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Abstract 

Heat pumps have been identified as an efficient alternative to traditional boilers 

for the production of sanitary hot water (SHW). The high water temperature lift 

(usually from 10ᵒC to 60ᵒC) involved in this application has conditioned the type 

of used solutions. On the one hand, transcritical cycles have been considered as one 

of the most suitable solutions to overcome the high water temperature lift. 

Nevertheless, the performance of the transcritical CO2 heat pump is quite 

dependent on the water inlet temperature, which in many cases is above 10ᵒC. 

Furthermore, performance highly depends on the rejection pressure, which needs 

to be controlled to work at the optimum point in any condition. On the other hand, 

for the subcritical systems, subcooling seems to be critical for the heat pump 

performance when working at high temperature lifts, but there is not any 

published work that optimizes subcooling in the SHW application for these 

systems. Therefore, the subcritical cycle should require a systematic study on the 

subcooling that optimizes COP depending on the external conditions, in the same 

way as it has been done for the rejection pressure in the transcritical cycle. 

The aim of this thesis is to investigate the role of subcooling in the performance 

of a Propane water-to-water heat pump for SHW production, in the application of 

heat recovery from any water source. Two different approaches to overcome the 

high degree of subcooling were designed and built to test them in the laboratory: 

1) Subcooling is made at the condenser: The active refrigerant charge of the 

system is controlled by a throttling valve. Subcooling is controlled 

independently at any external condition. 

2) Subcooling is made in a separate heat exchanger, the subcooler. Subcooling 

is not controlled, it depends on the external condition and the heat transfer 

at the subcooler. 

The heat pumps were tested at different water temperatures at the evaporator 

inlet (10ᵒC to 35ᵒC) and condenser inlet (10ᵒC to 55ᵒC), while the water production 

temperature was usually fixed to 60ᵒC. The obtained results have shown that COP 

depends strongly on subcooling. In the nominal condition (20ᵒC/15ᵒC for the 

inlet/outlet water temperature at the evaporator and 10ᵒC/60ᵒC for the 

inlet/outlet water temperature in the heat sink), the optimum subcooling was 

about 43 K with a heating COP of 5.61, which is about 31% higher than the same 



  

cycle working without subcooling. Furthermore, the system with subcooling has 

been proved experimentally as being capable of producing water up to 90ᵒC and 

has shown a higher COP than some CO2 commercial products (catalog data 

reference). 
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Resum  

Les bombes de calor han estat identificades com una alternativa eficaç a les 

calderes tradicionals per a la producció d'aigua calenta sanitària (ACS). L'elevat 

salt de temperatura de l'aigua que normalment té lloc en aquesta aplicació (en 

general de 10ᵒC a 60ᵒC) ha condicionat el tipus de solucions que s'utilitzen. Per una 

banda, els cicles transcrítics s'han considerat com una de les millors  solucions per 

tal de treballar amb els elevats salts de temperatura de l'aigua. No obstant això, el 

rendiment de la bomba de calor transcrítica amb CO2 és bastant dependent de la 

temperatura d'entrada de l’aigua, que en molts casos està per damunt de 10ᵒC. A 

més, el rendiment depèn en gran mesura de la pressió de descarrega, la qual 

necessita ser controlada per tal de treballar en el punt òptim a qualsevol condició 

externa. Per altra banda, per als sistemes subcrítics, el sub-refredament sembla ser 

crític per al funcionament de la bomba de calor quan es treballa amb elevats salts 

de temperatura de l’aigua, però no hi ha cap treball publicat en el qual optimitzen 

el sub-refredament per a l'aplicació d'ACS en aquests sistemes. Per tant, els 

sistemes subcrítics requereixen d’un estudi sistemàtic per tal de buscar el 

subcooling òptim i maximitzar el COP en funció de les condicions externes, en la 

mateixa forma que s'ha fet per la pressió de descarrega en els cicles transcrítics. 

L'objectiu d'aquesta tesi és investigar el paper del sub-refredament en el 

rendiment d'una bomba de calor treballant amb Propà per a la producció d'ACS, en 

l'aplicació de recuperació de calor de qualsevol font d'aigua (aigua-aigua). Dos 

enfocaments diferents per tal de superar l'alt grau de sub-refredament van ser 

dissenyats i construïts per posar-los a prova en el laboratori: 

1) El sub-refredament es fa en el condensador: La càrrega activa de refrigerant 

del sistema es controla amb una vàlvula d'estrangulació. D’aquesta manera, 

el sub-refredament pot ser controlat de forma independent en qualsevol 

condició externa. 

2) El sub-refredament es fa en un intercanviador de calor separat, el sub-

refredador. El sub-refredament no es controla, este depèn de la condició 

externa i de la transferència de calor al sub-refredador. 

Les bombes de calor es van assajar a diferents temperatures de l'aigua a 

l'entrada de l'evaporador (10ᵒC a 35ᵒC) i a l'entrada del condensador (10ᵒC a 

55ᵒC), mentre que la temperatura de producció d'aigua, normalment, es fixa a 60ᵒC. 



  

Els resultats obtinguts han demostrat que el COP depèn molt del sub-refredament. 

En les condicions nominals (20ᵒC/15ᵒC per a la temperatura de l'aigua 

d'entrada/eixida a l'evaporador i 10ᵒC/60ᵒC per a la temperatura de l'aigua 

d'entrada/eixida en el condensador), el sub-refredament òptim és 

aproximadament de 43 K amb un COP d'escalfament de 5,61, que és al voltant del 

31% més alt que el mateix cicle treballant sense sub-refredament. A més, el sistema 

amb sub-refredament ha provat de forma experimental, que és capaç de produir 

aigua fins als 90ᵒC, i ha mostrat un COP més alt que alguns productes comercials 

que treballen amb CO2 (dades de referència del catàleg). 
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Resumen 

Las bombas de calor han sido identificadas como una alternativa eficaz a las 

calderas tradicionales para la producción de agua caliente sanitaria (ACS). El 

elevado salto de temperatura del agua que normalmente tiene lugar en esta 

aplicación (por lo general de 10ᵒC a 60ᵒC) ha condicionado el tipo de soluciones 

que se utilizan. Por un lado, los ciclos transcríticos han sido considerados como una 

de las mejores soluciones para trabajar con los elevados saltos de temperatura del 

agua. Sin embargo, el rendimiento de la bomba de calor transcrítica con CO2 es 

bastante dependiente de la temperatura de entrada del agua, que en muchos casos 

está por encima de los 10ᵒC. Además, el rendimiento depende en gran medida de 

la presión de descarga, la cual necesita ser controlada con el fin de trabajar en el 

punto óptimo en cualquier condición externa. Por otra parte, para los sistemas 

subcríticos, el subenfriamiento parece ser crítico para el buen funcionamiento de 

la bomba de calor cuando se trabaja con elevados saltos de temperatura del agua, 

pero no hay ningún trabajo publicado en el que optimicen el subenfriamiento para 

la aplicación de ACS en estos sistemas. Por lo tanto, los sistemas subcríticos 

requieren de un estudio sistemático para buscar el subcooling óptimo y maximizar 

el COP en función de las condiciones externas, de la misma forma que se ha hecho 

para la presión de descarga en los ciclos transcríticos. 

El objetivo de esta tesis es investigar el papel del subenfriamiento en el 

rendimiento de una bomba de calor trabajando con Propano para la producción de 

ACS, en la aplicación de recuperación de calor de cualquier fuente de agua (agua- 

agua). Dos enfoques diferentes para superar el alto grado de subenfriamiento 

fueron diseñados y construidos para ponerlos a prueba en el laboratorio: 

1) El subenfriamiento se hace en el condensador: La carga activa de 

refrigerante del sistema se controla con una válvula de estrangulación. De 

esta manera, el subenfriamiento puede ser controlado de forma 

independiente a cualquier condición externa. 

2) El subenfriamiento se hace en un intercambiador de calor separado, el 

subenfriadador. El subenfriamiento no se controla, este depende de la 

condición externa y de la transferencia de calor en el subenfriadador. 

Las bombas de calor se ensayaron a diferentes temperaturas del agua a la 

entrada del evaporador (10ᵒC a 35ᵒC) y entrada del condensador (10ᵒC a 55ᵒC), 



  

mientras que la temperatura de producción de agua, normalmente, se fija a 60ᵒC. 

Los resultados obtenidos han demostrado que el COP depende mucho del 

subenfriamiento. En las condiciones nominales (20ᵒC/15ᵒC para la temperatura 

del agua de entrada/salida en el evaporador y 10ᵒC/60ᵒC para la temperatura del 

agua de entrada/salida en el condensador), el subenfriamiento óptimo fue 

aproximadamente de 43 K con un COP de calentamiento de 5,61, que es alrededor 

del 31% más alto que el mismo ciclo trabajando sin subenfriamiento. Además, el 

sistema con subenfriamiento ha probado de forma experimental, que es capaz de 

producir agua hasta los 90ᵒC, y ha mostrado un COP más alto que algunos 

productos comerciales que trabajan con CO2 (datos de referencia del catálogo). 
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Introduction 

1.1 Motivation 

In the last decades, the total primary energy consumption in the world has 

increased significantly (IEA, 2016), which has led to scarcity of natural resources, 

such as petroleum, and to a more polluted world with evidence consequences on 

the climate change. Therefore, one of the biggest challenges of humanity nowadays 

is to cut down the energy consumption, as well as the use of energy systems more 

respectful with the environment without decreasing levels of comfort. According 

to World Business Council for Sustainable Development (WBCS, 2009), one of the 

biggest energy consumption is produced in buildings. It accounts for around 40% 

worldwide, where the space heating, appliances and the sanitary hot water (SHW) 

have the most important contribution, varying the significance of each one 

depending on the geographical situation, time of the year or type of building usage. 

In Europe, the space heating accounts for 70% of the total energy consumption in 

the residential buildings, while the second major consumption is for SHW, which 

accounts for around 14% of the total energy consumption. Nevertheless, due to the 

implementation of more severe building codes in the last decades, the heat loss 

through the building envelope has been reduced notably in new houses. Hence the 

annual heating demand for SHW has a higher share of the total heating demand in 

new houses. The SHW ratio1 usually ranges from 20 to 45% in new and low-energy 

houses (Stene, 2005). Therefore, SHW production is an interesting case study in 

                                                   
1 The ratio of the annual SHW heating demand and the total annual heating demand of the House when 

heating due to ventilation air is excluded 
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order to make the process more efficient and have a great impact on the total 

energy consumption.  

Most residential water heaters are equipped with conventional heaters 

generating heat by consuming fossil fuels or electricity. Those water heaters are 

usually simple, but not desirable in view of energy utilization efficiency. For 

instance, electric water heaters are convenient for installation and operation. 

However, the overall efficiency in converting a potential energy of fossil fuels into 

electric energy, and then into thermal energy is quite low. Compared to those water 

heaters, heat pump water heating systems can supply much more heat just with 

the same amount of electric input used for conventional heaters (Kim et al., 2004) 

In this sense, an interesting alternative to the conventional SHW systems is the 

use of heat pump (HP) technologies, which is an application of growing interest 

nowadays, due to its potential for high efficiency. This is recognized by (Directive, 

2009/28/EC) “European Parliament and Council of 23 April 2009 on the promotion 

of the use of energy from renewable sources”, where a portion of the energy 

captured by a heat pump having an estimated average seasonal performance factor 

higher than a reference value (SPF>2.5) is considered as if it were obtained from 

renewable energy sources. Since part of the energy extracted from the heat source, 

like air or water, is pumped to the heat sink.  

A heat pump needs a working fluid, i.e. a refrigerant, in order to absorb heat from 

one area and reject it into another. The selected refrigerant must satisfy many 

requirements, such as chemical stability under conditions of use, safety codes of 

flammability and toxicity, environmental consequences of refrigerant leaks, cost, 

availability, efficiency and compatibility with compressor lubricants and 

components materials. Regarding the environmental performance, (ASHRAE, 

2013) pointed out that the environmentally preferred refrigerants should: 

 Have low or zero Ozone Depletion Potential (ODP)  

 Have relatively short atmospheric lifetimes 

 Have very low Global Warming Potential for 100 years’ horizon (GWP100) 

 Provide good system efficiency 

 Have appropriate safety properties 

In general, the preferred refrigerant should yield a low Life-Cycle Climate 

Performance (LCCP), which includes the direct refrigerant emissions expressed in 

terms of CO2 equivalents, the indirect emissions of CO2 due to energy consumption 

at operation and direct and indirect emissions effects associated with 

manufacturing the refrigerant. 
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Refrigerants that have been used widely in the last century are now being 

replaced due to these environmental reasons. For instance, the Montreal Protocol 

(Buxton 1988), because of their ODP, has phased out some fluorinated gasses. This 

is the case of the chlorofluorocarbons (CFCs), which were pointed out as a safe and 

harmless solution (Midgley Jr. and Henne, 1930), but it turned out to have a high 

impact on the ozone depletion and has been already phased out. The 

hydrochlorofluorocarbons (HCFCs) will be phased out definitely in 2020 and 2030 

in developed and developing countries respectively. Since then, the group of 

suitable refrigerants was reduced to hydrofluorocarbons (HFCs) and natural 

refrigerants. HFCs do not contain chlorine or bromine. Hence it is considered a 

negligible ODP, but due to their high GWP, they are considered as a greenhouse 

gasses (GHG), what have motivated countries to reduce HFC emissions. It is the 

case of the “F-Gas” regulation on fluorinated greenhouse gasses (Regulation (EU) 

No 517/2014), which concerns all 28 European Union (EU) member states and aim 

to reduce the emission of GHG, hence limiting the use of HFCs. Therefore, the two 

possibilities left are the natural refrigerants and the new hydrofluoroolefins 

(HFOs). 

HFOs is a new family of synthetic fluids with low ODP and GWP, born due to the 

unflagging search of the chemical industry for the ideal refrigerant. In the last 

years, the HFO1234yf has been proposed for mobile air-conditioners due to its low 

global warming potential (GWP) and performance comparable to that of R134a. 

However, as well as the R134a, if HFO1234yf were to be substituted directly into a 

stationary heat pump system, the coefficient of performance (COP) would decrease 

because HFO1234yf has smaller latent heat than R410A (Li et al., 2012). 

Furthermore, they are mildly flammable, and there is no guaranty that these 

artificial chemical substances may be found in a longer perspective to have 

unexpected negative consequences on the environment as it happened with the 

CFCs. 

On the other hand, natural refrigerants have been used since a long time ago 

(before the CFCs were presented in the 1930s), they are found in nature in 

abundance (what prevents from market monopolies), and they are saved on 

recycling.  

Although there are different implementation problems depending on the 

natural refrigerant (toxicity, flammability, low critical temperature, high boiling 

temperature, etc.), they have advantages that make them interesting to become the 

next generation of refrigerants (Lorentzen, 1995; Cavallini, 1996): 
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 Null Ozone depletion potential (OPD) 

 Almost negligible Global Warming Potential (GWP) 

 They are not synthetic so that we are 100% sure they are not harmful to the 

environment. 

 Some natural fluids possess very good thermodynamic properties to be 

employed as refrigerants. Development of equipment specifically designed 

for them will lead to higher efficiencies than the ones obtained with 

synthetic refrigerants, contributing to the reduction of the global 

environmental impact of the future heat pumps and refrigeration 

equipment. 

Therefore, it seems that natural refrigerants will play a major role in the heat 

pump technology as the technical problems are being overcome (Granryd, E., 

2001). 

For all the reasons expressed above it seems an interesting research to study the 

capacities of a heat pump working with natural refrigerants for the SHW 

production. In addition, the source heat must be selected to narrow down the 

problem. Although in principle, it could work with any kind of source2; air, water, 

brine, geothermal, waste energy…, for this research the recovering waste heat has 

been selected as a source due to its high potential. For instance, Schmid (2008) 

pointed out that 15% of the thermal energy provided to the building is lost, unused, 

via the sewage system. 

1.2 Conditions for the waste heat recovery and the SHW application  

1.2.1 Waste heat recovery 

As commented in the previous section, recovering heat from the sewage in the 

residential sector is an opportunity to save energy. For instance, in Tokyo, the 

district heat supply uses a sewage source heat pump station (CADDET, 1997). 

Alnhhal and Spremberg (2016) studied the possibility to recover energy from the 

sewage for an in-house system. Liu et al. (2014) studied the application of a heat 

pump system using untreated urban sewage as a heat source. Hepbasli et al. (2014) 

made a review of the heat pumps using wastewater as a heat source. The 

temperature of the sewage depends on the period of the year and the geographical 

location, but typical temperatures are between 10ᵒC to 35ᵒC. 

                                                   
2 This study is inside of FP7 European Project, Next Generation of Heat Pumps working with Natural 

fluids, NxtHPG, where other group researchers have tested HPs with different sources 
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Besides the sewage system, other sources of waste heat could be used as a heat 

source for the heat pump. Law et al. (2013) made an analysis of the heat recovery 

opportunities in the food and drink industries. Furthermore, in the industrial and 

commercial sector (chemical plants, supermarkets, hotels, hospital, etc.) there is a 

huge cooling demand. In these cooling systems, many times, the heat is dissipated 

to the ambient (loosed). In cold climates, one option is to utilize heat recovery from 

condensers directly for heating, but the required temperature of the condenser 

coolant is around 39ᵒC, decreasing the performance of the refrigeration system 

(Arias and Lundqvist, 2006). Baxter (2003), Minea (2006) and Minea (2007) 

studied the implementation of a heat pump system using the waste heat from 

supermarket refrigerators. They said that the advantage of using heat pumps to 

recover waste heat is that the condensing temperature of the refrigeration system 

does not need to be maintained at a high level in order to profit this heat directly 

in the heating system. The water temperature at the condensing loop outlet (inlet 

of the heat pump evaporator) is usually above 20ᵒC. 

1.2.2 SHW application 

Sanitary hot water is usually consumed at temperatures lower than 40ᵒC. Water 

heaters working in small installations, such as a gas boiler in a family house, usually 

provide the hot water directly to the consumer, without a storage tank. 

Nevertheless, in most of the cases with higher capacity, a storage tank needs to be 

installed. The storage tank separates consumption from production, if there is a 

need for hot water during few minutes, there is no need to switch on the heat pump.  

In the case of installing a storage tank, the hot water is required to be stored at 

60ᵒC to prevent the growth of the legionella bacteria, which can cause the fatal 

legionnaire’s diseases, and other microorganisms (OSHA, 2016). Furthermore, the 

water delivered at the faucet has to be at a minimum of 50°C. 

There are two main designs for the storage tank: 

 Mixed storage tank: The water mass flow rate through the heat pump is high, 

so water temperature lifts are usually between 5ᵒC to 10ᵒC. The required 

60ᵒC cannot be reached directly from the city water temperature. Instead, 

the water recirculates until the required temperature is reached. Several 

heat pumps in the market work with this system (this will be seen in section 

1.3.2).  

 Stratified storage tank:  The water mass flow rate is lower than in the mixed 

storage tank, so it has higher water temperature lifts. The water is produced 

directly to the required storage temperature (usually 60ᵒC or higher). The 

cold and hot water are kept separated in the tank.  
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Cecchinato et al. (2005) pointed out the stratified tank as the best energy 

efficiency solution. Furthermore, the heat pump connected to the stratified storage 

tank is able to produce hot water directly at 60ᵒC. Hence, the heat pump can supply 

hot water during the peak demand period. This allows minimizing the sizing of the 

storage tank. Figure 1.1 shows the scheme of a heat pump connected to the 

stratified storage tank system. One way to keep stratification is to separate the 

water in separate storage tanks connected between them. 

The temperature at the heat pump inlet will depend mainly on the city water 

temperature. The city water temperature depends on the region and the period of 

the year. For instance, in Helsinki, the city water temperature ranges from 4ᵒC to 

11ᵒC, while in Athens ranges from 16ᵒC to 26ᵒC (Tammaro et al., 2017). 

Nevertheless, the inlet water temperature could also be higher than the city water 

temperature. For instance, in storage tanks where perfect stratification is not 

achieved, or during water tank recirculation due to heat losses in long periods of 

inactivity.  

 

Figure 1.1: Sketch of a heat pump connected to the stratified storage system 
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1.3 Natural refrigerants for the SHW application 

As it was exposed before, natural refrigerants seem a good alternative to 

synthetic ones. However, each one has different drawbacks, and the selection will 

depend on the application, in this case, for the SHW production:  

Ammonia (R717): Riffat et al. (1997) showed that ammonia could have a better 

coefficient of performance (COP) than CFCs, HFCs, and other refrigerants. The main 

problem of Ammonia is the toxicity; it is considered highly toxic. This makes 

inappropriate to use Ammonia for the SHW application. Furthermore, Ammonia 

has other drawbacks as the bad smell, flammability, and combined with water can 

be corrosive to copper and copper alloys, which makes this refrigerant an 

expensive alternative to existing systems. 

Water (R718): One of the main problems of water is the freezing point at 0ᵒC. 

Other is the boiling point at atmospheric pressure (100ᵒC). Riffat et al. (1997) say 

that there are few studies of water working with evaporating temperatures lower 

than 100ᵒC. Furthermore, since it has to work at low pressure (low volumetric 

cooling capacity of vapor), the volumetric flow rate is higher than other common 

refrigerants, leading to bigger equipment. Therefore, water does not fit in the SHW 

application. 

CO2 (R744): The critical temperature of CO2 (30.96ᵒC) is lower than the heat 

rejection temperature at the SHW application. Therefore, the CO2 cycle operates in 

transcritical conditions and no condensation takes place. This cycle has been 

widely used for the SHW application. 

Propane (R290): It has a good efficiency, and it has already been used in heat 

pump applications. The main problem of Propane is the flammability.  

Therefore, among the natural refrigerants, Propane and CO2 seem to be the more 

appropriate refrigerants for the SHW application. In the following sections, the 

suitability of propane and CO2 for the SHW application will be analyzed.  
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1.3.1 The transcritical CO2 cycle 

One of the peculiarities of the CO2 cycle working in transcritical conditions is the 

control of the high-pressure (rejection pressure). In these systems, the rejection 

pressure is an independent variable and can be controlled at any external 

condition. Figure 1.2 shows an example of a heat pump design to control the 

rejection pressure. In this case, the expansion valve does not use the superheat at 

the compressor inlet as a control variable. Instead, the opening of the expansion 

valve will determine the rejection pressure, which has an important influence in 

COP and its control is crucial in order to obtain a good performance of this type of 

systems. The rejection pressure is adjusted by changing the active refrigerant 

charge of the system (this charge does not include the charge contained in 

reservoirs like a liquid receiver). In order to change the active charge of the system, 

a liquid receiver (LR) is needed to hold the charge variation at different conditions.  

 

 
Figure 1.2: Sketch of a transcritical CO2 cycle with high-pressure control in the 

expansion valve. 
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Already in 1928, Inokuty (1928) presented a graphical method to find the 

rejection pressure to maximize COP. Liao et al. (2000) developed different 

equations to obtain the optimal rejection pressure as a function of system 

parameters. From another point of view (Chen and Gu, 2005, Sarkar et al., 2004, 

Yang et al., 2005) made an exergy analysis of the CO2 transcritical cycle in order to 

look for improvement strategies for these cycles. They found larger 

irreversibilities in the expansion valve. All the above authors pointed out the 

refrigerant outlet temperature of the gas cooler, as the most important parameter 

to determine the optimal rejection pressure. This temperature is determined by 

the secondary fluid inlet temperature at the gas cooler.  

Nevertheless, in many applications with high-temperature lift in the secondary 

fluid, such as in the SHW application (usually 50 K), it is not possible to set the 

theoretical optimal rejection pressure due to an internal pinch point, i.e. the 

refrigerant temperature profile is limited by the water temperature along the gas 

cooler. Taking these facts into account, Cecchinato (2010) developed a numerical 

approach to calculate the optimal pressure depending on the inlet and outlet 

temperatures of the secondary fluid.  Therefore, based on the previous study, the 

rejection pressure can be adjusted in order to optimize the refrigerant cycle at any 

external condition.  

Many researchers have pointed out the natural refrigerant CO2 working in 

transcritical conditions, as an efficient solution for the SHW application due to the 

high-temperature glide in the refrigerant side. This effort has been materialized in 

projects such as ECO-CUTE in Japan (ECO-CUTE project). Works like (Cecchinato 

et al., 2005; Nekså et al., 1998; Nekså, 2002; Rieberer et al., 1997) has shown high 

efficiency of these cycles at water temperature lifts even higher than 50K. 

Stene (2004) discussed the existence of the gas cooler pinch point and the effect 

of the rejection pressure control for CO2 heat pump water heaters. Figure 1.3 

illustrates the result of increasing the rejection pressure from 85 bar to 110 bar for 

a CO2 heat pump water heater, where water is heated up from 5ᵒC to 70ᵒC. The 

situation at each rejection pressure is:  
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Figure 1.3: Illustration of the tight dependency between the rejection pressure, the pinch 

point and the CO2 outlet temperature from the gas cooler for a CO2 heat pump water 

heater. 
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 Rejection pressure 85 bar: There is a pinch point inside of the gas cooler. The 

refrigerant outlet temperature is 32ᵒC, while the inlet water temperature is 

5ᵒC. 

 Rejection pressure 100 bar: The refrigerant outlet temperature has 

decreased to 8ᵒC, but the temperature difference at the internal pinch point 

has increased. 

 Rejection pressure 110 bar: The refrigerant outlet temperature has 

decreased to 6ᵒC, but the temperature difference at the internal pinch point 

has increased even more. 

In this case, the optimal rejection pressure is 100 bar. The optimum point is a 

compromise between the gain in the heating capacity due to the increase in the 

enthalpy difference and the increase of power input to the compressor. 

Furthermore, the performance of the transcritical cycle strongly depends on the 

inlet water temperature to the gas cooler. Pitarch et al. (2014) compared in a 

theoretical study the COP penalty of different heat pump systems (CO2 transcritical 

cycle working at the optimal rejection pressure with different subcritical 

refrigerants working without subcooling, Figure 1.4) when the water inlet 

temperature at the gas cooler is increased (different water temperature lift). This 

study shows a higher COP for the CO2 cycle at low water inlet temperatures (high-

temperature lift). After a certain value of the inlet water temperature, COP is higher 

for the subcritical systems. 

Another point to take into account is its low critical temperature (30.98ᵒC). 

Chaichana et al. (2003) studied the option of using natural working fluids as a 

substitute of R22 for solar-boosted heat pumps. They say that CO2 is not an 

appropriate choice for solar-boosted heat pumps due to its low critical pressure 

leading to lower heat pump COP at evaporating temperatures approaching the 

critical temperature. This issue needs to be investigated if CO2 is used for the waste 

heat recovery application, where the water temperature at the evaporator inlet 

could be up to 35ᵒC. 
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Figure 1.4: COP dependency with water inlet temperature for different subcritical 

refrigerants without subcooling and the transcritical CO2 cycle working at the optimal 

rejection pressure. Water outlet temperature 60ᵒC. (Pitarch et al., 2014) 

 

1.3.2 Propane (R290) for the SHW application 

Propane has a higher critical temperature than CO2 (96.7ᵒC). Hence, Propane is 

usually used in subcritical conditions. In these systems, it is a common practice to 

use the expansion valve to control the superheat at the compressor inlet by 

modifying the evaporating pressure, while the condensing side is not controlled. 

The condensing pressure will depend on the external conditions (water 

temperatures) and the heat rejection at the condenser. In these systems, the 

refrigerant temperature at the condenser outlet depends on the condenser 

conditions and the active refrigerant charge of the system. In the subcritical 

systems, the temperature difference between the condenser refrigerant outlet and 

the condensing temperature is known as subcooling. 

It is a common belief that subcritical systems working with high subcooling have 

a lower performance due to the area reduction for condensation. For example, in 

the book of Stoecker (1998) says: 

The refrigerant leaving industrial refrigeration condensers may be slightly 

sub-cooled, but sub-cooling is not normally desired since it indicates that some 

of the heat transfer surface that should be used for condensation is used for 

sub-cooling. 
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This sentence is true for a low-temperature lift of the secondary fluid used as a 

heat sink (high flow rate), but it has not been proved for high temperature lift like 

in the SHW application (usually 50K).  

In many applications (refrigeration, air conditioning, heat pump…), subcritical 

systems are designed with a liquid receiver to ensure saturated liquid at the 

condenser outlet (Figure 1.5). In fact, most of the subcritical heat pumps to produce 

SHW use recirculation to heat up the water from the city temperature to the 

required 60ᵒC. This is the case of the commercial heat pump working with propane 

Quantum (Quantum), which heats up the water in sequences using low water 

temperature lifts (around 5 K), trying to increase the overall heating COP at the end 

of the process (heating water at typical temperatures of 60ᵒC). With this technique, 

the heat pump has a higher performance when the water inlet/outlet temperature 

is low, and it decreases as the water inlet/outlet temperature increases. The main 

disadvantage of this process is that the heat pump is not able to supply the SHW 

directly from the typical city water temperatures (around 10ᵒC). Other examples 

of heat pumps that work in a similar way are the commercial Dimplex (Dimplex), 

with different models working with R290 and R404a, and the Nibe heat pump 

(Nibe), which uses R134a as refrigerant. 

 

 

Figure 1.5: Sketch of a subcritical R290 cycle with superheat control in the expansion 

valve and working without subcooling 
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Researchers are continuously struggling to improve the efficiency of the heat 

pumps. There are several works in the literature dedicated to the optimization of 

charge in heat pumps based on finding the corresponding optimal refrigerant 

charge from the experimental point of view (Choi and Kim, 2004; Corberán et al., 

2008; Fernando et al., 2004). Corberán et al. (2011) studied from the theoretical 

and experimental point of view the role of the charge in the R290 cycle and pointed 

out that an optimum charge exists for a given external condition. As commented 

before, the effect of varying the active charge of the system is to change the 

subcooling. In that sense, these authors have indirectly studied the effect of 

subcooling in the heat pump. These studies are made for different refrigerants and 

applications. 

More directly, others researchers have reported COP improvement with a 

certain subcooling, although in some cases, the degree of subcooling is not 

indicated (Cecchinato et al., 2005, Hjerkinn, 2007, Redon et al., 2014). In addition, 

in a more recent study, Pottker and Hrnjak (2015) theoretically studied the effect 

of subcooling in an air conditioning system for different refrigerants, they pointed 

out the existence of an optimal subcooling that maximizes COP for their equipment.  

As in the transcritical case, the cycle with R290 has an internal pinch point (dew 

point). Figure 1.6 shows a hypothetical case in order to illustrate the result of 

increasing subcooling from 5 K to 50 K for an R290 heat pump water heater. Water 

is heated up from 10ᵒC to 60ᵒC. The situation at each subcooling is: 

 Subcooling 5 K: This is the situation with the lowest active refrigerant 

charge. The condensing temperature is 55ᵒC. There is an internal pinch point 

at the refrigerant dew point. 

 Subcooling 40 K: The active refrigerant charge on the system has increased, 

so the refrigerant outlet temperature is now 20ᵒC. The condensing 

temperature is 60ᵒC, and the temperature difference at the internal pinch 

point has increased. 

 Subcooling 50 K: The refrigerant outlet temperature is 15ᵒC, but the 

condensing temperature has increased to 65ᵒC. 

There is not any published work that optimizes subcooling at this conditions. 

Nevertheless, as in the transcritical cycle, the optimum point (optimal subcooling 

or active refrigerant charge) would be a compromise between the gain in the 

heating capacity due to the increase in the enthalpy difference with subcooling and 

the increase of power input in the compressor due to the pressure increase.  
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Figure 1.6: Illustration of the tight dependency between the subcooling, the pinch point 

and the R290 outlet temperature from the condenser for an R290 subcritical heat pump 

water heater. 
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If subcooling wants to be controlled to search for the optimum point as it is done 

with the rejection pressure in the transcritical CO2 cycle, the heat pump design 

must allow this degree of freedom. Jensen and Skogestad (2007) discuss different 

heat pump designs in order to produce subcooling and theoretically evaluates an 

ammonia case for the refrigeration application. They find an optimal subcooling, 

but the improvement is only about 2% respect to zero subcooling for the given 

application.  Based on one of those heat pump designs, Xu (2014) studied in his 

Master thesis the subcooling effect on an air conditioner system working with 

R410A. In that work, the subcooling was controlled with the expansion valve, and 

a liquid receiver was placed at the evaporator outlet in a similar way as it is done 

in the transcritical systems. An optimal subcooling to maximize COP was found. 

They studied the influence of the air inlet temperature to the condenser on the 

optimal subcooling, but no information about the outlet temperature was reported. 

One should notice that the outlet temperature of the secondary fluid is essential to 

know whether if an internal pinch point is limiting the heat pump operation (as in 

the transcritical case), in fact, the results would be different depending on the 

considered outlet temperature. Koeln and Alleyne (2014) used one of the designs 

to control the subcooling and developed a sophisticated methodology in order to 

optimize the control of a system in such a way that it can work in optimum 

conditions at any point (extremum seeking control). Nevertheless, the developed 

algorithm is complicated, spends three hours to reach the optimum and accuracy 

is compromised if there is a change in an external variable (simulation case study). 

Nevertheless, most of these works reporting a higher system efficiency working 

with certain subcooling are focus on low temperature lift in the secondary fluid, 

where usually the optimum subcooling is found between 5 K and 10 K. There are 

not any publication studying the advantage of making subcooling in order to take 

profit of the high water temperature lift in the SHW application (around 50 K). 

Furthermore, there is no study in which subcooling has been considered as a 

design parameter, in such a way that, it is analyzed and optimized before the 

construction of the equipment based on its influence for a given 

system/application. Hence, the subcritical cycle should require a systematic study 

on the subcooling that optimizes COP depending on the external conditions, in the 

same way as it has been done for the rejection pressure in the transcritical cycle. 

Propane is a good candidate for subcooling, not only due to its good 

environmental properties but also due to thermodynamic ones. Propane has a high 

specific heat in liquid state compared to other refrigerants, like with R134a, so it 

takes profit from doing subcooling (Lemmon et al., 2007). Another characteristic 

of propane are: 
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 Propane can work at high evaporating temperatures, being a good solution 

for the waste heat recovery (Chaichana et al., 2003). 

 Propane has a low-pressure ratio between the evaporator and the 

condenser. This is relevant for compressor efficiencies, volumetric and 

isentropic, which are strongly related to pressure ratio (Granryd, E., 2001). 

The main drawback of Propane to be used as a refrigerant is the flammability. 

Propane is classified as A3 (non-toxic, highly flammable) by ASHRAE (2009). 

Therefore, due to strict regulations (EN 378-1:2008), propane has been used in 

small installations or in open vented locations. For instance, a propane heat pump 

can be installed in places with general occupancy like hospitals, courts, schools, 

supermarkets, hotels, restaurants, etc., if the system is installed in a separated 

vented enclosure and the refrigerant charge is lower than 5 kg. 

1.4 Objectives 

In the previous sections, it has become apparent the important role of the heat 

pumps for the application of SHW production. Furthermore, the waste heat 

recovery seems also an important factor to reduce the energy consumption. The 

safe use of refrigerants with high performance and good environmental properties, 

such as the natural refrigerants, is also a key parameter. 

This work is framed in the European project: "Next Generation of Heat Pumps 

working with Natural fluids" (NxtHPG), aims at the development of a set of safe, 

reliable, high efficiency and high capacity heat pumps working with Propane and 

CO2. In this thesis, the aim is to investigate the role of subcooling in the 

performance of a propane water-to-water heat pump for SHW production, in the 

application of heat recovery from any water source. 

The main objectives of this thesis are: 

1. Theoretically investigate the role of subcooling in a heat pump. 

2. Design and built two different heat pump concepts working with propane 

and able to work efficiently with the theoretical optimal subcooling in the 

SHW application. 

3. Experimentally evaluate the two heat pump prototypes at different 

conditions for the SHW application. 

4. Compare the experimental results of both heat pumps and with a possible 

competitor working with CO2. 
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This thesis is organized as follows: first, the aspects that motivate the study of 

the heat pump for the SHW application and the state of the art of the heat pumps 

working with natural refrigerants are presented in the introduction. Then, a 

theoretical study about the role of subcooling in the optimal performance of a heat 

pump is presented in chapter 2. Chapter 3 presents the heat pump concept and 

design of the constructed prototypes. Chapter 4 contains the description of the test 

rig designed to test the prototypes and the performed test. The results obtained 

with the two heat pump prototypes are presented in chapter 5. Chapter 6 presents 

a comparison between both heat pump designs.  

The main results shown in chapter 2, 5 and 6 have been published or accepted 

(one is under revision) in four international journals (Pitarch et al., 2017A; Pitarch 

et al., 2017B; Pitarch et al., 2017C; Pitarch et al., 2017D). Two more papers were 

published during the first two years of the Ph.D., they are not totally related to the 

results presented in this thesis, but they helped to better understand the problem 

(Redon et al., 2014; Pitarch et al., 2015). Furthermore, another paper in which I 

have participated (not as the main author) has been accepted (Hervas et al., 2017).  

This paper studies the Propane heat pump working with subcooling from the 

installation point of view, and it is the beginning of a new doctoral thesis that will 

continue the work done in this thesis to study the implementation of this heat 

pump in a real system. 

Other articles have been published in conferences, but the main results are 

already included in the articles commented above. Nevertheless, if the information 

of one of these papers is needed, it will be cited in the text. 
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Theoretical analysis 

This chapter presents a theoretical analysis of the role of subcooling in the heat 

pump performance. The analysis of the optimal working condition is generalized 

to different applications by considering different external conditions at the 

inlet/outlet of the condenser. Furthermore, other subcritical refrigerants, as well 

as the transcritical CO2 cycle, are included in the study. 

Part of the results of this section has been published in the journal “International 

Journal of Refrigeration” (Pitarch et al., 2017A). 

2.1 Introduction 

The Coefficient of Performance (COP) is used to calculate the performance of a 

working cycle, for a heat pump application, the heating COP is: 

 
comp

W

h
Q

h
COP




   

(2.1) 

Where 
h

Q  and 
comp

W  are the heating capacity and the compressor power input 

of the heat pump. 

In the applications where the heat source and sink temperatures (secondary 

fluid) are considered constant during the heat transfer process, it is known that the 

subcritical cycle working without subcooling and condensing temperature close to 

the heat sink temperature has the higher COP for the given application (external 
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temperatures). Nevertheless, a constant temperature of the secondary fluid means 

infinite capacitance rate (𝑚̇𝑐𝑝) on the secondary fluid, which is not a normal 

situation. Usually, the secondary fluid undergoes to a change in temperature 

during the heat transfer process, which can vary depending on the application. In 

these conditions, it is not obvious which subcooling and condensing temperature 

will give the highest COP. Figure 2.1 shows a P-h diagram with two propane cycle 

at different condensing temperatures and subcooling. The heat transferred 

between the refrigerant and the secondary fluid from point 2 to 3 is the useful heat 

in a heat pump application (
h

Q ). The input work to rise the refrigerant pressure 

(point 1 to 2) is done by the compressor (
comp

W ). 

 

 

Figure 2.1: P-h diagram for propane cycles 

 

In the SHW application, the change in temperature at the heat sink is imposed. 

For instance, in a heat pump with direct supply to the water tank, a typical water 

temperature lift is 10ᵒC to 60ᵒC. Besides the conditions of the secondary fluid in 

the heat sink, other considerations must be taken into account when analyzing the 

performance of a heat pump system. For this theoretical study, the following 

assumptions have been taken: 

 Compressor efficiency is constant and equal to one (isentropic 

compression). 
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 Expansion valve: Isenthalpic expansion. Expansion valves are the most 

common device performing that operation in this kind of application.  

 Evaporator: The secondary fluid in the evaporator is not considered. 

Instead, the evaporating temperature is fixed, and the superheat is 10 K at 

the evaporator outlet.  

 Condenser: Condensing temperature and subcooling can be varied with one 

limitation: refrigerant temperature cannot be below the secondary fluid at 

any point (a consequence of the second law of thermodynamics). 

Furthermore, the refrigerant pressure drop due to friction is neglected. 

Figure 2.2a) shows the theoretical heating COP for the R290 cycle as a function 

of subcooling and condensing temperature, for an inlet/outlet water temperature 

at the condenser of 10ᵒC and 60ᵒC (evaporating temperature fixed to 0ᵒC). Figure 

2.2b) shows the temperature profile of water and refrigerant (R290) as a function 

of the normalized3 capacity with two impossible situations. For the subcritical 

propane cycle in the SHW application, two critical points limit the subcooling and 

the condensing pressure. One is at the condenser outlet, and the other one is at the 

refrigerant dew point, inside of the condenser. One should notice that the 

condensing temperature can be below the water outlet temperature (60ᵒC) since 

the superheated gas (discharge temperature) has higher temperatures than 60ᵒC, 

and the limitation for the condensing temperature is inside the condenser at lower 

water temperatures.  

                                                   
3 The normalized capacity is the capacity at a given point in the condenser, divided by the total condenser 

capacity 
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Figure 2.2: a) Heating COP as a function of subcooling and condensing temperature 

(Evaporating temperature 0ᵒC) b) Temperature limitation at the condenser 

 

The maximum COP (Optimum point) is given where the two limitations occur at 

the same time. Higher subcoolings can be produced, but the condensing 

temperature increases considerably. Lower condensing temperatures than at the 

optimum point can be obtained, but the subcooling decreases considerably. At the 

optimum point, the temperature difference between refrigerant and water is zero 

at the condenser outlet and at the refrigerant dew point. This situation is only 

possible if the condenser area is assumed infinite.  

The infinite heat transfer area assumption implies that there is zero 

temperature difference between refrigerant and water in at least one point in the 

condenser. Therefore, the limits marked in figure 2.2a) show the heating COP for 

the infinite condenser assumption as a function of subcooling. The rest of the 

points in figure 2.2a) are possible for a real condenser with a finite heat transfer 

area. For instance, if subcooling is fixed to 25 K, the corresponding condensing 

temperature for the infinite condenser assumption is around 55ᵒC, higher 

condensing temperatures with this subcooling means smaller condenser area.  

For the rest of the theoretical study (in Chapter 2), it is assumed an infinite heat 

transfer area for the condenser.  
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Figure 2.3 shows the temperature profile of the secondary fluid (water from 

10ᵒC to 60ᵒC) and the refrigerant R290 as a function of the normalized4 capacity 

for three possible situations (subcoolings). For subcooling of 5 K, the condensing 

pressure is limited at the refrigerant dew point (internal pinch point). The 

temperature difference between the refrigerant and the water at the pinch point 

depends on the heat transfer in the condenser, for an ideal case with an infinite 

heat transfer area, the temperature difference is 0 K. In a real condenser, this 

temperature difference would be higher, leading to a higher condensing 

temperature. In the ideal case, subcooling can be increased until the refrigerant 

outlet reaches the inlet water temperature, and have 0 K of temperature difference 

at both critical points (pinch points). At this point, the subcooling is about 46 K, the 

condensing pressure has slightly increased, and the system is working at the 

optimal subcooling. More subcooling can be obtained, but the pinch point will exist 

only at the condenser outlet, and the condensing temperature considerably 

increases (subcooling 55 K). Therefore, when the temperature of the heat sink is 

not constant, the refrigerant cycle with zero subcooling is not optimum anymore.  

For this case, the improvement in COP when working at the optimal subcooling 

respect to the system working without subcooling is about 35%.   

 

 

Figure 2.3: Temperature profile vs. normalized  capacity, three subcoolings (infinite 

condenser assumption) 

                                                   
4 The normalized capacity is the capacity at a given point in the condenser, divided by the total condenser 

capacity 
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For clarity, from this point, the outlet and inner temperature difference between 

refrigerant and water will be named as DTa and DTb respectively. 

As it was commented in the introduction, many researchers pointed out the 

natural refrigerant CO2 working in transcritical conditions, as an efficient solution 

for the SHW application due to the high-temperature glide in the refrigerant side. 

In the case of the subcritical system, the refrigerant “glide” grows with subcooling. 

Figure 2.4a) shows the CO2 and the propane temperature profiles for the water 

condition 10ᵒC to 60ᵒC. The optimum point is reached when the inner and outlet 

pinch points occur at the same time for both refrigerants (double pinch point). A 

lower rejection pressure or subcooling than the optimal (for CO2 and propane 

respectively) leads to a non-optimal situation.  

Nevertheless, for a low-temperature lift in the secondary fluid, the optimum 

point for the transcritical CO2 cycle is not the double pinch point situation. This 

situation has been widely studied in the literature, for instance, Liao et al. (2000) 

give an equation for the optimal gas cooler pressure as a function of the 

evaporating temperature (Te) and the refrigerant gas cooler outlet temperature 

(Tgc,out). Figure 2.4b) shows the CO2 and the propane temperature profiles for the 

water condition 50ᵒC to 60ᵒC. Both cycles are working at the optimum point. On 

the one hand, the optimal CO2 cycle has one pinch point at the gas cooler outlet. On 

the other hand, the propane cycle has the optimum at the double pinch point 

situation. 

 

Figure 2.4: Temperature profile vs. normalized capacity (infinite condenser assumption) 

a) Water 10ᵒC to 60ᵒC b) Water 50ᵒC to 60ᵒC 
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2.2 Optimal subcooling 

In the section above, a theoretical optimal subcooling was observed for a heat 

pump in the SHW application working with the natural refrigerant propane. For 

the considered conditions, the optimum is at the double pinch point situation (in 

the condenser). At this point, subcooling is produced without a high increase in the 

condensing temperature. In this section, the heat pump performance is analyzed 

near the double pinch point in order to study the optimal subcooling in different 

refrigerants and conditions in the condenser.  

Figure 2.5a) shows the heating COP as a function of subcooling for three 

different temperature lifts in the SHW application (10ᵒC to 60ᵒC), (30ᵒC to 60ᵒC) 

and (50ᵒC to 60ᵒC). The evaporating temperature is fixed to 0ᵒC. The optimal 

subcooling for the condition (10ᵒC to 60ᵒC) is about 46 K, while for the condition 

(50ᵒC to 60ᵒC) it is about 8.8 K. The degree of improvement respect to the cycle 

without subcooling is also higher for the higher temperature lift, the improvement 

is about 35% and 8.5% for (10ᵒC to 60ᵒC) and (50ᵒC to 60ᵒC) respectively.  

Figure 2.5b) shows the condensing temperature as a function of subcooling. The 

condensing temperature slightly increases at low subcooling, but there is a point 

of inflection where the condensing temperature starts to increase considerably. 

This point of inflection determines the optimum working point, and it occurs at the 

double pinch point situation for the three considered cases.  

 

 

Figure 2.5: a) Heating COP as a function of subcooling b) Condensing temperature as 

function of subcooling (infinite condenser assumption) 
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Until now, the optimum working condition for the subcritical propane cycle has 

been observed at the double pinch point situation. In order to study these results 

in other refrigerants and temperature lifts (secondary fluid), Figure 2.6 shows the 

normalized COP as a function of the subcooling deviation between the actual 

subcooling (Sc) and the subcooling at which two pinch points are found, 

DTa=DTb=0 K (ScD_Pinch). The normalized COP is: 

 
 

(2.2) 

 

Where COPh is the performance at a given subcooling and COPD_Pinch is the 

performance at the subcooling with two pinch points. 

 

 
Figure 2.6: Normalized heating COP as a function of the subcooling deviation from the 

subcooling with two pinch point a) R290 b) R134a c) R1234yf d) R32 (Tsf,out=60ᵒC) 
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The secondary fluid outlet temperature is fixed to 60ᵒC, and the considered 

temperature lifts go from 5 K (55ᵒC to 60ᵒC) to 50 K (10ᵒC to 60ᵒC). The study is 

extended to four refrigerants working under subcritical conditions. All four 

refrigerants have the maximum COPh when two pinch points occur at the same 

time, DTa=DTb=0 K (Sc= ScD_Pinch), at any temperature lift. The COPh degradation as 

a function of subcooling depends on the refrigerant used.  

Table 2.1 shows the optimal subcooling, the COP at the optimum point, and the 

degree of improvement with respect to the case without subcooling for the four 

refrigerants at several secondary fluid temperature lifts (Tsf,out= 60ᵒC). All 

refrigerants have a similar heating COP when working at the optimal subcooling 

(maximum COP), but subcooling is more crucial for some refrigerants than others. 

For instance, R1234yf has an improvement on COP of about 53% (high-

temperature lift) when working at the optimal subcooling compared to the case 

without subcooling, while the R32 has an improvement of about 21%. The higher 

the secondary fluid temperature lift, the higher the optimal subcooling and the 

degree of improvement.  

The same procedure commented above is applied to more than 700 conditions 

in order to generalize the results observed in figure 2.6. The inlet temperature of 

the secondary fluid (Tsf,in) ranges from 5ᵒC to 55ᵒC, while the considered outlet 

temperature (Tsf,out) ranges from 30ᵒC to 90ᵒC. The minimum considered 

temperature lift is 3 K, e.g. Tsf,in=35ᵒC and Tsf,out=38ᵒC, while the maximum 

temperature lift is 85ᵒC (5ᵒC to 90ᵒC). These conditions represent a wide range of 

applications. The optimum working point at the double pinch point was confirmed 

for all conditions. Therefore, it seems reasonable to consider that for subcritical 

systems the double pinch point situation is optimum in a wide range of conditions 

(applications). One should remember that the infinite condenser area is assumed 

in this study. 
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Figure 2.7 shows the optimal subcooling as a function of the temperature 

difference in the secondary fluid (temperature lift) for the range of conditions 

commented above (more than 700). For the same temperature lift, there are 

several conditions, for instance, for a temperature lift of 10 K  20ᵒC to 30ᵒC, 25ᵒC 

to 35ᵒC, 40ᵒC to 50ᵒC, 80ᵒC to 90ᵒC, etc. The evaporating temperature is fixed to 

0ᵒC. For the refrigerant R290 and R1234yf, the optimal subcooling mainly depends 

on the temperature lift, independently of the absolute values of the inlet and outlet 

secondary fluid temperatures. The optimal subcooling is slightly lower than the 

temperature lift, so it can vary from almost zero to more than 75 K. For these two 

refrigerants, a linear function would be a good approach to control the operation 

of the system close to the optimum subcooling. Using the linear fit equation, the 

maximum error from the optimal subcooling is about 2 K for the complete range of 

considered conditions. On the other hand, the R32, which has a lower critical 

temperature (78.1ᵒC), has a higher dispersion from the linear fit, leading to higher 

errors if this control methodology is followed. The critical temperatures for 

propane and R1234yf are 96.7ᵒC and 94.7ᵒC respectively.  

Although these results show the high dependency of the optimal subcooling with 

the secondary fluid temperature lift, other system parameters could affect the 

optimal subcooling.  

 

 

Figure 2.7: Optimal subcooling as a function of temperature difference in the heat sink 
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Figure 2.8 shows a sensitivity analysis in order to evaluate the influence of 

evaporating temperature, superheat and compressor efficiency on the optimal 

subcooling. The reference point is a heat pump working at 0ᵒC of evaporating 

temperature, a superheat of 10 K, and an efficiency of the compressor of 1. Then, 

these parameters are modified, and the corresponding optimal subcooling is 

compared to the reference at different temperature lifts (more than 700 

conditions). The evaporating temperature does not significantly influence the 

optimal subcooling, 2% change per 10ᵒC of evaporating temperature. Superheat 

can vary the optimal subcooling in about 6% per 10 K of superheat. Optimal 

subcooling increases if superheat decreases (and vice versa). A compressor 

efficiency of 0.5 could have a large influence on the optimal subcooling, up to 20% 

decrease on the optimal subcooling depending on the condition. These variations 

in the optimal subcooling do not only depend on the temperature lift of the 

secondary fluid but on its inlet and outlet temperatures (wide range of optimal 

subcooling change, for the same temperature lift). Furthermore, compressor 

efficiency is not constant with the external conditions, introducing some additional 

deviations on the control strategy if the equations showed in figure 2.7 are used. 

 

 
Figure 2.8: Optimal subcooling as a function of the temperature difference in the heat 

sink. Different scenarios are considered. The reference is: isentropic compression, Te=0ᵒC, 

Sh=10 K  
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2.3 Second law analysis 

In the above sections, the heat pump cycle was studied from the Coefficient of 

Performance point of view. This coefficient is useful to compare different 

refrigerant cycles working on a given application (external conditions). 

Nevertheless, it does not give information about the maximum performance that a 

refrigerant cycle could have in a given application. The maximum performance for 

a given application is determined by a reversible cycle working between the same 

considered heat source and sink temperatures. In this section, the reversible 

refrigerant cycle is taken into account to study the heat pump from the second law 

analysis point of view.   

2.3.1 Introduction 

The reversed Carnot cycle is used as a reference when the heat pump operates 

between constant external temperatures (heat source and sink). It is based on two 

isentropic and two isothermal transformations (Figure 2.9). The exchange of work 

is done through an adiabatic compression and expansion (the isentropic lines). The 

exchange of heat takes place isothermally (infinite capacitance rate) and with 0 K 

temperature difference between the heat source and sink temperatures.  

Eq.2.2 is the heating COP of Carnot for a reverse cycle operating between the 

heat sink temperature (TH) and the heat source temperature (TC) (Moran and 

Shapiro, 2004).  
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Figure 2.9: T-s diagram for Carnot and Lorenz cycles. Zero temperature difference 

between refrigerant and secundary fluid (DT=0 K).  
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In real applications, the source and sink temperatures are not constant along the 

process, either because this will require a large fluid mass flow, or because of the 

process itself. For instance, in the SHW application, the water temperature lift is 

typically over 40 K. In these cases, the reversed Carnot cycle is not a good reference 

anymore (Yilmaz, 2003). Instead, the reversed Lorenz cycle considers the 

temperature lifts at the secondary fluid. Figure 2.9b) shows the theoretical 

reversed Lorenz cycle, it consists of an isentropic compression and expansion, and 

the exchange of heat takes place with 0 K temperature difference between the heat 

source and sink temperatures (Itard and Machielsen, 1994). The ideal Carnot and 

Lorenz cycles always refer to the external conditions. 

The heating COP of the Lorenz cycle operating between T3’-TH and TC-T1’ can be 

calculated as (Hasan et al., 2002): 
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Where the temperatures HT and cT  are the entropy-averaged temperatures 

(average temperature in the temperature-entropy diagram). For constant 

capacitance rate (𝑚̇𝑐𝑝) and constant pressure process, the entropy-averaged 

temperature can also be written as (Hasan et al., 2002): 
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In this study, the source temperature is taken constant, hence 
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Figure 2.10 represents the COP of the reversed Lorenz cycle for a set of different 

temperature conditions in the heat sink (secondary fluid) and a constant 

evaporating temperature of 0ᵒC. The inlet temperatures to the condenser (Tsf,in) 

range from 5°C to 55°C, and the outlet temperatures (Tsf,out) range from 30°C to 

90°C (More than 700 conditions considered). For a given Tsf,in, the lower the Tsf,out 

(smaller temperature lift) the higher the COP is. On the other hand, for a given Tsf,out, 

the lower the Tsf,in (high-temperature lift) the higher the COP is.  
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Figure 2.10: COP of Lorenz variation with the temperature lift in the sink (Tsf,out-Tsf,in) 

For the case of the SHW application, where the typical inlet/outlet temperatures 

are 10ᵒC and 60ᵒC respectively, the COP of Lorenz cycle is 8.96. 

With these assumptions, the heating COP for a given refrigerant and condition 

can be compared to the corresponding reversed Lorenz cycle. The second law 

efficiency is defined as the ratio of the actual heating COP, to the obtained from a 

reversible cycle operating within the same thermal boundary conditions (Lorenz 

cycle) (Çengel and Boles, 1998). 

  (2.6) 

 

2.3.2 Results 

Figure 2.11 shows the second law efficiency (Eq. 2.6) for a wide range of inlet 

and outlet temperatures of the secondary fluid (heat sink). Three subcritical cycles 

(R290, R1234yf and R32) and the transcritical CO2 are considered. For each 

condition, all four cycles are working at the optimum point (optimal subcooling 

and rejection pressure). These graphs are useful to compare between the different 

cycles at a given point and to know how far from the reversible process it is. The 

three subcritical systems working at the optimal subcooling have a similar 

behavior. If these refrigerants are compared to the transcritical CO2, they have 

higher or lower efficiency depending on the external conditions (Tsf,in and Tsf,out). 
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For instance, for the condition 10ᵒC to 60ᵒC, the second law efficiency for the 

R290 cycle is 0.70, while it is 0.75 for the CO2. For the condition 30ᵒC to 60ᵒC the 

efficiencies are 0.76 and 0.70 for the R290 and CO2 respectively, and for the 

condition 50ᵒC to 60ᵒC, the efficiencies are 0.76 and 0.50 for R290 and CO2 

respectively. Therefore, for the SHW application, the CO2 is theoretically closer to 

the reversed cycle (Lorenz) for high water temperature lift, but for lower water 

temperature lift, propane is closer to the reversed cycle.   

 

 
Figure 2.11: Second law efficiency at different inlet and outlet secondary fluid 

temperatures a) R290 b) R744 (CO2) c) R1234yf d) R32 (infinite heat transfer area 

assumption). All cycles are working at the optimal subcooling or rejection pressure. 

 

η 



2.4   Conclusions      35 

 

 
  

2.4 Conclusions 

The role of subcooling has been analyzed for different heat sink temperatures 

(water for the SHW application). The analysis includes four refrigerants working 

in subcritical conditions, paying special attention to R290. There are two main 

conclusions that can be drawn from this study:  

 Theoretically, for the infinite heat transfer area assumption, the maximum 

COP is reached when two pinch points of 0 K between the refrigerant and 

the secondary fluid take place at the same time (optimal subcooling). One 

pinch point is at the condenser outlet, and the other at the refrigerant dew 

point. This has been proved in a wide range of applications and for four 

different refrigerants. The transcritical cycle has an analogous behavior, 

except for low secondary fluid temperature lifts. 

 The optimal subcooling mainly depends on the temperature difference 

between the outlet and the inlet of the secondary fluid. Therefore, a single 

control equation depending only on this temperature difference can be set 

for a wide range of applications. Optimal subcooling significantly varies 

depending on the secondary fluid temperature lift (Tw,co- Tw,ci). For the SHW 

application: 46 K at condition (10ᵒC to 60ᵒC) and 8.8 K for (50ᵒC to 60ᵒC) 

(Propane). 

Other relevant results are: 

 The transcritical CO2 cycle has two pinch points at the optimal rejection 

pressure, but only at high-temperature lift in the secondary fluid. 

 The degree of improvement respect to the case without subcooling is about 

35% and 8.5% for (10ᵒC to 60ᵒC) and (50ᵒC to 60ᵒC) respectively (Propane). 

 Other parameters, such as compressor efficiency must be taken into account 

to calculate the optimal subcooling accurately. Variations up to 20% in 

optimal subcooling for a compressor efficiency reduction from 1 to 0.5, are 

observed. 

 The transcritical CO2 cycle has a higher efficiency than the subcritical cycles 

at high-temperature lift, while it is lower at low-temperature lift.  

Theoretically, for low inlet water temperatures (Tw,ci=10ᵒC) in the SHW 

application, the transcritical CO2 cycle has a slightly higher performance than the 

subcritical propane cycle. This situation is reversed for higher Tw,ci (>25ᵒC). 

Therefore Propane working with subcooling can be considered as a competitive 

alternative to CO2. In the following chapters, the experimental results of the 
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implementation of this approach under several system configurations are 

presented and compared with catalog data of commercial CO2 heat pump system.  

Furthermore, as it has been seen in this chapter, the subcooling approach has 

demonstrated to improve the COP respect the case without subcooling for all 

studied refrigerants and any application. This improvement depends on the 

temperature lift of the secondary fluid. 
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Heat pump: concept and designs 

In the previous chapter, a theoretical study showed the role of subcooling 

depending on the application. For the typical SHW temperatures (10ᵒC to 60ᵒC) the 

theoretical optimal subcooling was about 46 K, with more than 35% of 

performance improvement respect to the case without subcooling (propane). 

Therefore, it is an important task to design a heat pump system able to produce 

high degrees of subcooling in order to take profit of the high-temperature lift in the 

SHW application. 

This chapter describes the prototypes designed and built in order to 

experimentally study in the laboratory the effect of subcooling in the SHW 

production. They are water-to-water heat pumps for SHW production, in the 

application of waste heat recovery working with the natural refrigerant propane. 

The waste heat could come from any available source of energy, such as sewage 

water or a condensation loop, which temperatures usually range between 10ᵒC and 

35ᵒC. The set point for the hot water production is 60ᵒC, while different water inlet 

temperatures to the condenser are considered (10ᵒC to 55ᵒC). The system has been 

designed to obtain around 50 kW in the nominal point, i.e. 20ᵒC/15ᵒC at the water 

inlet/outlet evaporator and producing sanitary hot water at 60ᵒC from an inlet 

temperature of 10ᵒC. 

The degree of subcooling depends on the active refrigerant charge of the system. 

Hence, in order to control the subcooling, the heat pump configuration must be 

able to control the active refrigerant charge. In this thesis, two different 

configurations are proposed. First, it is presented a heat pump design that 

produces the subcooling in the condenser. This heat pump adds a new degree of 
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freedom; subcooling can be controlled independently at any external condition 

(active refrigerant charge can be controlled). The second heat pump design 

produces the subcooling in a separate heat exchanger (HX), the subcooler. With 

this configuration, subcooling is not controlled, it will depend on the external 

conditions and the heat rejection at the subcooler. In order to refer to each HP 

prototype, the following nomenclature will be used: 

1) SMC heat pump: The subcooling is made at the condenser (Active charge 

control). 

 

2) SMS heat pump: The Subcooling is made in a separate heat exchanger, the 

subcooler. 

Finally, the discussion of the different heat pump components design is 

presented. 

3.1 Subcooling made in the condenser (SMC heat pump) 

Figure 3.1 shows the scheme of the water-to-water heat pump to make 

subcooling in the condenser. Besides to the essential heat pump components 

(evaporator, compressor, condenser and expansion valve), this heat pump 

prototype includes a liquid receiver and a throttling valve. Both components are 

placed between the condenser and the expansion valve, being the throttling valve 

right after the condenser and then the liquid receiver. Liquid receivers are 

normally refrigerant charge reservoirs used to accommodate the changes in the 

active refrigerant charge due to changes in the operating mode or changes at 

external conditions. In this case, moreover, the liquid receiver has the functions of 

accommodating the changes in the active charge due to variations in the degree of 

subcooling at the condenser and guarantee saturated liquid refrigerant at the 

outlet of the throttling valve. The throttling valve is the active control component 

that introduces a new degree of freedom and allows setting the subcooling at the 

condenser independently from the external conditions. One should notice that in 

practice, the throttling valve is an electronic expansion valve, but since the 

refrigerant is in liquid saturated state at its outlet, it will be referred as a throttling 

valve in order to distinguish it from the main expansion valve that controls 

superheat.  
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Figure 3.1: Heat Pump with subcooling at the condenser controlled by a throttling valve 

a) Scheme, b) P-h diagram.  

The pressure at the throttling valve inlet (point 3) will depend on the heat 

transfer process at the condenser, while the pressure at the liquid receiver (point 

4) will depend on the opening of the throttling valve. The liquid receiver ensures 

that the refrigerant leaves the throttling valve in liquid saturated state (point 4), 

which corresponds to the saturation temperature at the liquid receiver pressure. 

Therefore, since the throttling valve outlet is constrained to be on the saturation 

liquid line, the refrigerant stream at the condenser outlet (point 3) must be 

subcooled. The pressure drop at the throttling valve will determine the subcooling 

produced at the condenser:  

 Throttling valve totally open: The liquid receiver and the condenser will be 

at similar pressure. This produces a low degree of subcooling. 

 As the throttling valve closes, the pressure drop increases and the 

temperature of point 3 decreases, hence increasing subcooling.  

Therefore, by increasing the pressure drop at the throttling valve, the 

refrigerant charge migrates from the liquid receiver to the condenser, which is 

flooded with refrigerant liquid and producing more subcooling. The temperature 

of point 3 can decrease up to a limit, which is determined by the water inlet 

temperature to the condenser and the heat transfer that takes place on it. Beyond 

this point, subcooling can only increase if the condensing saturation temperature 

is increased.  
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The expansion valve controls the superheat at the compressor inlet. One should 

notice that the pressure drop at the expansion valve would not only depend on the 

condensing and evaporating conditions, but also on the degree of subcooling. The 

expansion and the throttling valve share the pressure drop between condenser and 

evaporator. The higher the subcooling, the higher the pressure drop at the 

throttling valve, and consequently the lower the pressure drop at the expansion 

valve. When producing high degrees of subcooling (up to 50 K), most of the 

pressure drop between the condenser and evaporator is done at the throttling 

valve, and the pressure drop required at the expansion valve is minimum. Because 

of this behavior, the expansion valve needs to be carefully selected, as it will be 

seen in section 3.3.6. 

With this configuration, the area dedicated to subcooling changes from point to 

point. This feature allows the condenser to dedicate the exact needed area for 

subcooling at each condition (the SMS system has a fixed heat transfer area for 

subcooling). 

3.2 Subcooler in series with condenser (SMS heat pump) 

Figure 3.2 shows the scheme of the water-to-water heat pump prototype with 

subcooler. A liquid receiver located right after the condenser ensures that (at 

steady state conditions) the refrigerant leaves the condenser in liquid saturated 

state (point 3) and serves as a charge reservoir. For continuity, the refrigerant 

leaves the liquid receiver at the saturation condition, the condenser saturation 

temperature. Thereafter, the refrigerant is subcooled in a heat exchanger specially 

designed for this reason (subcooler). The water is preheated at the subcooler, 

reaching its target temperature at the condenser outlet. The degree of subcooling 

will depend on the external conditions and the heat rejection at the subcooler. The 

refrigerant temperature at the subcooler outlet is limited by the water inlet 

temperature. In this case, the total area dedicated for subcooling is fixed in any 

condition. The expansion valve controls the superheat at the compressor inlet, and 

holds the total pressure drop between condenser and evaporator. The three-way 

valve located on the water side is used to limit the pressure drop at the subcooler. 

This will be discussed in section 3.3.3. 
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Figure 3.2: Heat Pump subcooler in series with condenser a) Scheme, b) P-h diagram. 

 

3.3 Heat Pump prototype: the real implementation of the systems 

Both heat pump designs (SMC and SMS) have been built in the same prototype, 

so they use the same evaporator, compressor, and condenser, with the only 

difference that in the SMS case, a subcooler is connected in series with the 

condenser, while in the SMC there is a throttling valve between the condenser and 

the liquid receiver. This configuration has the advantage of flexibility, allowing to 

obtain more experimental points in the same prototype. On the other hand, it is not 

a fair comparison, as the heat transfer area dedicated to condensation and 

subcooling is higher in the SMS design (condenser+subcooler) than in the SMC 

design (only condenser). The implications of this decision in the experimental 

results will be commented and analyzed in chapter 6. 

Figure 3.3 shows the scheme of the heat pump prototype. The selection between 

the SMS and the SMC design is done by means of manual valves. Due to the low-

pressure drop needed in the SMC design, two expansion valves were connected in 

parallel (this will be discussed in section 3.3.6). Figure 3.4 shows a picture of the 

heat pump prototype taken from the top. 
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Figure 3.3: Scheme of the heat pump prototype to measure the SMS and SMC designs 

 

Figure 3.4: Photo of the heat pump prototype to measure the SMS and SMC designs 

 

Applications with a high degree of subcooling have some peculiarities that must 

be taken into account when designing the system. Next sections concentrate on the 

components design (Table 3.1). With this configuration and the right components 

design, it is possible to produce high degrees of subcooling in order to take profit 

of the high water temperature lift in the SHW application and improve 

performance. 
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Table 3.1: Components of the HP system 

Component Type Size Used for 

Compressor Scroll (2900 rpm) 29.6 m3h-1 SMS and SMC 

Condenser BPHE Counterflow 3.5 m2 SMS and SMC 

Subcooler BPHE Counterflow 0.87 m2 SMS 

Evaporator BPHE Counterflow 6 m2 SMS and SMC 

Liquid Receiver - 7 l SMS and SMC 

Expansion Valve5 Electronic EX-5  39 kW SMS and SMC 

Expansion Valve5 Electronic EX-6 93 kW SMC 

Throttling Valve5 Electronic EX-5 39 kW SMC 

 

3.3.1 Compressor 

The compressor is selected to obtain around 50 kW of heating capacity in the 

nominal point (water 20ᵒC/15ᵒC at the evaporator and 10ᵒC to 60ᵒC for the hot 

water production). Figure 3.5 shows the compressor and volumetric efficiencies of 

the scroll compressor as a function of the pressure ratio. The efficiencies are 

obtained experimentally from the test campaign for this thesis. These results 

helped the manufacturer to improve the compressor efficiency at high evaporating 

pressures. One should notice that the swept volume of the scroll compressor is 

difficult to define. For this reason, there is one volumetric efficiency that is slightly 

over 1.  
 

 

Figure 3.5: a) Compressor efficiency  b) Volumetric efficiency as a function of the 

pressure ratio 

                                                   
5 Capacity for R134a with the valve totally open and Tevap=+4ᵒC; Tcond=38ᵒC; Subcooling=1 K 
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3.3.2 Condenser 

The condenser will work mainly with two-phase refrigerant in the SMS design 

(subcooler), but it must be able to produce high degrees of subcooling in the SMC 

design in order to take profit from the high-temperature lift in the sanitary hot 

water application. The commercial software IMST-ART (IMST-ART v3.70) has been 

used in order to analyze the heat pump components and the overall performance. 

The selected condenser has a horizontal port distance and vertical port distance 

of 60 mm and 470 mm respectively. Figure 3.6 shows the heating COP for the finite 

heat exchanger (calculated with IMST-ART) respect the theoretical maximum 

(infinite heat transfer area) as a function of the number of plates in the condenser. 

The heating COP for the infinite transfer area was calculated as in chapter 2, but 

with a compressor efficiency of 0.65. For the nominal point (water 20ᵒC/15ᵒC at 

the evaporator and 10ᵒC to 60ᵒC for the hot water production), the reference COP 

was 5.7, with an optimal subcooling of 43.4 K. This subcooling was used in the 

IMST-ART calculations for all number of plates. 

Finally, it has been decided to install a condenser with 62 plates, which has a 

heating COP of 5.53 (97% respect to the infinite heat transfer area).  

One should notice that the condenser would work without subcooling during the 

operation of the SMS design. In this case, the subcooling is made in a separate heat 

exchanger, the subcooler. 

 

 

Figure 3.6: Heating Cop for a finite heat exchanger (IMST-ART) respect to the infinite 

heat transfer assumption (5.7, the theoretical maximum) as a function of the number of 

plates in the condenser. Nominal point, subcooling fixed to 43.4 K (propane) 



3.3   Heat Pump prototype: the real implementation of the systems      45 

 

 
  

3.3.3 Subcooler 

In the SMS prototype, the subcooling is made in the subcooler. The refrigerant 

density of the subcooled refrigerant is higher than in the two-phase state. Thereby, 

if a separate heat exchanger is used to produce subcooling, subcooler size can be 

optimized for refrigerant liquid, so it has an appropriate refrigerant velocity for 

heat transfer. In this way, subcooler requires smaller plate pitch than at the 

condenser. During the design period, it was discussed about the possibility of using 

the subcooler in series with a condenser (treating both heat exchangers as only 

one) for the SMC design. In this way, both heat pump designs would have the same 

heat transfer area, but the area for subcooling would be fixed for the SMS design 

(liquid receiver between both heat exchangers) and variable for the SMC design. 

The final decision was to use only one heat exchanger in the SMC design (the 

condenser) and an extra heat exchanger (subcooler) for the SMS design. In this 

way, the subcooler can be better optimized for subcooling, but in the analysis 

results, the HX area reduction in the SMC design must be taken into account. 

The subcooler has as a smaller crossflow area than the condenser, so the velocity 

of the subcooled liquid is optimized for heat transfer. The selected subcooler has a 

horizontal port distance and vertical port distance of 46 mm and 270 mm 

respectively, with 40 plates and smaller plate pitch than in the condenser. This 

reduction in the crossflow area increases the heat transfer, but it also increases the 

pressure drop on the water side. Higher pressure drops lead to higher 

consumption of the auxiliary pump and lower global performance. Therefore, a 

control strategy must be followed in order to avoid undesirable situations.  

The heat pump prototypes are tested at very different inlet water temperature 

at the heat sink (from 10ᵒC to 55ᵒC). This variation in the inlet water temperature 

implies a large variation in the water mass flow rate (outlet temperature is fixed to 

60ᵒC), about 0.9 m3/h and 6.3 m3/h for the water inlet temperature of 10ᵒC and 

55ᵒC respectively. Figure 3.7a) shows the pressure drop at the subcooler as a 

function of the water flow rate. Figure 7b) shows an estimated calculus for the high 

inlet water temperature (55ᵒC).  
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Figure 3.7: a) Pressure drop on the water side at the subcooler as a function of the water 

flow rate. b) Scheme of Condenser+Subcooler of the SMS design with a case study 

estimation (with IMST-ART) 

The total water flow rate is 6.3 m3/h, but the subcooler is partially bypassed in 

order to limit the flow rate through the subcooler at 2 m3/h. This flow rate is 

enough to obtain the maximum possible subcooling at the subcooler, since the 

refrigerant temperature at its outlet is 55.04ᵒC, very close to the water inlet 

temperature (55ᵒC). For this flow rate, the pressure drop at the subcooler is 

around 0.37 bar, which is acceptable for the heat pump application. Therefore, all 

the measured points with the SMS prototype will limit the flow rate through the 

subcooler at 2 m3/h in order to limit the pressure drop at the subcooler. The partial 

bypass was only necessary for high inlet water temperature (more than 50ᵒC) and 

was controlled by a three-way valve. 

3.3.4 Evaporator 

The evaporator has to be large enough to have high efficiency at high 

evaporating temperatures. Furthermore, due to the high degree of subcooling, it is 

expected to have low refrigerant quality or even in subcooled liquid refrigerant at 

the evaporator inlet. Following the suggestions of the manufacturer, the selected 

evaporator has 120 plates and a horizontal port distance and vertical port distance 

of 50 mm and 466 mm respectively. 
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3.3.5 Liquid receiver 

The liquid receiver (LR) has to be able to hold the refrigerant variations in both 

heat pump designs: 

 For the SMS prototype, the refrigerant in the subcooler does not change 

significantly, since it is always filled with liquid refrigerant. The refrigerant 

charge variation at the condenser is mainly due to pressure variations. The 

major refrigerant charge variations take place in the evaporator since the 

refrigerant quality at its inlet highly depends on the degree of subcooling, 

which mainly depends on the water temperature at the subcooler inlet. 

 For the SMC prototype, there are also large variations in the refrigerant 

charge at the evaporator. Nevertheless, in this case, the refrigerant charge 

variation in the condenser is higher, since subcooling is done directly in the 

condenser. 

Taking into account this charge variation, a volume of 7 l for the LR has been 

estimated. The LR was specially built in order to install a refrigerant level sensor 

(Figure 3.8). In order to avoid measurement perturbations from the refrigerant 

coming into the LR, the inlet and the outlet ports were located at the bottom of the 

LR. For this reason, in order to avoid the direct connection between the inlet and 

outlet refrigerant mass flow, the inlet and outlet ports end in an elbow.  

 

 

Figure 3.8: From the left to the right: Scheme of the liquid receiver with the level sensor, 

The AKS 100 level sensor, a picture of the liquid receiver with the level sensor installed 
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The direction of the refrigerant inlet and outlet was found an important 

parameter to determine the duration of the transitory when an external condition 

was changed. This issue was published in the CYTEF conference (Pitarch et al., 

2016). For instance, when the inlet water temperature to the subcooler was 

changed from 30ᵒC to 10ᵒC (SMS operation, without subcooling at the condenser) 

two different behaviors were found depending on the refrigerant direction at the 

LR inlet: 

1) Refrigerant inlet coming downwards: High degree of subcooling appears at 

the condenser outlet. The subcooling at the condenser is reestablished to 

zero after 35 minutes.  

2) Refrigerant inlet coming upwards: A small degree of subcooling is produced 

in the condenser. The subcooling at the condenser is reestablished to zero 

in less than 5 minutes. 

Therefore, the LR has been installed with the refrigerant inlet port looking 

upwards. For a more detailed information, the paper Pitarch et al. (2016) on this 

issue has been attached as Appendix A.  

3.3.6 Expansion valve 

The first version of the prototype had only one expansion valve. This prototype 

was working correctly for the SMS design but did not work correctly for the SMC 

design. The problems faced during the operation of the SMC design forced us to 

redesign and improve the heat pump prototype in order to work correctly in a wide 

range of conditions for the SMC design. This section and the one dedicated to the 

throttling valve explain these modifications. 

Figure 3.9 shows the P-h diagram of the SMC design working with low and high 

subcooling. In this case, depending on the subcooling, the required pressure drop 

at the throttling and the expansion valve can vary significantly.  
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Figure 3.9: Pressure-enthalpy diagram for the propane cycle: a) Low subcooling, b) High 

subcooling 

The selected expansion valve in the first version of the prototype, the EX5, has 

the right capacity for the SMS design. Nevertheless, the valve, even when totally 

open, produces a higher pressure drop than the desired one when the prototype 

operates in the SMC design with high subcooling. This is due to the share of the 

pressure drop with the throttling valve during the operation of the SMC design. 

For this reason, a second expansion valve (EX6) was installed in parallel with 

the EX5. The EX5 always operates automatically with a PID control (XEV22D with 

the propane curve installed) to the superheat (usually 10 K).  The EX6 is only used 

for high degrees of subcooling (SMC design). In the case of having both expansion 

valves working at the same time, one will by kept partially open with the manual 

control (EX6) and the other will be controlled automatically (EX5). 

If this heat pump would be commercialized, an alternative solution using only 

one expansion valve should be implemented, for instance, a higher capacity 

expansion valve. The solution of the two expansion valves was used in the 

prototype due to flexibility since there are two heat pump designs in the same 

prototype. 
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3.3.7 Throttling valve 

There is not a general procedure to select a throttling valve. The throttling valve 

installed in the first version of the heat pump prototype was the EXL 125/B1G. It 

is an electronic expansion valve with a capacity6 of 15.2 kW, which is smaller to the 

obtained by the EX5 (39 kW). These capacities are given for expansion valves, but 

in this system (SMC design), the refrigerant is not expanded in the throttling valve 

and instead there is saturated liquid at its outlet. Therefore, the throttling valve 

was selected smaller, expecting lower pressure drops than in the expansion valve 

(for the same refrigerant mass flow and valve opening). Nevertheless, it was 

impossible to obtain low degrees of subcooling because the pressure drop 

produced by this valve (fully open) was too high. Hence, a second throttling valve 

was installed in parallel, the EX5. 

Finally, the EX5 resulted in working correctly in all the measured conditions, and 

the EXL 125/B1G was not used. Figure 3.10 shows a picture of both throttling 

valves connected in parallel and the control scheme of the EX5 throttling valve. 

 

 

 

Figure 3.10: Picture of the throttling valves: EX5 and EXL 125/B1G and schematic of the 

control for the throttling valve: PID EXD-U00 EX5 

 

                                                   
6 Capacity for R134a with the valve totally open and Tevap=+4ᵒC; Tcond=+38ᵒC; Subcooling=1 K 

T.V: EX-5 

T.V: EXL 

125/B1G 
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Experimental setup and test conditions 

The heat pump prototype was designed to have a heating capacity of 50 kW in 

the nominal point (water 20ᵒC/15ᵒC at the evaporator and 10ᵒC to 60ᵒC for the hot 

water production), but higher capacities are expected at different conditions. The 

capacity of the laboratory in the Institut Universitari d’Investigació d’Enginyeria 

Energètica (Universitat Politècnica de València) was not enough to dissipate the 

heat pump capacity. Therefore, in order to test the heat pump prototype, a new test 

rig was designed and built in the laboratory. This test rig is able to recover energy 

from the heat sink to the heat source. Hence, less heat needs to be dissipated to the 

ambient. 

This chapter presents the experimental setup (test rig) used to test the 

prototype with the two heat pump designs (chapter 3). Furthermore, it is 

presented: the sensors and the error analysis, and the test conditions for both heat 

pump designs.  

There is no applicable standard to characterize the COP for this application 

(SHW production in the application of heat recovery from any water source). 

Nevertheless, the European Standard EN 14825 (EN 14825, 2011) has been used 

to select the conditions at the evaporator.  
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4.1 Experimental setup   

Figure 4.1 shows the test rig. The test rig is able to test water-to-water heat 

pumps with a heating capacity up to 70 kW. Between the dashed lines it is the unit 

to be tested, where points 1&2 are the inlet/outlet for the heat sink (demand side), 

and 3&4 are the inlet/outlet for the heat source (waste heat side). The test rig is 

able to keep to a constant value the water temperature at these points.  

Besides the main propane refrigerant cycle (between dashed line), the test rig 

consists of four more loops: 

A. The water loop for the heat source (Evaporator). It simulates the heat 

recovery from a water source. 

B. The water loop for the heat sink (Condenser). It simulates the SHW 

production. 

C. The water/glycol loop.  

D. The chiller. Works with R410A   

 

Regarding the security issues related to the use of Propane: the laboratory is 

equipped with gas sensors and an alarm system able to detect a propane leakage 

and start with a security routine. The heat pump has a total refrigerant charge of 

6.2 kg. This charge includes the refrigerant to work with the SMS and the SMC 

designs at all considered conditions. The refrigerant charge can be significantly 

reduced if one of the systems is commercialized separately, below 5 kg (extra 

piping for the prototype, wide range of the operating conditions, optimization of 

the components size for the selected design, etc…). If commercialized, as 

commented in the introduction, this heat pump will be installed in a vented place 

outdoor.  
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4.1.1 Water loop for the heat source (Evaporator) 

Figure 4.2 shows the scheme of the evaporator water loop with typical 

temperatures at different points. The evaporating water loop ensures the desired 

water temperature at the inlet and outlet of the evaporator. A frequency variable 

water pump adjusts the water mass flow rate, which will determine the 

temperature at the outlet of the evaporator. Furthermore, a bypass with a needle 

valve connecting the outlet and inlet of the water pump can be used for a more 

precise water mass flow rate control. In order to achieve the target temperature at 

the inlet of the evaporator, this water loop consists of:  

 A recovery heat exchanger that interacts with the condensing water loop to 

recover part of the energy in the condenser 

 A three-way valve controlled by a PID in order to adjust the desired 

temperature at the outlet of the recovery HX.  

 An electrical heater controlled by a PID adds the rest of the needed energy.   

 

 

 

Figure 4.2: Scheme of the evaporator water loop with typical temperatures  
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4.1.2 Water loop for the heat sink (Condenser) 

Figure 4.3 shows the scheme of the condenser water loop with typical 

temperatures at different points. The condensing water loop must keep the 

supplied water after the condenser (2) at the constant temperature of 60ᵒC, and 

the inlet water temperature of the system fixed to a value ranging from 10ᵒC to 

55ᵒC. A frequency variable water pump adjusts the water mass flow rate, which 

will determine the temperature at the outlet of the condenser. Furthermore, a 

bypass with a needle valve connecting the outlet and inlet of the water pump can 

be used for a more precise water mass flow rate control. In order to achieve the 

target temperature at the inlet of the heat pump prototype, this water loop consists 

of: 

 A recovery heat exchanger that interacts with the evaporator water loop to 

recover. The heat transfer will depend on the evaporator water loop control. 

 A heat exchanger is interacting with the water/glycol loop, which is used to 

cool down the water at the condenser loop. 

 A three-way valve controlled by a PID in order to adjust the desired 

temperature at inlet of the heat pump prototype (10ᵒC to 55ᵒC) 

The three-way valve controlling the water mass flow rate through the subcooler 

is part of the heat pump prototype. Figure 4.4 shows a picture of the evaporator 

and condenser water loops.  

 

Figure 4.3: Scheme of the evaporator water loop with representative temperatures 
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Figure 4.4: Picture of the evaporator and condenser water loop in the test rig 

 

4.1.3 Water/glycol loop and chiller working with R410A 

Figure 4.5 shows the scheme and the picture of the water/glycol loop and the 

chiller working with R410A. The chiller is in charge to pump out to the ambient the 

heat remaining in the water of the condenser loop after passing through the 

recovery heat exchanger. The capacity of the chiller is not controlled, so it does not 

match exactly with the required heat to be removed. To solve this issue, the 

water/glycol loop with an inertia tank connects the condenser water loop and the 

chiller. With this configuration, the overall needed capacity is achieved by an ON-

OFF control of the compressor (chiller). It starts or stops depending on the demand 

of cold of the system.  

The ON/OFF control of the compressor is connected to the temperature at the 

outlet of the inertia tank (500 liters). The chiller is started when the controlled 

water/glycol temperature is above 4.5ᵒC and stopped when this temperature is 

below 2ᵒC. 
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Figure 4.5: Scheme and picture of the water/glycol loop and chiller working with R410A 

 

4.2 Sensors and error analysis 

The evaporator and condenser capacities of the heat pump were measured on 

the water side. In order to measure them as accurate as possible, six 

thermoresistances were located at inlet/outlet of each heat exchanger directly in 

contact with the water. In order to monitor and measure temperature in other 

points, a total number of 27 T-type thermocouples were used. The water mass flow 

through evaporator and condenser were measured with Coriolis mass flow meters. 

For control reasons, a magnetic mass flow meter was measuring the water mass 

flow through subcooler, which in most of the cases was the same as in the 

condenser. For the pressure, on the refrigerant side, there were three high 

accuracy Rosemount sensors. In the water side, there were 3 differential pressure 

sensors to measure the pressure drop in the heat exchangers. With these 

measurements and according to the norm EN 14511-3 “Test methods” (DIN EN 

14511-3, 2013), the auxiliary consumption of the water pumps was calculated 

(Appendix B).  

In order to monitor and measure those key parameters to evaluate the 

performance of the heat pump, all the sensors were connected to a data acquisition 

system “Agilent 34970A”, where all parameters were monitored. 

Table 4.1 shows the main sensors with the relative and absolute accuracy for the 

sensor. The reader can refer to Appendix B to find details about uncertainties and 

other information of the experimental results.  
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Table 4.1: Sensors and their uncertainty 

 

4.3 Performed test 

The kind of application defines the boundary conditions. In the SHW application, 

60ᵒC was selected due to legionella legislation in EU countries. The inlet water 

temperature at the condenser depends on the city water temperature, which 

usually ranges between 10ᵒC to 30ᵒC depending on location and period of the year. 

However, it also depends on the water tank connection and sizing, making possible 

to have higher inlet water temperatures, for instance, when recovering heat losses 

at the tank in periods of inactivity. In this sense, the heat pump was tested at inlet 

water temperature to the condenser ranging from 10ᵒC to 55ᵒC. 

In the evaporator, the inlet water temperatures ranged from 10ᵒC to 35ᵒC, which 

corresponds to the waste heat recovery application. The waste heat could come 

from any available source of energy, such as sewage or a condensation loop. The 

water mass flow through the evaporator was adjusted in order to obtain a 5 K 

water temperature decrease at the nominal point (water 20ᵒC/15ᵒC at the 

evaporator and 10ᵒC to 60ᵒC for the hot water production). The water mass flow 

rate adjusted in the nominal point was kept constant for the rest of test points 

(around 7000 kgh-1). This procedure is described in the European Standard EN 

14825 (EN 14825, 2011). In the refrigerant side, superheat was kept constant to 

10 K (unless the contrary is indicated).  

Magnitude Model 
Relative 

Accuracy 

Absolute 

Accuracy 
Units 

Pressure 

Differential 1151 Smart 

Rosemount 
0.13 % of Span 5 E-04 bar 

Differential p Siemens Sitrans 0.14 % of Span 4 E-04 bar 

Differential p Setra 0.3 % of Span 1.7 E-03 bar 

P 1151 Smart GP7 Rosemount 0.12 % of Span 0.03 bar 

P 1151 Smart GP8 Rosemount 0.15 % of Span 0.08 bar 

P 3051 TG3 Rosemount 0.14 % of Span 0.04 bar 

Temperature 
Thermocouple T-Type  1 ᵒC 

RTD Class 1/10 DIN  0.06 ᵒC 

Flow 

Coriolis SITRANS F C MASS 

2100 
0.3 % of Reading   

Magnetic SITRANS FM 

MAG5100 W 
0.4 % of Reading   

Power DME 442 0.3 % of Reading   
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Once all the target parameters were reached, and the heat pump is working in 

steady state condition, the acquisition data record data every 10 seconds during 

30 minutes. In order to ensure a steady state behavior, all the measured points 

were checked to lie under the limits marked by the norm EN 14511-3 “Test 

methods” (DIN EN 14511-3, 2013). 

4.3.1 Test for SMC design 

Table 4.2 contains the measurement points of the test matrix. In order to study 

the effect of subcooling at each external condition (water temperatures), each 

measured point has been tested at different subcooling values.  The total number 

of measured points is 68. The selected conditions are: the water inlet temperature 

at the evaporator (Tw,ei), the water inlet temperature at the condenser (Tw,ci), the 

water outlet temperature at the condenser (Tw,co) and the subcooling (Sc). 

Table 4.2: Test matrix with a total number of 68 measured points. 

Tw,ei [ᵒC] Tw,ci [ᵒC] Tw,co [ᵒC] 
Refrigerant Sc 

range [K] 

10 

10 

60 

From 1 to 48 

30 From 1 to 32 

50 From 1 to 17 

20 

10 From 1 to 52 

30 From 1 to 35 

50 From 1 to 17 

30 

10 From 4 to 45 

30 From 4 to 35 

50 From 3 to 14 

 

4.3.2 Test for SMS design 

For the SMS design is not possible to control the degree of subcooling at each 

measured condition. Instead, the degree of subcooling is given by the subcooler. In 

order to limit the pressure drop at the subcooler (water side), the water flow rate 

was partially bypassed for water mass flow rates higher than 2 m3/h (usually for 

inlet water temperatures to the subcooler higher than 50ᵒC). Table 4.3 shows the 

conditions of the measured points. The number of points measured in the SMS 

design were 42. 
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Table 4.3: Test matrix with a total number of 42 measured points. *Water mass flow 

ratio between subcooler and condenser 

Tw,ei [ᵒC] Tw,ci [ᵒC] Tw,co [ᵒC] 
Mass flow ratio*: 

𝒎̇𝒘,𝒔𝒖𝒃/𝒎̇
𝒘,𝒄𝒐𝒏𝒅 

10 

10 

 

60 

1.00 

20 1.00 

30 1.00 

40 1.00 

50 0.83 

55 0.45 

20 

10 1.00 

20 1.00 

30 1.00 

40 1.00 

50 0.67 

55 0.30 

25 

10 1.00 

20 1.00 

30 1.00 

40 1.00 

50 0.63 

55 0.29 

30 

10 1.00 

20 1.00 

30 1.00 

40 1.00 

50 0.53 

55 0.29 

35 

20 1.00 

30 1.00 

40 1.00 

50 0.45 

55 0.26 

20 

30 

30 

30 

70 1.00 

80 1.00 

90 1.00 
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Tw,ei [ᵒC] Tw,ci [ᵒC] Tw,co [ᵒC] 
Mass flow ratio*: 

𝒎̇𝒘,𝒔𝒖𝒃/𝒎̇
𝒘,𝒄𝒐𝒏𝒅 

10                      

(Target Sh: 5 K) 

10 

60 

1.00 

30 1.00 

50 0.81 

20                        

(Target Sh: 5 K) 

10 

60 

1.00 

30 1.00 

50 0.64 

20 

10 

60 
Without     

Subcooling 

30 

50 

55 
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Experimental results and discussion 

This chapter presents the experimental results and discussion for both heat 

pump designs:  

1) SMC design: Subcooling Made in the Condenser. Subcooling can be modified 

with the throttling valve. 

2) SMS design: Subcooling Made in the Subcooler. Subcooling is fixed for a 

given external condition. 

The heat pump prototype with the two designs concepts was tested with the test 

rig presented in chapter 4.  

The heating COP and heating capacity were calculated at each condition 

according to the norm EN 14511-3 “Test methods” (DIN EN 14511-3, 2013), these 

calculations include the auxiliary consumption of the water pumps as it is indicated 

in the previous standard. The reader can refer to Appendix B to find details about 

uncertainties and other information of the experimental results.  

5.1 Subcooling in the condenser: SMC design 

Figure 5.1 shows the scheme of the water-to-water heat pump to make 

subcooling in the condenser (SMC design). 



64        Chapter 5   Experimental results and discussion 

 

  

 
Figure 5.1: Heat Pump with subcooling controlled by a throttling valve a) Scheme, b) P-

h diagram.  

 

The SMC design incorporates a throttling valve, which produces a pressure drop 

between the condenser and the liquid receiver. This valve incorporates a new 

degree of freedom into the heat pump system, so the subcooling can be controlled 

at any time independently of the expansion valve control at the superheat. This 

heat pump design is used to investigate the role of subcooling at different water 

inlet temperature to the condenser in the application of SHW production (fixed 

outlet water temperature to 60ᵒC) experimentally. Therefore, the heat pump is 

tested at different water temperature lifts. 

Part of the results of this section has been presented for publication in the 

journal “Science Technology for the Built Environment” (Pitarch et al., 2017B). 

5.1.1 Results 

Figures 5.2a), c) and e) show the heating COP as a function of subcooling. The 

water outlet temperature at the condenser is fixed to 60ᵒC. Different temperatures 

for the water inlet at the condenser (Tw,ci) and water inlet at the evaporator (Tw,ei) 

are considered.  For a given external condition (fixed Tw,ei and Tw,ci), there is an 

optimal subcooling where COP is maximized. The optimum subcooling can vary 

significantly depending on Tw,ci. The lower Tw,ci (or higher temperature lift), the 

higher the optimal subcooling.  As an example, the optimum COP for the nominal 

point (Tw,ei=20ᵒC; Tw,ci=10ᵒC) is 5.38 and corresponds to a subcooling of about 42 

K. 
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Figure 5.2: COP heating vs. subcooling (Maximum uncertainty ±0.08) : a) Tw,ei = 10ᵒC  c) 

Tw,ei = 20ᵒC  e) Tw,ei = 30ᵒC. Heating capacity vs. subcooling (Maximum uncertainty ±0.05 

kW): b) Tw,ei = 10ᵒC  d) Tw,ei = 20ᵒC  f) Tw,ei = 30ᵒC. (Tw,co = 60ᵒC). 
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This maximum COP is around 25% higher than the COP corresponding to the 

same external water temperatures, but with the lowest subcooling (around 2 K). 

In this case, it is clear the advantage taken from the low inlet water temperature 

(Tw,ci) to produce subcooling and improve COP. For points with higher Tw,ci (lower 

temperature lift), the improvement is less significant, for instance for Tw,ci=50ᵒC, 

the degree of improvement is less than 7% when going from the minimum to the 

optimal subcooling (about 10 K). The heat pump operated stable at all external 

conditions and subcoolings. 

For a given Tw,ei, the heating COP is higher for lower Tw,ci (Tw,co fixed to 60ᵒC). 

Table 5.1 shows the heating COP increase7 for Tw,ci=10ᵒC compared to Tw,ci=50ᵒC at 

different water inlet temperatures at the evaporator (Tw,ei). Two situations are 

presented: 1) the heat pump working without subcooling, 2) the heat pump 

working at the optimal subcooling. There is a higher COP difference between both 

situations (Tw,ci=10ᵒC compared to Tw,ci=50ᵒC) when the heat pump works at the 

optimal subcooling. For instance, for Tw,ei=10ᵒC, when the heat pump works 

without subcooling, COP is 12% higher for Tw,ci=10ᵒC. At this point, for the heat 

pump at the optimal subcooling, heating COP is about 36% higher when Tw,ci=10ᵒC. 

At the optimal subcooling, the COP increase for Tw,ci=10ᵒC compared to 

Tw,ci=50ᵒC is mainly due to two effects. One is related to the decrease of the 

condensing pressure and another with the increase of the optimal subcooling. The 

optimal subcooling for Tw,ci=10ᵒC is higher than for Tw,ci=50ᵒC, 43 K and 10 K 

respectively.  

As expected, if the inlet condition at the condenser is fixed (Tw,ci), it can be seen 

an increase of COP as the Tw,ei increases. For instance, for the condition Tw,ci=10ᵒC 

and the optimal subcooling, COP increases about 24% when Tw,ei  passes from 10ᵒC 

to 20ᵒC. This difference is directly related to the increase of the evaporating 

pressure.  

 

Table 5.1: Heating COP increase for Tw,ci=10ᵒC compared to Tw,ci=50ᵒC. 

Tw,ei, ᵒC 
COP increase Without 

Subcooling 

COP increase at 

Optimal Subcooling 

10 12% 36% 

20 16% 39% 

30 18% 35% 

                                                   
7 COPℎ𝑖𝑛𝑐𝑟𝑒𝑎𝑠𝑒 =

COPℎ(𝑇𝑤,𝑐𝑖=10ᵒ𝐶)−COPℎ(𝑇𝑤,𝑐𝑖=50ᵒ𝐶)

COPℎ(𝑇𝑤,𝑐𝑖=50ᵒ𝐶)
∗ 100 [%] 
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Figures 5.2b), d) and f) show the heating capacity as a function of the degree of 

subcooling. The heating capacity does not have a maximum value for the optimal 

subcooling (maximum COP). Instead, in most of the measured points, there is a 

linear relationship between heating capacity and subcooling: as subcooling 

increases, the heating capacity increases. The linear relationship is evident below 

the optimal subcooling. From this point, heating capacity increases, but in a lower 

degree. In the linear part, the heating capacity depends weakly on the inlet water 

conditions at the condenser (Tw,ci), it only depends on the degree of subcooling and 

the evaporator conditions (Tw,ei). Nevertheless, since lower Tw,ci has higher optimal 

subcoolings, lower Tw,ci has higher capacities when working at the optimum point. 

There is an external condition, which does not have the same trend than the others, 

this condition is: Tw,ei=30ᵒC and Tw,ci=10ᵒC. At this point, the heating capacity 

decreases for subcoolings higher than the optimal. This behavior will be explained 

in section 5.1.2. 

Figure 5.3a) shows the optimal subcooling and the corresponding refrigerant 

temperature at the condenser outlet as a function of Tw,ci. For each Tw,ci, there are 

three points, which corresponds to the three measured Tw,ei. The optimal 

subcooling and the refrigerant outlet temperature have a linear relationship with 

Tw,ci. Tw,ei does not affect significantly to these values. With a linear relationship 

between the optimal subcooling and Tw,ci, it is possible to set a control strategy to 

maximize COP as a function of Tw,ci. The refrigerant temperature at the condenser 

outlet is close to the corresponding Tw,ci (about 2ᵒC higher). This means that at the 

optimal subcooling (maximum COP), the condenser is able to produce a high 

degree of subcooling with a low-temperature approach at the condenser outlet. As 

observed before, the point corresponding to the condition: Tw,ei=30ᵒC and 

Tw,ci=10ᵒC, does not have the same trend as the rest of the points. This behavior 

will be explained in section 5.1.2. 

Figure 5.3b) shows the condensing temperature as a function of subcooling. For 

each external condition, the condensing temperature increases with subcooling.  

Two different zones can be seen in each condition:  

1) At low subcooling: the condensing temperature slightly increases. 

2) After a certain value of subcooling, the condensing temperature starts to 

increase at a higher rate.  

The lower Tw,ci (high water temperature lift), the higher the subcooling at which 

occurs the point of inflection. This point of inflection has a low dependency on Tw,ei. 

The optimum subcooling for each condition lies in the point of inflection, where 

the condensing temperature starts to increase at a higher rate.  
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Figure 5.3: a) Subcooling and refrigerant outlet temperature at the condenser vs. Tw,ci at 

the maximum COP point (optimal subcooling) b) Condensing temperature vs. subcooling 

(Tw,co = 60ᵒC). 

 

The minimum refrigerant temperature at the condenser outlet is limited by Tw,ci. 

At low8 subcooling, the refrigerant temperature is still far from Tw,ci, so subcooling 

can be increased by cooling down the refrigerant at the condenser outlet without 

increasing the condensing temperature significantly. When the refrigerant outlet 

of the condenser is closer to Tw,ci, the increase of subcooling is mainly due to an 

increase in the condensing temperature (point of inflection). This behavior is 

closely related to heating COP and heating capacity trends. 

With near zero subcooling, the heat pump uses the major part of the condenser 

area to condensate. As the subcooling increases, the area for condensing decreases 

and more area of the condenser is used for subcooling. This produces an increase 

in the condensing temperature. The optimum point (maximum COP) is a 

compromise between the improvement due to an increase in the enthalpy change 

at the condenser with subcooling and the increase of power input in the 

compressor due to the pressure increase. 

Regarding the heating capacity, below the optimal subcooling (where the 

changes of condensing temperature with subcooling are small), the heating 

capacity mainly depends on subcooling (Sc) (linear relationship between heating 

capacity and subcooling for constant refrigerant mass flow rate). Above the 

                                                   
8 Low or high subcooling depends on the temperature lift (or Tw,ci for a fixed Tw,co). For instance, a 

subcooling of 10 K is low for the condition (10ᵒC to 60ᵒC), but high for the condition (50ᵒC to 60ᵒC) 
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optimum point, the heating capacity does not depend only on the subcooling, but 

also on the condensing temperature. 

Figure 5.4 shows the evaporating temperature as a function of subcooling. For a 

given Tw,ei, the evaporating temperature is quite constant independently of the 

subcooling and Tw,ci. Hence, the system is able to control the subcooling and take 

profit of the water temperature lift with no side effect on the evaporating 

temperature. The refrigerant inlet quality to the evaporator decreases with 

subcooling, therefore, in order to keep a constant evaporating temperature at high 

subcooling, the evaporator needs to be designed accordingly. Smaller evaporators 

could lead to a decrease of the evaporating temperature with subcooling. One 

should notice that the point (Tw,ei=30ᵒC; Tw,ci=10ᵒC) has a decrease in the 

evaporating temperature for subcooling higher than 37 K. This behavior is not due 

to the evaporator size, but due to the heat pump configuration (the behavior at this 

condition will be explained in section 5.1.2). 

 

 

Figure 5.4: Evaporating temperature vs. subcooling (Tw,co = 60ᵒC). 
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Figure 5.5 shows the refrigerant quality at the evaporator inlet as a function of 

subcooling. The degree of subcooling highly influences the refrigerant quality at 

the evaporator inlet. The higher the subcooling, the lower the refrigerant quality. 

For instance, for the condition with Tw,ei=20ᵒC, the refrigerant quality at the 

evaporator inlet can vary from almost zero to 0.4. The water inlet temperature to 

the evaporator also influences the refrigerant quality, since it will determine the 

evaporating pressure. Higher evaporating conditions means lower refrigerant 

quality. The minimum possible refrigerant quality is limited at zero since a liquid 

receiver is located before the expansion valve. Qualities near zero means that the 

expansion valve has a very low-pressure drop. These high variations in the inlet 

quality could lead to a high variation in the refrigerant charge contained in the 

evaporator, which needs to be taken into account in the design process of such a 

system.  

 

 
Figure 5.5: Refrigerant quality at evaporator inlet 

 

Figure 5.6 shows the discharge temperature as a function of the condensing 

pressure for all the measured points. The discharge temperature has a linear 

relationship with the condensing pressure, and it depends on the evaporating 

conditions. All the measured points have a discharge temperature lower than 

100ᵒC, which is much lower than the maximum working discharge temperature 

recommended by the compressor manufacturer (130ᵒC). 
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Figure 5.6: Discharge temperature as a function of the condensing pressure. 

 

5.1.2 Condition with high Tw,ei and low Tw,ci 

As it has been seen in the previous section, the condition: Tw,ei=30ᵒC and 

Tw,ci=10ᵒC, is out of the trend from the rest of the measured points. Lower optimal 

subcooling than expected, heating capacity decreases after the optimal subcooling, 

etc. This section analyzes this condition. 

Table 5.2 contain the theoretical expected results for the optimal subcooling 

compared with the experimental ones. The theoretical optimal results are 

calculated as indicated in chapter 2: infinite heat transfer area at the condenser 

(two pinch points with 0 K between refrigerant and water). The compressor 

efficiency is fixed to 0.65. Superheat is fixed to 10 K, so the evaporating 

temperature in the model is considered: Tevap = Tw,ei – 10. 

The predicted values overestimate the experimental optimum COP since the 

infinite heat transfer area has been used. The model accurately predicts the 

optimal subcooling in most of the points. Furthermore, experiments are taken at 

discrete degrees of subcooling, so could be that the heat pump has not been 

measured in its exact optimum. There is one condition, at which the prediction 

differs more than the rest: Tw,ei=30ᵒC and Tw,ci=10ᵒC. Hence, if the model does not 

capture this behavior, it must be a constraint due to the heat pump configuration. 
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Table 5.2: Optimal subcooling and COP for the model (chapter 2) and experiments. The 

evaporating temperature in the model is considered Tevap = Tw,ei – 10 (10 K of subcooling). 

Tw,ei [ᵒC] Tw,ci [ᵒC] 
Predicted 

Scopt [K] 

Experimental 

Scopt [K] 

Predicted 

COP 

Experimental 

COP 

10 

10 42.5 44.1 4.61 4.29 

30 24.8 25.5 3.97 3.71 

50 7.9 9.8 3.31 3.15 

20 

10 43.4 41.5 5.70 5.38 

30 25.4 26.1 4.88 4.67 

50 8.2 11.5 4.03 3.83 

30 

10 44.2 36.6 7.40 6.36 

30 26.0 26.3 6.29 5.65 

50 8.4 9.1 5.13 4.68 

 

Figure 5.7 shows the pressure-enthalpy diagram for the cycle working in the 

condition that was out of the trend showed by the rest of the points: b) Tw,ei=30ᵒC; 

Tw,ci=10ᵒC. In order to understand what is happening, another point is also 

represented: a) Tw,ei=30ᵒC; Tw,ci=30ᵒC. Case a) is working at the optimal subcooling, 

which gave an outlet refrigerant temperature close to the water inlet temperature 

of the condenser and Case b) is working at the expected optimal subcooling 

(around 44 K), which gave a lower experimental performance.  

 

 

Figure 5.7: Pressure-Enthalpy diagram a) Tw,ei = 30ᵒC; Tw,ci = 30ᵒC  b) Tw,ei = 30ᵒC; Tw,ci = 

10ᵒC 
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The throttling valve produces the pressure drop between point 3 and 4 to 

produce the target subcooling, while the expansion valve gives the needed 

pressure drop (point 4 to 5) to obtain 10 K of superheat at the compressor inlet. 

The observed behavior in each point is explained as follows: 

a) Tw,ei=30ᵒC and Tw,ci=30ᵒC: The refrigerant outlet temperature (point 3) is 

limited by the water inlet temperature. At the optimum point, there is a 

temperature approach of 2 K between refrigerant and water. The refrigerant 

temperature at the evaporator outlet (point 1) is limited by the water 

temperature at the evaporator inlet (Tw,ei=30ᵒC). If the refrigerant 

temperature at point 1 (Tref,1) is close to Tw,ei, the evaporating temperature 

will be around 20ᵒC (Tsat,evap = Tref,1 – Sh). At this condition, the expansion 

valve successfully controlled the superheat. 

 

b) Tw,ei=30ᵒC and Tw,ci=10ᵒC: The refrigerant temperature at point 3 is limited 

by Tw,ci=10ᵒC. This condition needs a higher pressure drop in the throttling 

valve if the outlet refrigerant temperature is close to the inlet water 

temperature. In order to obtain 10 K of superheat, the evaporating 

temperature should be around 20ᵒC (same evaporating condition than 

before, Tw,ei=30ᵒC). However, the pressure at the liquid receiver (point 4) is 

already lower than the one corresponding to the evaporating temperature 

of 20ᵒC. This situation will lead to a superheat higher than 10 K. The 

expansion valve will open trying to increase the evaporating temperature 

(decrease superheat), but the pressure at the expansion valve inlet is 

already lower than the corresponding desired evaporating temperature. 

Therefore, the expansion valve will remain fully open with a low-pressure 

drop, and with no control on the superheat. This condition was stable, but 

without control on the superheat. 

Hence, from a certain degree of subcooling, the expansion valve does not control 

the evaporating pressure anymore, having lower evaporating temperatures and 

higher superheat than expected. This leads to lower performance, even if the high 

subcooling is reached with an insignificant increase in the condensing pressure. In 

the theoretical study, there is no limitation on the evaporating temperatures, so 

the theoretical optimal subcooling is higher than the experimental one. Therefore, 

the limitation is a particular case for this heat pump design. The limitation can be 

avoided with a different heat pump configuration, as it will be seen in section 5.2. 
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Nevertheless, this situation will be rare in practice, since a heat exchanger can 

be used to recover heat directly from the heat source (Tw,ei) to the heat sink (Tw,ci) 

before the heat pump. The author of this thesis has participated (not as the main 

author) in an article about this issue Hervas et al. (2017).  

5.1.3 Pinch point analysis 

In chapter 2, the theoretical optimal subcooling was analyzed. The optimal 

subcooling was found when two pinch points take place at the same time, one at 

the condenser outlet (DTa) and one inside the condenser at the refrigerant dew 

point (DTb). At the pinch point, for the infinite HX area assumption, there is zero 

temperature difference between refrigerant and water (DTa=DTb=0 K). Other 

assumptions, such as isentropic compression, were taken in this study. 

The zero temperature approach at the condenser outlet is not the case of a real 

heat exchanger. The experiments showed that, for the tested heat pump, the pinch 

point at the condenser outlet (DTa for the optimal subcooling) is about 2 K 

(depending on the measured point). This temperature difference is expected to 

change for different condenser sizes. For a smaller condenser, it is expected a 

higher temperature difference for DTa.   

Figure 5.8a) shows the experimental temperature profile of water and 

refrigerant working with three different subcoolings around the optimal point. 

With this information, it is possible to study the role of both pinch points (DTa and 

DTb) on the optimal subcooling for a real condenser. The temperatures are not 

measured directly inside the condenser. They are determined from the inlet and 

outlet temperature and pressure conditions. It can be seen that as the subcooling 

increases (reducing the temperature difference at the condenser outlet, DTa), the 

temperature difference at the internal pinch point (DTb) increases. Figure 5.8b) 

shows the temperature difference at the pinch points as a function of subcooling. 

In the real case, DTb is not zero even at low subcooling. The optimum (maximum 

COP) is found at the subcooling where DTa and DTb coincide (DTa=DTb=2.5 K). 

Above this point, it is possible to reduce DTa, but a small reduction leads to a high 

increase in DTb. Below the optimal subcooling, a small reduction in DTb leads to a 

high increase in DTa. 
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Figure 5.8: Experimental analysis a) Temperature profile vs. normalized capacity: 

Refrigerant R290 with different subcooling and the secondary fluid going from 30ᵒC to 

60ᵒC. b) Pinch point temperatures as a function of subcooling 

 

Table 5.3 shows the pinch point temperature differences of the experimental 

points with (Tw,ei=10ᵒC and Tw,ei=20ᵒC) and for three subcoolings around the 

optimum. On the one hand, at the condenser water conditions (10ᵒC to 60ᵒC and 

30ᵒC to 60ᵒC) is seen that the optimum point is reached when DTa is similar to DTb. 

On the other hand, for the condition (50ᵒC to 60ᵒC) the optimum point is reached 

when DTa is slightly lower than DTb. Therefore, it seems that the optimal 

subcooling for the real heat pump is not always when both pinch points have the 

same value. Nevertheless, the measured points near the optimum have a similar 

COP. Hence, it is difficult to extract such information from the experimental results, 

since more points need to be taken. 
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Table 5.3: Normalized COPh at different DTa and DTb for different cases. Experimental 

results. 

Case 
Sc    

[K] 

DTa 

[K] 

DTb 

[K] 

Normalized 

COPh 

Tw,ei=10ᵒC 

SHW temperature: 

10ᵒC to 60ᵒC 

36.1 7.8 1.2 0.991 

43.9 2.2 3.5 1 

48.1 1.6 7.4 0.960 

Tw,ei=10ᵒC 

SHW temperature: 

30ᵒC to 60ᵒC 

21.3 4.9 1.5 0.996 

26.1 1.3 2.8 1 

31.7 0.6 7.8 0.946 

Tw,ei =10ᵒC 

SHW temperature: 

50ᵒC to 60ᵒC 

8.0 2.6 2.5 0.994 

10.0 1.1 2.9 1 

11.6 0.2 3.9 0.995 

Tw,ei =20ᵒC 

SHW temperature: 

10ᵒC to 60ᵒC 

39.0 4.5 2.1 0.991 

41.5 2.7 2.7 1 

42.8 3.9 3.0 0.994 

Tw,ei =20ᵒC 

SHW temperature: 

30ᵒC to 60ᵒC 

22.1 4.2 1.9 0.981 

26.1 2.2 2.5 1 

28.6 1.0 3.8 0.987 

Tw,ei =20ᵒC 

SHW temperature: 

50ᵒC to 60ᵒC 

9.3 2.4 3.3 0.999 

11.7 0.8 4.2 1 

15.8 0.1 7.6 0.965 

 

In order to investigate the pinch point distribution at the optimal subcooling in 

a finite heat exchanger, Table 5.4 shows the theoretical results obtained with the 

software IMST-ART (IMST-ART v3.70). This software introduces the geometric 

information about condenser and evaporator, and the efficiencies of the 

compressor. In this way, it is easier to look at points close to the optimal 

subcooling. A similar behavior than in the experimental results is observed by the 

software. At low Tw,ci, it is worthier to approach the temperatures of refrigerant 

and water at the internal pinch point, while it is worthier to approach at the 

condenser outlet for high Tw,ci. For the condition (30ᵒC to 60ᵒC), the optimum is 

when DTa similar to DTb. 

 

 

 



5.1   Subcooling in the condenser: SMC design      77 

 

 
  

Table 5.4: DTa and DTb for different cases. Results with the software IMST-ART. 

(Tw,co=60ᵒC) 

Tw,ei [ᵒC] Tw,ci [ᵒC] Scopt [K] DTa [K] DTb [K] 

10 

10 41.0 4.1 2.6 

30 25.0 2.2 2.4 

50 9.0 1.2 2.3 

20 

10 42.0 4.8 3.4 

30 25.5 2.9 3.0 

50 10.0 1.2 3.1 

 

The knowledge of the pinch point at the optimal subcooling is important from 

the control point of view. Since, it is an alternative control strategy to the one 

commented in Figure 5.2 (linear relationship between optimal subcooling and 

Tw,ci), controlling the temperature difference between refrigerant outlet and Tw,ci to 

a constant value. Although the optimum DTa changes with the external conditions, 

if the same reference value is set for all conditions, the COP degradation is 

insignificant. In that way, a unique control value would be valid for all situations 

(Tw,ci, Tw,co, evaporating temperature and the like). 

5.1.4 Conclusions 

The main conclusions drawn from the present study are: 

 With the proposed system configuration, subcooling can be varied 

independently from the external conditions (water temperatures).  

 An optimal subcooling exists, being a compromise between the 

improvement due to an increase in the enthalpy change at the condenser 

with subcooling, and the increase in power input due to an increase in the 

condensing pressure (reduction of the condensation area).   

 At the nominal condition (10ᵒC to 60ᵒC at the condenser), performance is 

increased by 25% when working at the optimal subcooling (about 42 K) 

respect to the HP without subcooling. 

 For the higher Tw,ci (50ᵒC), the rate of improvement due to subcooling is 

lower, approximately 7%.  

 The heating capacity increases with subcooling for all measured range. Only 

the point “Tw,ei=30ᵒC and Tw,ci=10ᵒC” has a decrease in heating capacity after 

the optimal subcooling. 
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 The condensing temperature slightly increases with subcooling below the 

optimum point. From this point, the condensing pressure increases at a 

higher rate.  

 At point “Tw,ei=30ᵒC and Tw,ci=10ᵒC” is not possible to work at high 

subcooling without decreasing the evaporating temperatures, which leads 

to higher superheats and lower performance. 

 There is a linear relation between optimal subcooling and Tw,ci, which could 

be used as a control parameter. 

 Another option to set the optimal subcooling is to control the temperature 

difference between the refrigerant and water at the condenser outlet (DTa).  
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5.2 Subcooling in a separate heat exchanger: SMS design 

Figure 5.9 shows the scheme of the water-to-water heat pump prototype with a 

separate heat exchanger to produce subcooling, the subcooler (SMS design). 

 

 

Figure 5.9: Heat Pump subcooler in series with condenser a) Scheme, b) P-h diagram. 

In the section above (SMC design), subcooling was controlled as an independent 

variable (throttling valve). In this section, subcooling cannot be controlled as an 

independent variable. Instead, the subcooling is fixed by the external conditions 

and the heat transfer at the subcooler. One should notice, that now, the Tw,ci refers 

to the inlet water temperature at the subcooler. 

Part of the results of this section has been published in the journal “International 

Journal of Refrigeration” (Pitarch et al., 2017C). 
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5.2.1 Results 

Figure 5.10a) shows the heating COP as a function of the inlet water temperature 

to the subcooler (Tw,ci). For a given inlet water temperature at the evaporator (Tw,ei) 

it can be seen a linear relationship between the heating COP and the water inlet 

temperature at the subcooler (Tw,ci). COP decreases as the Tw,ci increases. The linear 

fitting adjusts to the experimental values, although the points corresponding to 

10ᵒC and 55ᵒC are slightly over predicted. For the nominal water inlet temperature 

at the evaporator (20ᵒC), heating COP decreases about 35% when Tw,ci  passes from 

10ᵒC to 55ᵒC. Performance decreases due to two reasons: 1) Reduction of 

subcooling. 2) The increase of the condensing pressure. This linearity is also 

observed for a given Tw,ci and changing Tw,ei. The slope of the linear fitting slightly 

increases as the Tw,ei increases. The maximum measured heating COP is around 6.8, 

while at the nominal point (Tw,ei=20ᵒC; Tw,ci=10ᵒC) COP is 5.61.  

The optimum results obtained with the SMC design are also plotted for 

comparison (points with Tw,ei=35ᵒC were not tested for SMC). The heating COP 

obtained with the SMC design are slightly lower than with SMS. Nevertheless, one 

should remember that the total heat transfer area for the SMS design is higher than 

for SMC since both are using the same condenser, but the SMS design has an extra 

heat exchanger, the subcooler. This leads to about 25% more heat transfer area for 

the SMS design. Chapter 6 presents a theoretical study with the IMSR-ART software 

in order to compare both heat pump designs fairly. 

 

 

Figure 5.10: a) Heating COP, b) Heating capacity vs. inlet water temperature to 

subcooler for different water inlet temperature to the evaporator (Tw,co = 60ᵒC). 
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Regarding heating capacity (Figure 5.10b), it had a similar behavior than the 

heating COP. The maximum measured capacity is about 63.4 kW, and at nominal 

conditions is 47.1 kW. For the nominal water inlet temperature at the evaporator, 

20ᵒC, heating capacity decreases about 25% when Tw,ci passes from 10ᵒC to 55ᵒC. 

COP and capacity increases as the temperature at the inlet evaporator (Tw,ei) 

increases, which is directly related to the increase of the evaporating pressure. In 

this case, where all the measured points are plotted in the same graph, it is more 

clear the effect of the evaporating temperature in the heating COP and capacity. For 

instance, when Tw,ei passes from 10ᵒC to 30ᵒC, the heating COP and capacity 

increases by 49% and 66% respectively (Tw,ci = 10ᵒC). 

Figure 5.11a) compares the heating COP results for the cycle working with 

subcooling against the results obtained with a cycle working without subcooling 

(Subcooler is bypassed). Tw,ei is fixed to 20ᵒC. The highest improvement is about 

31%, which corresponds to the lowest Tw,ci (10ᵒC), with a subcooling of 43.9 K. As 

the Tw,ci increases, the COP difference between subcooled and non-subcooled cycle 

decreases, having an improvement of about 6.8% for Tw,ci=55ᵒC, which has a 

subcooling of 8.6 K. Therefore, the highest improvement produced by adding 

subcooling is at low Tw,ci (high water temperature lift), since this point has the 

greatest capacity for subcooling. Furthermore, the subcritical cycles working 

without subcooling have a bad water/refrigerant temperature match. One should 

remember that in this prototype, subcooling was made in a separate heat 

exchanger from the condenser, so condenser was exclusively used for condensing 

in all measured points (subcooler was bypassed for the measurements without 

subcooling).  

 

Figure 5.11: a) Heating COP, b) Condensing temperature vs. inlet water temperature to 

subcooler, with and without subcooling (Tw,co = 60ᵒC). 
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Figure 5.11b) shows the comparison for the condensing saturation temperature 

for the cycle working with subcooling against the results obtained with a cycle 

working without subcooling (Tw,ei=20ᵒC). The condensing temperature is higher 

for the cycle working with subcooling, the difference is insignificant for high Tw,ci, 

but there is around 2 K temperature difference for low Tw,ci. This behavior is related 

to the degree of subcooling, because, even though condenser is not being used for 

subcooling, the water is pre-heated at the subcooler before entering to the 

condenser. For the same city water temperature (Tw,ci), the inlet water temperature 

at condenser is higher at the cycle working with subcooler than for the cycle 

working without subcooling. Finally, it can be concluded that the benefits obtained 

from producing subcooling are higher than the COP degradation due to the 

increase of condensing temperature. 

Figure 5.12a) shows the subcooling depending on the inlet water temperature 

at the subcooler. As in the SMC design, it can be seen a linear dependency, where 

the evaporating temperature had an insignificant influence. Nevertheless, this 

time, the condition (Tw,ei=30ᵒC and Tw,ci=10ᵒC) had the same trend as the other 

external condition (this will be analyzed in section 5.2.2). The refrigerant outlet 

temperature at the subcooler is quite close to the water inlet temperature. This 

means that the subcooler is able to produce the maximum possible subcooling at 

all conditions, even when subcooler is partially bypassed in the water side 

(conditions with high water mass flow rate, Tw,ci>50ᵒC). Subcooling goes from 44 K 

to 9 K for Tw,ci=10ᵒC and Tw,ci=55ᵒC respectively.  

 

 

Figure 5.12: a) Subcooling and refrigerant temperature at subcooler outlet, b) 

Refrigerant quality at inlet evaporator vs. inlet water temperature to subcooler for 

different water inlet temperature to the evaporator (Tw,co = 60ᵒC). 
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One particularity of this application with high subcooling and high evaporating 

temperatures is the low refrigerant quality at the evaporator inlet or even 

subcooled liquid. Figure 5.12b) shows the inlet refrigerant quality at the 

evaporator, where negative values mean subcooled refrigerant. It had a linear 

dependency with the inlet water temperature at the subcooler, which is related 

with subcooling, higher subcooling leads to lower refrigerant quality. The 

refrigerant quality also depends on the evaporator conditions, higher inlet water 

temperatures at the evaporator leads to lower refrigerant qualities. For the lowest 

quality values, the refrigerant is at subcooled state at the evaporator inlet, and, 

hence at the expansion valve outlet. On the other hand, the highest refrigerant 

quality is about 0.4. These large variations in the inlet quality could lead to a high 

variation in the refrigerant charge contained in the evaporator, which needs to be 

taken into account in the design process of such a system. 

This design was tested even at higher water inlet temperature at the evaporator 

than the SMC design. High evaporating temperatures lead to high power input in 

the compressor since refrigerant charge flow increases with evaporating pressure. 

Envelope for scroll compressors similar to the one used in this heat pump 

prototype is usually limited for evaporating temperatures up to 20ᵒC. During these 

test measurements, the maximum evaporating temperature is about 24ᵒC, 

corresponding for the Tw,ei=35ᵒC, but no breakdown or performance decrease has 

been observed in the compressor. The good reliability of the compressor at these 

conditions can be explained by the use of propane since the envelope of the used 

compressor is given for refrigerant R410A. While the density of Propane at the 

compressor inlet for high evaporating temperatures is about 19.4 kg/m3, the 

density for R410A at the same conditions will be 60.5 kg/m3. This density 

difference leads to a higher current demand at the compressor for the refrigerant 

R410A. 
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5.2.2 Condition with high Tw,ei and low Tw,ci 

In the SMC design, the external condition (Tw,ei=30ᵒC and Tw,ci=10ᵒC) gave a 

lower performance than expected. As it is seen in Figure 5.13a), the refrigerant 

temperature at point 3 is limited by Tw,ci=10ᵒC. At this point, the pressure at the 

liquid receiver (point 4) is already lower than the target evaporating temperature 

of 20ᵒC (Tw,ei=30ᵒC and 10 K of superheat). Furthermore, the expansion valve 

introduces an extra pressure drop, leading to lower evaporating temperatures and 

higher superheats.  

This behavior was not observed for the SMS design (Figure 5.13b). In this case, 

the liquid receiver is located at the condenser outlet, and it is possible to have 

subcooled refrigerant at the expansion valve outlet (point 5). Therefore, the 

expansion valve outlet is not limited, and it is possible to control the superheat at 

this condition. One should notice that the situation with subcooled refrigerant at 

the expansion valve outlet (and evaporator inlet) is not possible with the SMC 

design.   

 

 

Figure 5.13: Pressure-Enthalpy diagram for condition: Tw,ei = 30ᵒC; Tw,ci = 10ᵒC,               

a) SMC design b) SMS design 
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5.2.3 Comparison between the SMS (R290) and the reference CO2 heat pump 

for SHW 

AS commented in the introduction, the transcritical CO2 cycle has been pointed 

out as an efficient solution for the SHW application due to the high-temperature 

glide in the refrigerant side. Furthermore, the CO2 cycle is claimed to be able to heat 

water up to temperatures of 90ᵒC, while the propane cycle is usually tested heating 

water up to 60ᵒC. In this section, the experimental results obtained with the SMS 

design at different inlet and outlet water temperatures are compared to the 

commercial, high-efficiency HP for sanitary hot water production, Q-ton9. This is 

an air-to-water CO2 heat pump working in transcritical conditions. Since the 

secondary fluid at the evaporator is different for the propane and the CO2 HPs, in 

order to fairly compare both cycles, it was selected a higher air temperature (25ᵒC) 

than the inlet water temperature to the evaporator (Tw,ei=20ᵒC). 

Figure 5.14a) shows the heating COP as a function of the water inlet temperature 

to the subcooler (Tw,ci) and producing hot water at 60ᵒC. The figure compares the 

experimental results for the SMS design and the commercial Q-ton. The propane 

cycle working with subcooling has about a 5% to 14% higher COP than the 

commercial reference CO2 HP based on the catalog data. There is no data for the 

reference CO2 HP with water inlet temperatures (Tw,ci) higher than 24ᵒC, but the 

trend of the available results indicates that the difference between the propane and 

the CO2 heat pumps would be greater than 14% at higher Tw,ci.  

 

Figure 5.14: Heating COP as a function of a) Tw,ci with Tw,co=60ᵒC b) Tw,co with Tw,ci=30ᵒC. 

                                                   
9 The Q-ton information is taken from the catalogue data (Q-ton Catalogue data ESA30E-25) 
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Figure 5.14b) shows the heating COP as a function of water production 

temperatures (from 60ᵒC to 90ᵒC). Tw,ci is fixed to 30ᵒC for the propane heat pump, 

while it is 24ᵒC for the Q-ton (the closest in the catalog data). The figure compares 

the experimental results for the SMS design and the commercial Q-ton. The 

propane cycle has a COP about 20% higher than the commercial CO2 cycle when 

the hot water is produced at 90ᵒC. Hence, the propane cycle working with 

subcooling has proved, not only to be able to heat water up to 90ᵒC but also to have 

a higher performance than the commercial transcritical heat pump Q-ton. 

Table 5.5 shows the condensing and discharge temperature for the SMS design 

when producing water at high temperature. The refrigerant discharge 

temperature of the propane cycle producing hot water at 90ᵒC is 111ᵒC, which is 

lower than the maximum working discharge temperature recommended by the 

compressor manufacturer (130ᵒC). The condensing temperature at this point is 

78.9ᵒC (the critical temperature for propane is 96.7ᵒC). 

Table 5.5: SMS experimental results for different water temperature production (Tw,co). 

Tw,ci is fixed to 30ᵒC. 

 

Tw,co = 

60ᵒC  

Tw,co = 

70ᵒC 

Tw,co = 

80ᵒC 

Tw,co = 

90ᵒC 

COPh 4.72 4.24 3.84 3.48 

Tc [ᵒC] 56.7 64.5 71.9 78.9 

Tdisch [ᵒC] 81 90 100 111 

 

5.2.4 Superheat study 

Superheat is measured as the temperature difference between the refrigerant 

temperature at the evaporator outlet (compressor inlet) and the evaporating 

temperature. Until now, the experimental results were given with 10 K of 

superheat. Usually, the lower the superheat, the higher the performance, since the 

evaporating temperature increases with low superheat. Nevertheless, a minimum 

superheat needs to be produced in order to avoid liquid refrigerant droplets at the 

compressor inlet and to obtain a stable control in the expansion valve. Therefore, 

many manufacturers’ gives the heat pump performance at 10 K of superheat, 

although lower superheat can be achieved. In this section, the experimental results 

obtained with the SMS design for a target superheat of 5 K are presented. 

First, the target superheat was reduced progressively. It was observed that for 

superheats below 8 K, the automatic control of the expansion valve becomes more 

unstable. When superheat was set to 5K, superheat started to oscillate between 0 
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and 10K (unstable control). Due to this behavior, the controller was set manual, to 

avoid these oscillations. It was observed that setting the controller to manual, the 

large oscillations disappeared, although superheat control was not fine. A change 

of 1% on the expansion valve opening could lead to 2 K change in superheat or 

higher. Therefore, it is difficult to control low superheat accurately. The results 

presented here were done trying to control superheat to 5 K, but some differences 

could be found due to the poor accuracy at low superheat. 

Table 5.6 compares the results of heating COP obtained for a target superheat of 

10 K and 5 K. The total improvement is calculated with Eq.5.1.  

  (5.1) 

 

The improvement per degree of superheat is the total improvement divided by 

the superheat difference between the two points. This can also be seen in figure 

5.15, where the improvement is plotted against Tw,ci. The greater improvement is 

at the condition Tw,ci=50ᵒC, while the lowest improvement is at Tw,ci=30ᵒC (around 

0.55% per K). It seems that the degree of improvement depends on Tw,ci, but the 

trend is not clear. Superheat is not only reduced by the increase of the evaporating 

temperature since the refrigerant temperature at the evaporator outlet slightly 

decreases. For superheats around 10 K, the evaporator is able to keep the 

refrigerant outlet temperature close to the water inlet temperature. 

 

Table 5.6: Comparison of results at different Superheats 

  Target Sh: 5K Target Sh: 10K 

Tw,ei 
[ᵒC] 

 Tw,ci 
[ᵒC] 

Superheat 
[K] 

COPh 
[-] 

Superheat 
[K] 

COPh 
[-] 

Total 
Improvement 

[%] 

 Improvement 
per 1 K Sh [%] 

10 
10 5.4 4.65 10.2 4.48 3.9 0.8 
30 5.9 3.97 10.3 3.88 2.6 0.6 
50 5.5 3.45 10.3 3.19 8.3 1.8 

20 
10 6.2 5.89 10.2 5.63 4.7 1.2 
30 5.9 4.92 9.9 4.83 1.9 0.5 
50 5.1 4.28 10.2 3.94 8.8 1.7 

)10(

)10()5(
=tImprovemen%

KCOP

KCOPKCOP 
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Figure 5.15: Improvement when reducing superheat from 10 K to 5 K a) Total 

improvement b) Improvement per K of superheat 

 

5.2.5 Thermography: Evaporator refrigerant distribution  

The subcritical R290 cycle working at high evaporating temperatures and 

subcooling had a low refrigerant quality, or even subcooled refrigerant, at the 

evaporator inlet. Good stability was observed during operation when the system 

worked with 10 K of superheat, but the system turned unstable when the 

superheat was set to 5 K. In order to investigate the refrigerant distribution in the 

evaporator at different refrigerant qualities, and superheats, thermography 

images during operation have been taken. All thermographies were taken with an 

inlet water temperature of the evaporator of 25ᵒC. Figure 5.16 shows a picture of 

the evaporator taken from the same side than the thermography images. The 

refrigerant enters to the evaporator from the bottom to the top, with the water 

flowing in counterflow. The heat exchanger has 120 plates. 
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Figure 5.16: Picture of the evaporator and location of the input/output ports for 

refrigerant and water. 

Figure 5.17 shows the thermography images for three different superheats. The 

condition at the heat sink is 10ᵒC to 60ᵒC (high subcooling). For superheat 6 and 

10 K, the liquid refrigerant accumulates at the HX channels closer to the refrigerant 

inlet (the refrigerant is subcooled at the evaporator inlet). For superheat 6 K, it 

seems that the refrigerant going through the channels closer to the evaporator inlet 

does not reach the outlet at the required superheat. Furthermore, the difference in 

evaporating temperature is only 0.7 K between the superheat of 6 K and 10 K. The 

refrigerant distribution could be the reason for the instability at low superheat 

since refrigerant liquid droplets could be leaving the evaporator. Superheat of 17 

K has an even distribution along the evaporator. The target superheat is reached 

close to the bottom, so the evaporator is oversized for this condition.  

Figure 5.18 shows the thermography images for three different Tw,ci (Sh=10 K). 

The refrigerant quality at the evaporator inlet highly depends on subcooling, and 

hence it depends on Tw,ci.  As seen in the figure 5.17, for Tw,ci=10ᵒC, the liquid 

refrigerant accumulated at the HX channels closer to the refrigerant inlet (the 

refrigerant is subcooled at the evaporator inlet). For Tw,ci=15ᵒC, the refrigerant at 

the evaporator inlet is not subcooled but had a low refrigerant quality. At this point, 

the refrigerant distribution is more even. For Tw,ci=30ᵒC, the refrigerant quality is 

about 0.14. At this point, the refrigerant distribution totally changes from the case 

Tw,ci=10ᵒC. Now the refrigerant accumulates at the HX channels farther to the 

refrigerant inlet. Therefore, the refrigerant quality at the evaporator inlet highly 

influences the refrigerant distribution in the evaporator. 
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Figure 5.17: Thermography of evaporator (Tw,ei=25ᵒC; Tw,ci=10ᵒC; Tw,co=60ᵒC) a) 

Superheat of 6 K b) Superheat of 10 K c) Superheat of 17 K 

 

 

Figure 5.18: Thermography of evaporator (Tw,ei=25ᵒC; Tw,co=60ᵒC; Sh=10 K) a) Tw,ci = 

10ᵒC b) Tw,ci = 15ᵒC c) Tw,ci = 30ᵒC 
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5.2.6 Conclusions 

The main points derived from the present study have been: 

 The heating COP for the SMS design is slightly higher than the SMC design 

working at the optimal subcooling. One should remember that the SMS 

design has 25% more heat transfer area for the heat sink.  

 COP heating and heating capacity decrease linearly with the inlet water 

temperature at the subcooler (Tw,ci).  

 Subcooling depends mostly on the water inlet temperature to the subcooler, 

and not on the inlet water temperature to the evaporator. 

 For the selected subcooler, the maximum subcooling is reached at all 

conditions (refrigerant temperature at the subcooler outlet close to Tw,ci). 

 There is no limitation in the evaporating temperature for the condition 

(Tw,ei=30ᵒC and Tw,ci=10ᵒC). 

 The Propane cycle working with a high degree of subcooling has 

demonstrated to be competitive with the transcritical CO2 heat pump for the 

SHW application, even to heat water up to 90ᵒC. 

 Low refrigerant quality or even subcooled liquid can be found at evaporator 

inlet with points working at elevated evaporating pressure and high 

subcooling. 

 The heat pump control for low superheats was unstable. This issue could be 

related to the refrigerant distribution in the evaporator. 

 The refrigerant distribution in the evaporator depended on the refrigerant 

quality at the evaporator inlet. For subcooled refrigerant (and qualities near 

0), the refrigerant accumulates in the channels close to the inlet, while it 

accumulates at the further channels for higher refrigerant qualities. 

 

In addition, it has been proved that the proposed designs could be used in an 

efficient way in a broader range of applications that require higher water 

temperatures, such as old boilers used in some parts of Europe, which require 

water at 80ᵒC, or industrial cleaning processes requiring water at a high 

temperature. 
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Theoretical comparison between SMS and SMC 

Chapter 5 presented the experimental results for the SMC and SMS heat pump 

designs. The heating COP of the SMS design (subcooling made in the subcooler) 

was slightly higher than for the SMC design (subcooler made in the condenser). 

Nevertheless, the SMS design has 25% more heat transfer area, so the SMS design 

cannot be claimed as the best solution to produce subcooling in the SHW 

application. 

In this chapter, it is developed a model using the commercial software IMST-ART 

(IMST-ART v3.70) in order to compare both heat pump designs fairly. First, the 

model is validated with the experimental results (SMC design). Then, the 

condenser of the model is increased to have the same heat transfer area than the 

HP design with a separate subcooler (SMS). 

Part of the results of this chapter has been published in the journal “Applied 

Energy” (Pitarch et al., 2017D). 
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6.1 Model 

IMST-ART is a dedicated software for modeling heat pump systems as a whole, 

according to the state-of-the-art. The model incorporates a number of sub-models 

representing the different parts of the heat pump: compressor, condenser, 

evaporator and expansion valve. The definition of the heat exchangers is based on 

their geometric characteristics. The heat exchangers are discretized in cells 

throughout the refrigerant and secondary fluid paths, assuming one-dimensional 

flow. The model is able to take into account both heat transfer and pressure drop, 

with local evaluation of the heat transfer coefficient and friction factor, by built in 

correlations, as well as that of the fluid properties. This model is able to consider 

most of the geometrical and operation parameters of current evaporators and 

condensers. Then, the global solution method employed is called SEWTLE (Semi-

Explicit method for Wall Temperature Linked Equations) (Corberán et al., 2002). 

For the compressor, it is used the available information supplied by manufacturers 

(compressor size and polynomial equations for the compressor efficiency and 

volumetric efficiency). The expansion valve is modeled as an isenthalpic pressure 

drop in order to fulfill the desired superheat – in this case 10 K.  

On the one hand, the throttling valve (SMC design) cannot be modeled, but the 

subcooling can be introduced as a parameter, so in practice, the SMC design can be 

modeled with the IMST-ART software. On the other hand, the subcooler cannot be 

modeled as a separate heat exchanger, so the SMS design cannot be modeled with 

the IMST-ART software. 

In this chapter, the heating COP calculation does not take into account the 

consumption of the auxiliary components, neither in the model results nor in the 

experimental ones when used for validation.  

6.1.1 Model validation: Subcooling made in the condenser (SMC) 

Figure 6.1 compares the model results with the experiments, for COP and 

condensation pressure. The results are presented as a function of the subcooling 

and for different water inlet temperatures for the condenser (Tw,ci). The inlet water 

temperature for the evaporator (Tw,ei) is fixed to 20ᵒC.  

There is good agreement between the experimental and theoretical values for 

the heating COP; the model captures COP dependency with subcooling. COP 

increases with subcooling up to a maximum and then decreases. The maximum 

discrepancies are found at high water inlet temperatures to the condenser 
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(Tw,ci=50ᵒC), being less than 4%. The optimal subcooling is predicted by the model 

with a deviation lower than 2 K.  

Regarding the condensing pressure, the model results also match the 

experimental results. At low subcooling, the condensing pressure increases slowly 

with subcooling, and after a certain value of the subcooling, it starts to increase at 

a higher rate. This point of inflection is where the maximum COP takes place. As in 

the heating COP, the greatest discrepancies are found at high water inlet 

temperatures to the condenser (Tw,ci=50ᵒC), being less than 2%. 

Table 6.1 shows the heating COP, the heating capacity and the compressor 

power input for the model as well as the experimental values working at the 

optimal subcooling.  Great agreement for the three variables can be seen. COP 

discrepancies are below 1% for Tw,ci=10ᵒC and 30ᵒC, while the heating capacity and 

the compressor power input are all below 2% of discrepancies. 

 

 

Figure 6.1: Model validation; a) heating COP, b) condensing pressure. (Tw,ei=20ᵒC) 

Table 6.1: SMC model validation at the optimum subcooling (Tw,ei=20ᵒC). 

 SMC Experimental SMC Model 

 COPh [-] 
Qh 

[kW] 

Wc 

[kW] 
COPh [-] 

Qh 

[kW] 

Wc 

[kW] 

Tw,ci = 10ᵒC 5.47 45.25 8.28 5.43 45.57 8.39 

Tw,ci = 30ᵒC 4.75 40.98 8.64 4.79 41.55 8.68 

Tw,ci = 50ᵒC 3.91 35.96 9.21 4.03 36.54 9.06 
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6.1.2 Model adjustment to the heat pump with subcooler  

Comparing the experimental results for both heat pump designs, the SMS heat 

pump configuration (with subcooler) has a slightly higher performance than the 

SMC heat pump configuration (subcooling at condenser). For instance, at the 

nominal point (Tw,ei=20ᵒC and heating water from 10ᵒC to 60ᵒC), the heating COP 

for the SMS heat pump is 5.66, while the heating COP for SMC is 5.47.  

Nevertheless, the experimental results obtained with the separate subcooler 

configuration cannot be fairly compared with the SMC heat pump configuration, 

since the first one has a 25% greater heat transfer area on the high-pressure side. 

In order to make a fair comparison between both systems, the condenser of the 

SMC model has been enlarged in order to have the same heat transfer area as the 

condenser + subcooler of the SMS heat pump design. In this sense, the results of 

both systems can be compared directly.  

In order to have an equal heat transfer area in the high-pressure side without 

significantly changing the heat transfer coefficient, the height of the condenser has 

been increased. The other alternative, increasing the number of plates, affects the 

refrigerant velocity, and hence, the heat transfer coefficient.  Therefore, the 

condenser height will go from 0.476 m to 0.591 m, which is 25% longer (25% more 

area). The area of the modified condenser will be 4.37 m2, which is the same as the 

condenser and the subcooler together. For the sake of clarity, the SMC model with 

the enlarged condenser will be referenced as SMCL (the subcooling made with 

larger condenser). One should notice that, although the subcooler area has been 

added to the condenser, the plate pitch of the subcooler (SMS design) is different 

from the SMCL system. The plate pitch of the subcooler was optimized for liquid 

refrigerant, while the plate pitch in the condenser was designed mainly for two-

phase refrigerant.  

6.2 Results 

Figure 6.2a) shows the heating COP as a function of the subcooling for the SMC 

and SMCL models (different condenser height) and the experimental results for the 

SMS heat pump configuration. COP increases for the whole range of subcoolings 

for the SMCL model (condenser height 0.59 m). At low and high subcooling, the 

COP improvement is moderate. For instance, in the case of Tw,ci=50ᵒC at subcooling 

higher than 12 K, the COP is practically the same for both condenser heights. The 

maximum COP improvement is found at the optimum subcooling.  
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When the SMS configuration is compared with the SMC model (with a smaller 

heat transfer area), the SMS design has a greater performance. This situation 

changes if the SMC design is equipped with a larger condenser, the SMCL model 

with the same heat transfer area than the SMS design. In this case, the performance 

of SMCL is still below the experimental results for the SMS design at Tw,ci=10ᵒC, but 

at higher Tw,ci (30ᵒC and 50ᵒC), SMCL has a higher performance than SMS. 

Nevertheless, as seen in figure 6.1, the model results for Tw,ci=50ᵒC where slightly 

over predicted. Hence, it can be concluded that the SMC design would improve 

performance by adding heat transfer area (SMCL), but it is not clear that SMCL has 

a higher performance than SMS design for these conditions. 

Figure 6.2b) shows the condensing pressure as a function of subcooling. The 

condensing pressure is reduced for the enlarged condenser model (SMCL). This 

decrease is more significant at the optimal and low subcooling. At Tw,ci=50ᵒC, the 

condensing pressure at the optimal subcooling decreases below the corresponding 

experimental pressure for the SMS HP design. At lower Tw,ci (10ᵒC and 30ᵒC), the 

condensing pressure at the optimal subcooling is still higher than the 

corresponding experimental pressure for the SMS heat pump design. 

Table 6.2 shows the heating COP, the heating capacity (Qh), the heat 

corresponding to the subcooling (Qsub), the heat corresponding to condensing + de-

superheat (Qc) and the compressor power input. These parameters are shown for 

the SMS heat pump prototype (experimental) and for the SMCL model (height of 

0.59 m) working at the optimal subcooling. The heating capacity is slightly higher 

for the SMCL model, while the compressor power input depends on the point.  

 

 

Figure 6.2: Results for two condenser height; a) heating COP, b) condensing pressure. 

(Tw,ei=20ᵒC). 
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Table 6.2: Experimental SMS and SMCL model comparison at optimal subcooling. 

(Tw,ei=20ᵒC). 

 SMS Experimental SMCL Model 

 COPh  
Qh 

[kW] 

Qsub 

[kW] 

Qc 

[kW] 

Wcomp 

[kW] 
COPh   

Qh 

  [kW] 

Qsub 

 [kW] 

Qc 

[kW] 

Wcomp 

 [kW] 

Tw,ci=10ᵒC 5.66 45.72 12.07 33.65 8.08 5.58 46.15 12.47 33.68 8.26 

Tw,ci=30ᵒC 4.82 40.07 7.30 32.77 8.31 4.91 41.76 8.03 33.73 8.52 

Tw,ci=50ᵒC 4.00 35.95 3.26 32.68 8.98 4.11 36.53 3.15 33.38 8.89 
 

Figure 6.3 shows the condenser area dedicated for subcooling as a function of 

subcooling. Different water inlet temperatures to the condenser (Tw,ci) are 

considered for the SMCL model. The subcooler area in the SMS design accounts for 

20% of the total heat transfer area at the heat sink. The used area per subcooling 

degree depends strongly on the Tw,ci. For instance, the dedicated area to produce 

15 K of subcooling goes from 5% to 65% for Tw,ci=10ᵒC and Tw,ci=50ᵒC, respectively. 

Nevertheless, when the system works at optimal subcooling, the area dedicated to 

subcooling is lower as Tw,ci increases. The dedicated area at optimum subcooling 

for Tw,ci=10ᵒC is 47%, while it is 24% when Tw,ci=50ᵒC. The SMCL model is using 

more heat transfer area for subcooling, even though the degree of subcooling 

(optimum point) is quite similar to the SMS design. This point could be related to 

the fact that the subcooler of the SMS system has been designed specifically for 

liquid refrigerant. Hence, the heat transfer during subcooling is expected to be 

higher in the subcooler, and less area would be required to produce the same 

subcooling.  

 
Figure 6.3: Percentage of the area dedicated for subcooling as a function of subcooling 

and Tw,ci  (SMCL and the fixed area for SMS). (Tw,ei=20ᵒC). 
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Nevertheless, one should notice that the area used to produce subcooling is 

adjusted at each condition in the design making subcooling at the condenser, while 

the SMS design uses the same heat transfer area for all conditions. At some points, 

the subcooler could be oversized, and it would be better to use that heat transfer 

area in the condenser. On the other hand, at the SMCL system, the subcooling area 

is exactly the needed one at any point. Hence, at some conditions, the SMCL design 

could be using less area for subcooling than the SMS design. 

Figure 6.4 shows the heating COP and the condensing pressure as a function of 

subcooling and the condenser size for the IMST-ART model (height of condenser). 

The inlet and outlet water temperature to the condenser are fixed at 30ᵒC and 60ᵒC, 

respectively. For a constant condenser size, the COP increases with subcooling up 

to a maximum value. The optimal subcooling does not significantly depend on the 

condenser size. It is around 25 K for all condenser sizes and for the selected 

temperature lift. Condenser size has different trends depending on the degree of 

subcooling: 

1) At low subcoolings, the COP increases slightly with the condenser size. 

Beyond a defined size, the increase in COP is insignificant. 

2) At the optimum subcooling, the COP increases significantly with the 

condenser size. Although the degree of improvement is higher at smaller 

sizes, COP increased for the studied range of condenser sizes.  

3) At high subcoolings, the COP increased at small condenser sizes, but after a 

certain point, condenser size had no effect on the COP. 

 

 
Figure 6.4: a) Heating COP and b) condensing pressure as a function of subcooling and 

condenser size (Tw,ci=30ᵒC, Tw,co=60ᵒC  and Tw,ei=20ᵒC) 
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Regarding the condensing pressure, it decreases with the condenser size for low 

and optimal subcooling, but at high subcooling, the condenser size had almost no 

effect on the condensing pressure. 

Figure 6.5a) shows the condenser-dedicated area as a function of condenser size 

for three refrigerant phases: de-superheat, two-phase and subcooling. The 

dedicated area for de-superheat and subcooling decreases slightly with condenser 

size, by about 2% when going from a condenser height of 0.35 m to 0.7 m. On the 

other hand, the dedicated area for the two-phase flow increases by 4%. One should 

notice that, although the percentage of the dedicated area for subcooling decreases 

with size, the total area for subcooling increases. Figure 6.5b) shows the refrigerant 

and water temperature profile in the condenser for two different condenser sizes, 

0.35 m and 0.70 m. There is a better temperature match between the refrigerant 

and water at the bigger condenser. 

From all these results, it can be concluded that, depending on the working 

conditions, the SMC design could obtain a better performance than the SMS due to 

the ability to adjust the area dedicated for subcooling at any point. Although, even 

if the heat pump producing subcooling at the condenser can adjust the heat 

transfer area for subcooling at any point, it needs more area for subcooling than 

the minimum required area for the SMS design due to the fact that the subcooler is 

optimized for liquid refrigerant. 

 

 
Figure 6.5: a) Condenser-dedicated area as a function of condenser size, b) refrigerant 

and water temperature profile in the condenser (Tw,ci=30ᵒC, Tw,co=60ᵒC  and Tw,ei=20ᵒC). 
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Furthermore, the SMC design has other disadvantages that need to be 

considered. As it was shown in section 5.1.2, the SMC design is not able to work at 

the optimum condition when the refrigerant outlet temperature at the condenser 

(Tw,ci) is lower than the evaporating temperature, for instance, at the condition 

Tw,ci=10ᵒC and Tw,ei=30ᵒC. At this point, the refrigerant temperature at the 

condenser outlet is limited by Tw,ci, which is the maximum possible evaporating 

temperature. The evaporating temperature at the expected optimal subcooling (43 

K) was around 12ᵒC. Therefore, at this point, the maximum evaporating pressure 

is lower than the corresponding one at Tw,ei=30ᵒC (expected evaporating 

temperature around 19ᵒC), leading to lower performance than expected by the 

boundary conditions. 

Figure 6.6 shows this behavior in the experimental values, where the heating 

COP starts to decrease after 36 K of subcooling. For the case of the SMS design, the 

evaporating temperature is not limited, since the refrigerant can enter the 

evaporator in subcooled conditions (see section 5.2.2). Hence, in the case of 

working at high evaporating temperatures and high subcooling, the SMS design 

could be considered a better solution.  

The limitation on the evaporating temperature is not captured by the SMC 

model, which has the optimum COP at 43 K of subcooling. The limitation on the 

evaporating temperature is a consequence of the liquid receiver arrangement, 

which is at the condenser outlet. Different heat pump concepts to control the 

subcooling in the condenser could be used in order to avoid the low evaporating 

pressure.  

 

 
Figure 6.6: Heating COP as a function of subcooling for Tw,ei=30ᵒC and Tw,ci=10ᵒC. 
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One possibility, shown in Lihan (2014), is to place the liquid receiver at the 

evaporator outlet and to control the subcooling directly with the expansion valve. 

In this way, the evaporating pressure would not be limited by the refrigerant 

temperature at the condenser outlet. With this setup, superheat is not controlled, 

and subcooling depends on the pressure drop at the expansion valve.  

Furthermore, this situation will be rare in practice, since a heat exchanger can 

be used to recover heat directly from the heat source (Tw,ei) to the heat sink (Tw,ci) 

before the heat pump. The author of this thesis has participated (not as the main 

author) in an article about this issue Hervas et al. (2017). 

6.3 Conclusions 

The main conclusions from the comparison in this chapter are: 

 The heat pump producing subcooling at the condenser can obtain at least, a 

comparable heating COP than the heat pump with a separate subcooler, if 

the same heat transfer area is considered. 

 The SMC design is able to optimize the heat transfer area for subcooling at 

any condition. 

 The SMS design optimizes the heat transfer at the subcooler, but since the 

area is fixed, the subcooler could be oversized depending on the condition. 

 The evaporating temperature is not limited for the SMS design when the 

refrigerant outlet temperature at the condenser (Tw,ci) is lower than the 

evaporating temperature.   

 SMCL has one less heat exchanger, but an additional electronic valve and a 

more sophisticated control algorithm than the SMS system.  

 The obtained results have shown that in order to be able to reach the higher 

COPs obtained in this work, it is critical to dimensioning the condenser 

properly. 

In order to choose between both systems, cost criteria should be the most 

important factor. From the point of view of energy efficiency, both systems have 

shown very competitive and close COP with only minor differences for some 

specific working conditions. 
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General conclusions and future work 

7.1 Conclusions 

In this thesis, the aim is to investigate the role of subcooling in the performance 

of a Propane water-to-water heat pump for SHW production, in the application of 

heat recovery from any water source. 

The main objectives of this thesis (described in chapter 1) have been widely 

fulfilled: 

1. A theoretical analysis investigating the role of subcooling in a subcritical 

heat pump was presented in chapter 2. 

2. Two different heat pump concepts (designs) working with propane and able 

to work efficiently with the theoretical optimal subcooling in the SHW 

application were designed and built (prototype chapter 3). 

3. The two heat pumps concepts have been tested in a wide range of conditions 

for the SHW application (chapter 5). 

4. The results obtained with the heat pump prototype have been analyzed. 

Both heat pump designs were fairly compared between them and with the 

commercial heat pump working with CO2, the Q-ton10.  (chapter 5 and 6) 

Furthermore, in order to measure the heat pump prototype, a new test rig was 

designed and built in the laboratory (chapter 4). 

                                                   
10 The Q-ton information is taken from the catalogue data (Q-ton Catalogue data ESA30E-25) 
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The following sections describe in more detail the main conclusions of the 

theoretical and experimental analysis carried out in this thesis. 

7.1.1 From the theoretical analysis 

 Theoretically, for the infinite heat transfer area assumption, the maximum 

COP is reached when two pinch points of 0 K between the refrigerant and 

the secondary fluid take place at the same time (optimal subcooling). One 

pinch point is at the condenser outlet, and the other at the refrigerant dew 

point. This has been proved in a wide range of applications and for four 

different refrigerants.  

 The optimal subcooling mainly depends on the temperature difference 

between outlet and inlet of the secondary fluid. Therefore, a single control 

equation depending only on this temperature difference can be set for a 

wide range of applications. Optimal subcooling significantly varies 

depending on the secondary fluid temperature lift (Tw,co- Tw,ci). For the SHW 

application: 46 K at condition (10ᵒC to 60ᵒC) and 8.8 K for (50ᵒC to 60ᵒC) 

(Propane). 

 Theoretically, for low inlet water temperatures (Tw,ci=10ᵒC) in the SHW 

application, the transcritical CO2 cycle has a slightly higher performance 

than the subcritical propane cycle. This situation is reversed for higher Tw,ci 

(>25ᵒC).  

7.1.2 From the experimental results 

Two different heat pump designs were built and tested in order to take profit 

from the high-temperature lift of the heat sink in the SHW application: 1) 

Subcooling is made at the condenser (SMC design with active charge control). 2)  

Subcooling is made in a separate heat exchanger, the subcooler (SMS design). The 

main conclusions are: 

 The results obtained with the SMC design proved that there is an optimal 

subcooling for each external condition. At the nominal condition (Tw,ci=10ᵒC, 

Tw,ei=20ᵒC), performance is increased about 25% respect to the HP without 

subcooling. 

 The optimal subcooling depends mainly on Tw,ci (Tw,co is fixed to 60ᵒC). For 

instance, the optimal subcoolings are around 42 K and 11 K for a Tw,ci of 10ᵒC 

and 50ᵒC respectively.  
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 For subcoolings below the optimal, the condensing temperature slightly 

increases with subcooling. The condensing temperature considerably 

increases above the optimal subcooling. 

 At the optimal subcooling, the refrigerant outlet temperature is close to the 

water inlet temperature. This temperature difference could be used as a 

control parameter. 

 Due to the liquid receiver at the throttling valve outlet in the SMC design, 

COP is limited at high Tw,ei and low Tw,ci (Tw,ei=30ᵒC and Tw,ci=10ᵒC). This 

limitation was not observed in the SMS design.  

 The results with the SMS design were slightly higher than with SMC design. 

SMS design has 25% more heat transfer area than SMC. 

 The SMS design with the fixed area for subcooling is able to work at the 

optimal subcooling for all the external conditions.  

 The Propane cycle working with a high degree of subcooling has 

demonstrated to be competitive with the transcritical CO2 heat pump for the 

SHW application (Q-ton11). Even to heat water up to 90ᵒC. 

 The refrigerant quality at the evaporator inlet highly influences the 

refrigerant distribution in the evaporator. This could affect the control 

stability at low superheats. 

The SMC design has been modeled in the commercial software IMST-ART in 

order to increase the condenser area and compare these results with the SMS 

design. Both systems have shown very competitive and close COP with only minor 

differences for some specific working conditions. The SMC design adjusts the heat 

transfer area dedicated to subcooling depending on the needs. The SMS design has 

a constant heat transfer area for all conditions, but the subcooler can be optimized 

for liquid refrigerant. Therefore, in order to choose between both systems, cost 

criteria should be the most important factor. 

 

 

 

 

 

                                                   
11 The Q-ton information is taken from the catalogue data (Q-ton Catalogue data ESA30E-25) 
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7.2 Future work 

The results obtained in this thesis encourage to continue working on the 

application of the subcritical propane cycle for the SHW production (or any 

application where subcooling would substantially increase performance).  

7.2.1 Integration in a real system 

The Ph.D. student Estefania Hervas recently started her doctoral thesis, which 

will continue the work done in this thesis to study the implementation of the 

propane heat pump working with subcooling in a real SHW system. I have 

participated (not as the main author) in the first article of this new thesis (Hervas 

et al., 2017). This article studies, from the economical point of view, the 

optimization of the heat pump size (for a given wastewater mass flow rate) and the 

relevance of a heat exchanger to recover the waste heat directly when Tw,ei is higher 

than Tw,ci. The results confirm that the recovery heat exchanger installed before the 

heat pump is the best solution when Tw,ei is higher than Tw,ci. Therefore, conditions 

like the ones showed in section 5.1.2, would be rare in real situations. Figure 7.1 

shows the SMC heat pump system with the recovery heat exchanger. With this 

configuration, the temperatures at the condenser inlet and evaporator inlet will 

depend on the heat transfer at the recovery heat exchanger.  

It would also be interesting to study the heat pump performance with the 

ambient air as a heat source. 

 

Figure 7.1: System layout of the heat pump with an additional recovery heat exchanger 
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7.2.2 Improvement of the heat pump design 

In this thesis, the control of the active charge in the system is done with the 

throttling valve. In this way, the subcooling is controlled independently of the 

superheat, which is controlled by the expansion valve. Due to the low-pressure 

drop required at high subcooling, in this prototype, two expansion valves were 

installed in parallel to increase crossflow area. If commercialized, this issue needs 

to be solved in a different way, for instance with a higher capacity expansion valve. 

It would also be interesting to test a different heat pump design, able to control the 

subcooling, but with only one expansion valve (without the throttling valve). 

Figure 7.2 shows a heat pump system that controls subcooling with the 

expansion valve. This configuration is similar to the one used to control the 

rejection pressure in the transcritical CO2 systems. With this setup, superheat is 

not controlled, and subcooling depends on the pressure drop at the expansion 

valve. This system works well in the transcritical cycles, where there are large 

variations in the rejection pressure. In the subcritical system, a slight variation in 

the condensing pressure has a considerable effect on the subcooling. Therefore, the 

accuracy to work at the optimal subcooling needs to be tested. 

 

 

Figure 7.2: Heat Pump with subcooling controlled by the expansion valve. 
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Subcooling has proved a high degree of improvement in the production of SHW. 

The degree of improvement is higher at low Tw,ci. Nevertheless, the chapter with 

the theoretical analysis showed that for low Tw,ci (>25ᵒC), the transcritical cycle 

working at the optimal rejection pressure had a higher performance than the 

subcritical propane cycle working at the optimal subcooling (under the 

assumptions considered). It would be interesting to make a systematic study of the 

heat pump components in order to see where the losses concentrate and see if 

there are room for improvement.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

109 
 

References 

Abraham, G.S., Ravikumar, A.S., Shah, R.K., 2006. Design considerations for an 

integral-receiver dryer condenser (No. 2006-01-0725). SAE Technical Paper.  

Alnahhal, S., Spremberg, E., 2016. Contribution to Exemplary In-House Wastewater 

Heat Recovery in Berlin, Germany. Procedia CIRP, 40, 35-40. 

Arias, J., Lundqvist, P., 2006. Heat recovery and floating condensing in 

supermarkets. Energy and Buildings 38(2), pp. 73-81. 

ASHRAE, 2006. American Society of Heating, Refrigerating and Air-Conditioning 

Engineers. 2006 ASHRAE Handbook-Refrigeration. Atlanta. 

ASHRAE, 2009. American Society of Heating, Refrigerating and Air-Conditioning 

Engineers. 2009 ASHRAE handbook: HVAC applications. Atlanta. 

ASHRAE, 2013. American Society of Heating, Refrigerating and Air-Conditioning 

Engineers. 2013 ASHRAE Handbook-Fundamentals. Atlanta. 

Baxter, V.D., 2003. IEA Annex 26: Advanced Supermarket Refrigeration/Heat 

Recovery Systems: Final Report Volume 1–Executive Summary. Boras, Sweden: 

IEA Heat Pump Centre 

Buxton, G., 1988. The Montreal protocol on substances that deplete the ozone layer. 

CADDET, 1997. (CADDET: the Centre for the Analysis and Dissemination of 

Demonstrated Energy Technologies), First DHC system in Japan using untreated 

sewage as a heat source, Result 290. 

Cavallini, A., 1996. Working fluids for mechanical refrigeration. International 

Journal of Refrigeration, 19(8), 485–496. 

Cecchinato, L., Corradi, M., Fornasieri, E., Zamboni, L., 2005. Carbon dioxide as 

refrigerant for tap water heat pumps: a comparison with the traditional solution. 

International Journal of Refrigeration 28(8), 1250-1258. 



110        References 

 

  

Cecchinato, L., Corradi, M., Minetto, S., 2010. A critical approach to the 

determination of optimal heat rejection pressure in transcritical systems. 

Applied Thermal Engineering, 30(13), 1812-1823. 

Çengel Y.A. and Boles M.A., 1998. Thermodynamics: An Engineering Approach. (3rd 

edition) McGraw-Hill, New York. 

Chaichana, C., Ayea, L., Chartersb, W.W.S., 2003. Natural working fluids for solar-

boosted heat pumps. International Journal of Refrigeration 26, 637–643 

Chen, Y., Gu, J., 2005. The optimum high pressure for CO2 transcritical refrigeration 

systems with internal heat exchangers. International Journal of Refrigeration 

28(8), 1238-1249. 

Choi, J.M., Kim, Y.C., 2004. Influence of the expansion device on the performance of 

a heat pump using R407C under a range of charging conditions. International 

Journal of Refrigeration 27, 378-384 

Corberán, J. M., Gonzálvez, J., Montes, P., Blasco, R., 2002. ‘ART’a computer code to 

assist the design of refrigeration and A/C equipment. In: International 

Refrigeration and Air Conditioning Conference (Purdue University). Paper 570. 

Corberán, J.M., Martínez-Galván, I., Gonzálvez-Maciá, J., 2008. Charge optimization 

study of a reversible water-to-water propane heat pump. International Journal 

of Refrigeration 31, 716–726 

Corberán, J.M., 2010. “Role, Sizing and Influence of the Liquid Receiver,” in IIR 2nd 

workshop on Refrigerant Charge Reduction, no. 2006. 

Corberán, J.M., Martínez-Galván, I., Martínez-Ballester, S., Gonzálvez-Maciá, J., 

Royo-Pastor, R., 2011. Influence of the source and sink temperatures on the 

optimal refrigerant charge of a water-to-water heat pump. International Journal 

of Refrigeration 34, 881-892 

Dimplex, Commercial Heat Pump for SHW:  http://www.dimplex.com/en/ (Last 

accessed: 27-12-2016) 

DIN EN 14511-3, 2013. Air conditioners, liquid chilling packages and heat pumps 

with electrically driven compressors for space heating and cooling - Part 3: Test 

methods. 

http://www.dimplex.com/en/


References    111 

 

 
  

Directive 2009/28/EC of the European Parliament and of the Council of 23 April 

2009 on the promotion of the use of energy from renewable sources and 

amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. 

ECO-CUTE project, Transcritical heat pump for SHW production 

http://www.r744.com/assets/link/enEX_ecocute.pdf (Last acceded: 05-10-

2016) 

EN 378-1, 2008. European Standard: Refrigerating Systems and Heat Pumps – 

Safety and Environmental Requirements. European Committee for 

Standardizations (CEN) 

EN 14825, 2011. European standard: Air conditioners, liquid chilling packages and 

heat pumps, with electrically driven compressors, for space heating and cooling 

– Testing and rating at part load conditions and calculation of seasonal 

performance (2011). European Committee for Standardization (CEN) 

Gosney, W.B., 1982. Principles of refrigeration. Cambridge University Press, 1982. 

Granryd, E., 2001. Hydrocarbons as refrigerants—an overview. International 

journal of refrigeration, 24(1), 15-24. 

Fernando P, Palm B, Lundqvist P, Granryd E. 2004. Propane heat pump with low 

refrigerant charge: design and laboratory tests. International Journal of 

Refrigeration 27 (7), 761-773. 

Hasan, A.A., Goswami, D.Y., Vijayaraghavan, S., 2002. First and second law analysis 

of a new power and refrigeration thermodynamic cycle using a solar heat source. 

Solar Energy, 73(5), 385-393. 

Hepbasli, A., Biyik, E., Ekren, O., Gunerhan, H., Araz, M., 2014. A key review of 

wastewater source heat pump (WWSHP) systems. Energy Conversion and 

Management, 88, 700-722 

Hervas-Blasco, E., Pitarch, M., Navarro-Peris, E., Corberán, J.M., 2017. Optimal 

sizing of a heat pump booster for sanitary hot water production to maximize 

benefit for the substitution of gas boilers. Energy, 127, 558–570 

Hjerkinn, T., 2007. Analysis of Heat Pump Water Heater Systems for Low-Energy 

Block of Flats (in Norwegian with English summary). Master thesis at the 

Norwegian University of Science and Technology (NTNU), Dept. of Energy and 

Process Engineering. EPT-M-2007-24 

http://www.r744.com/assets/link/enEX_ecocute.pdf


112        References 

 

  

IMST-ART v3.70: Simulation tool to assist the selection, design and optimization of 

refrigerator (v3.70), http://www.imstart.com. (Last accessed: 07-07-2016) 

IEA, 2016. World Energy Balances - 2016 edition - excerpt - Key World Energy 

Trends. http://www.iea.org/  (Last accessed: 29-12-2016) 

Inokuty, H., 1928. Graphical method of finding compression pressure of CO2 

refrigerating machine for maximum coefficient of performance. In: Proceedings 

of the 5th International Congress Refrigeration, Rome, pp. 185-192. 

Itard, L.C.M., Machielsen, C.H.M., 1994. Considerations when modelling 

compression/resorption heat pumps. International journal of refrigeration, 

17(7), 453-460. 

Jensen, J.B., Skogestad, S., 2007. Optimal operation of simple refrigeration cycles: 

Part I: Degrees of freedom and optimality of sub-cooling. Computers & chemical 

engineering, 31(5), 712-721. 

Kim, M., Kim, M.S. & Chung, J.D., 2004. Transient thermal behavior of a water heater 

system driven by a heat pump. International Journal of Refrigeration, 27(4), 

415–421. 

Koeln, J.P., Alleyne, A.G., 2014. Optimal subcooling in vapor compression systems 

via extremum seeking control: Theory and experiments. International Journal of 

Refrigeration, 43, 14-25. 

Law, R., Harvey, A., Reay, D., 2013. Opportunities for low-grade heat recovery in the 

UK food processing industry. Applied thermal engineering, 53(2), 188-196. 

Lemmon, E. W., Huber, M. L., & McLinden, M. O. 2007. REFPROP: Reference fluid 

thermodynamic and transport properties. NIST standard reference database, 

23(8.0). 

Li, M., Dang, C. & Hihara, E., 2012. Flow boiling heat transfer of HFO1234yf and R32 

refrigerant mixtures in a smooth horizontal tube: Part I. Experimental 

investigation. International Journal of Heat and Mass Transfer, 55(13-14), 

3437–3446. 

Liao, S.M., Zhao, T.S., Jakobsen, A., 2000. A correlation of optimal heat rejection 

pressures in transcritical carbon dioxide cycles. Applied Thermal Engineering, 

20(9), 831-841. 

http://www.imstart.com/
http://www.iea.org/


References    113 

 

 
  

Lihan X., 2014. Potential of controlling subcooling in residential Air conditioning 

system. Master’s thesis, University of Illinois at Urbana-Champaign. 

Liu, Z., Ma, L., Zhang, J., 2014. Application of a heat pump system using untreated 

urban sewage as a heat source. Applied Thermal Engineering, 62(2), 747-757. 

Lorentzen, G., 1995. The use of natural refrigerants: a complete solution to the 

CFC/HCFC predicament. International Journal of Refrigeration, 18(3), pp.190–

197. 

Marchese, J., 2014. The Role of the Liquid Receiver. Available at: 

http://www.achrnews.com/articles/128203-the-role-of-the-liquid-receiver 

(Last Accessed: 27-Nov-2015). 

Midgley Jr, T., Henne, A.L., 1930. Organic Fluorides as Refrigerants. Industrial & 

Engineering Chemistry, 22(5), 542-545. 

Minea, V., 2006. Improved Supermarket Refrigeration and Heat Recovery System. 

ASHRAE transactions, 112(2), pp. 592-596 

Minea, V., 2007. Supermarket Refrigeration System with Completely Secondary 

Loops. ASHRAE Journal 49(9), pp. 40-56. 

Moffat, R.J., 1988. Describing the uncertainties in experimental results. 

Experimental thermal and fluid science, 1(1), 3-17. 

Moran, M.J., Shapiro, H.N., 2004. Fundamentals of Engineering Thermodynamics 

(4th edition) John Wiley & Sons, Inc., Hoboken (NJ), USA 

Nekså, P., Rekstad, H., Zakeri, G.R., Schiefloe, P.A., 1998. CO2-heat pump water 

heater: characteristics, system design and experimental results. International 

Journal of Refrigeration 21(3), 172-179.  

Nekså, P., 2002. CO2 heat pump systems. International Journal of Refrigeration 25 

(4), 421-427 

Nibe, Commercial Heat Pump for SHW: http://www.nibe.eu/  (Last accessed: 27-

12-2016) 

NxtHPG, Next Generation of Heat Pumps working with Natural fluids. FP7-ENERGY 

project. Website of the project: http://www.nxthpg.eu/. (Last accessed: 20-11-

2016). 

 

http://www.achrnews.com/articles/128203-the-role-of-the-liquid-receiver
http://www.nibe.eu/
http://www.nxthpg.eu/


114        References 

 

  

 

OSHA, 2016. Ocuppational Safety & Health Administration (United Stats 

Department of Labor). Last acces 26-12-2016 

https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html#maintenan

ce  

Parrino, M., Dongiovanni, M., Milone, M., Chiara, M., 1999. Influence of Receiver 

Capacity on the Refrigerant Charge and on the Performance of an A/C 

System (No. 1999-01-0871). SAE Technical Paper.  

Pitarch. M., Navarro-Peris. E., Gonzálvez-Maciá. J., Montagud. C., Corberan. JM., 

2014. Influence of Water Lift Temperature in Transcritical and Subcritical 

Refrigerants. In: VII Congreso Ibérico de Ciencias y Técnicas del Frío, Tarragona, 

Spain. 

Pitarch, M., Navarro-Peris, E., Gonzalvez, J., & Corberan, J.M., 2016. Analysis and 

optimisation of different two-stage transcritical carbon dioxide cycles for 

heating applications. International Journal of Refrigeration, 70, 235-242. 

Pitarch. M., Navarro-Peris. E., Gonzálvez-Maciá. J., López-Navarro, A., Corberan. JM., 

2016. The importance of heat pump liquid receiver configuration on the impact 

during transient behavior. In: VII Congreso Ibérico de Ciencias y Técnicas del 

Frío, Coimbra, Portugal. 

Pitarch, M., Hervas, E., Navarro-Peris, E., Gonzálvez-Maciá, J., 2017A.  Evaluation of 

optimal subcooling in subcritical heat pump systems. International Journal of 

Refrigeration, 78, 18-31. 

Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., Corberan, J.M., 2017B.  

Experimental study of a heat pump with high subcooling in the condenser for 

sanitary hot water production. Science Technology for the Built Environment, 

‘Accepted’ 

Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., Corberan, J.M., 2017C. 

Experimental study of a subcritical heat pump booster for sanitary hot water 

production using a subcooler in order to enhance the efficiency of the system 

with a natural refrigerant (R290). International Journal of Refrigeration, 73, 

226-234. Doi: 10.1016/j.ijrefrig.2016.08.017. 

Pitarch, M., Navarro-Peris, E., Gonzálvez-Maciá, J., Corberan, J.M., 2017D.  

Evaluation of different heat pump systems for sanitary hot water production 

using natural refrigerants. Applied Energy, 190, 911-919.  

https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html#maintenance
https://www.osha.gov/dts/osta/otm/legionnaires/hotwater.html#maintenance


References    115 

 

 
  

Pottker, G., Hrnjak, P., 2015. Effect of the condenser subcooling on the performance 

of vapor compression systems. International Journal of Refrigeration, 50, 156-

164. 

Q-ton Catalog data ESA30E-25, Commercial use Heat pump water heater Q-ton 

catalog data ESA30E-25, Mitsubishi Heavy Industries. 

Quantum, Commercial Heat Pump for SHW:  http://quantumenergy.com.au/ . 

(Last accessed: 15-11-2016) 

Rajapaksha, L., Suen, K.O., 2004. Influence of liquid receiver on the performance of 

reversible heat pumps using refrigerant mixtures. International Journal of 

Refrigeration, 27(1), 53-62. 

Redón, A., Navarro-Peris, E., Pitarch, M., Gonzálvez-Macia, J., & Corberán, J.M., 2014. 

Analysis and optimization of subcritical two-stage vapor injection heat pump 

systems. Applied Energy, 124, 231-240. 

Rieberer, R., Kasper, G., Halozan, J., 1997. CO2-a Chance for once through Heat Pump 

Heaters, CO2 Technology in Refrigeration, Heat Pumps and Air Conditioning 

Systems. IEA Heat Pump Centre, Trondheim, Norway. 

Regulation (EU) No 517/2014 of the European Parliament and the Council of 16 

April 2014 on fluorinated greenhouse gasses and repealing regulation (EC) No 

842/2006. Off. J. Eur. Union 150, 2014, 195e230. 

Riffat, S.B., Afonso, C.F., Oliveira, A.C., Reay, D.A., 1997. Natural refrigerants for 

refrigeration and air-conditioning systems. Applied Thermal Engineering, 17(1), 

33–42. 

Sarkar, J., Bhattacharyya, S., Ram Gopal, M., 2004. Optimization of a transcritical 

CO2 heat pump cycle for simultaneous cooling and heating applications. 

International Journal of Refrigeration 27, 830-838. 

Schmid, F., 2008. Sewage water: interesting heat source for heat pumps and 

chillers. In 9th International IEA Heat Pump Conference, Switzerland. Paper (No. 

5.22, pp. 1-12). 

Stene, J., 2004. Residential CO2 Heat Pump System for Combined Space Heating and 

Hot Water Heating. Doctoral thesis, NTNU - Norwegian University of Science and 

Technology 

http://quantumenergy.com.au/


116        References 

 

  

Stene, J., 2005. Residential CO2 heat pump system for combined space heating and 

hot water heating. International Journal of Refrigeration, 28(8), 1259-1265. 

Stoecker, W.F., 1998. Industrial refrigeration handbook. McGraw-Hill. 

Tammaro, M., Montagud, C., Corberán, J.M., Mauro, A.W., Mastrullo, R., 2017. 

Seasonal performance assessment of sanitary hot water production systems 

using propane and CO 2 heat pumps. International Journal of Refrigeration, 74, 

222-237. 

Xu, L., 2014. Potential of controlling subcooling in residential Air conditioning 

system. Master thesis, University of Illinois at Urbana-Champaign 

Yang, J.L., Ma, Y.T., Li, M.X., Guan, H.Q., 2005. Exergy analysis of transcritical carbon 

dioxide refrigeration cycle with an expander. Energy, 30(7), 1162-1175. 

Yilmaz, M., 2003. Performance analysis of a vapor compression heat pump using 

zeotropic refrigerant mixtures. Energy conversion and Management, 44(2), 267-

282. 

WBCS, 2009. World Business Council for Sustainable Development, 2009. Energy 

efficiency in Buildings. , F, p.261: http://www.wbcsd.org/  (Last accessed: 15-

02-2016)  

 

 

 

 

http://www.wbcsd.org/


 

117 
 

Appendix A                                                                        

The importance of heat pump liquid receiver 

configuration on the impact during transient 

behavior.  
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A.1 Abstract  

The liquid receiver (LR) is a common accessory in heat pumps and refrigeration 

systems. Not only to accommodate an excess of refrigerant to recover from losses 

along time, but also to control the active refrigerant charge in order to work with 

the optimal subcooling’. Nevertheless, in the scientific literature, not many authors 

have paid attention to the influence of liquid receiver characteristics on the system 

performance, and none of them has studied its influence during transient behavior 

due to changes in the operating conditions.  

This work compares the effect of two different configurations designs of the inlet 

port for the liquid receiver experimentally. The differences are found in the shape 

of the inlet and outlet port inside the liquid receiver. The LR is installed in a heat 

pump for producing domestic hot water and working with propane, in such a 

systems the distribution of the charge is very important to obtain great 

performance. 
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Results have shown that transient behavior differs highly depending on which 

LR configuration is used. For instance, the transient period last 35 minutes in one 

configuration, while in the other one takes less than 5 minutes.   

A.2 Introduction 

One of the main porpoises of the liquid receiver (LR) is to accommodate changes 

in the active charge (refrigerant charge) of the system due to variations in the 

operating conditions or in reversible systems. Hence, LR is essential in those 

systems where refrigerant charge changes considerably, and its performance 

depends strongly on the charge. Nevertheless, the role of this component has not 

been widely studied in the scientific literature. Most of the information about it can 

be found in refrigeration textbooks (Gosney, 1982), in a variety of sites on the 

internet (Marchese, 2014), manufacturers or distributors which give commercial 

information and installation guidelines, and technicians and installers forums, 

where the question about how to size and how to charge the LR appears time to 

time arising a good number of answers (Corberán, 2010). ASHRAE (2006) explains 

the two basic ways of installing a LR in a refrigeration unit, Through-Type, and 

Surge-Type (Figure A.1). The Through-Type LR is mounted in such a way that acts 

as a separator of the possible vapor coming from the condenser ensuring that the 

feeding of the expansion valve will be exempt of vapor bubbles. The Surge-Type 

installation, in contrast, allows the direct flow from the condenser to the expansion 

valve. 

In the scientific literature, one of the sector that has put more attention into LRs 

is the automotive one. In this field, Parrino et al. (1999) described the need for the 

LR in the air conditioner equipment of cars and discussed in detail the procedure 

to find the optimum charge of a system, and Abraham et al. (2006) reviewed the 

evolution of the LR technology for the integration in the condenser. Other authors, 

such as Rajapksha and Suen (2004), studied by means of computer simulation the 

influence of the receiver on the circulating mixture composition and therefore on 

the performance of the unit for reversible systems. Finally, Corberán (2010) made 

an extensive study of the different LR designs (see Figure A.1), the connection to 

the system and its influence on refrigerant charge and system operation. 
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Figure A. 1:  a) Typical combinations of inlet and outlet ports. b) Type of connection to 

the unit (Corberán, 2010). 

Nevertheless, all the studies mentioned before concentrate on the steady state 

operation. As far of the knowledge of the authors, there is not any scientific study 

about the transient behavior of the LR when changing from one operating point to 

another. 

This work has been done between the European Project Next Generation of Heat 

Pumps working with Natural fluids (NxtHPG), which dedicates one of the 

development tracks to the study of a propane heat pump booster for waste heat 

recovery trying to exploit the advantage of subcooling when there is a low inlet 

water temperature. In order to obtain the desired subcooling at each condition, the 

LR is essential in order to overcome the changes on refrigerant active charge. 

This work presents an experimental study of two different inlet/outlet port 

configurations on the LR, focusing on the transient effect of different parameters, 

such as the subcooling, and its duration on time when the operation point of the 

heat pump changes.  

A.3 Experimental setup 

The LR is installed in a heat pump prototype working with Propane, which is 

able to produce domestic hot water at 60ᵒC. In order to study the influence of the 

water temperature lift with the performance of the heat pump, it is tested at 

different water inlet temperatures, inlet temperatures are in the range: 10ᵒC to 

55ᵒC. This variation in the water temperature influence significantly on the optimal 
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subcooling, and hence on the needed active refrigerant charge, requiring a liquid 

receiver. The evaporator water temperature is kept constant to around 10ᵒC with 

a superheat at the inlet of the compressor of 10 K. A test rig built for this purpose 

can easily control all these parameters. The heating capacity is around 47 kW at 

the nominal point. 

A.3.1 Refrigerant cycle 

Figure A.2 shows the scheme of the water to water heat pump with subcooler. 

In this case, a liquid receiver located right after the condenser ensures that (at 

steady state conditions) the refrigerant leaves the condenser in liquid saturated 

state (point 3), so condenser is used mainly for condensation. The liquid receiver 

is large enough to fulfill this condition for all test conditions. Hence, for continuity 

the refrigerant leaves the liquid receiver near the saturation condition, the 

condenser saturation temperature, which value for this application is around 58ᵒC. 

Then a certain subcooling is reached after passing through the subcooler (point 4). 

The large variations in subcooling influence the quality of refrigerant at the inlet 

of the evaporator, hence the evaporator accounts in large part to the changes of 

refrigerant charge needed on the system, and the liquid receiver has to be designed 

accordingly. One should notice that subcooling is filled with liquid refrigerant for 

all conditions, while the condenser it is expected to “never” be flooded with liquid 

refrigerant, leading to smaller variations in refrigerant charge compared to flooded 

condensers.  

 

 

Figure A. 2: Subcooler in series with condenser a) Scheme, b) P-h diagram. 
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A.3.2 Liquid receiver design 

A liquid receiver was designed and built specially to allocate a liquid sensor 

capable of measuring the change of liquid level in the LR. This information is quite 

useful, not only for the refrigerant charge study but also to obtain a control 

algorithm depending on the charge of the system in order to work in the optimal 

subcooling (maximize COP).  

Two different configurations of the inlet and the outlet ports were measured, 

although the main body of the LR was kept the same (Figure A.3). In order to avoid 

measurement perturbations from the refrigerant coming into the LR, the inlet and 

the outlet ports were located at the bottom of the LR. A similar port combination 

would be the number 5 from Figure A.1a). Regarding the type of connection to the 

unit, Corberán (2010) hypothesized that Surge-Type (Figure A.1b) could have 

some oscillation on condensation pressure since it will be more difficult for the LR 

to absorb small bubbles coming from the condenser. For this reason, in order to 

avoid the direct connection between the inlet and outlet refrigerant mass flow 

(similar to Surge-Type), at least one of the port ends in an elbow. The main 

differences between the two measured LR designs can be seen in Figure A.3 

1) The inlet port ends in an elbow looking downwards and a straight port for 
the outlet. 

2) The inlet port ends in an elbow looking upwards and an elbow looking 
downwards for the outlet port. 

 

 

Figure A. 3: Scheme of the LR, the liquid sensor and a detail of the two port 

configurations. 
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A.3.3 Test procedure 

The main target of the experiments is to find the different transient behavior 

depending on the port design at the LR. For this porpoise, the following dynamic 

test has been elaborated: The heat pump is set to work steadily with inlet and 

outlet water temperature on the hot side of 30ᵒC and 60ᵒC respectively. Then, the 

inlet water temperature is set to 10ᵒC, and the main parameters are measured 

during the transient operation. The measurement finishes when the steady state 

condition is reached with the new water inlet temperature. The key parameters 

are:  

 The liquid level of the LR, which indicates the refrigerants mass migration 

in the system. 

 The subcooling at the outlet of the condenser, which indicates how much 

flooded it is. 

 The total subcooling, this shows how is the subcooling share between 

condenser and subcooler. Moreover it is an indicator of how fast the target 

condition of 10ᵒC for the inlet water temperature is reached.  

These tests were performed with the two LR configurations. 

A.4 Results 

A.4.1 Inlet elbow downwards 

This section contains the experimental results for the configuration where the 

inlet port is looking downwards and a straight port for the outlet. Figure A.4a) 

shows the liquid level as a function of time and Figure A.4b) shows the total degree 

of subcooling and the subcooling at the condenser as a function of time. It can be 

seen that at the beginning (inlet water temperature of 30ᵒC) the total subcooling is 

made at the subcooler since the subcooling at the condenser is close to zero as it is 

expected in steady state conditions. In the minute 15, the change in the inlet water 

temperature occurs. From the total subcooling, it can be concluded that this 

temperature stabilized quite fast to the target temperature (10ᵒC) since it only 

takes few minutes to pass from 27K to 42K. Nevertheless, during the first ten 

minutes, most of the subcooling is done in the condenser, and it takes around 35 

minutes to go back to nearly zero subcooling at the condenser. This effect would 

be expected if the liquid receiver would be totally filled with liquid refrigerant. But, 

as it can be seen in Figure A.4a) this is not the situation. Instead, the liquid level at 
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the receiver falls down quickly (below sensor limit) because the refrigerant charge 

is migrating to the condenser. As the subcooling at the condenser disappears, the 

liquid level at the LR increases until it stabilizes at a certain level lower than at the 

first operating condition. 

One should notice that the main reason for the difference between the liquid 

levels at both operating conditions (in equilibrium) is due to refrigerant charge 

changes at the evaporator. The condenser has near zero subcooling in steady state 

and subcooler is always flooded with liquid, but the change on the total subcooling 

implies a variation in the refrigerant quality at the inlet of the evaporator, from 

0.154 to 0.007. 

Therefore, in systems with a separate subcooler, where the condenser was 

designed to work without subcooling, this transient behavior could lead to a loss 

in performance. When subcooling is produced in the condenser, the condensing 

temperature tends to increase. Applications, where contour conditions (such as the 

inlet water temperature) can change frequently and have large variations in the 

subcooling, the use of this port configuration, would be inadequate. 

 

Figure A. 4: Transient behavior for inlet “elbow looking downwards” a) liquid level, b) 

Subcooling. 
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A possible explanation would be that the inlet and outlet of the LR are 

“bypassed” and the LR is not able to absorb the bubbles coming from the 

condenser. In the beginning, when the refrigerant liquid starts to enter subcooled 

at the LR, the refrigerant temperature is stratified, and the temperature at the 

liquid-gas interface at the LR is still at the saturation temperature (Condenser 

pressure). Then, the gas in the LR starts to condensate, recovering the refrigerant 

charge from the condenser and decreasing the subcooling at the condenser. This 

situation continues until it gets to an equilibrium where the condenser has near 

zero subcooling. This behavior is similar to the one hypothesized by Corberán 

(2010) for the Surge-Type of connection.  

A.4.2 Inlet elbow upwards 

In this case, the inlet port ends in an elbow looking upwards and an elbow 

looking downwards for the outlet port. Figure A.5 shows that the transient 

behavior last less than 5 minutes and most of the subcooling is done is the 

subcooler at every moment. Now it seems that the refrigerant bubbles coming from 

the condenser are absorb easily in the LR. As in the previous experiment, the mean 

refrigerant level at the LR has decreased, since the 10ᵒC situation requires more 

active charge on the system than the water inlet temperature of 30ᵒC.  

 

Figure A. 5: Transient behavior for “inlet elbow looking upwards” a) liquid level, b) 

Subcooling 
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This could be explained due to the improvement of heat transfer inside of the 

LR. This time, the refrigerant coming from the condenser is flushed into the main 

volume of the LR. Even if the refrigerant is subcooled at the condenser due to any 

change in the operation, the subcooled refrigerant drops quickly interact with the 

hot refrigerant gas. This makes the gas to condensate much faster, recovering the 

refrigerant charge accumulated in the condenser.  

This configuration is preferred, so the subcooling is controlled at any time. 

A.5 Conclusions 

It is important to size and to select the right liquid receiver in order to optimize 

charge on the system. Another important point is the design configuration, which 

greatly affects the transient behavior of the system when the operating condition 

is changed.  The main conclusions for the two LR designs are: 

1) The inlet port ends in an elbow looking downwards and a straight port for 

the outlet: 

 After a change in the water inlet condition, the refrigerant migrates from the 
LR to the condenser. This produces subcooling in the condenser.  

 During 10 minutes, most of the subcooling is done in the condenser instead 
of in the subcooler.  

 It takes 35 minutes to the condenser to get back to equilibrium. 
 Heat pump performance is loss due to an increase of the condensing 

pressure. 
 

2) The inlet port ends in an elbow looking upwards and an elbow looking 

downwards for the outlet port: 

 After a change in the water inlet condition, only a small part of subcooling is 
done in the condenser. 

 It takes less than 5 minutes to the condenser to get back to equilibrium. 
 This LR configuration is more appropriate for systems where contour 

conditions could change frequently and have large variations in the 
subcooling. 

 
From all this experimental campaign, it has been demonstrated that the 

configuration of the ports of the LR is critical in order to have an appropriate 

response to this kind of heat pumps for sanitary hot water production. 
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Appendix B                                                                  

Results and error analysis 

This appendix first presents the equations to calculate the heating COP and 

capacity accounting with the auxiliary consumption as it is indicated in EN 14511-

3 “Test methods” (DIN EN 14511-3, 2013). Then the procedure to calculate the 

total uncertainty of the measured parameters and calculated variables is 

presented. Finally, two tables include the main parameters and its total uncertainty 

for all measured points. 

All the physical properties of propane and water are calculated using the 

software REFPROP 9.0 (Lemmon et al., 2007) 

B.1 Auxiliary consumption 

The heating COP and the heating capacity for the heat pump can be calculated as 

the heating capacity divided by the compressor energy input: 
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Where 
cw

m
,

  is the water mass flow rate through the condenser, and 
wp

c
,

 is the 

specific heat for the water. 
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The auxiliary consumption of the water pumps to drive the water through the 

heat pump, can be added to the COP calculation as it is indicated in EN 14511-3 

“Test methods” (DIN EN 14511-3, 2013) when the water pump is located outside 

the unit (as it is the case):  
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caux
W

,
 accounts with the auxiliary consumption due to the condenser and 

subcooler (kW), and it is added to the heating capacity because part of this losses 

goes to the water that wants to be heated up. This term is also added to the 

compressor power input, together with the consumption due to the evaporator (

eaux
W

,
 ). 

The auxiliary consumption is calculated with the hydraulic power (due to 

pressure drop, in kW) and a predefined pump efficiency defined by the norm:   
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The hydraulic power depends on the pressure drop (in kPa) at the heat pump 

components and the volumetric mass flow rate (for water in this case, in m3/s):  

 w
Vp

hydraulic
W     (B.5) 

 

One should notice that, if the heating COP is given with the auxiliary 

consumption, the heating capacity must also include the auxiliary of the condenser. 

Then the heating capacity accounting with auxiliary: 

 caux
W

h
Q

auxh
Q

,,
    (B.6) 

 

In this thesis, all the experimental results account for the auxiliary consumption 

unless the contrary is indicated. Therefore, for simplicity, the heating COP and 

capacity are always named as COPh and Qh. 
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B.2 Uncertainty 

Once the steady state is reached, the physical properties are measured during 

half an hour every ten seconds. The mean value of each variable is used for the 

calculations. The total uncertainties include the systematic uncertainty of the 

sensor, the acquisition data (data logger), and the standard deviation of the mean 

value, which was calculated from the measured sequence during 30 minutes. The 

method described by Moffat (1988) was used to calculate the uncertainties. 

The uncertainty analysis for each of the measured variables is calculated as: 

 2/1}2)(2){(
95.0 iX

tS
Xi

BU    (B.7) 

 

Where 𝐵𝑋𝑖 is the systematic uncertainty of the sensor and the acquisition data 

(at 95% of confidence), t is the Student’s multiplier, which for 95% confidence and 

large sample data is equal to 1.96. 𝑆𝑋̅𝑖 is the sample standard deviation of the mean 

for the variable X 
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Where 𝑆𝑋𝑖  is the sample standard deviation and N the number of observations 

at the test. 

If the function R is calculated from several independent variables (Xi), the 

propagation error for the calculated parameters such as heating COP, the equation 

of propagating error is used. 
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For instance, in eq.B.2, the heating capacity would be the variable R, while the 

water mass flow rate and temperatures would be the variables Xi, which have been 

measured directly with the Coriolis and the thermoresistances respectively.  
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B.3 Experimental results for the SMC design 

Table B. 1: Experimental results and uncertainties for the SMC design 

Tw,ei 

[ᵒC] 

Tw,ci 

[ᵒC] 

Tw,co 

[ᵒC] 

mw,e 

[kg/h] 

mw,c 

[kg/h] 

pc 

[bar] 

pLR 

[bar] 

Wc 

[kW] 

Tc 

[ᵒC] 

Sc 

[K] 

COPh 

[-] 

Qh 

[kW] 

9.96 10.08 60.38 1.953 0.1244 17.70 17.13 7.61 51.51 1.5 3.38 26.155 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0005 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.02 ±0.007 

9.95 10.05 59.99 1.952 0.1412 17.97 12.60 7.70 52.22 15.7 3.76 29.477 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0005 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.007 

10.06 9.90 60.32 1.951 0.1571 18.52 8.84 7.76 53.63 31.5 4.19 33.113 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.009 

9.92 9.98 60.12 1.946 0.1613 18.62 7.88 7.81 53.88 36.2 4.25 33.802 

±0.08 ±0.08 ±0.1 ±0.004 ±0.0006 ±0.06 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.009 

9.91 10.00 59.92 1.941 0.1691 19.52 6.77 8.08 56.10 44.1 4.29 35.287 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.009 

9.88 9.97 60.08 1.941 0.1706 21.05 6.66 8.52 59.73 48.3 4.12 35.722 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.06 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.009 

9.93 29.98 60.26 1.954 0.2075 19.05 18.46 7.89 54.94 1.44 3.27 26.267 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.15 ±0.02 ±0.006 

9.97 29.99 60.12 1.953 0.2191 19.17 16.78 7.93 55.24 6.12 3.42 27.601 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.15 ±0.02 ±0.006 

9.98 29.96 59.97 1.953 0.2355 19.32 14.11 8.01 55.62 14.2 3.62 29.536 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.02 ±0.007 

10.00 29.91 59.91 1.953 0.2483 19.67 11.71 8.10 56.46 23.0 3.78 31.142 

±0.08 ±0.09 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.02 ±0.008 

10.01 29.92 59.84 1.953 0.2524 19.94 11.21 8.18 57.12 25.5 3.79 31.555 

±0.08 ±0.09 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.02 ±0.008 

10.00 29.93 59.92 1.953 0.2549 21.19 10.94 8.56 60.05 29.4 3.67 31.967 

±0.08 ±0.09 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.12 ±0.2 ±0.02 ±0.008 

10.00 30.10 60.22 1.952 0.2091 19.01 18.40 7.97 54.85 1.51 3.24 26.327 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.15 ±0.02 ±0.006 

9.91 30.02 59.95 1.951 0.2259 19.13 15.65 8.02 55.15 9.2 3.46 28.261 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.02 ±0.006 

9.89 29.99 60.00 1.950 0.2442 19.53 12.13 8.14 56.13 21.2 3.70 30.640 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.02 ±0.007 

9.93 29.99 59.97 1.950 0.2498 20.05 11.13 8.29 57.38 26.1 3.71 31.305 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.02 ±0.008 

9.93 30.00 60.13 1.951 0.2532 22.14 10.94 8.92 62.20 31.6 3.52 31.882 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.12 ±0.2 ±0.02 ±0.008 

9.97 50.04 59.95 1.961 0.6263 21.07 20.51 8.48 59.78 1.29 3.00 25.95 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0013 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.03 

9.97 50.01 60.05 1.955 0.6359 21.18 19.55 8.54 60.03 3.77 3.07 26.71 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0013 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.03 
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Tw,ei 

[ᵒC] 

Tw,ci 

[ᵒC] 

Tw,co 

[ᵒC] 

mw,e 

[kg/h] 

mw,c 

[kg/h] 

pc 

[bar] 

pLR 

[bar] 

Wc 

[kW] 

Tc 

[ᵒC] 

Sc 

[K] 

COPh 

[-] 

Qh 

[kW] 

9.97 49.96 60.14 1.955 0.6397 21.29 18.80 8.59 60.27 5.81 3.11 27.23 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0013 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.03 

9.99 49.95 60.06 1.954 0.6537 21.38 18.09 8.61 60.49 7.83 3.15 27.65 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0014 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.03 

9.99 49.98 60.11 1.954 0.6624 21.61 17.52 8.68 61.01 9.80 3.17 28.06 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0014 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.03 

9.99 49.96 60.02 1.954 0.6718 21.98 17.21 8.80 61.84 11.45 3.15 28.30 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0014 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.03 

9.93 50.12 60.02 1.951 0.6883 23.88 17.07 9.47 65.96 15.87 2.96 28.50 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0014 ±0.05 ±0.03 ±0.05 ±0.11 ±0.13 ±0.02 ±0.03 

19.99 10.05 60.23 1.965 0.1670 18.17 17.20 8.02 52.73 2.5 4.29 35.021 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.009 

19.99 10.06 60.09 1.959 0.1979 18.76 10.45 8.18 54.23 25.5 4.97 41.381 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.01 

20.08 9.98 60.05 1.921 0.2112 19.28 8.04 8.17 55.50 37.1 5.32 44.184 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.06 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.012 

20.03 10.01 60.05 1.942 0.2130 19.43 7.70 8.21 55.88 39.1 5.33 44.545 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.011 

19.99 10.08 59.95 1.936 0.2171 19.67 7.35 8.28 56.47 41.4 5.38 45.252 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.012 

20.07 9.98 60.00 1.958 0.2215 19.74 7.09 8.51 56.63 42.9 5.35 46.310 

±0.08 ±0.08 ±0.1 ±0.004 ±0.0006 ±0.06 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.013 

20.09 10.00 60.00 1.959 0.2256 22.35 6.66 9.31 62.66 51.3 4.99 47.140 

±0.08 ±0.08 ±0.1 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.12 ±0.2 ±0.03 ±0.013 

19.88 29.88 60.21 1.945 0.2719 19.37 18.42 8.32 55.73 2.33 4.07 34.469 

±0.08 ±0.09 ±0.08 ±0.004 ±0.0007 ±0.05 ±0.03 ±0.06 ±0.13 ±0.15 ±0.03 ±0.009 

19.87 29.96 59.84 1.944 0.2870 19.40 16.93 8.33 55.82 6.26 4.23 35.857 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±0.15 ±0.03 ±0.011 

19.93 29.99 60.24 1.942 0.3027 19.81 13.64 8.43 56.80 16.9 4.46 38.286 

±0.08 ±0.09 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.013 

20.08 30.06 60.15 1.937 0.3113 20.06 12.90 8.45 57.41 19.9 4.56 39.147 

±0.08 ±0.09 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.013 

20.08 30.07 59.98 1.936 0.3156 20.12 12.31 8.47 57.54 22.0 4.58 39.446 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.012 

20.02 30.25 60.50 1.933 0.3139 20.48 11.79 8.53 58.40 24.7 4.57 39.688 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.013 

19.93 30.00 59.89 1.940 0.3280 20.42 11.38 8.64 58.27 26.0 4.67 40.982 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.013 

19.88 29.97 59.88 1.951 0.3300 20.98 11.05 8.80 59.57 28.6 4.61 41.251 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.06 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.014 

19.89 30.01 59.87 1.951 0.3326 21.73 10.96 9.04 61.29 30.6 4.52 41.508 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.06 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.014 
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19.96 30.03 60.23 1.940 0.3333 23.61 10.92 9.61 65.39 34.8 4.31 42.078 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.06 ±0.03 ±0.05 ±0.12 ±0.2 ±0.02 ±0.014 

19.93 50.01 60.01 1.947 0.808 21.47 20.48 8.98 60.68 2.21 3.69 33.76 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.06 ±0.12 ±0.13 ±0.02 ±0.05 

19.96 49.97 60.19 1.947 0.810 21.64 19.35 9.02 61.07 5.26 3.77 34.64 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.06 ±0.12 ±0.14 ±0.02 ±0.05 

19.98 49.97 60.15 1.946 0.835 21.89 18.03 9.11 61.63 9.10 3.83 35.53 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.06 ±0.12 ±0.14 ±0.02 ±0.05 

19.99 50.00 60.08 1.945 0.853 22.26 17.42 9.21 62.45 11.50 3.83 35.96 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.12 ±0.14 ±0.02 ±0.05 

19.97 49.98 60.19 1.945 0.855 23.81 17.12 9.68 65.82 15.59 3.70 36.49 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.11 ±0.13 ±0.02 ±0.05 

29.84 9.87 60.09 1.948 0.2162 18.40 16.97 8.44 53.31 3.7 5.29 45.371 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.011 

29.86 9.92 60.06 1.947 0.2170 18.37 16.75 8.47 53.24 4.2 5.28 45.462 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.012 

29.92 9.86 59.94 1.957 0.2193 18.34 16.66 8.47 53.17 4.4 5.33 45.908 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.14 ±0.2 ±0.03 ±0.012 

29.92 9.88 60.12 1.947 0.2441 18.94 11.50 8.61 54.67 22.0 5.85 51.26 

±0.08 ±0.08 ±0.11 ±0.004 ±0.0007 ±0.06 ±0.03 ±0.05 ±0.14 ±0.2 ±0.04 ±0.02 

29.87 9.77 59.93 1.971 0.2498 18.96 10.78 8.59 54.71 24.7 6.00 52.372 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0007 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.04 ±0.014 

29.90 9.88 59.86 1.944 0.2699 19.47 8.26 8.73 55.98 36.5 6.36 56.37 

±0.08 ±0.08 ±0.12 ±0.004 ±0.0007 ±0.06 ±0.03 ±0.05 ±0.15 ±0.2 ±0.04 ±0.02 

29.84 9.81 60.23 1.965 0.2683 19.58 8.31 8.79 56.26 36.6 6.32 56.54 

±0.08 ±0.08 ±0.12 ±0.004 ±0.0007 ±0.06 ±0.03 ±0.05 ±0.15 ±0.2 ±0.04 ±0.02 

29.83 9.83 59.90 1.970 0.2559 19.30 7.70 8.61 55.57 38.8 6.12 53.55 

±0.08 ±0.08 ±0.11 ±0.004 ±0.0007 ±0.06 ±0.03 ±0.05 ±0.14 ±0.2 ±0.04 ±0.02 

29.93 9.90 59.94 1.945 0.2523 19.35 7.54 8.63 55.68 39.7 6.02 52.76 

±0.08 ±0.08 ±0.11 ±0.004 ±0.0007 ±0.06 ±0.03 ±0.05 ±0.14 ±0.2 ±0.04 ±0.02 

29.84 9.96 60.04 1.948 0.2337 20.04 6.79 8.72 57.37 45.2 5.52 48.908 

±0.08 ±0.08 ±0.1 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.05 ±0.13 ±0.2 ±0.03 ±0.014 

29.98 30.04 60.05 1.953 0.3597 19.68 18.08 8.82 56.48 3.91 5.03 45.129 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0009 ±0.05 ±0.03 ±0.05 ±0.13 ±0.14 ±0.03 ±0.014 

29.96 30.04 60.09 1.948 0.3997 20.20 13.63 8.96 57.75 17.83 5.51 50.21 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0009 ±0.05 ±0.03 ±0.05 ±0.13 ±0.15 ±0.03 ±0.02 

29.99 30.02 59.86 1.954 0.4214 20.78 11.53 9.16 59.11 26.3 5.65 52.55 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0009 ±0.05 ±0.03 ±0.05 ±0.12 ±0.2 ±0.03 ±0.02 

29.98 30.01 60.26 1.954 0.4220 21.74 11.12 9.46 61.30 30.0 5.55 53.37 

±0.08 ±0.08 ±0.08 ±0.004 ±0.001 ±0.05 ±0.03 ±0.05 ±0.12 ±0.2 ±0.03 ±0.02 

30.00 30.00 60.13 1.954 0.4294 23.69 10.94 10.06 65.54 34.92 5.30 54.07 

±0.08 ±0.08 ±0.08 ±0.004 ±0.001 ±0.05 ±0.03 ±0.05 ±0.11 ±0.15 ±0.03 ±0.02 
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29.98 50.27 59.94 1.956 1.081 21.80 20.22 9.48 61.45 3.56 4.51 43.76 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.12 ±0.13 ±0.03 ±0.08 

29.98 49.96 59.84 1.954 1.108 22.11 18.24 9.56 62.13 9.05 4.68 45.79 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.12 ±0.13 ±0.03 ±0.08 

29.97 49.95 60.01 1.954 1.108 22.91 17.32 9.80 63.88 13.16 4.65 46.63 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.11 ±0.13 ±0.03 ±0.08 
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B.4 Results for the SMS design 

Table B. 2: Experimental results and uncertainties for the SMS design 
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10.00 9.01 65.33 1.937 0.1512 20.06 19.93 8.26 57.40 48 4.24 35.595 

±0.08 ±0.08 ±0.1 ±0.004 ±0.0005 ±0.06 ±0.03 ±0.13 ±0.13 ±1  ±0.06 ±0.01 

9.84 9.95 54.77 1.937 0.1866 16.81 16.66 7.31 49.13 39 4.69 34.956 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.11 ±0.15 ±1  ±0.07 ±0.008 

9.90 9.94 59.88 1.937 0.1698 18.40 18.26 7.78 53.31 43 4.47 35.439 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.12 ±0.14 ±1  ±0.07 ±0.009 

9.94 19.99 59.84 1.938 0.2022 18.80 18.61 7.88 54.31 34 4.20 33.677 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.12 ±0.13 ±1  ±0.06 ±0.008 

10.00 29.87 60.04 1.937 0.2545 19.35 19.18 8.04 55.70 26 3.91 32.103 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.12 ±0.13 ±1  ±0.06 ±0.008 

9.98 39.92 60.02 1.937 0.3613 20.11 19.95 8.27 57.53 18 3.59 30.367 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0009 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.05 ±0.011 

9.87 50.03 59.95 1.937 0.6832 21.16 20.99 8.59 59.98 11 3.22 28.34 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0014 ±0.05 ±0.03 ±0.13 ±0.12 ±1  ±0.05 ±0.03 

9.97 54.91 60.06 1.939 1.256 21.92 21.76 8.80 61.70 8 2.99 27.10 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.13 ±0.12 ±1  ±0.05 ±0.11 

19.97 9.97 54.94 1.940 0.2467 17.18 16.94 7.72 50.13 40 5.88 46.350 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.12 ±0.14 ±1  ±0.09 ±0.012 

19.99 10.07 60.23 1.940 0.2246 18.92 18.73 8.24 54.63 44 5.61 47.083 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.13 ±0.14 ±1  ±0.08 ±0.012 

20.02 10.12 60.11 1.933 0.2267 18.96 18.73 8.24 54.71 44 5.65 47.372 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.08 ±0.012 

20.06 20.10 60.08 1.935 0.2644 19.31 19.10 8.36 55.59 35 5.19 44.185 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0007 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.08 ±0.01 

20.04 30.13 60.01 1.932 0.3295 19.74 19.54 8.47 56.64 27 4.76 41.143 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.07 ±0.012 

20.01 40.16 60.19 1.934 0.4637 20.48 20.29 8.71 58.40 19 4.36 38.84 

±0.08 ±0.08 ±0.08 ±0.004 ±0.001 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.07 ±0.02 

20.16 50.05 60.22 1.939 0.855 21.53 21.34 9.03 60.82 12 3.92 36.37 

±0.09 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.14 ±0.12 ±1  ±0.06 ±0.05 

20.27 55.12 59.82 1.940 1.844 22.22 22.02 9.25 62.36 8 3.76 36.2 

±0.09 ±0.08 ±0.08 ±0.004 ±0.004 ±0.05 ±0.03 ±0.14 ±0.12 ±1  ±0.06 ±0.2 

20.14 55.26 59.97 1.977 1.774 22.43 22.24 9.28 62.83 9 3.63 34.9 

±0.08 ±0.08 ±0.08 ±0.004 ±0.003 ±0.05 ±0.03 ±0.14 ±0.12 ±1  ±0.06 ±0.2 

19.98 55.01 65.11 1.942 0.853 23.71 23.51 9.69 65.59 11 3.63 36.07 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.15 ±0.11 ±1  ±0.05 ±0.05 

24.86 9.83 54.88 1.942 0.2829 17.36 17.11 7.99 50.60 40 6.54 53.27 

±0.08 ±0.09 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.12 ±0.15 ±1  ±0.1 ±0.02 
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24.93 10.09 60.10 1.934 0.2524 18.99 18.74 8.42 54.79 44 6.15 52.755 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.13 ±0.14 ±1  ±0.09 ±0.014 

25.03 10.14 60.02 1.944 0.2550 19.00 18.74 8.46 54.82 44 6.17 53.150 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0006 ±0.05 ±0.03 ±0.13 ±0.14 ±1  ±0.09 ±0.014 

24.95 20.08 60.18 1.941 0.3018 19.43 19.19 8.58 55.89 36 5.79 50.58 

±0.08 ±0.09 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.09 ±0.02 

25.03 30.09 60.03 1.938 0.3798 19.93 19.67 8.71 57.10 27 5.35 47.55 

±0.08 ±0.09 ±0.09 ±0.004 ±0.0009 ±0.05 ±0.03 ±0.13 ±0.13 ±1  ±0.08 ±0.02 

25.09 40.09 60.22 1.940 0.5214 20.58 20.36 8.92 58.64 19 4.81 43.91 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0011 ±0.05 ±0.03 ±0.14 ±0.12 ±1  ±0.07 ±0.02 

24.89 49.96 60.38 1.941 0.934 21.66 21.44 9.24 61.13 12 4.28 40.69 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.14 ±0.12 ±1  ±0.06 ±0.06 

25.00 55.04 60.08 1.940 1.858 22.33 22.12 9.43 62.62 9 3.99 39.2 

±0.08 ±0.08 ±0.08 ±0.004 ±0.004 ±0.05 ±0.03 ±0.14 ±0.12 ±1  ±0.06 ±0.2 

25.00 55.07 65.17 1.940 0.934 23.81 23.61 9.9 65.80 12 3.90 39.49 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.2 ±0.11 ±1  ±0.06 ±0.07 

29.93 9.90 59.86 1.945 0.2820 19.02 18.73 8.66 54.87 44 6.67 58.87 

±0.08 ±0.08 ±0.09 ±0.004 ±0.0008 ±0.05 ±0.03 ±0.05 ±0.13 ±1  ±0.04 ±0.02 

29.96 29.88 59.83 1.954 0.4268 19.98 19.67 8.94 57.21 27 5.85 53.42 

±0.08 ±0.08 ±0.08 ±0.004 ±0.0013 ±0.05 ±0.03 ±0.05 ±0.12 ±1  ±0.03 ±0.03 

29.79 50.04 59.82 1.949 1.143 21.74 21.46 9.50 61.30 12 4.78 46.8 

±0.08 ±0.08 ±0.08 ±0.004 ±0.004 ±0.05 ±0.03 ±0.05 ±0.12 ±1  ±0.04 ±0.3 

29.93 55.13 64.99 1.971 1.0935 24.00 23.72 10.16 66.20 12 4.33 45.13 

±0.09 ±0.08 ±0.11 ±0.004 ±0.0008 ±0.06 ±0.04 ±0.05 ±0.14 ±1  ±0.04 ±0.02 

34.87 19.98 60.01 1.935 0.3786 19.60 19.27 9.07 56.30 36 6.85 63.34 

±0.08 ±0.08 ±0.08 ±0.004 ±0.001 ±0.05 ±0.03 ±0.05 ±0.12 ±1  ±0.04 ±0.02 

34.95 40.31 60.12 1.940 0.675 20.90 20.53 9.43 59.39 18 5.83 55.92 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.12 ±1  ±0.03 ±0.11 

34.93 54.98 60.33 1.951 2.287 22.72 22.39 9.97 63.48 9 4.88 51.27 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.05 ±0.11 ±1  ±0.03 ±0.1 

19.77 9.78 59.89 1.942 0.1673 18.08 17.90 8.07 52.02 1 4.27 35.043 

±0.08 ±0.09 ±0.11 ±0.004 ±0.0006 ±0.06 ±0.03 ±0.12 ±0.09 ±1  ±0.06 ±0.01 

19.94 30.03 59.84 1.943 0.2732 19.22 19.02 8.39 54.88 1 3.99 34.047 

±0.08 ±0.1 ±0.1 ±0.004 ±0.0007 ±0.06 ±0.03 ±0.13 ±0.08 ±1  ±0.06 ±0.011 

19.97 50.18 60.22 1.934 0.784 21.42 21.22 9.05 60.11 1 3.57 32.90 

±0.08 ±0.08 ±0.08 ±0.004 ±0.002 ±0.05 ±0.03 ±0.14 ±0.06 ±1  ±0.05 ±0.05 

19.92 55.22 60.31 1.935 1.523 22.28 22.09 9.27 62.08 1 3.40 32.4 

±0.08 ±0.08 ±0.08 ±0.004 ±0.003 ±0.05 ±0.03 ±0.14 ±0.06 ±1  ±0.05 ±0.2 

19.77 9.78 59.89 1.942 0.1673 18.08 17.90 8.07 52.02 1 4.27 35.043 

±0.08 ±0.09 ±0.11 ±0.004 ±0.0006 ±0.06 ±0.03 ±0.12 ±0.09 ±1  ±0.06 ±0.01 

 


