

APPLIED GENERAL TOPOLOGY Universidad Politécnica de Valencia Volume 1, No. 1, 2000 pp. 93 - 98

Separation axioms in topological preordered spaces and the existence of continuous order-preserving functions

G. Bosi, R. Isler

ABSTRACT. We characterize the existence of a real continuous order-preserving function on a topological preordered space, under the hypotheses that the topological space is normal and the preorder satisfies a strong continuity assumption, called *ICcontinuity*. Under the same continuity assumption concerning the preorder, we present a sufficient condition for the existence of a continuous order-preserving function in case that the topological space is completely regular.

2000 AMS Classification: 06A06, 54F30

Keywords: topological preordered space, decreasing scale, order-preserving function

1. INTRODUCTION

McCartan [?] introduced a natural continuity hypothesis on a preorder \leq on a topological space (X, τ) . Such an assumption, which is called *IC-continuity* throughout this paper, is stronger than the usual hypothesis according to which all the *lower* and *upper sections* are closed. Separation axioms in ordered topological spaces were studied, in connection with suitable continuity assumptions, by Burgess and Fitzpatrick [?] and later by Künzi [?]. On the other hand, the existence of a real continuous order-preserving function on a *normally preordered topological space* was characterized by Mehta [?].

In this paper we are concerned with the existence of a real continuous orderpreserving function f on a topological preordered space (X, τ, \preceq) in case that (X, τ) is either a normal or a completely regular space, and the preorder \preceq is *IC*-continuous. Such a problem was already faced by Bosi and Isler [?]. We recall that a full characterization of the existence of a real continuous orderpreserving function on a topological preordered space was provided by Herden [?], [?] (see also Mehta [?] for an excellent review), who introduced the notion

G. Bosi, R. Isler

of a *separable system*. Such a concept appears as a generalization of the concept of a *decreasing scale*, which was used by Burgess and Fitzpatrick [?] and seems more suitable to our aims.

2. Definitions and preliminary considerations

Given a preorder \leq on an arbitrary set X (i.e., a binary relation on X which is reflexive and transitive), denote by \prec and \sim the asymmetric part and respectively the symmetric part of \leq . If (X, \leq) is a preordered set, and τ is a topology on X, then the triplet (X, τ, \leq) will be referred to as a topological preordered space.

A subset A of a set X endowed with a preorder \leq is said to be *decreasing* (respectively, *increasing*) if $(x \in A) \land (y \leq x) \Rightarrow y \in A$ (respectively, $(x \in A) \land (x \leq y) \Rightarrow y \in A$).

If A is any subset of a set X endowed with a preorder \leq , then denote by d(A) (respectively by i(A)) the intersection of all the decreasing (respectively, increasing) subsets of X containing A.

Given a topological preordered space (X, τ, \preceq) , we say that \preceq is

- (i) continuous if d(x) = d({x}) and i(x) = i({x}) are closed sets for every x ∈ X,
- (ii) *I-continuous* if d(A) and i(A) are open sets for every open subset A of X,
- (iii) C-continuous if d(A) and i(A) are closed sets for every closed subset A of X,
- (iv) IC-continuous if \leq is both I-continuous and C-continuous.

Definitions (ii) and (iii) were introduced by McCartan [?]. The previous terminology is similar to the terminology adopted by Künzi [?]. Obviously, given a topological preordered space (X, τ, \preceq) , if (X, τ) is a T_1 space, and \preceq is *C*-continuous, then \preceq is continuous. So, if the T_1 separation axiom holds, the concept of *C*-continuity is stronger than the concept of continuity of a preorder on a topological space.

From Nachbin [?], a topological preordered space (X, τ, \preceq) is said to be normally preordered if, given a closed decreasing set F_0 and a closed increasing set F_1 with $F_0 \cap F_1 = \emptyset$, there exist an open decreasing set A_0 containing F_0 , and an open increasing set A_1 containing F_1 such that $A_0 \cap A_1 = \emptyset$.

It is easily seen that a topological preordered space (X, τ, \preceq) is normally preordered if (X, τ) is normal and \preceq is *IC*-continuous. Indeed, given a closed decreasing set F_0 and a closed increasing set F_1 with $F_0 \cap F_1 = \varnothing$, from normality of (X, τ) there exist an open set A'_0 containing F_0 , and an open set A'_1 containing F_1 such that $A'_0 \cap A'_1 = \varnothing$, and from *IC*-continuity of the preorder \preceq we have that $A_0 = d(A'_0) \setminus i\left(\overline{A'_1} \setminus d(A'_0)\right)$ is an open decreasing set containing F_0 , $A_1 =$ $i(A'_1) \setminus d\left(\overline{A'_0} \setminus i(A'_1)\right)$ is an open increasing set containing F_1 , and $A_0 \cap A_1 = \varnothing$.

From Herden [?], a topological preordered space (X, τ, \preceq) is Nachbin separable if there exists a countable family $\{A_n, B_n\}_{n \in \mathbb{N}}$ of pairs of closed disjoint subsets of X such that A_n is decreasing, B_n is increasing, and $\{(x, y) \in X \times X : x \prec y\} \subseteq \bigcup_{n \in \mathbb{N}} (A_n \times B_n).$

From Burgess and Fitzpatrick [?], given a topological preordered space (X, τ, \preceq) , a family $\mathcal{G} = \{G_r : r \in \mathcal{S}\}$ of open decreasing subsets of X is said to be a *decreasing scale* in (X, τ, \preceq) if the following conditions are satisfied:

- (i) S is a dense subset of [0, 1] such that $1 \in S$ and $G_1 = X$, and
- (ii) for every $r_1, r_2 \in S$ with $r_1 < r_2$, it is $\overline{G}_{r_1} \subseteq G_{r_2}$.

Observe that any decreasing scale \mathcal{G} in a topological preordered space (X, τ, \preceq) is a *linear separable system* in Herden's terminology (see Herden [?]).

- If (X, \preceq) is a preordered set, then a real function f on X is said to be
 - (i) increasing if, for every $x, y \in X$, $[x \leq y \Rightarrow f(x) \leq f(y)]$,
- (ii) order-preserving if it is increasing and, for every $x, y \in X$, $[x \prec y \Rightarrow f(x) < f(y)]$.

It is well known that, if there exists a continuous order-preserving function f on a topological preordered space (X, τ, \preceq) , then (X, τ, \preceq) is Nachbin separable.

Finally, we recall that, given a topological space (X, τ) , a family $\mathcal{G} = \{G_r : r \in S\}$ of open subsets of X is said to be a *scale* in (X, τ) if \mathcal{G} is a (decreasing) scale in $(X, \tau, =)$.

3. EXISTENCE OF CONTINUOUS ORDER-PRESERVING FUNCTIONS

Our first aim is to characterize the existence of a real continuous orderpreserving function f on a topological preordered space (X, τ, \preceq) with $\preceq IC$ continuous and (X, τ) normal.

Theorem 3.1. Let (X, τ, \preceq) be a topological preordered space, with \preceq ICcontinuous and (X, τ) normal. Then the following conditions are equivalent:

- (i) There exists a real continuous order-preserving function f on the space (X, τ, \preceq) with values in [0, 1];
- (ii) (X, τ, \preceq) is Nachbin separable;
- (iii) There exists a countable family $\{A'_n, B'_n\}_{n \in \mathbb{N}}$ of pairs of closed disjoint subsets of X such that

$$\{(x,y) \in X \times X : x \prec y\} \subseteq \bigcup_{n \in \mathbf{N}} (A'_n \times B'_n)$$

and, for every $n \in \mathbf{N}$, if $a'_n \in A'_n$, $b'_n \in B'_n$, then $b'_n \notin d(a'_n)$.

Proof. (i) \implies (ii) From considerations above, (X, τ, \preceq) is normally preordered, and therefore the implication follows from Herden [?, Corollary 4.2].

(ii) \implies (iii) Just observe that any countable family $\{A'_n, B'_n\}_{n \in \mathbb{N}}$ satisfying the condition of Nachbin separability also verifies condition (iii).

(iii) \implies (i) Assume that condition (iii) holds, and let $\{A'_n, B'_n\}_{n \in \mathbb{N}}$ be a countable family of closed disjoint subsets of X with the indicated property. Define, for every $n \in \mathbb{N}$, $A_n = d(A'_n)$, $B_n = i(B'_n)$. Since \preceq is C-continuous, A_n and B_n are closed subsets of X for every $n \in \mathbb{N}$. Further, A_n and B_n are disjoint sets for every $n \in \mathbb{N}$ (otherwise, for some $n \in \mathbb{N}$ there exist $x \in X$, $a'_n \in A'_n$ and $b'_n \in B'_n$ such that $b'_n \preceq x \preceq a'_n$, and therefore $b'_n \in d(a'_n)$). Hence, (X, τ, \preceq) is

Nachbin separable. Since \leq is also *I*-continuous, it has been already observed that (X, τ, \leq) is normally preordered. Hence, from Mehta [?, Theorem 1] there exists a continuous order-preserving function f on (X, τ, \leq) with values in [0, 1].

In the sequel, a compact space is a compact- T_2 space, as in Engelking [?].

Corollary 3.2. Let (X, τ, \preceq) be a topological preordered space, with \preceq IC-continuous and (X, τ) compact. Then the following conditions are equivalent:

- (i) There exists a real continuous order-preserving function f on the space (X, τ, ⊥) with values in [0, 1];
- (ii) There exists a countable family $\{A_n, B_n\}_{n \in \mathbb{N}}$ of pairs of compact disjoint subsets of X such that A_n is decreasing, B_n is increasing, and

$$\{(x,y) \in X \times X : x \prec y\} \subseteq \bigcup_{n \in \mathbf{N}} (A_n \times B_n);$$

(iii) There exists a countable family $\{A'_n, B'_n\}_{n \in \mathbb{N}}$ of pairs of compact disjoint subsets of X such that

$$\{(x,y) \in X \times X : x \prec y\} \subseteq \bigcup_{n \in \mathbf{N}} (A'_n \times B'_n)$$

and, for every $n \in \mathbf{N}$, if $a'_n \in A'_n$, $b'_n \in B'_n$, then $b'_n \notin d(a'_n)$.

Proof. Observe that any compact space (X, τ) is normal. Further, it is well known that, given a compact space, any closed subspace is compact, as well as any compact subspace is closed. Then the thesis follows from Theorem ??. \Box

In the following theorem we provide a sufficient condition for the existence of a continuous order-preserving function f on a topological preordered space (X, τ, \preceq) , with (X, τ) completely regular, and $\preceq IC$ -continuous.

Theorem 3.3. Let (X, τ, \preceq) be a topological preordered space, with $\preceq IC$ continuous and (X, τ) completely regular. There exists a real continuous orderpreserving function f on (X, τ, \preceq) with values in [0, 1] if the following condition is verified:

(i) There exists a countable family $\{A'_n, B'_n\}_{n \in \mathbb{N}}$ of pairs of disjoint subsets of X, with A'_n compact and decreasing and B'_n closed for every $n \in \mathbb{N}$, such that

$$\{(x,y) \in X \times X : x \prec y\} \subseteq \bigcup_{n \in \mathbf{N}} \left(A'_n \times B'_n\right).$$

Proof. Let $\{A'_n, B'_n\}_{n \in \mathbb{N}}$ be a countable family of pairs of subsets of X satisfying condition (i) above. From C-continuity of \preceq , $i(B'_n)$ is closed and increasing for every $n \in \mathbb{N}$. Further, it is clear that A'_n and $i(B'_n)$ are disjoint subsets of X for every $n \in \mathbb{N}$. Since (X, τ) is completely regular, for every $n \in \mathbb{N}$ there exists a continuous function $f_n : X \to [0, 1]$ such that $f_n(x) = 0$ on A'_n and $f_n(x) = 1$ on $i(B'_n)$ (see e.g. Engelking [?, Theorem 3.1.7]). Hence, for every $n \in \mathbb{N}$ there exists a scale $\mathcal{G}'_n = \{G'_{nr} : r \in \mathcal{S}_n\}$ such that $A'_n \subseteq G'_{nr} \subseteq X \setminus i(B'_n)$ for every $r \in \mathcal{S}_n \setminus \{1\}$. Since \preceq is *IC*-continuous, $\mathcal{G}_n = \{d(G'_{nr}) : r \in \mathcal{S}_n\}$ is

96

a decreasing scale in (X, τ, \preceq) for every $n \in \mathbf{N}$ (see Burgess and Fitzpatrick [?, Lemma 6.1]). Define, for every $n \in \mathbf{N}$, a real function $f_n : X \to [0,1]$ by $f_n(x) = \inf\{r \in S_n : x \in d(G'_{nr})\}$. Since it is $f_n(x) = \inf\{r \in S_n : x \in \overline{d(G'_{nr})}\}$, it is easy to show that f_n is continuous. Further, f_n is increasing, since for every $x, y \in X$ such that $x \preceq y$, $\{r \in S_n : y \in d(G'_{nr})\} \subseteq \{r \in S_n : x \in d(G'_{nr})\}$, and therefore $f_n(x) \leq f_n(y)$ from the definition of f_n . From condition (i), for every $x, y \in X$ with $x \prec y$, there exists $n \in \mathbf{N}$ such that $f_n(x) = 0$ and $f_n(y) = 1$ (see Burgess and Fitzpatrick [?, Theorem 4.1]). Define $f = \sum_{n \in \mathbf{N}} 2^{-n} f_n$. It is immediate to observe that f is a real continuous order-preserving function on (X, τ, \preceq) .

Remark 3.4. It is well known that any compact space is completely regular (see e.g. Engelking [?, Theorem 3.3.1]). So, the situation considered in Theorem ?? is the most general among those considered in the paper. In the particular case when (X, τ) is compact, condition (i) of Theorem ?? is equivalent to conditions (ii) and (iii) of Corollary ??.

References

- G. Bosi and R. Isler, Continuous order-preserving functions on a preordered completely regular space, paper presented at II Italian-Spanish Conference on General Topology and Applications, Trieste (Italy), September 8-10, 1999.
- [2] D.C.J. Burgess and M. Fitzpatrick, On separation axioms for certain types of topological spaces, Math. Proc. Cambridge Philosophical Soc. 82 (1977), 59-65.
- [3] R. Engelking, General Topology (Heldermann Verlag, Berlin, 1989).
- [4] G. Herden, On the existence of utility functions, Mathematical Social Sciences 17 (1989), 297-313.
- [5] G. Herden, On the existence of utility function II, Mathematical Social Sciences 18 (1989), 107–111.
- [6] H.-P. A. Künzi, Completely regular ordered spaces, Order 7 (1990), 283-293.
- [7] S. D. McCartan, Bicontinuous preordered topological spaces, Pacific J. of Math. 38 (1971), 523-529.
- [8] G. Mehta, Some general theorems on the existence of order-preserving functions, Mathematical Social Sciences 15 (1988), 135-143.
- [9] G. B. Mehta, Preference and utility, in: Handbook of Utility Theory, vol. 1, S. Barberà, P. J. Hammond and C. Seidl eds. (Kluwer Academic Publishers, 1998).
- [10] L. Nachbin, Topology and order (D. Van Nostrand Company, 1965).

Received March 2000

G. BOSI Dipartimento di Matematica Applicata Università di Trieste Piazzale Europa 1, 34127 Trieste Italy E-mail address: giannibo@econ.univ.trieste.it G. Bosi, R. Isler

R. ISLER Dipartimento di Matematica Applicata Università di Trieste Piazzale Europa 1, 34127 Trieste Italy

98