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Abstract 20 

Neutron intensity measured by the aboveground cosmic-ray neutron intensity 21 

probe (CRP) allows estimating soil moisture content at the field scale. In this work, 22 

synthetic neutron intensities were used to remove the bias of simulated soil moisture 23 

content or update soil hydraulic properties (together with soil moisture) in the 24 

Community Land Model (CLM) using the Local Ensemble Transform Kalman Filter. 25 

The cosmic-ray forward model COSMIC was used as the non-linear measurement 26 

operator which maps between neutron intensity and soil moisture. The novel aspect of 27 

this work is that synthetically measured neutron intensity was used for real time 28 

updating of soil states and soil properties (or soil moisture bias) and posterior use for 29 

the real time scheduling of irrigation (data assimilation based real-time control 30 

approach). Uncertainty of model forcing and soil properties (sand fraction, clay 31 

fraction and organic matter density) were considered in the ensemble predictions of 32 

the soil moisture profiles. Horizontal and vertical weighting of soil moisture was 33 

introduced in the data assimilation in order to handle the scale mismatch between the 34 

cosmic-ray footprint and the CLM grid cell. 35 

The approach was illustrated in a synthetic study with the real-time irrigation 36 

scheduling of fields of citrus trees. After adjusting soil moisture content by 37 

assimilating neutron intensity, the irrigation requirements were calculated based on 38 

the water deficit method. Model bias was introduced by using coarser soil texture in 39 

the data assimilation experiments than in reality. A series of experiments was done 40 

with different combinations of state, parameter and bias estimation in combination 41 

with irrigation scheduling. 42 

Assimilation of CRP neutron intensity improved soil moisture characterization. 43 

Irrigation requirement was overestimated if biased soil properties were used. The soil 44 

moisture bias was reduced by 35% after data assimilation. The scenario of joint 45 

state-parameter estimation resulted in the best soil moisture characterization (50% 46 

decrease in root mean square error compared to open loop simulations), and the best 47 

estimate of needed irrigation amount (86% decrease in Hausdorff distance compared 48 



to open loop). The coarse scale synthetic CRP observation was proven to be useful for 49 

the fine scale soil moisture and soil properties estimation for the objective of 50 

irrigation scheduling. 51 

 52 
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1. Introduction 55 

Globally, 70% of fresh water is used by agriculture (FAO - Food and Agriculture 56 

Organization of the United Nations). Therefore, it is necessary to increase the water 57 

use efficiency and reduce the water need for crop production, while maintaining crop 58 

yield. Enough water should be applied to meet the requirement of maximum crop 59 

evapotranspiration (ET). Farmers usually base irrigation scheduling on their own 60 

experience taking into account soil water status and crop growth. However, it is 61 

unlikely that the optimal scheduling of irrigation is acquired without the knowledge of 62 

crop water needs. Low cost sensors that measure soil moisture content can be of 63 

advantage. However, these sensors typically have a very small measurement volume 64 

which is much smaller than the scale of the fields where the crops are grown. 65 

Numerical models like crop growth models (Heng et al., 2009) and land surface 66 

models (Wood et al., 2011) can be used for the quantitative estimation of the irrigation 67 

requirement under specific soil water and crop growth conditions. The estimated 68 

irrigation amount can be applied accurately with new agricultural technology like drip 69 

irrigation (Sampathkumar et al., 2012). However, uncertain model input data and 70 

deficits in the model structure result in biased estimates of soil water status, crop 71 

transpiration and therefore irrigation requirement. 72 

The optimal scheduling of irrigation is complicated given the high heterogeneity 73 

of soil moisture content in drip irrigated fields. An estimate of soil moisture content 74 

for the complete root zone is important in this context. It is difficult to achieve this 75 

with small-scale measurements (e.g., TDR-Time Domain Reflectometry, 76 



FDR-Frequency Domain Reflectometry or TDT-Time Domain Transmission) as a 77 

prohibitively large number of sensors is needed to cover large irrigated areas. Soil 78 

moisture information from remote sensing on the other hand is limited to the upper 79 

few soil centimeters, and often has a very coarse horizontal resolution (>10 km) 80 

(Entekhabi et al., 2010; Kerr et al., 2010; Montzka et al., 2013). A further limitation 81 

of satellite-derived soil moisture content is that it is not reliable for highly vegetated 82 

areas (Njoku and Chan, 2006) and high uncertainties (Merlin et al., 2009; Montzka et 83 

al., 2013). The spatial variability of soil moisture is controlled by soil hydraulic 84 

properties, meteorological forcing, land cover patterns and topographic features at 85 

different measurement scales. Small scale variability is more driven by soil hydraulic 86 

properties while large scale variability is also more driven by the other factors. Hence, 87 

strengths and weaknesses of each measurement method rely on the additional 88 

uncertainty given by these additional controlling factors (Crow et al., 2012). 89 

A new promising method which can determine integral root zone soil moisture 90 

from the measured above ground fast neutron intensity (defined as the number of 91 

counted neutrons per unit of time – e.g., counts per hour) has been proposed (Zreda et 92 

al., 2012). This synthetic study focuses on the assimilation of cosmic-ray probe (CRP) 93 

neutron intensity (Bogena et al., 2013; Desilets et al., 2010; Rosolem et al., 2014; 94 

Shuttleworth et al., 2013; Zreda et al., 2008; Zreda et al., 2012). Soil moisture 95 

measurements at the intermediate scale of the cosmic ray probe have the advantage 96 

that they are less affected by small scale variability of soil hydraulic properties. A 97 

further advantage is that soil moisture can be determined for a deeper layer (10-70 cm) 98 



in higher temporal frequency than remote sensing (Rosolem et al., 2014). 99 

Primary cosmic rays originate from our galaxy and eventually collide with 100 

atmospheric nuclei, generating secondary cosmic rays mainly consisting of neutrons 101 

(Lal and Peters, 1967). Primary cosmic rays create cascades of secondary high-energy 102 

neutrons through colliding with atmospheric nuclei and the high-energy neutrons can 103 

penetrate the atmosphere and collide with nuclei in soils. These collisions in the soil 104 

generate fast neutrons. Some of these fast neutrons are eventually scattered back to 105 

the atmosphere and the fast neutron intensity can be measured with the CRP. The 106 

measured intensity of fast neutrons above the ground depends strongly on soil 107 

moisture content (Hendrick and Edge, 1966; Zreda et al., 2012). CRPs make use of 108 

this principle to estimate soil moisture content for an area of about 600 m diameter 109 

and variable measurement depth (~10-70 cm) depending on the soil moisture 110 

conditions (Zreda et al., 2012). 111 

Measured neutron intensities above ground need to be corrected for variations in 112 

incoming high-energetic neutrons and atmospheric pressure (Zreda et al., 2012). 113 

Moreover, as the measured neutron intensity depends on additional sources of 114 

hydrogen (besides of soil moisture), these need to be taken into account in order to 115 

isolate the soil moisture signal. Corrections have been proposed for other hydrogen 116 

sources like atmospheric vapor (Rosolem et al., 2013), lattice water and organic 117 

carbon in the soil (Franz et al., 2013), hydrogen atoms stored in the litter layer 118 

(Bogena et al., 2013) and above-ground biomass (Baatz et al., 2015). Data 119 

assimilation studies have shown the advantage of using measured multi-source soil 120 



moisture observations for improving the soil moisture profile characterization of a 121 

land surface model (Crow et al., 2008; De Lannoy et al., 2007b; Han et al., 2012; 122 

Huang et al., 2008; Reichle et al., 2008; Walker et al., 2001). Measured neutron 123 

intensities have already been used for assimilation in a land surface model to improve 124 

estimates of soil moisture profiles, but the model parameters were calibrated a priori 125 

(Han et al., 2015a; Rosolem et al., 2014; Shuttleworth et al., 2013). 126 

In this paper we will investigate the benefits of assimilating coarse scale (600 m) 127 

neutron intensity data into the Community Land Model (CLM) for the application of 128 

drip irrigation for citrus trees on a finer scale (100 m) than the CRP scale. The neutron 129 

intensity measured by a synthetic CRP affects a larger area than a typical irrigation 130 

management unit (1 ha in this work). In order to study the impact of soil moisture data 131 

assimilation on irrigation scheduling, the drip irrigation was therefore simulated at a 132 

finer spatial scale than the footprint of a CRP. The drip irrigation was applied at the 133 

vegetated area and resulted in a very heterogeneous soil moisture distribution with the 134 

alternation of patches of wet and dry soil. It is very CPU-intensive to explicitly model 135 

the irrigated patches and the non-irrigated parts, and a simplified implementation was 136 

adopted in this work, which will be further detailed in the methodology section. In the 137 

simulation experiments, CLM was driven by biased soil properties to mimic the 138 

intrinsic model uncertainties. The coarse scale CRP neutron intensity observations 139 

were used to update the field scale heterogeneous soil moisture field through data 140 

assimilation. The joint soil moisture and soil properties (or soil moisture bias) 141 

estimation scheme was evaluated. This is important because soil moisture content and 142 



crop transpiration are sensitive to model parameters (Hou et al., 2012; Rosolem et al., 143 

2012; Schwinger et al., 2010). Typically, field measurements of parameter values are 144 

scarce and very uncertain, especially because of the scale mismatch between a local 145 

measurement and the model scale (Waller et al., 2014). Model parameter estimation 146 

in the context of a data assimilation framework was proven to be successful, using 147 

either an augmented state vector approach (Chen and Zhang, 2006), dual state 148 

parameter estimation (Moradkhani et al., 2005b) or parameter estimation in a loop 149 

external to the data assimilation filter (Vrugt et al., 2005). Successful applications are 150 

reported for such diverse areas as groundwater hydrology (Franssen and Kinzelbach, 151 

2008; Kurtz et al., 2014; Schöniger et al., 2012), rainfall-runoff models (Moradkhani 152 

et al., 2005a; Vrugt et al., 2006), land surface models (Han et al., 2014a; Pauwels et 153 

al., 2009), vadose zone hydrology (Montzka et al., 2011; Wu and Margulis, 2013) and 154 

atmospheric models (Ruiz et al., 2013). A data assimilation framework can consider 155 

uncertain model forcing, model structure and initial conditions, as well as parameter 156 

uncertainties. Data assimilation has become a commonly used method for parameter 157 

estimation, especially for large scale applications (Wanders et al., 2014).  158 

Joint soil moisture and soil moisture bias estimation has been proven to be helpful 159 

for improving data assimilation results (De Lannoy et al., 2007a; Kumar et al., 2012b) 160 

like soil temperature assimilation with bias correction (Bosilovich et al., 2007; 161 

Reichle et al., 2010). In this study, we also evaluated the impact of the soil moisture 162 

bias estimation method (Dee, 2005) on improving the soil moisture assimilation and 163 

irrigation scheduling and compared it with joint state-parameter estimation. 164 



It is expected that a more accurate characterization of the heterogeneous soil 165 

moisture distribution can be obtained if the coarse scale CRP neutron intensity data 166 

are assimilated using a combination of data assimilation and parameter estimation (or 167 

bias estimation). Based on such results, it is then assumed that the estimated irrigation 168 

requirement could be improved. The objective of this study is to evaluate with help of 169 

a synthetic study: 1) the potential of measured neutron intensity data by the CRP for 170 

improving the characterization of soil moisture content and soil properties (or soil 171 

moisture bias), and 2) the impact of the assimilation of neutron intensity on better 172 

irrigation scheduling and the potential for real-time irrigation optimization. In this 173 

study, the spatial variability of soil properties and crop status will be considered in the 174 

data assimilation. 175 

 176 

2. Methodology 177 

The main components of the methodology are: (i) measurement of above-ground  178 

neutron intensity, which is linked to field scale soil moisture content by a 179 

measurement operator (section 2.1) and horizontal weights (section 2.3); (ii) the land 180 

surface model CLM (version 4.5) which simulates the transport of water and energy 181 

in the soil-plant-atmosphere continuum (section 2.2); (iii) data assimilation according 182 

to the Local Ensemble Transform Kalman Filter (LETKF) methodology (Hunt et al., 183 

2007) which optimally combines measurements and model predictions to update soil 184 

moisture (and possibly soil properties or soil moisture bias), taking into account 185 

uncertain atmospheric forcing and model parameters (or model bias) (section 2.3) and 186 



(iv) an optimization routine which calculates irrigation need for the ensemble of soil 187 

moisture forecasts (section 2.4). 188 

2.1. Cosmic ray Soil Moisture Interaction Code (COSMIC) 189 

In order to assimilate neutron intensity, the relationship between neutron intensity 190 

and depth-weighted soil moisture content should be reasonably represented. The 191 

newly-developed COsmic ray Soil Moisture Interaction Code (COSMIC) 192 

(Shuttleworth et al., 2013) was adopted as the forward observation operator to 193 

simulate the equivalent neutron count rates from simulated soil moisture profiles (i.e., 194 

soil moisture contents for 10 vertical model layers of CLM from surface to 3 m depth, 195 

in this study) and takes into account the weighted contribution of individual soil 196 

layers with depth. The COSMIC operator calculates the number of fast neutrons 197 

reaching the CRP COSMOSN  at a near-surface measurement point by: 198 
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s  102.0405.0           (3) 201 

sL  38.9976.313           (4) 202 

where N (counts/h) is the number of high-energy neutrons at the soil surface, z203 

is the soil layer depth (m), s  is the dry soil bulk density (g cm-3), w  is the total 204 

soil water density, including the lattice water (g cm-3); )(zms  and )(zmw  are the 205 

integrated mass per unit area of dry soil and water (g cm-2),   is the angle between 206 

the vertical below the detector and the line between the detector and each point in the 207 



plane (Shuttleworth et al., 2013), 1L  is the high energy soil attenuation length with 208 

value of 162.0 gcm-2, 2L  is the high energy water attenuation length of 129.1 gcm-2, 209 

3L  is the fast neutron soil attenuation length (gcm-2) and 4L  is the fast neutron water 210 

attenuation length with value of 3.16 gcm-2 (Shuttleworth et al., 2013). 211 

In this study soil moisture contents for 10 vertical soil layers of CLM were used 212 

to drive the COSMIC operator. COSMIC interpolates the soil moisture to 300 layers 213 

with a soil profile depth of 3 meters and derives the fast neutron count rate from the 214 

depth-averaged soil moisture content based on the effective sensor depth, also 215 

calculated by COSMIC. The simulated fast neutron intensity was assumed to be 216 

observed and subsequently used for the data assimilation as will be explained below. 217 

Vertical variation of soil moisture content will be considered according to the 218 

contribution to the total neutron intensity of each soil layer. 219 

 220 

2.2. Community Land Model - CLM 221 

The Community Land Model (CLM - version 4.5) developed by the National 222 

Center for Atmospheric Research (NCAR) was used to calculate soil moisture content 223 

and evapotranspiration (Oleson et al., 2013). CLM uses the simplified Richards 224 

equation to model water flow in the unsaturated zone and calculation of land surface 225 

energy fluxes is done by invoking the Monin-Obukhov similarity theory. In addition, 226 

the following processes can be simulated by CLM: transfer of solar radiation and 227 

longwave radiation, stomatal physiology and photosynthesis, crop dynamics and 228 

irrigation (Oleson et al., 2013). The land cover can be represented by 17 plant 229 



functional types (PFTs) and the calculation of energy fluxes is based on the PFTs. 230 

Hydraulic and thermal parameters in CLM are derived based on soil properties such 231 

as sand and clay fraction and organic matter density (Oleson et al., 2013).  232 

 233 

2.3. Data Assimilation and Parameter Estimation 234 

The Local Ensemble Transform Kalman Filter (LETKF) is a square root 235 

ensemble Kalman filter (Hunt et al., 2007; Miyoshi and Yamane, 2007), which is 236 

applied extensively in atmospheric data assimilation studies (Aravéquia et al., 2011; 237 

Baek et al., 2006; Lien et al., 2013; Miyoshi et al., 2014) and also in land data 238 

assimilation studies (Han et al., 2014a). In LETKF, the uncertainty of the model 239 

forecast is represented by ensemble members. In this study LETKF is used to estimate 240 

both soil moisture and soil properties with the state augmentation method (Bateni and 241 

Entekhabi, 2012; Han et al., 2014a; Li and Ren, 2011) or to update soil moisture and 242 

soil moisture bias jointly. 243 

First two matrices b
X  and b

Y  are constructed based on simulated soil moisture 244 

and soil properties (or soil moisture bias) of the ensemble members: 245 

1 , ,b b b b b

M
     X x x x x            (5) 246 

 b b

i iHy x               (6) 247 

1 , ,b b b b b

M
     Y y y y y            (7) 248 

where 
1 ,b b

Mx x  are vectors with the ensemble members, M  is the ensemble 249 

size, b
x  is the vector with ensemble means calculated over

1 ,b b

Mx x , H  is the 250 

observation operator (i.e., COSMIC for soil moisture), b

iy  is the mapping of the 251 



ensemble members 
1 , M

b bx x  to the measurement space and b
y  is the vector of 252 

ensemble means of
1 , M

b by y . The vector b
x  contains i) the depth weighted average 253 

soil moisture cosmic , which was derived from COSMIC and considers the 254 

contribution of different soil layers, ii) the soil moisture of 10 layers ( 1 10  ) and iii) 255 

soil properties (sand fraction, clay fraction and organic matter density) in case soil 256 

properties are estimated. In case of bias estimation, the vector b
x  contains soil 257 

moisture bias instead of soil properties. The dimensions of the augmented state vector 258 

b
x  were 11 for the state estimation only, 14 for joint state and parameter estimation, 259 

and 12 for joint state and bias estimation. Only soil properties and soil moisture bias 260 

for the upper soil layer were included in the state vector b
x . Soil properties for all 10 261 

layers were updated based on the ratio of the soil properties between the upper soil 262 

layer and the lower soil layers (Han et al., 2014b). The soil moisture bias of deeper 263 

layers was assumed to decrease exponentially according to equation (8). 264 
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   (8) 265 

where iZ  (m) is the ith soil layer thickness of CLM and k is the time step. 266 

Next, the analysis error covariance matrix a
P  is calculated: 267 

  11a bT bM     P I Y R Y           (9) 268 

where R  is the observation error covariance matrix. The perturbations in the 269 

ensemble space a
W  are calculated according to: 270 

 
1/2

1a aM   W P             (10) 271 

The analysis mean a
w  is given by:  272 

 1a a bT o bw  P Y R y y            (11) 273 

where o
y  is the vector with the measured CRP neutron intensity. The analysis 274 

mean is added to each column of a
W   to get the analysis ensemble. 275 

Finally, the new analysis a
X  is obtained according to: 276 

a b a b X X W x              (12) 277 



where a
X  are the model ensemble members after analysis. a

X  includes the 278 

updated soil moisture and soil properties (or soil moisture bias), and will be used as 279 

initial condition for the next time step. 280 

The forecast model of soil moisture bias k

Biasθ  was defined as: 281 

1k k

Bias Bias

θ θ               (13) 282 

where k  is the time step. 283 

In this study, the LETKF was applied as a 1D filter to update soil moisture in the 284 

cosmic ray footprint, which covered several fine scale model grid cells. Neutron 285 

intensity data were used to update the fine scale soil moisture within the expected 286 

CRP footprint and the contribution of different grid cells within the CRP footprint to 287 

the observed neutron intensity was taken into account by assigning different 288 

horizontal weights to the CLM grid cells. Following the horizontal weighting method 289 

proposed by (Bogena et al., 2013), we used a Gaussian window function (Harris, 1978) 290 

to define the horizontal weights of the different CLM grid cells in the CRP footprint. 291 

Because a single observation was used to update the soil moisture content of many 292 

CLM grid cells, a simple multi-scale data assimilation strategy was proposed. First, 293 

the COSMIC operator was run for each CLM grid cell to simulate the neutron 294 

intensity of each CLM grid cell. Next, a convolution with a Gaussian window 295 

function was applied to retrieve the integrated neutron intensity at the coarse scale. 296 

This convolution step was used in both the ensemble runs and the parallel runs 297 

(introduced in section 3.3). Therefore the CRP neutron intensity (measured/simulated) 298 

considered the contributions from all model grid cells contained within the CRP 299 



footprint. The size of the Gaussian window function was chosen as the diameter of the 300 

CRP footprint (600 m). The observation operator H (needed by equation (6)) was 301 

defined as the combination of a Gaussian window function and the COSMIC operator. 302 

Using equation (6) we get: 303 

 (b b

i Gaussian cosmic if fy x ）           (14) 304 

where cosmicf  represents the COSMIC operator and Gaussianf  the Gaussian 305 

window function. 306 

The footprint of the CRP covered 43 CLM grid cells (i.e., ~600 m diameter). The 307 

data assimilation was done grid cell by grid cell in LETKF. Therefore the time series 308 

of a single neutron intensity observation was assigned uniformly to all grid cells of the 309 

CRP footprint and then the observations were assimilated separately for each CLM 310 

grid cell. The spatial localization was applied on the model states using equation (14), 311 

and therefore the observation localization was not used in this study (Greybush et al., 312 

2011; Han et al., 2015b). The soil moisture measured by CRP is composed of the 313 

contribution of all horizontal and vertical CLM grid cells of the CRP footprint. 314 

Therefore, there is only one relevant soil moisture content value and neutron intensity 315 

value. Given equation (14), the upscaling of soil moisture from CLM will be done 316 

before assimilation, it means the upscaled soil moisture cosmic which incorporates the 317 

contribution from all surrounding grid cells will be used as the soil moisture content 318 

value to be updated with the CRP neutron intensity measurement. All the soil 319 

moisture content values for the individual grid cells within the CRP footprint (both 320 

horizontally and vertically) will be updated according to the correlation between the 321 



simulated values by CLM and cosmic : 322 

 b

i( )cosmic Gaussian cosmicf f  x           (15) 323 

 324 

2.4. Irrigation Requirement 325 

CLM computes the water deficit between the current soil moisture content and a 326 

target soil moisture content. The target soil moisture in each soil layer is a weighted 327 

average of (1) the minimum needed soil moisture content to avoid water stress for that 328 

layer and (2) the saturated soil moisture content for that layer (Levis and Sacks, 329 

2011): 330 

 , , ,1 0.7 0.7target i o i sat i                (16) 331 

where 𝑖 is the soil layer number, 
,o i  is the minimum soil moisture content of 332 

each vegetation type so that stomata are completely opened and 
,sat i  is the effective 333 

soil porosity. 334 

The total water deficit 
deficitW (mm) was defined as: 335 

 , ,_ max ,0
N

deficit i target i liq i

i

W Root Fraction          (17) 336 

where 
,liq i  is the current soil moisture content of layer i . 337 

The estimated irrigation amount 
deficitW  was applied in CLM as an incoming 338 

water flux not subjected to interception by the canopy layer (precipitation on the 339 

contrary was subjected to interception). 340 

The root fraction  iRF  of citrus trees for the soil layer i  was parameterized as 341 

(Oleson et al., 2013): 342 
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   (18) 343 

where 
,h iZ  (m) is the depth from the soil surface to the interface between soil 344 

layers i  and 1i   (
,0 0hZ   represents the soil surface), ar  and br  are plant 345 

dependent root distribution parameters, for citrus trees: 8.992ar  , 8.992br   (Zeng, 346 

2001), 10levsoiN   is the total number of soil layers. 347 

 348 

2.5. Performance Measures 349 

In order to evaluate the results of data assimilation and irrigation, the Root Mean 350 

Square Error (RMSE) was calculated for the hourly soil moisture results: 351 

 
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 - 
RMSE ?

K

est refk i

K

 
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
         (19) 352 

where est  is the hourly soil moisture ensemble mean for a given scenario, ref  353 

is the hourly soil moisture value of the reference scenario. K is equal to 8760. Soil 354 

moisture contents at the time points of assimilation and prediction were included in 355 

the calculations with Eq. 19. Lower RMSE values mean better performance. 356 

The Hausdorff Distance (HD) is a quantitative measure of the similarity between 357 

two spatial distributions (Kumar et al., 2012a). Lower HD values mean higher spatial 358 

similarity. HD is defined as the maximum distance of a set to the nearest point in the 359 

other set: 360 

    , max min
r Qq Q

h Q R q r


            (20) 361 

where  ,h Q R  is the HD value and q  and r  are the points of sets Q  and 362 



R . q r  is the norm of the points in the space of Q  and R , in terms of Euclidean 363 

distance. Q is the estimated annual irrigation amount of a CLM grid cell in the CRP 364 

footprint and R  is the annual irrigation amount of the reference scenario of the CRP 365 

footprint.  366 

The t-test can be used to determine whether two data sets are significantly 367 

different. The independent two-sample t-test was used to evaluate the statistical 368 

significance of the difference between the estimated irrigation amount and the 369 

reference irrigation amount (Welch, 1947). The definition of the t-test is as follows: 370 
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             (21) 371 

where
1 2/X X , 2 2

1 2/s s  and 1 2/N N  are the mean, variance and the number of 372 

optimized irrigation amounts, respectively. The subscripts 1 and 2 represent the 373 

reference scenario and estimation scenario, respectively. 374 

 375 

3. Synthetic Experiment 376 

A synthetic study was conducted to evaluate the methodology outlined in the 377 

previous sections. The synthetic study mimicked the Picassent site (close to Valencia, 378 

Spain) with citrus trees, which receives drip irrigation. The site is situated in a 379 

semi-arid region (39.38o N, 0.47o E) with yearly average precipitation of 454 mm (44 380 

precipitation days), average daily maximum temperature of 22.3oC and average daily 381 

minimum temperature of 13.4oC, and with a yearly irrigation period from April to 382 

October. In the synthetic experiments, a CRP (Zreda et al., 2012) measured the 383 



neutron intensity which was assimilated in the land surface model CLM. 384 

 385 

3.1. Design of Synthetic Experiments 386 

The citrus tree was modeled as a broadleaf evergreen tropical PFT in CLM. In 387 

order to mimic the planting pattern of citrus trees at the Picassent site, odd CLM grid 388 

columns were modelled as bare ground without vegetation cover while even CLM 389 

columns were modelled as fully covered by broadleaf evergreen tropical trees. The 390 

mimicked ground cover of vegetation was similar to the real measured ground cover 391 

fraction of citrus trees. Soil properties (sand fraction and clay fraction) and organic 392 

matter density determine the soil thermal and hydraulic properties in CLM. Soil 393 

samples from the Picassent region were taken and a soil sand fraction of 32%, clay 394 

fraction of 33%, bulk density of 1.5 gcm-3, and organic fraction of 1.2% (10 cm depth) 395 

and 0.7% (50 cm depth) were determined and applied uniformly in space in CLM. 396 

Spatially correlated noise was added to the uniform soil properties to represent the 397 

spatial heterogeneity. The noise was simulated by sequential Gaussian simulation with 398 

a correlation range of 100 m, variance of 100.0 (%) and mean value of 0.0 (%). The 399 

noise was constrained within the range of (-5.0%, 5.0%) after the sequential Gaussian 400 

simulation. The atmospheric forcing data measured by the Picassent weather station 401 

were used as CLM input. The maximum rate of carboxylation at 25 °C ( 25cmaxV ) 402 

controls the maximum rate of carboxylation and canopy transpiration in CLM. The 403 

default value of 25cmaxV  is 55 
2 -1μmolm s  for broadleaf evergreen tropical tree in 404 

CLM. It was changed to 100 2 -1μmolm s according to a reference value for citrus trees 405 



(Velikova et al., 2012). The study area was discretized in 40×60 grid cells at a spatial 406 

resolution of 100 m. However, our analysis will focus on the CRP footprint which 407 

contains only 43 CLM grid cells in total. Because of the spatial discretization, it is not 408 

easy to describe the exact CRP footprint. The diameter of the CRP footprint for the 409 

horizontal weighting calculation was chosen as the ratio between the CRP diameter 410 

and the spatial resolution of the CLM grid cell, which was 7 grid cells. 411 

A model spin-up was made to obtain reasonable initial conditions for CLM. CLM 412 

was run for the spin-up period from 2010-01-01 to 2010-12-31 using an hourly time 413 

step. Next, a one-year (2011-01-01 to 2011-12-31) irrigation estimation using the true 414 

soil properties was performed in CLM and the irrigation requirement was calculated 415 

every three days during the period from 2011-01-01 to 2011-12-31 and subsequently 416 

applied. This reference model run also supplied the reference soil moisture 417 

distribution in space and time and the canopy transpiration, and a distribution in space 418 

and time (and total amounts) of irrigation. 419 

 420 

3.2. Ensemble Generation 421 

The simulation experiments evaluated how well the soil moisture, 422 

evapotranspiration, soil properties and irrigation requirement could be characterized if 423 

soil properties and model forcing were biased and/or uncertain, but the measurement 424 

data (albeit synthetically generated for this study) in the form of CRP neutron 425 

intensity were available. We assumed that the soil texture was systematically coarser 426 

than in reality. The soil properties used in the reference run were perturbed to 427 



represent these conditions: the sand fraction was multiplied by 1.5 while the clay 428 

fraction and organic matter density were both multiplied by 0.75. In addition, for all 429 

scenarios the sand and clay fractions, and organic matter density were perturbed by a 430 

uniform distributed noise in the range of [-10.0%, 10.0%] (for soil texture) and [-10.0 431 

km m-3, 10.0 km m-3] (for organic matter density) to generate 20 different soil 432 

hydraulic properties for the 20 different ensemble members. It is assumed that these 433 

perturbations represent a realistic representation of the uncertainty in practice. If the 434 

sum of the sand and clay fraction was larger than 98%, an amount equal to 435 

((Sand%+Clay%) – 98%)/2.0 was subtracted from both the sand and the clay fraction. 436 

For the ensembles for which initial soil moisture bias was updated instead of soil 437 

properties, soil moisture was perturbed with a spatially uniform value sampled from 438 

the uniform distribution with values between -0.04 m3m-3 and 0.04 m3m-3. 439 

The atmospheric forcing data of precipitation, air temperature, shortwave incident 440 

radiation and longwave incident radiation were perturbed with a noise correlated in 441 

space and time (Han et al., 2013). The spatially correlated noise was generated using 442 

the Fast Fourier Transform approach and the temporal correlation was imposed by a 443 

first-order auto-regressive model approach (Kumar et al., 2009; Park and Xu, 2009). 444 

The perturbation parameters are summarized in Table 1. 445 

 446 

3.3. Synthetic Observation 447 

In this study, the “observed” synthetic CRP neutron intensity was generated using 448 

the COSMIC model, which used the soil moisture profile simulated by CLM as input. 449 



A point which had to be considered in the simulation scenarios was that the soil 450 

moisture changed also as response to the irrigation amount applied in the CLM 451 

simulation. Therefore, the synthetic observations will be different for each simulation 452 

scenario due to the different irrigation amounts. In order to obtain the synthetic 453 

measurements of CRP neutron intensity for these scenario runs, a parallel run was 454 

made with the same soil properties and atmospheric forcing as the reference run for 455 

each of the simulation scenarios. However, the irrigation amount for this parallel run 456 

was the same as the optimized one for the specific simulation scenario. Therefore 457 

irrigation amounts differed among the parallel runs of the different scenarios. This in 458 

turn also affected the CRP intensity which was assimilated in the simulation scenarios. 459 

The soil moisture calculated in the parallel run was used now as the synthetic soil 460 

moisture measurement for this specific scenario and also used as input for COSMIC 461 

to estimate the synthetic CRP neutron intensity. This implies that the assimilated CRP 462 

neutron intensity differed among different scenarios, in correspondence with different 463 

irrigation amounts applied in the different scenarios.  464 

In this synthetic study, COSMOSN  was set to 150 counts h-1 and lattice water was 3% 465 

in COSMIC. The simulated CRP intensity measurements were perturbed in order to 466 

represent the observation error. This perturbation had a mean equal to zero and a 467 

variance equal to the square root of the neutron intensity to represent the observation 468 

error. The CLM grid cells located in the footprint of the CRP were updated by the data 469 

assimilation procedure. The neutron intensity observation was assimilated at 23:00 470 

each three days, prior to irrigation scheduling. 471 



Fig. 1 shows a schematic overview of the complete calculation procedure for each 472 

time step. 473 

[Insert Figure 1 here] 474 

 475 

3.4. Irrigation Scheduling 476 

In Valencia, citrus trees are typically irrigated 3~6 days per week from April to 477 

October. For simplicity, the irrigation duration was assumed to be two hours from 478 

06:00 AM onwards, and the irrigation was applied every three days for reasons of 479 

computational efficiency. CLM was run in prediction mode for three days to estimate 480 

the needed amount of irrigation (at 06:00) using the predefined atmospheric forcing 481 

data. The first assimilation of soil moisture data was done at 23:00, seven hours 482 

before the start of the second irrigation period. 483 

Five irrigation estimation scenarios were designed to assimilate the CRP neutron 484 

intensity in the land surface model and to evaluate the impact of data assimilation, 485 

parameter estimation and bias estimation on the characterization of the soil moisture 486 

profile, irrigation amount and evapotranspiration:  487 

(1) Irrigation estimation with the true soil properties and atmospheric forcing 488 

(Reference).  489 

(2) Irrigation estimation with biased soil properties, without CRP neutron 490 

intensity assimilation (No_DA, i.e. Open loop).  491 

(3) Irrigation estimation with biased soil properties, with the assimilation of CRP 492 

neutron intensity (every three days) (Only_DA_SM). 493 



 (4) Irrigation estimation with biased soil properties, with both CRP neutron 494 

intensity assimilation (every three days) and soil moisture bias estimation 495 

(DA_SM_Bias). 496 

(5) Irrigation estimation with biased soil properties, with neutron intensity 497 

assimilation (every three days) including soil properties estimation (DA_SM_Par). 498 

For the scenario of DA_SM_Par, the study period included both 2010 and 2011. In 499 

2010, joint soil moisture and soil properties estimation were carried out in order to 500 

update the biased soil properties (sand fraction, clay fraction and organic matter 501 

density). Next, in 2011 the updated soil properties were used for soil moisture 502 

assimilation without soil properties updating. For the scenarios without soil properties 503 

estimation, the experiments were only carried out for 2011.  504 

The estimation of soil properties during the year 2010 deteriorated in case of 505 

intensive irrigation. In case of intensive irrigation, the soil column is close to 506 

saturation, and the ensemble members show a limited spread. In addition, the 507 

sensitivity of soil moisture with respect to soil properties becomes small. Parameter 508 

estimation (i.e., updating of soil properties) is not very efficient during these periods. 509 

Therefore, soil properties were not updated if the accumulated irrigation amount 510 

between two data assimilation time steps was larger than 10 mm.  511 

 512 

4. Results 513 

In this section we evaluate time series for the different simulation scenarios at the 514 

CRP location. Spatial patterns of (estimated) soil properties and optimized irrigation 515 



amounts for different simulation scenarios are also compared. This comparison is 516 

made at the scale of the complete CRP footprint. The temporal evolution of soil 517 

moisture content at 30 cm and 50 cm depth for different simulation scenarios is shown 518 

in Fig. 2. The scenario No_DA underestimated soil moisture content even although 519 

(too) high irrigation amounts were scheduled, which is related to the erroneous soil 520 

texture in this simulation scenario and the associated bias in soil properties like 521 

saturated hydraulic conductivity. In the data assimilation scenario Only_DA_SM soil 522 

moisture characterization was improved by assimilating the CRP neutron intensity, 523 

but the bias was also very high due to the large bias of soil properties. In order to 524 

reduce the soil moisture bias, the joint soil moisture state and bias estimation was 525 

evaluated in the scenario DA_SM_Bias by use of the state augmentation method. The 526 

soil moisture estimation became better than Only_DA_SM after the soil moisture bias 527 

was reduced. The best soil moisture results were obtained in the scenario DA_SM_Par, 528 

in which sand fraction, clay fraction and organic matter density were updated 529 

sequentially using the joint state and parameter estimation method. 530 

[Insert Figure 2 here] 531 

The RMSE values for soil moisture characterization are summarized in Fig. 3. 532 

Compared with the Reference scenario, the scenarios No_DA and Only_DA_SM 533 

underestimated soil moisture content, which resulted in higher irrigation requirement 534 

than for the reference case. Compared with the scenario No_DA, the RMSE values 535 

for soil moisture content at 30 cm depth decreased by 33%, 40% and 52% for the 536 

scenarios Only_DA_SM, DA_SM_Bias and DA_SM_Par, respectively. At 50cm 537 



depth these RMSE-decreases were 39%, 35% and 51% for the scenarios 538 

Only_DA_SM, DA_SM_Bias and DA_SM_Par, respectively. These results illustrate 539 

the benefit of joint state-parameter estimation. Model results were strongly influenced 540 

by the biased soil properties for the scenario Only_DA_SM, where measurement data 541 

were not used to estimate model bias or soil properties. As model bias was related to 542 

biased soil properties in these simulations, joint state and parameter estimation 543 

performed better than the scenario with joint state and bias estimation. 544 

[Insert Figure 3 here] 545 

Fig. 4 shows the soil moisture bias for the different ensemble members (scenario 546 

DA_SM_Bias). The temporal evolution of the bias is shown for the first soil layer and 547 

the CRP location. The time series of true soil moisture bias (the scenario No_DA) is 548 

shown for comparison. The mean bias value for No_DA is 0.051 m3m-3 and 0.033 549 

m3m-3 for DA_SM_Bias. The joint state-bias estimation could reduce 35% of the soil 550 

moisture bias introduced by the biased soil properties.  551 

[Insert Figure 4 here] 552 

The CLM model derives the soil hydraulic parameters using a predefined 553 

pedotransfer function (Oleson et al., 2013). The updated soil texture resulted therefore 554 

in updated soil hydraulic parameters in CLM. In order to show the influence of 555 

calibrated soil texture on the soil hydraulic parameters, the temporal evolution of the 556 

calibrated saturated hydraulic conductivity K and the empirical parameter B which 557 

represent the slope of water retention curve in the Clapp–Hornberger parameterization 558 

(Clapp and Hornberger, 1978; Oleson et al., 2013) are shown in Fig. 5 (scenario 559 



DA_SM_Par). The Clapp–Hornberger parameterization can be used to calculate the 560 

hydraulic conductivity when the soil water retention data are not available. All soil 561 

hydraulic parameters could be improved in this scenario by assimilating the CRP 562 

neutron intensity. The mean ensemble values for the soil hydraulic parameters 563 

approached the reference values over the assimilation period. As the soil properties 564 

were not updated during the intensive irrigation period, the convergence was slow. 565 

[Insert Figure 5 here] 566 

Fig. 6 shows the time series of irrigation amount at the location of the CRP for 567 

the reference case and for the different estimation scenarios. The reference irrigation 568 

amount (707.2 mm) was calculated in CLM on the basis of the water deficit method. 569 

Fig. 6 illustrates that the intensive irrigation period from June to October coincided 570 

with limited precipitation. The reference irrigation amount was around twice of the 571 

annual precipitation amount (356.1 mm). The sum of the reference irrigation amount 572 

(707.2 mm) and annual precipitation (356.1 mm) was about 6% higher than the 573 

documented potential annual evapotranspiration of citrus trees (Ballester et al., 2011; 574 

Jimenez-Bello et al., 2015). We used a t-test to compare the estimated annual 575 

irrigation requirements by the different scenarios with the reference case. Large p 576 

values (Fig. 6) indicate that the scenarios with data assimilation did not have a 577 

significantly different irrigation scheduling as compared with the reference case. The 578 

scenario No_DA has a p value <0.05, which indicates that the estimated irrigation 579 

amounts were significantly different from the reference case. Data assimilation 580 

(Only_DA_SM) improved results with higher p values (p=0.205). Scenarios with bias 581 



correction (p=0.819) and parameter estimation (p=0.755) gave better results than the 582 

scenario of state estimation only (Only_DA_SM). The annual irrigation amounts for 583 

the grid cell at the location of the CRP are summarized in Fig. 7. Obviously, joint soil 584 

moisture and bias (or parameter estimation) improved the characterization of 585 

irrigation requirement. 586 

[Insert Figure 6 here] 587 

[Insert Figure 7 here] 588 

Now we analyze the irrigation results for the scenarios in detail. The better 589 

characterization of the irrigation demand was found by combining CRP neutron 590 

intensity assimilation and soil properties estimation (or soil moisture bias estimation). 591 

Scenarios DA_SM_Bias and DA_SM_Par estimated an irrigation requirement of 592 

691.0 mm and 685.6 mm, respectively. The scenario Only_DA_SM (i.e., data 593 

assimilation with state estimation only) gave an irrigation estimation of 797.7 mm. 594 

CRP neutron intensity assimilation without parameter estimation provided much 595 

better results than scenarios without data assimilation (No_DA). The estimated 596 

irrigation amount for the scenario No_DA was 1107.3 mm. These results illustrate that 597 

irrigation estimation for the case of biased soil properties (i.e., sandier soil in model 598 

than in reference run) can be improved significantly by the assimilation of CRP 599 

neutron intensity and even better by including soil properties estimation or bias 600 

estimation. Data assimilation improved the estimation of irrigation demand and even 601 

resulted in a slightly lower irrigation than for the reference case. 602 

The CRP footprint was composed of 43 CLM grid cells which were irrigated 603 



separately. The irrigation requirements estimated for the different scenarios are 604 

displayed in Fig. 8 and compared with the reference scenario. The spatial irrigation 605 

patterns of scenarios DA_SM_Bias and DA_SM_Par are closer to the reference case 606 

than the scenario without data assimilation (No_DA). 607 

[Insert Figure 8 here] 608 

The single CRP neutron intensity measurement for the coarse scale (600 m) was 609 

used to update the 43 CLM grid cells at the fine scale (100 m). The spatial distribution 610 

of soil properties and annual irrigation amount were compared with the reference 611 

spatial distributions. A higher spatial similarity is associated with lower HD values. 612 

The HD values were evaluated according to the distance between a CLM grid cell and 613 

the CRP location. Three classes were defined: (i) distance CRP- grid cell ≤ 100 m; (ii) 614 

distance CRP- grid cell > 100 m and ≤ 200 m; (iii) distance CRP- grid cell > 200 m 615 

and ≤ 300 m. The HD values for the comparison of the spatial patterns of soil 616 

properties for the scenarios No_DA and DA_SM_Par are shown in Fig. 9. The 617 

similarity of soil properties between background and reference is small due to the 618 

imposed bias, and the HD values were 580.83, 1186.53, 1203.93 for sand fraction, 619 

clay fraction and organic matter density, respectively. The scenario DA_SM_Par 620 

resulted in a spatial distribution of soil properties closer to the reference case, with 621 

HD values of 69.83 for sand fraction (580.83 for No_DA), 149.96 for clay fraction 622 

(1186.53 for No_DA) and 185.21 for organic matter density (1203.93 for No_DA) 623 

HD values for sand fraction, clay fraction and organic matter density for the region 624 

with distance CRP- grid cell ≤ 100 m decreased by 80%, 82% and 64%, compared to 625 



No_DA, respectively. For the region with distance CRP- grid cell > 100 m and ≤ 200 626 

m the decreases were 82%, 66% and 67%, respectively. Finally, for the region with a 627 

distance CRP- grid cell > 200 m and ≤ 300 m the decreases were 78%, 82% and 40%, 628 

respectively. 629 

Figure 10 shows the HD values for the comparison of the spatial distribution of 630 

irrigation amounts with the reference. The figure includes comparisons for all 631 

different data assimilation scenarios. It is clear that the assimilation of CRP neutron 632 

intensity (Only_DA_SM) increased the similarity between the spatial distribution of 633 

estimated annual irrigation amount and the reference irrigation distribution. Soil 634 

properties estimation and soil moisture bias estimation increased the similarity in 635 

spatial irrigation pattern further. The HD values for the scenario DA_SM_Bias 636 

decreased 89% (distance CRP- grid cell ≤ 100 m), 81% (distance CRP- grid cell > 100 637 

m and ≤ 200 m) and 82% (distance CRP- grid cell > 200 m and ≤ 300 m) compared to 638 

No_DA. The HD values for the scenario DA_SM_Par, for the same three distance 639 

classes and in the same order, decreased by 88%, 87% and 85% compared to No_DA. 640 

[Insert Figure 9 here] 641 

[Insert Figure 10 here] 642 

The total annual ET for the different scenarios was also calculated, and also the 643 

contributions from ground evaporation, evaporation of intercepted water by the 644 

canopy and canopy transpiration. The ET for the reference scenario was 756.6 mm. 645 

The ET for all other scenarios was very close to the reference. In case of the scenario 646 

No_DA, too much water was irrigated so that drought stress did not occur. The other 647 



scenarios with data assimilation resulted in less irrigation, but ET was also close to 648 

the reference value, indicating that less irrigation was not associated with plant stress. 649 

For all the scenarios, the ET values did not deviate much from the reference value. 650 

This is because in all cases an overestimation of the percentage of sand led to 651 

excessive irrigation and sustainment of potential ET. The largest contribution to the 652 

ET was the canopy transpiration. The irrigated grid cells were assumed to be fully 653 

covered by the vegetation, and therefore the ground evaporation was low. The low 654 

evaporation from the canopy intercepted water maybe related to the fact that the rain 655 

events occurred mainly in the spring and winter seasons. 656 

 657 

5. Discussion 658 

The proposed data assimilation and parameter estimation (or bias estimation) can 659 

improve the soil moisture and irrigation estimation. The joint state-parameter 660 

estimation is the best scenario, and reduced the RMSE values of soil moisture content 661 

more than 50%, the spatial similarity of irrigation amount was increased and the HD 662 

values were decreased by 86% on average. The novelty of this work was the 663 

assimilation of the new CRP data in combination with irrigation scheduling. In 664 

general, classical parameter estimation tends to focus on uncertainty in the parameter 665 

estimates only, while neglecting partial or all of the other uncertainty sources (Liu and 666 

Gupta, 2007). We did not aim to compare the parameter estimation methodology with 667 

other methodologies in this study. The synthetic CRP neutron intensity observations 668 

were assimilated in CLM and the synthetic study potentially overestimated the 669 



performance of the proposed method.  670 

In a real-world application, the model will show systematical biases and also the 671 

implementation of the project area in the model is a strong simplification which might 672 

generate additional bias. A complication for the application of the data assimilation 673 

system in a real-world application is therefore the presence of model structural bias, 674 

and parameter estimation could compensate for this bias so that the estimated 675 

parameter values are not necessarily closer to the true parameter values. The approach 676 

will try to identify the effective parameter values that maximize model performance at 677 

that scale (Wagener et al., 2007). Therefore, as an alternative, instead of updating 678 

states and parameters jointly, also states and bias could be estimated jointly. It was 679 

shown in this paper that both approaches gave improvements. Although uncertainty of 680 

soil hydraulic parameters is important in the context of irrigation scheduling, it might 681 

be difficult to infer better estimates of soil hydraulic parameters due to other sources 682 

of uncertainty like model structural bias. On the other hand, this does not need to 683 

hamper successful operational implementation of the proposed method. Hendricks 684 

Franssen et al (2011) demonstrated the feasibility of operational prediction of 685 

groundwater levels (Franssen et al., 2011), coupled to operational optimization of 686 

groundwater management at the same site (Bauser et al., 2012). The water works 687 

Zurich applied this methodology (Franssen et al., 2011) now for the period 2009-2015, 688 

with consistent better predictions than for the open loop run. However, in the 689 

operational implementation on-line parameter estimation was avoided and only states 690 

were updated. It is therefore possible that for on-line irrigation scheduling a 691 



conservative, potentially less successful strategy should be followed where only states 692 

are updated. This synthetic study showed that state updating only also would improve 693 

irrigation scheduling considerably. We believe therefore that although in a real-world 694 

case study results will be less favorable than in the synthetic study, data assimilation 695 

with updating states only, or joint updating of states and bias (or parameters) in case 696 

of a systematic bias, will improve irrigation scheduling compared to a scenario 697 

without data assimilation. 698 

An additional challenge for the real world application is the forward modeling of 699 

the CRP neutron intensity. The measured CRP neutron intensity needs to be corrected 700 

for variations in the incoming high-energetic neutrons, the atmospheric pressure and 701 

humidity, lattice water and organic carbon content of the soil, and aboveground 702 

biomass. The aboveground biomass of citrus trees is temporally variable related to the 703 

growth of the oranges (or lemons) over the year. The impact of vegetation water 704 

content on the CRP neutron intensity is still under active study. In principle, an 705 

empirical methodology is suited to correct for the influence of aboveground biomass 706 

on measured neutron count intensity (Baatz et al., 2015). In this study, the 707 

synthetically measured CRP neutron intensity was applied uniformly at the CRP 708 

footprint and a simple multiscale data assimilation scheme was proposed to update the 709 

field scale CLM simulation using coarse scale CRP neutron intensity. This may not be 710 

optimal as all the grid cells within the CRP footprint contribute differently to the 711 

measured CRP neutron intensity. The soil spatial heterogeneity in the CRP footprint 712 

was introduced by adding a random spatially correlated noise. Heterogeneous land 713 



cover was not considered in this study. However, the spatial variability of ecosystem 714 

parameters could be a further confounding parameter influencing the results. 715 

Altogether, accounting for temporally variable biomass in the COSMIC operator does 716 

not seem a large limitation, but spatially variable soil moisture conditions within the 717 

cosmic ray probe footprint, are a serious challenge. 718 

Furthermore, the weather forecast is essential to the irrigation scheduling. This 719 

aspect was not considered in this work. If the precise precipitation forecast cannot be 720 

obtained, the irrigation requirement cannot be estimated accurately. 721 

A further important complication for real-world applications is that farmers want 722 

to irrigate the citrus based on their own experience, and in combination with the low 723 

water prices they might not want to follow the suggested irrigation scheduling. 724 

Altogether, we feel that the methodology is suited for real-world applications and can 725 

improve irrigation scheduling compared to more traditional scheduling, but that the 726 

farmer participation is the most critical factor, besides model structural bias and soil 727 

moisture heterogeneity within the cosmic ray probe footprint.  728 

Therefore, the successful real application of the proposed method needs: a 729 

calibrated land surface model, an improved COSMIC operator in which the measured 730 

cosmic-ray neutron intensity is corrected for above and below ground biomass, not 731 

too large spatial variability of soil moisture content within the cosmic ray probe 732 

footprint and a precise weather forecast including uncertainty characterization and 733 

participation of farmers. 734 

A further possible improvement is the consideration of irrigation below ET 735 



requirement, known as deficit irrigation (DI), which can reduce water demand to meet 736 

the maximum ET (Fereres and Soriano, 2007). 737 

 738 

6. Conclusions 739 

This study investigated the assimilation of synthetic measurements of coarse 740 

scale CRP neutron intensity in CLM for updating field scale root zone soil moisture 741 

content. The synthetic study mimicked a drip irrigated citrus farmland near Valencia, 742 

Spain. CLM was driven by biased soil properties and the joint estimation of soil 743 

moisture and soil properties (or soil moisture bias) was evaluated in a data 744 

assimilation framework using the state augmentation method. The non-linear 745 

measurement operator COSMIC was used to simulate the CRP neutron intensity on 746 

the basis of the soil moisture profile estimated by the CLM model. Fast neutron 747 

intensity was assimilated directly, and both soil moisture and soil properties (soil 748 

moisture bias) were updated using the LETKF in combination with the CLM model. 749 

The horizontal and vertical weights for the different CLM grid cells in the CRP 750 

footprint were also considered using a Gaussian window function. 751 

The results show that assimilating CRP neutron intensity can improve joint soil 752 

moisture and soil properties estimation, and irrigation scheduling. Data assimilation 753 

schemes that remove soil moisture bias or update soil properties on the basis of CRP 754 

neutron intensity outperform data assimilation without bias or parameter estimation. 755 

The joint soil moisture and soil parameter estimation with simple multiscale 756 

assimilation strategy of CRP neutron intensity can potentially be used for irrigation 757 



scheduling in the future. The main challenges for the real world application are: 758 

model calibration to remove the bias, forward modeling of cosmic-ray neutron 759 

intensity under high vegetation coverage, precise weather forecasts and cooperation of 760 

farmers.  761 
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Table 1 Summary of perturbation parameters for atmospheric forcing data 971 

Variables Noise 
Standard 

deviation 

Time 

Correlation 

scale 

Forcing Cross 

Correlation 

Precipitation 

Shortwave radiation 

Longwave radiation 

Air temperature 

Multiplicative 

Multiplicative 

Additive 

Additive 

0.5 

0.3 

20 W/m2 

1 K 

24 h 

24 h 

24 h 

24 h 

[ 1.0,-0.8, 0.5, 0.0, 

-0.8, 1.0,-0.5, 0.4, 

0.5, -0.5, 1.0, 0.4, 

0.0, 0.4, 0.4, 1.0] 
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Figure List 974 

Figure 1. Schematic overview of the different steps of the irrigation optimization 975 

procedure 976 

Figure 2. Soil moisture content at 30 cm (upper graph) and 50 cm (lower graph) depth 977 

at the cosmic-ray location for the different simulation scenarios 978 

Figure 3. RMSE values for soil moisture content at 30 cm depth (left graph) and 50 979 

cm depth (right graph) for the different scenarios at the CRP location 980 

Figure 4. Temporal evolution (collected every three days) of soil moisture bias for the 981 

first soil layer at the CRP location (scenario DA_SM_Bias), the true soil moisture bias 982 

was calculated from scenario No_DA is showed in blue 983 

Figure 5. Temporal evolution (collected every three days) of saturated hydraulic 984 

conductivity K of soil (K_10cm) and the empirical parameter B of the Clapp–985 

Hornberger parameterization (B_10cm) at the CRP location for the scenario 986 

DA_SM_Par 987 

Figure 6. Irrigation requirement as function of time at the CRP location for the 988 

different scenarios; t-test statistics (p-value) with significance level 0.05 for 989 

comparing the calculated irrigation distribution with reference irrigation are also 990 

shown for the different scenarios (large p-values indicate high similarity) 991 

Figure 7. Annual irrigation requirement according to the different scenarios at the 992 

CRP location 993 

Figure 8. Annual irrigation calculated for different simulations scenarios and 994 

compared to the reference scenario 995 

Figure 9. Hausdorff distance values of calculated annual irrigation requirement, 996 

compared to reference irrigation, for different scenarios. Results are plotted as 997 

function of distance between model grid cells and CRP location 998 
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Figure 1. Schematic overview of the different steps of the irrigation optimization 1001 

procedure 1002 
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 1005 

Figure 2. Soil moisture content at 30 cm (upper graph) and 50 cm (lower graph) 1006 

depth at the CRP location for the different simulation scenarios  1007 
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 1009 

Figure 3. RMSE values for soil moisture content at 30 cm depth (left graph) and 50 1010 

cm depth (right graph) for the different scenarios at the CRP location 1011 
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 1014 

 1015 

Figure 4. Temporal evolution (collected every three days) of soil moisture bias for the 1016 

first soil layer at the CRP location (scenario DA_SM_Bias). The true soil moisture 1017 

bias was calculated from the scenario No_DA and is shown in blue. The unit of x-axis 1018 

is for time steps of 3 days. 1019 
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 1023 

Figure 5. Temporal evolution (collected every three days) of saturated hydraulic 1024 

conductivity K of soil (K_10cm) and the empirical parameter B of the Clapp–1025 

Hornberger parameterization (B_10cm) at the CRP location for the scenario 1026 

DA_SM_Par. The unit of x-axis is for time steps of 3 days. 1027 
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 1029 

Figure 6. Irrigation requirement as function of time at the CRP location for the 1030 

different scenarios; t-test statistics (p-value) with significance level 0.05 for 1031 

comparing the calculated irrigation distribution with reference irrigation are also 1032 

shown for the different scenarios (large p-values indicate high similarity) 1033 
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 1036 

Figure 7. Annual irrigation requirement according to the different scenarios at the 1037 

CRP location 1038 
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 1040 

1041 

Figure 8. Annual irrigation calculated for different simulations scenarios and 1042 

compared to the reference scenario 1043 
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 1045 

Figure 9. Hausdorff distance values for background soil properties (sand fraction, clay 1046 

fraction and organic matter density) and estimated soil properties (scenario 1047 

DA_SM_Par). Results are plotted as function of the distance between model grid cells 1048 

and the CRP location 1049 
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 1053 

Figure 10. Hausdorff distance values of calculated annual irrigation requirement, 1054 

compared to reference irrigation, for different scenarios. Results are plotted as 1055 

function of distance between model grid cells and CRP location 1056 
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