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Abstract 

Ca-doped LaNbO4 (LCNO) material has shown outstanding stability in harsh 

environments in combination with moderate proton-conductivity in polycrystalline 

samples at intermediate temperatures below 800ºC under wet atmosphere. However, in 

polycrystalline materials the role of grain boundaries is believed to play a predominant 

role in protonic conductivity, which may make more difficult the study of the intrinsic 

properties of the material. For that reason the present study focuses on the preparation 

of epitaxial films by pulsed laser deposition on single crystal substrates like NdGaO3 

(110). Under certain deposition conditions the films grow epitaxially with monoclinic 

structure (fergusonite) and b-axis orientation. A polymorph change between monoclinic 

and tetragonal structure has been observed at 250ºC. The film charge transport 

properties are analyzed under different atmospheres, dry and wet O2 and H2 as well as 

under deuterated conditions by using D2 and D2O in order to check for the characteristic 

isotopic effect of the proton transport. Although a certain proton conductivity was 

observed under reducing wet atmosphere unexpected large DC conductivity values (of 
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about 5.5 S/cm for the 80 nm thin LCNO film at 800ºC in dry O2) have been observed  

for all films and ambient conditions. 

Keywords : LaNbO4, Proton conductor, Epitaxial thin film, Pulsed Laser Deposition. 

 

1.1 Introduction 

Among proton conducting materials, the acceptor-doped rare-earth ortho-niobates 

represent a good compromise between transport properties and material chemical 

stability. As shown by Haugsrud et al. [1,2] in this class of material protonic, ionic and 

electronic conduction may coexist, depending on the ambient conditions. In particular 

below 800 ºC in wet atmospheres protons are clearly the predominant carriers in 

polycrystalline. Despite the modest conductivity values reported for lanthanum 

niobates, this essentially pure proton conductor can be used as electrolyte in proton 

conducting fuel cell (PCDC) devices upon reducing its thickness down to micrometer 

scale (thus reducing the diffusion length for proton transport) [3,4]. One of the most 

promising candidates within this family is La1-xCaxNbO4- with a proton conductivity of 

10
-3 

Scm
-1 

at 800 ºC in wet atmosphere (x=0.005-0.01) [1]. Polycrystalline films of 

about 2 m thickness of 0.5% Ca-substituted LaNbO4 compound have been deposited 

by PLD with ASR values of 0.4 Ω·cm
2
 at 600 °C comparable to expected bulk values 

[5]. Several studies have been recently performed in order to increase the transport 

properties by other doping strategies [6,7]. On the other hand grain boundary resistivity 

of this kind of compounds has been reported to be higher than grain interior resistivity 

[8] and thus an important parameter to be taken into account. Structural studies 

performed on bulk LaNbO4 ortho-niobate materials indicate that they can exist in two 

polymorphs [9,10]: i) the low-temperature fergusonite phase crystallized in the 

monoclinic-crystal system (space group I2/c); and ii) a high-temperature tetragonal 

phase, isostructural with the tetragonal scheelite structure (space group I41/a). The 

phase transformation in LaNbO4 bulk material occurs at a temperature in the range of 

490 ºC to 525 ºC. A recent report [11] shows that the growth of grain-boundary-free 

yttrium-doped barium zirconate films resulted in the achievement of the largest proton 

conductivity ever reported for ceramic proton conductors. The present work focuses on 

the deposition and characterization of first epitaxial thin films of La0.995Ca0.005NbO4- 



(LCNO) in order to study the intrinsic properties of the material minimizing the grain 

boundary contributions.  

To analyze the transport properties of LCNO material it is necessary to understand the 

defect equilibrium under different atmosphere conditions. Defect equilibrium reactions 

are summarized in Table 1 [1,6]. In undoped LaNbO4 material the generation of oxygen 

vacancies is mainly due to the oxygen exchange with atmosphere, as it is depicted in the 

equilibrium Equation (1) while intrinsic electron-hole pair formation by thermal 

excitation over the band gap follows Equation (2). As it has been previously studied the 

oxygen vacancy concentration might be increased by partial substitution of La
+3

 for 

divalent dopants [12]. Equation (3) describes the compensation of the introduced 

negative defects ( )) through the formation of oxygen vacancies ( ). It has also to 

be considered that protons are incorporated in the oxide structure through oxide 

hydration following Equation (4) which implies the water dissociation into  or  

which accommodates in an oxygen vacancy and lattice respectively. The 

electroneutrality condition can be written as in equation (5) by assuming the charge 

compensation of doping defects for oxygen vacancies and protons, as well as for 

electronic carriers, where brackets denote concentrations. 

 

Table 1: Main defect equilibrium reactions  
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Electronic conduction (p- and n- type) and ionic (oxygen and protonic) transport 

contribute to the total conductivity of the material and the final contribution of each 

partial conductivity will depend on their corresponding carrier concentration and 

mobility.  

In dry oxidizing conditions protons and electrons are negligible ( 0][ 

OOH  and 0n  

in equation (5)). For very strongly oxidizing conditions p-type electronic conductivity is 



proportional to the introduced negative defects ( ). At high and intermediate pO2, 

from equation (1), the p-type electronic conductivity has a pO2 power dependency of 

+1/4, as observed for common operating conditions, e.g. 800-1000 ºC and pO2=1-10
-4

 

atm [1,7]. At lower pO2 electronic carrier concentration is substantially reduced 

compared to oxygen vacancy concentration and ionic conductivity may prevail. 

Therefore total conductivity is independent of the pO2 and equals to 1/2 of the 

introduced negative defects ( ). 

 

2. Experimental 

Ca-doped LaNbO4 thin films were obtained by using Pulsed Laser Deposition (PLD) 

technique. A dense pellet was prepared from 0.5% Ca-doped LaNbO4 commercial 

powder (Cerpotech) by uniaxial pressing at 72 MPa and sintering at 1300 ºC for 5 h. 

The densified La1-xCaxNbO4- bulk material was used as target for the PLD process. The 

films were grown by using a Compex Pro 201 KrF excimer laser (=248 nm) at 1 Hz 

pulse repetition rate at a laser fluence in the range of 1-3 J/cm
2
. The target to substrate 

distance has been maintained constant, d=53 mm. Deposition temperature and oxygen 

partial pressure have been varied between 500 ºC and 900 ºC and 4.3·10
-2 

– 6.7·10
-2

 

mbar respectively. The LCNO film thickness has been varied in the range of 20-80 nm 

by adjusting the number of laser pulses. Single crystals of (110)-oriented NdGaO3 

(NGO, from CrysTec GmbH) have been used as substrates for the epitaxial thin film 

growth. This substrate cut has been chosen for its good match with the LCNO crystal 

cell, (mismatch of about +0.3% between average cell parameter āNGO=5.456 Å of 

(110)NGO plane and āLCNO=5.437 Å of (010)LCNO plane calculated from reported cell 

parameters aLCNO=5.633 Å, cLCNO=5.261 Å and =94.15º, of monoclinic I2/c structure 

[9]), as well as for its low electrical conductivity compared with typical SrTiO3 or 

LaAlO3 single crystals. This last requirement is essential in order to reduce the substrate 

contribution (generally the substrates are 0.5 mm thick) to the total thin film electrical 

response and to characterise the weak conductance of very thin ionic conducting films, 

particularly in the in-plane configuration. Reflection high energy electron diffraction 

(RHEED) was used in-situ during the PLD film deposition in order to monitor the 

crystal quality of the growing film (R-DEC 30KV e-gun at incidence angle <1º). AFM 

topography analysis (tapping mode, 5100 SPM, Agilent Technologies) was also 



performed on the as-deposited samples in order to analyse surface roughness. X-ray 

diffraction analysis was carried out by performing 2theta/omega scans along with 

reciprocal space mapping (RSM) in a Panalytical X’Pert diffractometer with CuKa 

radiation. X-ray reflectometry (XRR) was used for film thickness determination. DC 

conductivity measurements were carried out by standard two-point technique, by 

painting two parallel Ag electrodes and attaching corresponding Ag wires. A constant 

current ramp (from -20 up to 20 μA, each 4.5 μA) was supplied by a programmable 

current source (Keithley 2601) while the voltage drop was detected by a multimeter 

(Keithley 3706). The total conductivity was analyzed as a function of oxygen partial 

pressure and in moist atmospheres (by using 2.5% of H2O and D2O) in the temperature 

range from 400 ºC up to 800 ºC. The different pO2 were reached by using calibrated gas 

mixtures (O2-Ar) provided by Linde. Measurements in reducing atmospheres have been 

performed in dry or wet 5% H2 and 5% D2 in Ar by using 0.025 atm of H2O and D2O 

respectively when necessary. 

Sample cross-sections for HRTEM observation were prepared using focused ion 

beam (FIB) on a Zeiss Crossbeam 1560 XB microscope. A 4 nm thick coating of Au 

and 16 nm of Pt was evaporated onto the sample before FIB milling to protect the 

region of interest and prevent charging. Coarse milling was done at 30 kV and then 

samples were thinned to approximately 50 nm thickness at 2 kV. Samples were 

examined in a scanning transmission electron microscope JEOL JEM 2100, equipped 

with EDX, and STEM detectors. 

 

3. Results and discussion 

In order to find the optimum conditions for pulsed laser deposition of LCNO thin films 

on NdGaO3 (110)-oriented single crystal substrates, some preliminary experiments were 

carried out varying oxygen partial pressure, laser fluence, substrate temperature and 

number of laser pulses. Fig.1 presents the XRD analysis of an 80 nm LCNO thin film. 

The only presence of (0k0) film reflections along with substrate reflections indicate that 

LCNO grows with its long b-axis out of plane. No trace of any other orientation was 

detected. 
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Fig. 1: θ/2θ-scan of an 80 nm LCNO thin film grown on NdGaO3 (110) single crystal 

(a). The ω-scan analysis of the LCNO (040) reflection and the ϕ-scan analysis of the 

LCNO (121) reflection are respectively (b) and (c). 

Rocking curve (-scan) analysis of symmetric (040) LCNO reflection along with -

scan of asymmetric (121) LCNO reflection reveal that the thin films are both out–of-

plane and in-plane textured. The reflection positions confirm the following epitaxial 

relation between film and substrate: LCNO (010)//NdGaO3(110) and LCNO [101]// 

NdGaO3 [001]. Fully epitaxial b-axis oriented LCNO thin films were obtained in a 

wide range of deposition conditions. Substrate temperature of 900 ºC, pO2= 4.3 10
-2

 

mbar, and laser fluence of 3 J/cm
2
 have been chosen as the optimal PLD deposition 

conditions. 

Table 2 summarizes FWHM values of  and scans for LCNO samples with different 

thickness (27, 44, 80 nm) deposited at the same optimized PLD conditions. In plane and 

out-of-plane parameter analysis reveal a lower FWHM for the thinnest film (27 nm), 

which indicates a better degree of epitaxial growth. Thicker samples show larger 

FWHM values for both  and  scans. As expected, an increasing film thickness 

induces the appearance of slightly misoriented domains when reducing the influence of 

the epitaxial single crystal orientation. However, the spread in  angle may also arise 

from the mosaicity of monoclinic microdomains oriented in different in-plane 

directions.  



Table 2: FWHM values measured in  and  scan for a 27, 44 and 80 nm LCNO thin 

films. The a and b LCNO cell parameters calculated by RSM have been also included. 

Thickness (nm)   a (Å) b (Å) 

27 0.28º 1.27º 5.394 11.594 

44 0.87º 1.69º 5.378 11.629 

80 0.83º 1.65º 5.399 11.592 

 

Fig. 2 shows the XRD reciprocal space map of an asymmetric (1 10 1) LCNO reflection 

for a 27 nm thin film along with (332) NdGaO3 substrate reflection. From this type of 

maps it is possible to directly extract average out-of-plane and in-plane parameters of 

the film (b-and a-axis parameters, respectively for the relative film-substrate 

orientation). The b and a parameters of the LCNO films (included in Table 2) are very 

close to those expected for bulk material, average in-plane āLCNO=5.437 Å and out-of-

plane bLCNO=11.666 Å (calculated from reported monoclinic structure a=5.633, 

b=11.666 and c=5.261 Å, =94.15º at 21ºC [9]) and point out that the LCNO film is 

already completely relaxed after the 27 nm film thickness. 

 

Fig. 2: Reciprocal space map of a 27 nm LCNO thin film deposited on NGO (110) 

oriented single crystal in the region of the 1 10 1 LCNO and 332 NGO indicates the 

epitaxial arrangement of the layer. 

 

RHEED in-situ analysis (zone axes [110]) correlated with the surface AFM analysis of 

the three samples is presented in Fig.3. The electron diffraction patterns already visible 

at the very early stages of the film growth shows overlapping of 3D (spots) and 2D 



(streaks) patterns, indicative of a non-perfectly flat epitaxial growth mode, also 

confirmed by the granular surface morphology of the three LCNO films observed by 

AFM. While the film surface roughness is increasing with the film thickness, from a 

RMS of 0.83 nm to the 1.67 nm of the thickest one, the connection between grains 

seems to improve. The RHEED pattern of the thickest film shows narrower strikes with 

less contribution of the 3D (spotty) pattern, which corroborates the presence of a denser 

surface. The spot patterns and distances measured by RHEED are consistent with the 

epitaxial arrangement observed by XRD.  

t=27nm t=44nm t=80nm

 

Fig. 3: On top, in situ RHEED (Reflection High Energy Electron Diffraction) of three 

samples after the LCNO deposition process (27, 44 and 80 nm thin films); on the 

bottom, AFM analysis of the same three sample surfaces with increasing thickness 

(from left to right). 

Figure 4 shows the TEM analysis of LCNO(80 nm)/NGO(110) film cross-section. The 

low magnification image shows vertical lines that correspond to low angle grain 

boundaries, typical of a columnar PLD’s growth, clearly visible across the film 

thickness (4a) from substrate interface up to the surface. The film appears dense and 

homogeneous and the HRTEM analysis of the top part of the LCNO film (4b) shows a 

good crystalline quality. The region close to the substrate up to a thickness of about 30-

40 nm shows a different contrast that may indicate the formation of a different 

microstructure. However, XRD analysis of the thinnest film (27 nm) still reveals a 

dominant contribution of epitaxial b-axis oriented LCNO material. The contrast could 

be related to the coexistence of a secondary phase, but no evidences have been obtained 

neither by TEM or XRD analysis. Fast Fourier Transform (FFT) analysis presented in 



the inset of the same HRTEM image shows the presence of the major interplanar 

distances: A= 0.57 nm; B= 0.22 nm; and C= 0.31 nm. The appearance of 020 planes 

(corresponding to A) indicate unequivocally the presence of monoclinic structure as it 

was shown in simulations (by CaRine) of the reciprocal space for monoclinic and 

tetragonal LCNO structures in the same zone-axis as HREM image. 

(a)

(b)

 

Fig. 4: (a) TEM lamella of an 80 nm LCNO film on NGO(110) substrate. On top of the 

LCNO film a gold and platinum layers have been deposited during the lamella's 

preparation. (b) HREM cross section of the top part of the thin film and in (c) the 

Fourier Transform Analysis of the same HREM image are presented. 

In order to find additional evidences supporting the observation of monoclinic LCNO 

structure at room temperature we analysed the film thermal expansion coefficient by 

XRD. The b-axis cell parameter of 80 nm thick film grown at the optimized PLD 

conditions has been measured (from the angular position of 040 reflections) at different 

temperatures in the range from 50 to 600 ºC, with a heating chamber (Anton Paar DHS-

1100C) under static air. No damage, neither delamination nor crack formation, were 

observed in the thin films after heat treatment. Results are shown in Fig.5. Two regions 



with a clear different slope have been observed, being the calculated thermal expansion 

coefficients of 16.6 10
-6

 ºC
-1

 below 250 ºC, and 7.67 10
-6

 ºC
-1

 above this temperature. 

These values are consistent with reported expansion coefficients 15·10
-6

 ºC
-1

 and 8.6·10
-

6
 ºC

-1
 for bulk monoclinic and tetragonal structures, respectively [13]. This suggests a 

phase transformation from monoclinic to tetragonal structure near 250 ºC. This 

temperature is much lower than the one found for bulk LCNO material (500 ºC). 

Variations in phase transition temperature in epitaxial films have been frequently 

observed in a wide variety of perovskite-related oxides [14] and are generally associated 

to subtle film structure variations and domain formation induced by the substrate 

matching. In this particular case this reduction is very likely related to the as-deposited 

structure of LCNO film crystal domains, which probably present reduced monoclinic 

distortion than bulk material. Certainly film growth at deposition temperatures, well 

above phase transition temperature, will stabilise tetragonal structure. However, during 

the cooling down process, it is very likely that LCNO matching with the rectangular 

plane of (110) NGO substrate will provide enough energy for hindering, to a certain 

extent, the monoclinic in-plane shear strain increases ( angle increase), along with the 

a and c axis difference, corresponding to LCNO transformation to equilibrium 

monoclinic structure. Still, shear strain may be partially released, within the explored 

film thickness range, showing a tendency towards the formation of incipient monoclinic 

domains at room temperature (as it has been observed by TEM, but not by XRD), but it 

is sufficient to drop down the phase transition temperature (at least for the measured 

thickness of 80 nm).  
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Fig. 5: XRD high-temperature analysis of an LCNO80 nm/NGO(110)SC sample. The 

2θ value of the (040) LCNO symmetric reflection with the heating temperature has been 

plotted in the graph. 

Concerning charge transport characterisation of the films, Fig. 6 shows the total in-

plane conductivity measured in dry and wet (H2O and D2O) oxygen atmosphere for the 

three samples (27, 44 and 80 nm). One of the most remarkable observation is that the 

conductivity of these films is about 5-20 S/cm (800 ºC in dry O2), 3-4 orders of 

magnitude higher than the one measured for the bulk polycrystalline material [1] (8·10
-4

 

S/cm at the same 800 ºC in dry O2 conditions). The enhanced values of the total 

conductivity (oxygen ionic and p-type electronic conductivity for LCNO in dry O2) 

might be expected for epitaxial films due to the low density of grain boundaries, which 

may have a substantial blocking effect in bulk material, as well as favorable transport 

properties along a particular crystallographic orientation in case of anisotropic 

materials. Specifically, grain boundaries in Sr doped LaNbO4 present up to 4 orders of 

magnitude higher resistivity than grain interior in wet atmospheres [8]. However, the 

total conductivity showed in these films is still orders of magnitude higher than that 

observed in bulk samples and it is not plausible that only grain boundary effects are 

responsible for this huge increase in conductivity. 

Interface strain effects can favor both electronic or ionic conductivity, as it has been 

proved previously in other epitaxial thin films of mixed ionic-electronic and protonic 

conducting oxides [11,12,15,]. Alternatively, this huge increase of the total conductivity 

might be attributed to the appearance of a highly conducting secondary phase. 

Although, the combination of both XRD or TEM analysis rules out the presence of a 

major secondary phase, the main reason for the increase in the conductivity as well as 

its nature, either electronic or ionic, remains unclear. The conductivity results shown in 

Fig. 6 suggest that there is no substantial hydration effect (conductivity in dry and wet 

atmospheres are almost equal) irrespective of the LCNO film thickness, which indicates 

the absence of measurable protonic transport in oxidizing environments. Moreover, the 

high conductivity values are probably related to the fast electronic transport, which also 

prevails in wet atmospheres. Fig. 7 presents the conductivity at 700 °C and 400 °C as a 

function of the pO2 (log-log scale) for the 80 nm thick film. For both temperatures there 

is a linear dependency with pO2 with positive slopes slightly below +1/4. Power 

dependence with positive exponent close to ¼ in oxidizing conditions is characteristic 



of a regime with predominant p-type electronic conductivity (as it was discussed 

previously in the introduction). This fact agrees with the predominant p-type electronic 

conductivity observed in oxidizing conditions for the polycrystalline bulk material [1] 

due to the higher mobility of electronic carriers than that of ionic species despite the low 

electronic carriers concentration. 
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Fig. 6: Total conductivity of LCNO films of 80, 44 and 27 nm measured in dry and 

wet O2 (where wet is either normal water or deuterated water). 

On the other hand, from the conductivity measurements (Fig. 6), a change in the 

activation energy Ea can be observed. This change in the activation energy occurs at 

350-450 ºC, a temperature a bit higher than that observed for the monoclinic to 

tetragonal phase transformation found at 250 ºC for the 80 nm epitaxial film, but lower 

than that observed for phase transition in bulk samples. Ea in the high temperature range 

(500-800 ºC) reaches values of 0.6 eV (0.8 eV for the 80 nm film) while at lower 

temperatures (300-400 ºC) Ea is around 0.75 eV. The transition temperature, between 

350 and 500 ºC, where the conductivity changes the activation energy, has been 

reported to be a consequence of the mobility changes when monoclinic shear distortion 

 angle increases through the second order phase transition [1]. It can be appreciated 

that although conductivity of the 27 and 44 nm films are similar, the thickest shows 

lower conductivity. This higher conductivity in the thinnest films suggests again the 



possibility of an additional interface contribution, not confirmed yet, since the 

contribution of this interfacial conductivity will increase with decreasing thicknesses. In 

order to avoid possible errors produced by any interface contributions further 

conductivity measurements were carried out on the 80 nm thick sample. 
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Fig. 7: Conductivity at 700 °C and at 400 °C in dry atmospheres as a function of pO2 of 

an 80 nm thick film. 

In figure 8 the total conductivity of the 80 nm LCNO thin film in dry and wet H2 and D2 

is presented. The isotopic effect can be confirmed by a direct comparison between 

conductivity in H2+H2O (open circles) and D2+D2O (open triangles) that shows higher 

conductivity in wet H2 than in wet D2, slightly lower than the theoretical √2 value and 

confirming the protonic nature of this transport. In dry atmospheres measurements in H2 

and in D2 are the same and similar to those obtained in D2+D2O. Calculated Ea values 

are 0.66 eV above 550 ºC and 0.81 eV below 450 ºC, values very similar to those 

reported for bulk material. As it was mentioned before it can also be appreciated an 

important increase in conductivity of the films compared to the reported values for 

polycrystalline bulk material in similar wet reducing atmospheres [2]. A similar 

increase in conductivity in epitaxial thin films, of around 2 orders of magnitude with 

respect the bulk material, has been also reported for the protonic conductor yttrium-

doped barium zirconate (BZY) [11] and has been ascribed to the minimization of less-



conductive grain boundary regions in the high quality growth epitaxial thin films. 

Despite this huge increase in conductivity, LCNO epitaxial thin films conductivity in 

wet hydrogen is still significantly lower that reported values for BZY epitaxial films 

growth on MgO [11] (at 650 ºC LCNO presents 0.13 S/cm and BZY around 0.5 S/cm 

and at 450 ºC LCNO presents 0.0048 S/cm and BZY around 0.06 S/cm). 
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Fig. 8: Total conductivity of the LCNO80 nm film in 5% H2, 5% H2+H2O, 5% D2 and 

5% D2+D2O. 

 

Total conductivity results in different atmospheres in this LCNO epitaxial thin film 

have shown a huge increase in the total conductivity ascribed principally to electronic 

transport in oxidizing conditions and both protonic and electronic transport in reducing 

atmospheres. This improvement in conductivity observed in these films is difficult to 

explain despite their epitaxial nature and their very low density of grain boundary area. 

This fact might indicate that microstructural differences between the epitaxial LCNO 

films and bulk material may considerably affect the protonic diffusion mechanism. The 

present research study consists of a preliminary step towards a more complete 

comprehension of the relationship between microstructure and protonic transport 

properties of LCNO material in the form of epitaxial films.  



 

4. Summary and Conclusions 

Experimental PLD deposition conditions have been optimized and epitaxial thin films 

of monoclinic 0.5% Ca-doped LaNbO4 (LCNO) on NGO(110) single crystals have been 

obtained. Reciprocal space map (RSM) analyses of three samples with increasing 

thickness have shown full strain relaxation already for the thinnest film. Strain energy is 

probably released by the 3D growth mode of the LCNO film observed by the RHEED 

in situ and AFM analyses. The transition from monoclinic to tetragonal phase, typically 

observed at a temperature of 500 ºC for bulk LCNO, has been found to be of 250 ºC for 

an 80 nm LCNO thin film. We believe that a certain influence of the substrate, and 

particularly the lower mismatch of the tetragonal phase with respect to the monoclinic 

one is responsible for the observed reduction of the transition temperature by stabilizing 

the tetragonal LCNO phase at a lower temperature. The planar DC-conductivity of 

LCNO films has been measured under different atmospheres and temperatures. It shows 

3 orders of magnitude higher conductivity in dry O2 compared with the results obtained 

by Haugsrud et al. [1,2] for a bulk LCNO. This might be related to the absence of high 

angle grain boundaries (GB) characteristic of polycrystalline bulk ceramics. It is well 

known that these GB block part of the ionic conductivity of oxygen and particularly in 

proton conductors [11]. On the other side the higher conductivity for the thinnest film in 

all different atmosphere conditions suggests an additional interface contribution (which 

has not yet been confirmed). In reducing atmospheres there exists a 2 orders of 

magnitude increase in protonic conductivity, similar to that observed in BZY epitaxial 

films with respect to the bulk material [11] and ascribed to both the low density of 

conductivity limiting GB and some other chemical and/or structural change that 

influences protonic transport in the epitaxial films. Some basic questions remain still 

unclear, as for example the predominance of the p-electronic conductivity (not only 

under O2 atmosphere, but even under more reducing conditions up to 10
-4

 atm) with 

respect to the predominant protonic one expected in wet Ar. Some further HRTEM 

investigations on the LCNO-NGOsc interface and of the LCNO low angle grain 

boundaries will be necessary for a full comprehension of the defect chemistry 

dominating in these epitaxial LCNO thin films. At the moment the film protonic 

conductivity was only confirmed under H2 atmosphere by the isotopic effect. 
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