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Abstract 18 

The internal quality of intact persimmon cv. ‘Rojo Brillante’ was assessed trough 19 

visible and near infrared hyperspectral imaging. Fruits at three stages of commercial 20 

maturity were exposed to different treatments with CO2 to obtain fruit with different 21 

ripeness and level of astringency (soluble tannin content). Spectral and spatial 22 

information were used for building classification models to predict ripeness and 23 

astringency trough multivariate analysis techniques like linear and quadratic 24 

discriminant analysis (LDA and QDA) and support vector machine (SVM). 25 

Additionally, flesh firmness was predicted by partial least square regression (PLSR). 26 

The full spectrum was used to determine the internal properties and later principal 27 

component analysis (PCA) was used to select optimal wavelengths (580, 680 and 1050 28 

nm). The correct classification was above 92% for the three classifiers in the case of 29 

ripeness and 95% for QDA in the case of astringency. A value of R2 = 0.80 and a ratio 30 

of prediction deviation (RPD) of 1.86 were obtained with the selected wavelengths for 31 

the prediction of firmness which demonstrated the potential of hyperspectral imaging as 32 
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a non-destructive tool in the assessment of the firmness, ripeness state and astringency 33 

level of ‘Rojo Brillante’ persimmon.  34 

Keywords: Diospyros kaki, internal fruit quality, soluble tannins, astringency, 35 

classification, computer vision.  36 

 37 

1. Introduction  38 

Spain is one of the major producers of persimmon (Diospyros kaki L.) among European 39 

countries (Plaza et al., 2012). The principal variety grown in Spain is ‘Rojo Brillante’, 40 

mostly located in the region of Ribera del Xuquer Valley near Valencia (Spain) with 41 

more then 100.000 T per year. This cultivar is very appreciated by consumers because 42 

its good aspect, high size, flavour and absence of seeds. However, this cultivar is 43 

astringent at harvest and the fruit cannot be consumed until a high degree of 44 

overripeness when allowed to rest and soften for a long period after harvest.  45 

This has been traditionally a handicap for the commercialization of this fruit since once 46 

the fruit losses the astringency by overripe, it acquires a soft jelly-like consistency being 47 

difficult to handle and eat. Now, some methods have been developed to eliminate 48 

quickly the astringency without losing the firmness, as exposing fruit to high CO2 49 

concentrations (95-100%) during 18 to 24 hours. This method is based on promoting 50 

anaerobic respiration in the fruit, giving rise to an accumulation of acetaldehyde which 51 

reacts with the soluble tannins that are the responsible for the astringency (Matsuo et al., 52 

1991). In figure 1 can be appreciated the differences between a persimmon naturally 53 

deastringed by overripeness and another deastringed using a CO2 treatment. Since the 54 

success of the treatment was demonstrated (Salvador et al., 2007; Besada et al., 2010), it 55 

has been adopted by industry as the standard deastringency method, and utilized to give 56 

the fruit in addition a sweet taste and firm texture similar to the apple, highly 57 
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appreciated by the consumers. However, the effectiveness depends on the fruit firmness 58 

at harvest, since maturation process is accompanied by a gradual decrease of firmness 59 

(Salvador et al., 2008). A problem is that the stage of maturity at harvest is currently 60 

determined based on the visual inspection of experienced growers or using colorimeters 61 

due the relationship between the changes in external colour and the internal changes 62 

(Salvador et al., 2006 & 2007).  63 

The current way to know the level of astringency in the fruit after CO2-treating is by 64 

destructive measurement of soluble tannin content (ST) in random fruits by means of 65 

the tannin print method (Matsuo and Ito, 1982) which consists of using a FeCl3-66 

impregnated filter paper to obtain a print of the content and distribution of the tannins 67 

trough the reaction with the FeCl3 in the paper. Then, this print is visually assessed by 68 

trained workers being this method subjective and destructive and therefore the 69 

development of other new non-destructive and accurate methods is needed. 70 

Computer vision systems have been traditionally used to create tools for the objective 71 

estimation of the quality of intact fruit production (Cubero et al., 2011) and have 72 

already been explored to assess quality of persimmon. Mohammadi et al., (2015) used 73 

colour information to determine the maturity of this fruit through colour analysis and 74 

classify the fruit into three commercial maturity stages.  75 

Standard computer vision systems tend to mimic the human eye and hence are based on 76 

sensors sensible to visible wavelengths. But to analyse internal composition it is 77 

necessary the use of technology sensible to non-visible wavelengths related with 78 

chemical compounds. This can be achieved by using hyperspectral imaging (Lorente et 79 

al., 2012) that is a powerful non-invasive technology that allows obtaining the spatial 80 

distribution of the spectral information and it is being used from recent in the internal 81 

quality inspection of food (Cheng et al., 2016a; Cheng et al., 2016b, Gómez-Sanchis et 82 
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al., 2013) or to assess some properties of fruits like the ripeness in apples (ElMasry et 83 

al., 2008), citrus fruits (Folch-Fortuny et al., 2016), pepper (Schmilovitch et al., 2014), 84 

or mango (Velez-Rivera et al., 2012).  85 

Hyperspectral imaging in persimmon has been used by Munera et al., (2017) to create 86 

images showing the distribution of the predicted astringency of each pixel in the fruit, 87 

and by Wei et al., (2014) to predict firmness. However, in this work, the authors 88 

claimed that more research is needed to include more samples as well as different 89 

regions and different postharvest treatments to ascertain the discrimination power of this 90 

method and it is therefore necessary to investigate new methods especially to 91 

discriminate among fruits with slightly different stages of maturity or levels of 92 

astringency as those exposed to a CO2 treatment, to achieve a demand from both the 93 

industry and the consumers. This work proposes a new non-destructive approach based 94 

on visible and near infrared (VIS/NIR) hyperspectral imaging and multivariate analysis 95 

to determine the firmness, ripeness state and astringency level of intact persimmon 96 

‘Rojo Brillante’ as alternative to the current destructive and/or subjective techniques.  97 

2. Materials and methods 98 

2.1 Plant material and internal quality assessments 99 

A total of 90 persimmon (Diospyros kaki cv. ‘Rojo Brillante’) fruits were harvested in 100 

L´Alcudia (Valencia, Spain) at three different stages of commercial maturity (M1, M2 101 

and M3) corresponding to different moments of the season (early November, end 102 

November, and mid December). A total of 30 fruits, with apparently similar size and 103 

colour were collected for each maturity stage. In order to obtain three different levels of 104 

astringency, the fruits in each maturity stage were equally divided into three sets. The 105 

first set (control fruits with high astringency, HA) consisted of fruits not treated, the 106 

second set (medium astringency fruits, MA) consisted of fruits treated in closed 107 
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containers at 20 ºC with 90% of relative humidity (RH) and 95% of CO2 for a period of 108 

12 h, and the remaining set (non astringent fruits, NA) were fruits treated under the 109 

same conditions for 24 h.  110 

After each treatment, all the fruits were measured using a colorimeter, a digital camera, 111 

and a hyperspectral imaging system. Later, flesh firmness of all fruits was determined 112 

by means of a universal testing machine (4301, Instron Engineering Corp., MA, USA) 113 

equipped with an 8 mm puncture probe. The crosshead speed during the firmness 114 

testing was 10 mm/min. During the test, the force increased smoothly until it drastically 115 

decreased when the flesh was broken and the maximum peak force was registered. 116 

Results were expressed as the mean of the load (in N) required for breaking the flesh of 117 

the fruit on the two sides after peel removal. To analyse the astringency of the fruits, 118 

they were sliced and frozen at −20 ºC to determine soluble tannins using the Folin-119 

Denis method (Taira, 1995), as described by Arnal and Del Río (2004). This method is 120 

based on the reduction of the Folin-Ciocalteu reagent by soluble tannins in alkaline 121 

solution. Calibration curve was made with gallic acid. Soluble tannins were extracted by 122 

homogenization of 5 g of flesh with 25 mL of 80% methanol solution. Thereafter, 123 

samples were filtered and centrifuged for 20 minutes and the supernatant was reserved. 124 

More supernatant was extracted from the precipitant with methanol 80% and added to 125 

the first. The supernatant was diluted in water at 1:7 and then Folin-Ciocalteu reagent 1 126 

N was used to conduct the reaction. After 3 minutes 1 ml of saturated Na2CO3 was 127 

added, and the absorbance of the mixture at 725 nm was measured by colorimetry after 128 

stand for 1 h.   129 

2.2. Colour analysis 130 

At harvest this fruit presents a uniform colour that ranges from bright to dark orange 131 

depending on the maturity being the colour a good indicative of this property (Salvador 132 
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et al., 2007). The external colour the fruit under study was characterised using two 133 

techniques. On the one hand, a colorimeter (CR-300, Konica Minolta Inc, Tokyo, 134 

Japan) was used to obtain the colour at three points of the equatorial part of the fruit. 135 

Hunter Lab colour coordinates were obtained by the average of three measures. On the 136 

other hand, the colour was also evaluated trough images of the two sides of each fruit. 137 

The image acquisition system consisted on a digital camera (EOS 550D, Canon Inc, 138 

Japan) arranged into a squared inspection chamber that included a calibrated and 139 

uniform illumination system composed of eight fluorescent tubes (BIOLUX 18W/965, 140 

6500 K, Osram GmbH, Germany). The angle between the axis of the lens and the 141 

sources of illumination was approximately 45º to avoid direct reflections to the camera 142 

(Diago et al., 2015), but due to the spherical shape of the samples these reflections 143 

could not be totally avoided this way and hence cross-polarization was also used 144 

(ElMasry et al., 2012).  145 

A total of 180 images were obtained with a size of 2592 x 1944 pixels and a resolution 146 

of 0.11 mm/pixel. Figure 2 shows examples of images of the fruits in the three maturity 147 

stages. For each image, the mean red, green and blue (RGB) colour values of the pixels 148 

of the skin were obtained using the application Food_ColorInspector (free download at 149 

http:\\www.cofilab.com). RGB values were later converted to Hunter Lab colour space 150 

for analysis using the equations described in Mendoza et al., (2006) and HunterLab 151 

(1996) for illuminant D65 and standard observer 10º. The Hunter Lab coordinates were 152 

finally transformed to the colour attributes Hunter luminosity (L), Hunter hue (h) and 153 

Hunter chroma (C) (Hutchings, 1999). In addition, RGB values were transformed into 154 

HSI (hue, saturation, intensity) values and other indices were estimated such as the 155 

ratios a/b and a/L and the colour index (CI=1000a/Lb) (Salvador et al., 2006). 156 

2.3 Hyperspectral imaging 157 
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Hyperspectral images of the intact persimmons in the spectral range 450-1020 nm were 158 

acquired using a camera (CoolSNAP ES, Photometrics, USA) coupled to two liquid 159 

crystal tuneable filters (LCTF) (Varispec VIS-07 and NIR-07, Cambridge Research & 160 

Instrumentation, Inc., MA, USA). The illumination system consisted of 12 halogen 161 

lights arranged equally into a domo inspection chamber where whole fruits were 162 

manually introduced (Figure 3).  163 

Hyperspectral images with a spatial resolution of 0.14 mm/pixel and a spectral 164 

resolution of 10 nm were captured in both sides of each fruit (Figure 4), which lead to a 165 

tagged database of 180 hyperspectral images. In each image, a region of interest (ROI) 166 

of 225 × 225 pixels in the central part of the fruit was selected and analysed as the 167 

average of spectrum of all pixels for maturity and firmness analysis since these 168 

properties are quite uniformly distributed in the fruit. However, for the case of the 169 

astringency, the individual spectrum of each pixel in the ROI was included in the 170 

models due the uneven distribution in the fruit of tannins responsible of the astringency. 171 

To obtain the relative reflectance of a pixel in the position (x,y) of the monochromatic 172 

band λ, the original reflectance was corrected using a dark and white reference 173 

(Spectralon 99%, Labsphere, Inc, NH, USA) following the procedure described in Gat 174 

(2000).  175 

2.4 Data analysis 176 

 Analysis of variance (ANOVA) and Tukey multiple range test (Statgraphics 177 

Centurion XVI - Statpoint Technologies Inc., Virginia, USA) were used to show the 178 

effects of ripeness on colour parameters obtained with both, colorimeter and computer 179 

vision system. In this analysis, the three maturity stages were the observed values (Y) 180 

and the Hunter Lab colour coordinates captured by both the colorimeter and the vision 181 

systems were the predictive variables. 182 
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Hyperspectral images consisted of 67 wavelengths and therefore the spectra obtained 183 

from these images were distributed in a matrix with 67 columns each corresponding to 184 

the reflectance value of each band where the rows represented the fruits. In addition, the 185 

pixels were labelled as belonging to any of the maturity stages (M1, M2 and M3) and 186 

treatments (HA, LA, NA) to carry out the analysis for firmness and astringency 187 

prediction. First step was a preprocessing of data using Standard Normal Variate (SNV) 188 

to remove scatter effects from original spectral data (The Unscrambler X 10.1, CAMO 189 

Software, Oslo, Norway). Classification models to sort the fruit by ripeness stage and 190 

treatment duration (astringency level) were developed using linear and quadratic 191 

discriminant analysis (LDA & QDA), and support vector machine (SVM) (Dutta et al., 192 

2016). The difference between LDA and QDA classifier is that LDA uses pooled 193 

covariance to assign an unknown sample to one of the pre-defined groups while QDA 194 

uses the covariance of each group instead of pooling them (Naes et al., 2002). On the 195 

other hand, the SVM algorithm was developed based on the concept of hyperplane and 196 

support vectors, using a linear function kernel with C value set to 1. In addition, 197 

firmness prediction was conducted by partial least square regression (PLSR) (Cheng et 198 

al., 2015b) using the ratio of prediction deviation (RPD), that was defined by Williams 199 

(1987) as the ratio of standard deviation of reference values in training set to the root 200 

mean square error of prediction (RMSEP). 201 

Hyperspectral systems capture a huge amount of information that is redundant and 202 

correlated, especially between contiguous wavelengths (Lorente et al., 2012). Therefore, 203 

principal component analysis (PCA) was used to know if it was possible to obtain good 204 

prediction using a reduced subset of bands. Four different PCA models were built, one 205 

of using the spectral data of the ripeness assessment and the other three PCA with data 206 

of the astringency assessment for each harvest. The variables (wavelengths) were 207 
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chosen on the basis of the size of coefficients or loadings in the eigenvectors of the 208 

principal components. 209 

3. Results and discussion 210 

3.1. Maturity assessment  211 

Several differences can be observed among the spectra of the fruit in the three maturity 212 

stages shown in Figure 5. Fruits of M1 gave higher reflection values than the others in 213 

the visible region, which is in agreement with the colour analysis. An absorption peak 214 

was found around the bands 670-680 nm only for fruits in M1 stage which could be due 215 

the presence of chlorophyll in the more unripe fruit (Lleó et al., 2011). However, the 216 

fruits in M2 stage are those which gave a higher reflection in the NIR region that can be 217 

due to the chemical differences among fruit at different ripeness. The absorption peak 218 

observed around 900-1050 nm could be assigned to water absorption band. This peak 219 

was higher in M3, which may be related to water content increases in the flesh during 220 

the onset of ripening, which in other fruits has been related to cell breakage and osmotic 221 

movement of water from the flesh to the peel. 222 

The PCA model generated with the 67 wavelengths was analysed to identify the 223 

variable with the highest factor loadings since they reflected the importance of each 224 

wavelength in discriminating differences in the fruit (Wang et al., 2012). The loadings 225 

of the first two principal components were used for wavelength selection because these 226 

were responsible for 96% of the variance in the spectral data. The wavelengths 227 

corresponding to higher module values (peaks and valleys) at these particular principal 228 

components were selected as candidates for optimum wavelengths (Rodríguez-Pulido et 229 

al., 2013) (Figure 6). Four optimum wavelengths (450, 580, 680, and 1050 nm) were 230 

thus identified for discrimination purposes of different maturity stages. Wavelengths 231 

450 nm and 680 nm are related with the presence of beta-carotene and chlorophyll a 232 
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respectively. On the other hand, the importance of the wavelength 580 nm can be due to 233 

the colour changes during ripeness since it corresponds to the yellow colour. This would 234 

be in accordance with the ranges of h and C values shown in Table 3. The band 1050 235 

nm could be related with an absorption region of water content although the peak is 236 

situated below 1000 nm (Lu and Peng, 2006).  237 

Statistical models to classify the fruit into maturity stages were developed using the 238 

spectra of the full spectra and only the selected wavelengths. In order to build and 239 

validate the model, a 3-fold cross validation procedure was used (Simon, 2007). The 240 

data set of pixels was randomly partitioned into three disjoining subsets. The classifier 241 

development process was repeated three times using each two different subsets and the 242 

resulting classifiers used to classify the remaining test set. Finally the results of the three 243 

iterations were averaged.  244 

The four selected bands were used to build the models but also the possible 245 

combinations of three bands resulting that using only 580 nm, 680 nm, and 1050 nm, 246 

the results were similar to those achieved using the four bands. Using only these three 247 

selected wavelengths the success rate of correct classification was slightly lower (mean 248 

value of 94.8%) than using the full spectrum (mean value of 98.5%) as shown in Table 249 

1.  250 

Comparing the three classification methods, all of them achieved a good classification 251 

above 98% using the all wavelengths. Moreover, using only the three selected 252 

wavelengths only LDA showed an important reduction in the success rate while the 253 

other two classifiers still remain above 95% which is considered as a good result for a 254 

non-destructive technique.  255 

3.2. Firmness prediction  256 
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Table 2 shows the firmness evolution with the harvesting time (ripeness). A model 257 

based on PLSR was built to know if it was possible to predict this property in this 258 

cultivar using the wavelengths selected in the previous study for ripeness assessment. 259 

For each fruit there was obtained only one global value of the flesh firmness so the 260 

prediction model was built using the average values of the pixels selected for each fruit 261 

at the determined wavelengths of the hyperspectral images. Cross validation leaving 5% 262 

of samples for test was chosen to validate this study. This method splits randomly the 263 

data set into the training (95%) and test (5%), repeating the process 20 times. Results 264 

were achieved as the mean of the 20 repetitions. 265 

The coefficient of determination for the prediction (R2
P) was 0.80 and the RPD was 1.86 266 

± 0.26. Viscarra-Rossel et al., (2006) suggested that calibration models will suffice for 267 

good quantitative application if RPD is larger than 1.8. The prediction results obtained 268 

was something higher than the minimum proposed but not as good as the prediction 269 

results of Wei et al., (2014) for 'Fangshi' persimmon who achieved a R2 value of 0.91. 270 

However, in their work the firmness of the fruit ranged from 25 N to 1 N with large 271 

differences among the studied classes. In addition, during the ripening process of this 272 

cultivar not only drastic changes in firmness happened but also the skin begins to 273 

wrinkle and lose shine clearly affecting the reflectance. On the contrary, in the present 274 

work, the firmness gave values from 47 N to 21 N which means that these fruits are 275 

apparently firm in all maturity stages, which is logical since it is treated to be consumed 276 

as firm and crispy fruit. Figure 1 highlights the visual differences between a soft 277 

persimmon naturally deastringed and another deastringed a using CO2 treatment. Hence, 278 

for this fruit 80% of prediction capability is considered as a good achievement taking 279 

into account the little differences between classes, especially between M2 and M3 280 

classes.  281 
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A study was also carried out to analyse the possible correlation between the colour 282 

analysis and the firmness of the samples. The characterisation of the external colour was 283 

carried out using the colorimeter and the camera only for the control samples of the 284 

three stages to avoid the influence of the treatment in colour changes (Table 3). In 285 

general, the L and b, Hunter Lab coordinates, decreased but there were not statistical 286 

differences for M2 and M3. On the contrary, the value of a increased along the three 287 

stages. As a consequence of the changes observed in a and b, the hue decreased and the 288 

chroma slightly increased along the three stages. These differences were observed in the 289 

measures given by both, the colorimeter and the camera, and reflect the loss of 290 

luminosity of the fruit caused by the maturity process and the changes in the fruit from 291 

yellowish-orange to reddish-orange.  292 

The values of the colour attributes (L, h and C) of the colorimeter were higher than the 293 

ones obtained from the images. The higher differences were observed for the L values 294 

since the glossiness leads to a specular reflectance that reduces the contribution to the 295 

components a and b. In fact, colorimeter is very dependent on the scattering properties 296 

of the sample while the diffuse illumination of the vision system gives less dependency 297 

on the lightness of the sample than the simple illumination and filtering employed by 298 

the colorimeter (Trinderup et al., 2015). Despite the differences observed, good 299 

correlations where found between the values obtained by both methods (R2 of 0.87, 300 

0.80, and 0.96 for the L, chroma, and hue respectively).    301 

Linear regressions were performed between the different colour values, obtained with 302 

both the colorimeter and the camera, and the firmness. Table 4 and 5 summarise the 303 

results achieved for the coefficient of determination R2 for each colour component using 304 

the imaging system and the colorimeter, respectively. In general, better results are 305 

achieved with the imaging system which on the other hand makes sense since they 306 

12 
 



integrate the colour of the whole surface of the fruit while colorimeter only measures in 307 

a small spot and thus increasing the variability. 308 

Good correlations are found in H (R2=0.83), G (R2=0.82) and h (R2=0.81) or using 309 

simple ratios like a/b (R2=0.83), G/R (R2=0.83) or a/L (R2=0.83). It is worthy of interest 310 

that using the simple ratios measured with the imaging system could be obtained better 311 

correlations (R2=0.83) than using the CI (CI=1000a/Lb) that was the index used by 312 

Salvador et al., (2006) to estimate the firmness trough a colorimeter achieving a 313 

R2=0.81. 314 

3.1. Astringency prediction 315 

The results of the measurements of soluble tannins of fresh weight for all maturity 316 

stages are shown in Table 6. It can be observed that the tannin content decreased in a 317 

similar way for the three maturity stages along with the duration of the treatment. The 318 

soluble tannins content decreased to values close to 0.4% in the fruits treated for 12 h to 319 

0.03% in the fruits exposed for 24 h to CO2. Accordingly, Besada et al., (2010) reported 320 

that the CO2-treatment applied for 12 h to fruit with firmness around 40 N led to a 321 

reduction of soluble tannins to values close 0.3%. Besides, it has been widely reported 322 

that a content of soluble tannins of 0.03% after the CO2-treatment is associated with a 323 

complete effectiveness of the deastringency process in ‘Rojo Brillante’ cultivar 324 

(Salvador et al., 2007; Salvador et al., 2008).  325 

Like in ripeness classification, three PCA models were analysed to identify the highest 326 

factor loadings in each ripeness stage. However, no wavelength selection could 327 

contribute to the astringency classification. This may be because tannins are mainly 328 

detected in the ultraviolet (UV) in the range 190 to 400 nm (Boulet et al., 2016), or in 329 

the NIR (2200 to 2300 nm) (Cozzolino et al., 2004). For this reason, the whole spectrum 330 

in the studied range (450-1020 nm) was necessary to discriminate the astringency.  331 
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Table 7 shows the results of astringency classification using the three classifiers. In 332 

general, QDA obtained the best overall classification but a reduction of the 333 

classification rate along with the maturity was observed, especially for the astringent 334 

fruits (HA and LA) in the M3 stage. As it was shown in Table 2, a decrease of firmness 335 

in M1 between control and non astringent fruits was observed. However, in M2 and M3 336 

there was no difference. This could be due because the effect of high CO2 337 

concentrations on the cell structure could be the cause of the important loss of firmness 338 

observed after deastringency treatment. But when the more ripe samples are treated with 339 

CO2, no effect happens on flesh firmness because the loss of intercellular adhesion is 340 

already generalised due to the ripeness process (Salvador et al., 2007). Therefore, those 341 

changes detected by hyperspectral imaging are assigned to changes in the soluble 342 

tannins content and not to changes in texture.  343 

4. Conclusions 344 

In this study, VIS/NIR hyperspectral imaging were evaluated as potential non-345 

destructive methods to determine the flesh firmness, maturity stage and the astringency 346 

level of ‘Rojo Brillante’ persimmon.  347 

The characterisation of the colour showed that the L and b, Hunter Lab coordinates 348 

decreased while the value of  a increased along with the maturity. As a consequence the 349 

hue decreased and the chroma slightly increased along the three stages using both 350 

colorimeter and image methods. Good correlations were found in some colour 351 

parameters like H (R2=0.83), G (R2=0.82) and h (R2=0.81), but also using ratios like a/b 352 

(R2=0.83), G/R (R2=0.83) and a/L (R2=0.83) with the data obtained by the imaging 353 

system improving previous results. Moreover, better correlations were obtained using 354 

these ratios than using the previously proposed CI (R2=0.80) which indicates the 355 
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feasibility of images to assess the colour as a valid alternative to traditional and 356 

expensive colorimeters. 357 

Using the hyperspectral system, three wavelengths (580, 680 and 1050 nm) were 358 

proposed as the optimum wavelengths for the classification of the fruits into three 359 

ripeness stages with high accuracy, more than 94% of all samples were well classified 360 

for all of the used classifiers (LDA, QDA and SVM). Moreover, these wavelengths 361 

were used for flesh firmness prediction and the RPD value indicated that the obtained 362 

model is useful for good quantitative application. Regarding the astringency, the whole 363 

spectrum of the fruits needed to be used to classify the fruits into three levels of 364 

astringency: astringent fruit, fruit with a low-medium level of astringency and non-365 

astringent fruit. The overall classification for the three ripeness stages was higher than 366 

90% for the three classifiers and higher than 95% for QDA. These results indicate the 367 

potential proposed methodology based on hyperspectral imaging as a promising non-368 

destructive tool to assess the internal quality of persimmon fruits destined to be 369 

deastringed and rapidly marketed as fresh sweet fruit. However, more research is 370 

needed, involving more fruits from different regions and collected in different seasons 371 

to ascertain the discrimination power of the proposed methodology in other markets and 372 

conditions. 373 
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 491 
Tables 492 

 493 
Table 1. Ripeness classification of testing set by LDA, QDA and SVM using all and 494 

selected wavelengths (cross validation) 495 

Class 
All wavelengths  Selected wavelengths 

LDA QDA SVM  LDA QDA SVM 

M1 99.5 ± 0.8a 99.8 ± 0.4a 99.1 ± 1.0a  98.6 ± 0.0a 99.3 ± 0.7a 98.4 ± 0.4a 
M2 96.8 ± 3.2a 96.2 ± 2.9a 96.0 ± 2.7a  95.5 ± 2.5a 94.1 ± 2.2a 94.7 ± 2.6a 

M3 99.0 ± 0.8a 100 ± 0.0a 99.8 ± 0.4a  83.7 ± 2.3a 93.9 ± 2.9b 94.9 ± 1.5b 

Total 98.5 ± 2.1a 98.8 ± 2.2a 98.3 ± 2.3a  92.6 ± 7.1a 95.8 ± 3.3a 96.0 ± 2.4a 
Values are the mean of three models ± standard deviation. Different superscript letters in the same row 496 
indicate significant differences between groups (p-value<0.05), according to Tukey's test.  497 
 498 

 499 

Table 2. Flesh firmness (in N) of ‘Rojo Brillante’ persimmon fruits before and after 500 
treatments in the three ripeness stages 501 

Group M1  M2  M3  
HA  47.0ª ± 4.3a 29.0a ± 2.6b 25.1a ± 3.4c 
LA 44.7ab ± 2.6a 30.9a ± 3.0b 25.0ª ± 4.7c 
NA 40.6b ± 2.8a 31.9a ± 2.1b 21.1a ± 4.8c 

Values are the flesh firmness (N) ± standard deviation. Different superscript letters in the same column 502 
(astringency) and different subscript letters in the same row (ripening) indicate significant differences 503 
between groups (p-value<0.05), according to Tukey's test.  504 
 505 

 506 

Table 3. Colour coordinates and attributes of the samples in the three harvests 507 

Stage Colorimeter 
 

Imaging 

L a b h C  L a b h C 

M1 
58.93
±1.83a 

21.71
±3.29c 

34.84
±1.75a 

60.29
±4.41a 

40.67
±1.61c 

 43.75
±1.03a 

27.82
±3.54c 

26.03
±0.53a 

49.51
±4.42a 

36.32
±2.00c 

M2 
53.49
±1.94b 

34.49
±1.80b 

31.20
±1.41b 

46.46
±4.60b 

45.42
±1.64b 

 33.88
±2.44b 

38.30
±2.54b 

20.51
±1.35b 

34.46
±3.78b 

42.07
±1.64b 

M3 
52.64
±1.38b 

38.38
±1.65a 

30.77
±1.09b 

39.20
±1.90c 

48.29
±0.53a 

 34.71
±1.95b 

41.24
±1.40a 

21.02
±1.05b 

28.62
±1.78c 

43.64
±1.26a 

Values are the mean of control samples in each harvest± standard deviation. Different superscript letters 508 
in the same column indicate significant differences between groups (p-value<0.05), according to Tukey's 509 
test.  510 
  511 
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Table 4. Coefficient of determination for the firmness and the different colour 512 
components measured with the imaging system 513 

 R G B H S I G/R 
R2 0.49 0.82 0.46 0.83 0.48 0.17 0.83 

 L a b CI a/b a/L h C 
R2 0.79 0.78 0.78 0.80 0.83 0.83 0.81 0.69 

R red, G green, B blue, H hue, S saturation, I intensity, L Hunter luminosity, a Hunter a value, 514 
b Hunter b value, CI colour index, h Hunter hue, C Hunter chroma 515 

 516 
 517 
 518 
 519 
 520 

Table 5. Coefficient of determination for the firmness and the different colour 521 
components measured with the colorimeter  522 

 L a b CI a/b a/L h C 
R2 0.66 0.78 0.63 0.77 0.78 0.78 0.77 0.76 

L Hunter luminosity, a Hunter a value, b Hunter b value, CI colour index, h Hunter hue, C Hunter 523 
chroma 524 

 525 

 526 

 527 

 528 

 529 

Table 6. Soluble tannins content (%) in ‘Rojo Brillante’ persimmon fruits before and 530 
after treatments in the three ripeness stages 531 

Group M1  M2  M3  
HA  0.61a ± 0.09 0.65a ± 0.06 0.63a ± 0.07 
LA 0.45b ± 0.04 0.43b ± 0.10 0.39b ± 0.06 
NA 0.03c ± 0.00 0.03c ± 0.00 0.03c ± 0.00 

Values are the mean of three measures of soluble tannins content (%) ± standard deviation. Different 532 
superscript letters in the same column indicate significant differences between groups (p-value<0.05), 533 
according to Tukey's test.  534 
 535 

  536 

21 
 



 537 

Table 7. Astringency classification of test set by LDA, QDA and SVM 538 

 Class 
Correct classification (%) 

LDA QDA SVM 

M1 

HA 95.9 ± 0.0b 99.3 ± 0.0a  97.1 ± 0.8b 
LA 92.4 ± 4.0a 94.5 ± 4.3a 94.9 ± 2.2a 
NA 93.9 ± 2.6a 97.3 ± 1.5a 93.2 ± 2.1a 
Avg 94.1 ± 2.8a 97.0 ± 3.1a 95.1 ± 2.3a 

M2 

HA 93.2 ± 2.5a 96.2 ± 2.1a 92.7 ± 1.7a 
LA 93.0 ± 3.4a 95.3 ± 2.2a 91.1 ± 3.9a 
NA 93.9 ± 1.1a 95.6 ± 2.6a 95.9 ± 1.5a 
Avg 93.4 ± 2.2a 95.7 ± 2.1a 93.2 ± 3.1a 

M3 

HA 83.7 ± 0.7b 94.3 ± 1.6a 90.0 ± 3.4a 
LA 72.0 ± 3.4b 86.0 ± 3.4a 64.5 ± 2.2b 
NA 93.4 ± 2.2a 97.3 ± 1.5a 93.4 ± 0.7a 
Avg 83.0 ± 9.5a 92.5 ± 5.5a 82.7 ± 13.8a 

Overall classification 
(%) 90.2 ± 7.6b 95.1 ± 4.1a 90.3 ± 9.7b 

Values are the mean of three models ± standard deviation. Different superscript letters in the same row 539 
indicate significant differences between groups (p-value<0.05), according to Tukey's test.  540 
  541 
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 542 
 543 

Captions of the figures 544 
 545 
 546 

Figure 1. Persimmon deastringed using a CO2 treatment (left) and persimmon naturally 547 

deastringed by overripeness (right). The first shows firm and crisp flesh while the 548 

second present a very soft texture. 549 

 550 

Figure 2. Images of persimmon at maturity stage M1, M2 and M3 from left to right. 551 

 552 

Figure 3. Hyperspectral acquisition system 553 

 554 

Figure 4. Images of a persimmon (M1) with selected ROI: (a) colour image; 555 

hyperspectral image with (b) the VIS filter centred in 640 nm; and with (c) the NIR 556 

filter centred in 900 nm 557 

 558 

Figure 5. Average spectra of control fruits in three ripeness stages M1 (long dashed 559 

line), M2 (medium dashed line) and M3 (short dashed line) 560 

 561 

Figure 6. PC Loadings of the PC1 (solid line) and PC2 (dashed line) showing the 562 

selected wavelengths for ripeness classification of ‘Rojo Brillante’ persimmon fruits.  563 

 564 

 565 

 566 
 567 
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