaroniec-Sayari 

empirical procedure) in the range of 17-300Å.  

The X-ray diffraction (XRD) patterns of the samples were recorded 

using a Bruker D2 Phaser diffractometer. The measurements were 

performed in the 2 theta range of 5 - 50° with a step of 0.02°. 

Thermogravimetric measurements were performed using a 

TGA/SDTA851e Mettler Toledo instrument connected with 

quadrupole mass spectrometer ThermoStar (Balzers). The samples 

were heated in a flow of synthetic air (80 mL/min) with the ramping 

of 10°C/min, in the temperature range of 70-1000°C. 

The Si/Al ratio in the samples was analyzed by means of atomic 

absorption spectroscopy (Spectra AA 10 Plus, Varian).  

Surface acidity (concentration and strength of acid sites) of the 

samples was studied by temperature-programmed desorption of 

ammonia (NH3-TPD). The measurements were performed in a flow 

microreactor system equipped with QMS detector (UMS TD 

Prevac). Prior to ammonia sorption, a sample was outgassed in a 

flow of pure helium at 600°C for 30 min. Subsequently, 

microreactor was cooled to 70°C and the sample was saturated in a 

flow of gas mixture containing 1 vol.% of NH3 diluted in helium for 

about 120 min. Then, the catalyst was purged in a helium flow until 

a constant base line level was attained. Desorption was carried out 

with a linear heating rate (10°C/min) in a flow of He (20 ml/min). 

Calibration of QMS with commercial mixtures allowed recalculating 

detector signal into the rate of NH3 evolution. 

Transmission electron microscopy (TEM) investigations were carried 

out using a FEI Tecnai TF20 X-TWIN (FEG) microscope, equipped 

with EDAX energy dispersive X-ray (EDX) detector, at an 

accelerating voltage of 200 kV.  

The chemical nature of the coke deposit formed during catalytic 

reaction was studied by UV-vis-DR spectroscopy. The 

measurements were performed using an Evolution 600 (Thermo) 

spectrophotometer in the range of 200-900 nm with a resolution of 

2 nm. 

2.3. Catalytic tests 

Catalytic experiments for the process of DME synthesis from 

methanol were performed in a fixed-bed quartz microreactor 

system under atmospheric pressure in the temperature range from 

100 to 325°C in intervals of 25°C. For each test, 0.1 g of catalyst 

with a particle size between 0.160 and 0.315 mm was outgassed in 

a flow of pure helium at 300°C for 1 h. After cooling down to 100°C 

the gas mixture containing 4 vol.% of methanol diluted in pure 

helium (total flow rate of 20 ml/min) was supplied into 

microreactor using an isothermal saturator (0°C). To avoid any 

product condensation during the reaction run, the gas lines were 

heated to 120°C using heating tapes. The outlet gases were 

analyzed using a gas chromatograph (SRI 8610C) equipped with 

Haysep D column, methanizer and FID detector. Additionally, the 

catalytic stability tests (50 h of continues work) at 250°C were 

carried out for the H-ZSM-5 and H-ZSM-5 (48/120) samples. 

3. Results and discussion 

3.1. Synthesis and characterization 

Textural parameters of the as-synthesized samples, determined by 

nitrogen sorption measurements, are presented in Tab. 2. The BET 

surface area of the hierarchical samples is lower in comparison to 

reference conventional as-ZSM-5. The value of SBET increased with 

increasing of the aging duration before acidification to reach 300 

m2/g after 48 h (it seems that further prolongation of aging 

duration before acidification does not significantly influence value 

of SBET). These changes were accompanied by a decrease in 

micropore volume and area of the acidified samples in comparison 

to conventional zeolite. Also in case of these parameters we 

observed an increase with increasing of the aging duration before 

acidification to obtain a constant level after 48 h. However, a 

decrease in microporosity volume observed after acidification 

occurred in favor of a significant increase (four times in case of as-

ZSM-5 (48)) in mesopore volume of the hierarchical samples. An 

increase in volume of mesopores proves the successful generation 

of mesopores in the acidified as-ZSM-5 (48/120) and as-ZSM-5 

(72/96) samples.  

 

Table 2 Textural properties of the as-synthesized samples determined from 

the N2-sorption measurements and Si/Al ratio of the samples 

Sample code 
SBET 

/m2/g 
SMIC 

/m2/g 
VMIC 

/cm3/g 
VMES 

/cm3/g 
Si/Al 

as-ZSM-5 379 371 0.145 0.024 12 

as-ZSM-5 (24/144) 30 20 0.009 0.019 18 

as-ZSM-5 (48/120) 300 277 0.119 0.105 22 

as-ZSM-5 (72/96) 301 279 0.118 0.077 19 

as-ZSM-5 (48/24) 157 114 0.049 0.069 34 

as-ZSM-5 (48/72) 195 165 0.071 0.092 35 

 

Basing on the textural parameters obtained by N2-sorption 

measurements it could be concluded that the duration of 

nucleation of zeolitic seeds before acidification is a very important 

parameter affecting the final properties of the hierarchical samples. 

In case of ZSM-5 zeolite conducting of the hydrothermal ageing 

process for 24 h was not enough to generate the microporous 
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structure, however the extending of aging duration to 48 h seems 

to be enough to crystalize MFI protozeolitic seeds (giving about 80% 

of as-ZSM-5 micropore volume) and the prolongation of this time 

does not significantly influence the microporosity development of 

the samples. On the other side the acidification of the synthesis gel 

resulted in generation of significant mesoporosity, in case of both 

the samples as-ZSM-5 (48/120) and as-ZSM-5 (72/96), greater than 

in case of as-ZSM-5 and as-ZSM-5 (24/144). Taking into account the 

economic issues (shorter aging duration at 150°C) the 48 h aging 

procedure was chosen as the optimal and in the next step of our 

research an influence of the aging duration after acidification on the 

textural parameters of the samples was verified.  

The shortening of the aging duration after acidification resulted in a 

decrease of all textural parameters, both related to micro- and 

mesoporosity of the samples. Thus, it could be concluded that the 

crystallization time after acidification also plays a very important 

role in the formation of the hierarchical porous structure. 

 

The nitrogen adsorption-desorption isotherms recorded for the as-

synthesized samples are shown in Fig. 1. The isotherm of type I(a) 

(according to the IUPAC classification [29]), characteristic of 

microporous structure, was obtained for the as-ZSM-5 sample (Fig. 

1a). While, in case of the acidified samples the adsorption-

desorption isotherms of IV(a) type with hysteresis loops 

characteristic of mesoporous materials were obtained. 

 

Fig. 1 Nitrogen adsorption-desorption isotherms of the as-synthesized 

samples aged for different times before (a) and after (b) acidification 

The very low value of adsorbed N2 volume in case of the as-ZSM-5 

(24/144) sample, connected with a lack of an uptake step at very 

low p/p0 proved that 24 h of hydrothermal aging before 

acidification was not enough to effectively create the microporous 

ZSM-5 structure. In case of as-ZSM-5 (48/120) and as-ZSM-5(72/96) 

the shape of hysteresis loop can be classified as H5 type (associated 

with the pore structures containing both open and partially blocked 

mesopores). A very interesting change in the shape of the 

hysteresis loop was observed after modification of the aging 

duration after acidification (Fig. 1b). 

Together with the shortening of the aging time after acidification 

the loop of type H5 changed for the loop of H4 type (often obtained 

in case of mesoporous zeolites). Thus, it could be concluded that 

the duration of hydrothermal treatment after acidification strongly 

influences the shape of created mesopores.  

 

The XRD powder patterns of the as-synthesized samples are shown 

in Fig. 2. A diffractogram of as-ZSM-5 (Fig. 2a) contains all 

reflections characteristic of the MFI topology [27], what proves the 

successful synthesis of parent zeolite. The synthesis modification 

through the acidification resulted in a decrease of the reflections 

intensity. In case of as-ZSM-5 (48/120) and as-ZSM-5 (72/96) the 

structure of MFI topology was preserved,  however, in case of as-

ZSM-5 (24/144) a broad reflection at about 15-30°2Ѳ, assigned to 

amorphous silica [12] was found. For this sample only low-intensive 

reflections characteristic of the ZSM-5 structure were identified. 

These results are in agreement with the N2 sorption studies and 

prove that 24 h of zeolite parent mixture crystallization before 

acidification was not enough to create the MFI structure, instead of 

which the amorphous material was formed. Fig. 2b shows the 

diffractograms of the samples aged for 48 h before acidification and 

for different aging durations (24, 72 and 120 h) after acidification. A 

decrease in reflections intensities for the samples with decreased 

crystallization time after acidification was observed. Thus, it could 

be concluded that the aging stage after acidification also influences 

the final crystallinity of hierarchical zeolites. 

 

The degree of microporous structure formation during synthesis of 

the hierarchical materials can be specified by the thermal analysis. 

The DTG profiles of the as-synthesized samples are presented in Fig. 

3. DTG curve obtained for as-ZSM-5 (Fig. 3a) consists of three 

regions of weight loss [30-32]. The first region, at temperatures 

below 100°C, is assigned to desorption of zeolitic water, while the 

second (100-300°C) and third (>300°C) ones are related to 

decomposition of structure directing agent (TPAOH) balancing the 

charge of Si-O- groups in the connectivity defects and Al(OSi)4
- 

within the various types of micropores, respectively. In DTG curve 

of as-ZSM-5 (24/144) the high temperature peaks connected with 

TPAOH decomposition occluded within the micropore structure are 

not present. Additionally, in the DTG profile obtained for this 

sample a small peak at about 100°C, probably connected with 

decomposition of organic surfactant present of the surface of 

amorphous material was detected. These results, which are in 

agreement with N2 sorption and XRD analyses, proved that 24 h of 

hydrothermal crystallization of ZSM-5 synthesis gel before  
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Fig. 2 XRD patterns of the as-synthesized samples aged for different times 

before (a) and after (b) acidification 

 

 

Fig. 3 DTG profiles of the as-synthesized samples aged for different times 

before (a) and after (b) acidification 
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acidification was not enough to form the MFI zeolitic structure. In 

case of the samples aged for 48 and 72 h (as-ZSM-5 (48/120) and 

as-ZSM-5(72/96)) weight loss observed in the second region is more 

intensive than for conventional as-ZSM-5 zeolite. However, the 

peaks in the third region are less intensive and also shifted to lower 

temperatures. These changes could be related to shorter 

crystallization time of the zeolitic phase in case of the micro-

mesoporous samples, what results in a weaker incorporation of 

TPA+ within the zeolite structure (weaker stabilization in the pore 

system). In case of the series differing in the aging duration after 

acidification (Fig. 3b) lower stability of organic surfactants within 

the micropore structure with decreasing aging duration was 

observed. An intensive peak at about 210°C, assigned to TPA+ 

balancing the connectivity defects in the structure of the micro-

mesoporous as-ZSM-5 (48/120) sample, decreased after shortening 

of the aging duration from 120 to 72 h and disappeared after 

shortening of this procedure to 24 h. In case of as-ZSM-5 (48/24) 

this change was connected with an appearance of a small peak at 

about 100°C (the same as in case of as-ZSM-5 (24/144)), probably 

related to combustion of TPAOH not interacting with the zeolite 

matrix.  

 

The Si/Al ratio in the as-synthesized samples was analyzed using the 

atomic absorption spectroscopy (AAS) method (Tab. 2). The 

relatively low Si/Al ratio, equal to 12 in case of as-ZSM-5, increased 

after modification of the porous structure by acidification. Lower Al 

content in the micro-mesoporous samples can be connected with 

disturbed and incomplete crystallization of the samples. However, a 

clear dependency between the duration of zeolites hydrothermal 

aging and the changes in the Si/Al ratio was not observed. 

Therefore, it could be concluded that the acidification of the 

samples with the total duration of hydrothermal aging of 7 days 

increased the Si/Al ratio to about 20 and the shortening of the aging 

duration after acidification increased this ratio to about 35. Thus, 

both these factors acidification and shortening of the crystallization 

time influenced the Al content in the modified samples. 

 

Temperature-programmed desorption of ammonia (NH3-TPD) was 

used to determine the surface acidity (surface concentration and 

strength of acid sites) of the as-synthesized samples and their 

protonic forms (after triple ion-exchange with NH4NO3 followed by 

calcination). Surface concentration of acid sites (Tab. 3) was 

calculated by integration of areas under TPD profiles, which were 

recalculated into a number of adsorbed ammonia molecules (it was 

assumed that one NH3 molecule adsorb on one acid site). The total 

NH3 uptake obtained in case of as-ZSM-5, equal 819 μmol/g, 

decreased after modification by acidification of the synthesis gel. 

This effect could be explained by shorter time of hydrothermal 

aging and acidification of the hierarchical samples, what disturbed 

crystallization of the samples and thus resulted in lower amount of 

framework Al. In case of the samples aged for 48 and 72 h (as-ZSM-

5 (48/120) and as-ZSM-5 (72/96)) the concentration of acid sites 

was equal to 322 and 439, respectively, while in case of as-ZSM-5 

(24/144) a significant decrease of this value (26 μmol/g) was 

observed. Taking into account the similar Si/Al ratio determined for 

all three samples by AAS method it could be supposed that 

substantial part of Al was present in as-ZSM-5 (24/144) in the 

amorphous and low-surface phase. Shortening of the crystallization 

time after acidification additionally decreased the concentration of 

acid sites, what is in agreement with the AAS results.  

 

Table 3 Concentration of acid sites measured by NH3 sorption for the as-

synthesized samples and their H-forms 

Sample code 
NH3 uptake 

/μmol/g 
Sample code 

NH3 uptake 
/μmol/g 

as-ZSM-5 819  H-ZSM-5 925 

as-ZSM-5 (24/144) 26 H-ZSM-5 (24) 29 

as-ZSM-5 (48/120) 322 H-ZSM-5 (48) 325 

as-ZSM-5 (72/96) 439 H-ZSM-5 (72) 420 

as-ZSM-5 (48/24) 149 H-ZSM-5 (48/24) 198 

as-ZSM-5 (48/72) 190 H-ZSM-5 (48/72) 209 

 

An increase in surface acidity, observed after ion-exchange in case 

of the majority of the samples, is possibly related to the formation 

of acid Brønsted sites being structural ≡Al-O(H)-Si≡ groups of the 

zeolite framework.   

NH3-TPD profiles of the as-synthesized samples and their H-forms 

(beside as-ZSM-5 (24/144) and H-ZSM-5 (24/144) with a very low 

surface density of acid sites) are presented in Figs. 4 a and b, 

respectively. In the obtained NH3-TPD profiles three types of acid 

sites, with respect to their acidic strength, can be distinguished: (i) 

at about 200°C attributed to weak acid sites, so called α sites, (ii) at 

about 300°C attributed to medium acid sites, so called β sites and 

(iii) at about 400°C attributed to strong acid sites, so called γ sites 

[33, 34]. The shape of ammonia desorption profile significantly 

changed after modification of the porous structure by acidification 

(Fig. 4a). The changes observed after acidification of the zeolite 

seeds solution can be connected with a partial protonation of the 

micro-mesoporous samples (using HCl), while in case of the 

conventional as-ZSM-5 sample directly after synthesis Na-form was 

obtained. 

After ion-exchange to obtain H-forms of the micro-mesoporous 

samples the shape NH3 desorption profiles were not changed 

significantly (only a slight increase in desorption spectra intensity 

was observed). While, in case of conventional, microporous ZSM-5 

the changes were much more significant. After ion-exchange of the 

samples with NH4NO3 the peak corresponding to β-type acid sites 

disappeared in favor of high temperature peak at about 400-500°C 

(γ-type acid sites). The obtained results suggest that by exchange of 

Na+ for  H+ the β-type acid sites, which are possibly Lewis type sites 

were turned into γ-type, which are probably Brønsted acid sites 

[33].  

It is also worth to notice that despite the presence of α- and γ-types 

acid sites in all the samples of H-form the peaks present in the TPD 

profile of H-ZSM-5 are shifted to higher temperatures in 

comparison to the micro-mesoporous samples. It means that the 

structure disorder caused by the acidification results in acid sites of 

slightly lower strength in comparison to conventional zeolite. 
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Fig. 4 NH3-TPD profiles of the as-synthesized samples (a) and their H-forms 

(b). Conditions: 10000 ppm NH3 in He; gas flow 20 ml/min; weight of catalyst 

- 0.05 g 
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Bright field transmission electron microscopy (BFTEM) images (Fig. 

5) of two selected samples (as-ZSM-5 and as-ZSM-5 (48/120)) give 

an overview of the conventional and micro-mesoporous materials 

morphology. The structure of conventional ZSM-5 and the acidified 

sample differs significantly. In case of the micro-mesoporous 

sample, zeolite seeds, formed during hydrothermal treatment 

before acidification, were aggregated (during hydrothermal 

treatment after acidification) with the formation of the loose, 

worm-hole like structure. The mesoporosity in the as-ZSM-5 

(48/120) sample was generated between the zeolitic seeds of the 

size of 10-20 nm. Similar morphology of the micro-mesoporous 

samples was obtained in case of hierarchical Beta zeolite 

synthesized using the same method (mesotemplate-free method) 

[12, 14, 15].  In case of both the samples the aluminum distribution 

determined by EDX analysis was uniform (results not shown). 

 

Fig. 5 BFTEM images of conventional as-ZSM-5 zeolite (a) and the micro-

mesoporous as-ZSM-5 (48/120) sample (b) with different magnifications  

3.2.  Catalytic study: MTD Reaction 

Results of the catalytic studies of the as-synthesized samples and 

their H-forms in the process of DME synthesis from methanol are 

presented in Figs. 6 and 7, respectively. The methanol conversion 

over the as-synthesized micro-mesoporous samples (Fig. 6a) 

increased with the increasing of the aging duration before 

acidification. The catalytic activity of as-ZSM-5 (48/120) and as-

ZSM-5 (72/96) did not differ significantly, what is a result of the 

similar physicochemical properties of these samples. Maximum 

methanol conversion in the presence of these samples was 

obtained at 225°C. Further temperature increase resulted in a slight 

decrease in methanol conversion, what can be explained by the 

exothermic character of this reaction [24, 26]. A significant increase 

in catalytic activity related to the prolongation of aging duration 

before acidification from 24 to 48 h can be connected with 

substantial increase in the surface density of acid sites (acid sites 

are the most likely considered as active centers of the DME 

synthesis). The changes in methanol conversion observed for the 

catalysts obtained with increasing duration of hydrothermal 

treatment was accompanied by a decrease in the reaction 

selectivity to DME (only at high temperatures). High acidity of the 

samples is from one side responsible for the catalytic efficiency of  

 

 

 

 

methanol conversion, however, on the other side is a cause of 

byproducts formation. The sample as-ZSM-5, despite the highest 

concentration of acid sites among the examined samples, was 

completely inactive in methanol conversion. This result suggests 

that not only concentration of acid sites, but also their strength 

(NH3-TPD profile of this sample significantly  



Journal Name  ARTICLE 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 9  

Please do not adjust margins 

Please do not adjust margins 

 

Fig. 6 Temperature dependence of CH3OH conversion and selectivity to 

DME over the as-synthesized samples aged for different times before (a) and 

after (b) acidification. Conditions: 4 vol. % CH3OH; He as balancing gas; total 

flow rate - 20 ml/min;  weight of catalyst - 0.1 g 

 

 

Fig. 7 Temperature dependence of CH3OH conversion and selectivity to 

DME over H-forms of the samples aged for different times before (a) and 

after (b) acidification. Conditions: 4 vol. % CH3OH; He as balancing gas; total 

flow rate - 20 ml/min;  weight of catalyst - 0.1 g 

 

 

 

 

 

 

 

 

 



ARTICLE Journal Name 

10 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx 

Please do not adjust margins 

Please do not adjust margins 

differ from those obtained for other samples of this series) is 

essential in DME synthesis from methanol. The shortening of the 

aging duration after acidification (Fig. 6b) slightly decreased the 

methanol conversion and increased the selectivity to DME. This 

effect can be associated with a decrease in the surface density of 

acid sites observed for the samples with shortened hydrothermal 

treatment after acidification.  

The most significant changes in the catalytic activity of the samples 

after ion-exchange to H-form were observed in case of the H-ZSM-5 

sample (Fig. 7a). The as-ZSM-5 catalyst, which was completely 

inactive, after ion-exchange to H-form showed the highest 

methanol conversion among the examined samples. Thus, it could 

be concluded that the strong acid sites, of γ-type are responsible for 

methanol dehydration to DME. On the other side, the presence of 

strong acid sites in H-ZSM-5 decreased the reaction selectivity to 

DME. Dimethyl ether was not detected in the outlet gases at 

temperature about 25°C lower in comparison to the reaction 

performed in the presence of the hierarchical samples.  

In case of the samples aged for different times after acidification 

(Fig. 7b) the ion-exchange to H-forms resulted in a very similar 

activity in methanol conversion and selectivity to DME for all three 

samples (H-ZSM-5 (48/120), H-ZSM-5 (48/24) and H-ZSM-5 (48/72). 

It was connected with the increased acidity of H-ZSM-5 (48/24) and 

H-ZSM-5 (48/72) after ion-exchange with NH4NO3. Thus, it could be 

concluded that the change in duration of hydrothermal treatment 

after acidification did not influence the catalytic activity of the 

samples in the process of DME synthesis. 

 

Fig. 8 UV-vis difference spectra of carbon deposit formed during catalytic 

reaction of the as-synthesized samples (a) and their H-forms (b) 

 

It should be also stressed that the relatively high activity of the 

hierarchical samples was obtained directly after synthesis (as-form 

of the samples), while in case of as-ZSM-5 an additional synthesis 

step was needed for activation of this sample in the considered 

catalytic reaction.  

 

Methanol conversion resulted not only in the formation of desired 

DME but also side products (polyolefins, aromatic compounds and 

carbon deposits) responsible for gradual deactivation of the 

catalysts by blocking of active sites. Moreover, during aging of such 

deposits (growth of polycyclic aromatic structures) the zeolite pore 

system can be blocked, what decreases the efficiency of internal 

diffusion of reactants [35]. The chemical nature of the formed coke 

deposit was analyzed using UV-vis-DRS technique. Figs. 8a and b 

show the UV-vis-DR spectra obtained for the as-synthesized 

samples and their H-forms after catalytic test (only for the samples 

in which case coke deposit was formed) of methanol conversion, 

respectively. In case of the as-synthesized samples (Fig. 8a) six 

absorption bands with different intensity were identified. The 

bands in a first region (200-300 nm) may be ascribed to dienes, 

cyclohexadiene, benzene or substituted benzenes. While, the bands 

in a second region (400-600 nm) can be attributed to bulky 

aromatic species, like diphenyl, polyphenyl carbenium ions, 

polyalkyloaromatics or condensated aromatic ring system [36, 37]. 

The intensity of these bands increased together with an increase of 

the samples acidity. Conversion of zeolites to their H-forms by ion-

exchange resulted in the formation of new bands in the UV-vis-DR 
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 spectra, what proves more complex structure of carbon deposits 

(greater heterogeneity of coke species). It is probably related to the 

enhanced Brønsted acidity of the samples.  

 

Fig. 9 Time dependence (stability tests: 50 h at 250°C) of CH3OH conversion 

and selectivity to DME of H-ZSM-5 and H-ZSM-5 (48/120). Conditions: 4 vol. 

% CH3OH; He as balancing gas; total flow rate - 20 ml/min; weight of catalyst 

- 0.1 g 

 

Fig. 9 shows the results of stability tests (50 h of continuous work at 

250°C) for two selected catalysts - parent H-ZSM-5 and micro-

mesoporous H-ZSM-5 (48/120) (temperature of the stability tests 

was adjusted to analyze the catalysts stability for methanol 

conversion of about 90%). The methanol conversion in the presence  

 

FIg. 10 UV-vis difference spectra of carbon deposit (a) and CO2 evolution 

signals measured by QMS of the samples after stability test 

of parent H-ZSM-5 decreased by about 20% after 18 h of time on 

stream and subsequently stabilized at about 70%. In case of the 

hierarchical sample the methanol conversion reminded at constant 

level for a longer time on stream than in case of conventional 

zeolite.  

After 35 h of continuous work the methanol conversion started 

progressively drop to about 75% (after 50 h of test). The changes in 

catalyst activity were accompanied by the changes in reaction 

selectivity to DME. In case of H-ZSM-5 a sharp decline in selectivity 

to DME after 10 h of stability test, which subsequently progressively 

increased to about 97%, was observed. In case of H-ZSM-5 (48/120) 

selectivity to DME started to decrease after 35 h of time on stream , 

what was continued to about 92% after 50 h of the stability test. It 

could be concluded that during first 35 h hours of stability test 

better results were obtained for the hierarchical sample. However, 

at the end of the stability test, both the conversion and selectivity 

to DME obtained over H-ZSM-5 seem to stabilize, while in case of H-

ZSM-5 (48/120) both values were progressively dropping. Possibly 

during first hours of the catalytic test the micro-mesoporous 

structure is more resistant for the side-products formation and 

deactivation by coke deposits. Although, after larger times on 

stream both structures (microporous and hierarchical) behave 

similar. 

 

The chemical nature of carbon deposits formed during stability test 

(samples marked as H-ZSM-5/stab and H-ZSM-5 (48/120)/stab) was 

analyzed by two experimental methods - UV-vis-DR spectroscopy 

and thermogravimetric analysis coupled with QMS detection of gas 

products (Figs. 10a and b respectively). In case of H-ZSM-5/stab (Fig. 

10a) the spectrum contains more bands than the spectrum of the 

hierarchical sample (H-ZSM-5 (48/120)/stab), what is an evidence of 

the higher heterogeneity of the coke deposits. Moreover, the 

intensity of the bands in spectrum of conventional zeolite is greater 

in comparison to the micro-mesoporous sample, especially at 

higher wavelengths. It proves the presence of polycondensed 

aromatics of higher condensation.  
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Only one band in the spectra of H-ZSM-5 (48/120)/stab, located at 

about 370 nm and attributed to conjugated double bonds and 

polycondensed aromatics [37], is characterized by higher intensity.   

In case of both the samples, an evolution of CO2 (Fig. 10b) at 

relatively low temperature as well as the evolution in the same 

temperature range of water vapour (m/e=18) (results not shown) 

suggests that formed coke deposits apart from carbon contain also 

hydrogen. For the H-ZSM-5/stab sample the evolution of higher 

amount of CO2 was detected. The weight loss connected with 

carbon deposits burning measured in case of this sample was equal 

to about 6.5%, while in case of the hierarchical sample to 2.5%.  For 

both the samples two peaks of CO2 evolution were identified. These 

peaks can be related to different nature of formed coke. The first 

peak, at about 340°C, can be attributed to slightly developed coke, 

while the second one, at about 510°C, to its more condensed forms 

(with a lower H/C ratio) [38]. 

 

Conclusions 

In the frame of undertaken studies a new synthesis method of 
micro-mesoporous materials with ZSM-5 properties was 
developed. The obtained samples were studied in the role of 
the catalysts for synthesis of DME from methanol. The catalytic 
performance of the zeolitic samples was correlated with their 
properties - porosity, acidity and crystallinity. 

Two parameters - duration of the hydrothermal treatment (i) 
before and (ii) after acidification were selected as parameters 
for the synthesis optimization leading to the effective catalysts 
for DME production.  

The most important results of the studies can be summarized 
as follows: 

• Nano-seeds of ZSM-5 zeolite are being created during first 
48 h of hydrothermal treatment of the synthesis mixture (it 
was shown that 24 h of the sample aging was not enough to 
generate the zeolite properties in the final material). 

• 48 h of hydrothermal treatment followed by acidification 
and secondary aging period resulted in micro-mesoporous 
material with partially preserved properties of MFI topology 
(crystallinity, acidity). Further prolongation of this time did not 
change significantly the final properties of the hierarchical 
material, thus 48 h was chosen as optimal aging time before 
acidification. 

• The shortening of the crystallization time after acidification 
resulted in a decrease of the textural parameters, acidity and 
crystallinity of the samples. It means that both stages of 
hydrothermal treatment have a strong impact on the final 
properties of the samples and the optimum properties were 
obtained for the sample as-ZSM-5 (48/120) (48 h of aging 
before acidification, followed by 120 h of aging after 
acidification).  

• The as-ZSM-5 (48/120) and as-ZSM-5 (72/96) samples 
showed the highest activity in the process of dimethyl ether 
synthesis among the obtained hierarchical samples (88% of 
methanol conversion at 225°C).  

• The as-ZSM-5 sample (Na-form) was inactive in methanol 
conversion, while after ion-exchange to H-form showed very 

high activity. The high catalytic efficiency in this reaction was 
connected with the presence of strong acid sites of γ-type 
(acid sites of Brønsted type) present in the samples after ion-
exchange to H-form.  

• The as-synthesized micro-mesoporous samples showed 
high catalytic activity, while in case of conventional zeolite an 
additional synthesis step, ion exchange to obtain its H-form, 
was necessary to induce the catalytic activity.  

• Lower concentration of surface acid sites in case of the 
micro-mesoporous samples (as-ZSM-5 (48/120) and as-ZSM-5 
(72/96)) was a cause of slight decrease in methanol conversion 
in comparison to conventional zeolite. However, on the other 
side, the presence of weaker acid sites connected with 
generated mesoporosity resulted in the improved reaction 
selectivity to DME.  

• Results of the stability test (50 h on stream) performed for 
H-ZSM-5 and H-ZSM-5 (48/120) as well as the analysis of the 
spent catalysts, showed that the sample with the hierarchical 
porous structure was more stable (especially during first hours 
of the stability test) and more resistant for the carbon deposits 
formation. 
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