| — AppPLIED GENERAL TOPOLOGY
lj ———— Universidad Politécnica de Valencia
—‘H —— Volume 2, No. 1, 2001

APPLIED GENERAL TOPOLOGY pp- 9 - 25

Fell type topologies of quasi-pseudo-metric

spaces and the Kuratowski-Painlevé
convergence

JESUs RODRIGUEZ-LOPEZ

ABSTRACT. We study the double Fell topology when this
hypertopology is constructed over a quasi-pseudo-metric space.
In particular, its relationship with the Wijsman hypertopology is
studied. We also propose an extension of the Kuratowski-Painlevé
convergence in the bitopological setting.

2000 AMS Classification: 54B20, 54E35, 54E55.

Keywords: quasi-pseudo-metric, double topological space, Fell topology, Wi-
jsman topology, Kuratowski-Painlevé convergence.

1. INTRODUCTION AND PRELIMINARIES

Recently, the study of nonsymmetric structures has received a new drive as
a consequence of its applications to Computer Science. This theory began with
Smyth (see [20, 21]). He tried to find a convenient category for computation and
he proposed the quasi-uniform spaces as the suitable context. Continuing the
work of Smyth, other authors have applied the nonsymmetric topology to this
area (see [17, 18, 19]). Furthermore, some hypertopologies have been success-
fully applied to several areas of Computer Science (see [21, 23]). All these facts
motivate our interest in the nonsymmetric study of several hypertopologies. In
this paper, we continue the work developed by the author in [15].

The Fell topology was introduced by Fell in [8]. In [15] it is introduced
a definition for the Fell hypertopology in the nonsymmetric situation. Some
satisfactory results about the relationship of some hypertopologies with the
Fell topology are obtained in the quasi-uniform setting. We continue this work
and obtain extensions of well-known results in the symmetric case about the
relationship between the Fell and the Wijsman hypertopologies. We also study
a definition for the Kuratowski-Painlevé convergence in the bitopological setting
and obtain extensions of interesting results as the Mrowka’s Theorem.

Our basic references for quasi-uniform and quasi-pseudo-metric spaces are
[9] and [12]. Terms and undefined concepts may be found in such references.
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A quasi-pseudo-metric on a set X is a nonnegative real valued function d
on X x X such that for all z,y,z € X : (i) d(z,z) =0 and (i7) d(z,y) <
d(z,z) +d(z,y).

If, in addition, d satisfies the condition: (iii) d(z,y) = 0 = = =y, then d is
said to be a quasi-metric on X.

A quasi-(pseudo-)metric space is a pair (X, d) such that X is a nonempty set
and d is a quasi-(pseudo-)metric on X.

If d is a quasi-(pseudo-)metric on X, then the function d ! defined on X x X
by d !(z,y) = d(y,r) for all z,y € X, is also a quasi-(pseudo-)metric on X,
called the conjugate quasi-pseudo-metric of d, and the function d® defined on
XxX by d*(z,y) = max{d(z,y),d (z,y)} for all z,y € X, is a (pseudo-)metric
on X.

Each quasi-pseudo-metric d on X generates a topology 7 (d) on X which has
as a base the family of balls of the form By(z,r) = {y € X : d(z,y) < r}, where
z € X and r > 0. Note that if d is a quasi-metric, then 7(d) is a T} topology
on X. We denote By(z,¢) = {y € X : d(z,y) < ¢}.

The quasi-pseudo-metric £ on R defined by 4(z,y) = max{z — y,0} for all
z,y € R, is called the lower quasi-pseudo-metric on R. Its conjugate quasi-
pseudo-metric ¢! is denoted by u and is called the upper quasi-pseudo-metric
on R. Note that ¢ = £V u is the usual metric on R. A function from a
topological space (X, 7T) to R is said to be lower semicontinuous (resp. upper
semicontinuous) if it is continuous when we consider the topology generated by
the lower (resp. upper) quasi-pseudo-metric on R.

A quasi-uniformity on a set X is a filter 4 on X x X which satisfies: (i)
A C U for all U € U and (i7) given U € U there exists V € U such that
V2 C U, where A = {(z,7) : x € X} and V2 = {(z,2) € X x X : exists y €
X such that (z,y) € V, (y,2) € V}. The elements of U are called entourages.

The filter & !, formed by all sets of the form U ! = {(z,y) € X x X :
(y,z) € U} where U € U, is a quasi-uniformity on X called the conjugate
quasi-uniformity of U.

If U is a quasi-uniformity on X, then the family {U* = UNU~!: U € U}
is a base for a quasi-uniformity U° (in fact, it is a uniformity), which is the
coarsest uniformity containing /. This uniformity is called the supremum of
the quasi-uniformities & and U ~!.

Every quasi-uniformity ¢ generates a topology 7 () on X. A neighborhood
base for each point z € X is given by {U(x) : U € U} where U(z) = {y € X :
(z,y) € U}.

Each quasi-pseudo-metric d on X induces a quasi-uniformity Uz on X which
has as a base the family of entourages of the form {(z,y) € X x X : d(z,y) <
27"} n € N. Moreover, T (Uy) = T (d).

In addition of a quasi-uniformity and a quasi-pseudo-metric, we can define
on a space another structure which makes precise the concept of nearness. This
structure is a relation ¢ in Py(X). We write A6B for (A, B) € § and AéB
instead of (A, B) ¢ 6.
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Definition 1.1. Let X be a nonempty set. A relation 0 in Py(X) is a quasi-
proximity for X if it satisfies the following conditions:
i) X6@ and @6X.
i) C6(A U B) if and only if C6A or CéB
(AU B)C if and only if ASC or BoC.
iii) {x}é{z} for each z € X.
) If A6B, there exists C € Py(X) such that ASC and (X\C)iB.

The pair (X,0) is called a quasi-proximity space.

Obviously, if ¢ is a quasi-proximity on X, then so is the opposite relation
d~1. This quasi-proximity is called the conjugate quasi-prozimity of . A quasi-
proximity 6 is a prozimity if 6 = 571,

Let A and B be subsets of a quasi-proximity space (X,d). If AdB , then A
is said to be near B and if A6B, then A is said to be far from B. A set B is
said to be a d-neighborhood of a set A if AS(X\B).

Every quasi-proximity ¢ on a space X induces in a natural way a topology
on X. If z € X, the neighborhoods of x are the d-neighborhoods of z.

Furthermore, if (X,U) is a quasi-uniform space, then U induces a quasi-
proximity &z such that AdyB if and only if (A x B)NU # @ for all U € U.

A bitopological space (see [10, 13]) is a triple (X, P, Q) where X is a set and
P and @ are topologies on X. A bitopological space is said to be quasi-pseudo-
metrizable (resp. quasi-uniformizable) if there exists a quasi-pseudo-metric d
(resp. a quasi-uniformity &) on X such that 7(d) = P and T(d ') = Q (resp.
TU) =P and T(U ') = Q). In this case we say that d (resp. U) is a quasi-
pseudo-metric (resp. quasi-uniformity) compatible with the bitopological space
(X,P,Q).

Given a topological space (X, T') we denote by Py(X) the family of nonempty
subsets of X and by C'Ly(X) we denote the family of nonempty closed subsets
of X. We also shall use P(X) = Po(X)U @. If (X,P,Q) is a bitopological
space we denote by CLY (X) (resp. CLOQ(X), CL{(X)) the family of nonempty
P-closed (resp. @-closed, PV Q-closed) subsets of X.

2. FELL TYPE TOPOLOGIES OF QUASI-PSEUDO-METRIC SPACES

In [15] it can be found a discussion about the definition of the Fell hyper-
topology in the nonsymmetric case. We propose the use of double topological
spaces rather than bitopological spaces. We recall some definitions.

Definition 2.1 ([15]). A double topological space is simply a pair of topological
spaces ((X, 1), (Y,v)).

In the following, we will also use double space.

Definition 2.2 ([15]). Let (X, P, Q) be a bitopological space. We define the
double upper Fell topological space as the double topological space ((CL(?(X),
F;), (CLY(X), Fg}) where Fli' is the topology generated by all sets of the

form Gt = {A € CLBQ(X) : A C G} where G is a P-open set and X\G is
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PV Q-compact; Fg s defined in o similar way by writing P instead of Q and
Q instead of P. The pair (F;,Fc'g") 18 called the double upper Fell topology.

The double lower Fell topological space is defined as the double topological
space ((CL(?(X),FIZ),(CLOP(X),Fé)) where Fp, is generated by all sets of the
form G- ={A¢€ CL(?(X) t ANG # @} where G is P-open; Fj is defined in a
similar way by writing P instead of Q and Q) instead of P. The pair (Fp, Fé)
1s called the double lower Fell topology.

The double Fell topological space is the double topological space ((CL(?(X),
Fp), (CLY(X), Fy)) where Fp = F V Fp, and F = Fg V Fg. The pair
(Fp, Fg) is called the double Fell topology.

In this section we study the relationship between the double Fell topology
and the double Wijsman topology. We also motivate the fact of considering
PV Q-compact sets in the definition of the double Fell topology (see Remark
2.10). The results in the symmetric case can be found in [3] and [4].

The following is an extension of the Wijsman hypertopology definition when
d is a quasi-pseudo-metric (see [16]).

Definition 2.3. Let (X,d) be a quasi-pseudo-metric space. Let P = T (d)
and Q = T(d™'). The double upper Wijsman topological space is the double
topological space ((CLE(X), TT(Wq)), (CLEY (X), TH(Wy-1))) where T+(Wy) is
the weakest topology on CL(?(X) such that for each x € X, the functional
d(-,x) is lower semicontinuous on CLOQ(X). The definition for T (Wy-1) is
symmetric. The pair (Tt (W), T+t (W4-1)) is called the double upper Wijsman
topology.

The double lower Wijsman topological space is the double topological space
((CLOQ(X),T_(Wd)), (CLE(X), T~ (Wy-1))) where T—(Wy) is the weakest top-
ology on CL(?(X) such that for each © € X, the functional d(z,-) is upper
semicontinuous on CLOQ(X). The definition for T~ (Wy-1) is symmetric. The
pair (T~ (Wy), T~ (Wy-1)) is called the double lower Wijsman topology.

The double topological space ((CLOQ(X), T(Wy)), (CLE(X), T (Wy-1))) where
TWy) =TT (Wy) VT~ (Wy) and T(Wy-1) = T (Wy1) VT~ (Wy-1) is called
the double Wijsman topological space. The pair (T (Wy), T (W4-1)) is called
the double Wijsman topology.

Proposition 2.4. Let (X, P, Q) be a quasi-pseudo-metrizable bitopological space.
Then Fp = T (Wa), Fg = T (Wg-1) on Po(X) and FL C TH(Wy) on
CLOQ(X) and Fé C TT(Wg-1) on CLE(X) where d is a quasi-pseudo-metric
compatible with the bitopological space.

Proof. Tt is easy to show that d(z,-) !(—o0, @) = By(x,a)” so we obtain that
Fp, =T~ (Wy) on Po(X). In a similar way, it can be proved F, =T~ (Wy-1)
on P() (X)

Now, we show that Fii C 7 (W) on CL(?(X). Let G be a P-open set such
that X\G is P V Q-compact, and A € G*. For all z € X\G, let us consider
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e; = d(A, ). Since A is a @Q-closed set then e, > 0. Choose 0 < oy < &g.
Thus {B;-1(z,az) : © € X\G} is a Q-open cover of X\G so there exists
{z1,...,2,} € X\G such that

n
X\G C Uqu(mi,axi).

i=1
Consider the 7 (Wy)-open set C = N ,d(-,z;) *(ay,, +00). Clearly, A € C.
Let us see that C C G*. Let B € C and suppose that B N (X\G) # .
Given b € BN (X\G) there exists i € {1,...,n} such that d"1(z;,b) < ay,. A
contradiction with d(B,z;) > ay,. Thus, B€ C C GT, ie. GT € TH(Wy).
Similarly, we prove F¢; € T (Wy-1) on OLg (X). O
Remark 2.5. We give an example showing that the above Proposition is not
true when we define Fi and 7(W,) on CLE(X) and FC'Q" and T+(Wy-1) on
CLY(X).

We consider the set NU {oo} with the following quasi-metric:

(dn,m) =1 ifn#m
d(n,n) =0 foralln € N
d(n,00) =1 forallneN.
d(oo,n) =1 forallneN
| d(00,00) =0

It is evident that 7(d) = P is the discrete topology. Therefore N is a 7T (d)-
clopen set, and its complement is obviously a 7 (d*)-compact set, so we consider
the Fif-open set NT. We shall prove that the set N € NT has not a 77 (Wy)-
neighborhood contained in N*. If n € N and N € d(-,n)"!(a, +00) where
a € R we deduce that a < 0 but {oo} is a T (d)-closed set which belongs to
d(-,n) (o, +00) = CLE(X) so this set is not contained in N*. On the other
hand, if N € d(-,00) !(a, +00) we obtain the same contradiction.

It is natural to wonder when the Wijsman and Fell hypertopologies agree.
The following extension of a concept introduced by Beer in [1] and reformulated
in [2], gives us the answer.

Definition 2.6. Let (X, d) be a quasi-pseudo-metric space. We say that it has
nice closed balls if the proper closed d-balls and the proper closed d="-balls are
T (d*)-compact.

Now, we can extend a result which can be found in [3].

Theorem 2.7. Let (X,d) be a quasi-pseudo-metric space, P = T (d) and Q =
T(d™Y). Then Fp = T(Wy) on CLY(X) and Foy = T(Wy-1) on CLE(X) if
and only if (X,d) has nice closed balls.

Proof. Let us suppose that there exists a proper closed d !-ball By 1(x,c)
which is not PV @Q-compact. Therefore, there is yo € X such that d(yg,z) > «
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and there exists a sequence {z, }nen € By 1(z, ) which does not admit a PV Q-
cluster point in X since By 1(z,a) is a P-closed set. Let A, = @Q U mQ
for all n € N. Let us prove that the sequence {4, },cn Fp-converges to @Q.
Let VT NV, N...NV, bean Fp -open set containing mQ. Clearly A, €
Vi  Nn...NV, . Suppose now, to obtain a contradiction, that given k € N we
can find ny > k such that A, ¢ V. Choose y,, € Ay, such that y,, &V for

all £ € N. Since A, = {xnk}Q U {yo}Q and {yo}Q € V7T, it is easy to show
that z,, & V. Hence, since X\V is a PV Q-compact set, {z,, }ren admits a

PV Q-cluster point z. A contradiction, so {Ap }nen is Fp-convergent to {yo} .
Let us show now that {d(A,,z)}nen does not converge to d({yo}Q,x) in the
lower topology of R, i.e. {4, }nen is not 7 (Wy)-convergent to {yo}Q. We have

that d(A4,,z) < d(z,,z) < a. Moreover, d({yo}Q,:r) > o since if 2z € {yo}Q
then d(yp,2z) =0, so a < d(yo,x) < d(yo, 2) + d(z,z) = d(z,z). Therefore

Aot % 2) — d(An,2) > d({go} %o z) — a > 0.

Consequently, Fp # T (Wy) on CL(?(X). A contradiction.
If there is a proper closed d-ball By(x,«) which is not 7 (d*)-compact, we can
prove the statement in a similar way.

Suppose now that (X,d) has nice closed balls. By Proposition 2.4, we
only have to show that 7+(W,;) C F} on CL?(X) and TH(Wy-1) C Fé
on CLY(X). Let x € X and o > 0. Let us consider the 7 (Wy)-open set
d(-, )" (a, +00). We first suppose that By-1(z,a) # X. Fix 8 > « such that
By-1(z, 3) is not equal to X. Then B,-1(x, B8) is PVQ-compact. If A € CLOQ(X)
and d(A,z) = a, we can find a sequence {a, }nen € By 1(z,8) N A such that
{d(an, ) }nen converges to d(A,z). Since By-1(z,B) is PV Q-compact, there
is a P V -convergent subsequence {ay, }ren of {an }nen. If we denote by a its
limit we obtain that @ € A and d(a,z) = a. Therefore, d(-,z)~(a, +o0) =
(X\B; 1(z,a))" which is a Fp-open set.

On the other hand, if By-1(z,a) = X then d(-,z) (o, +o0) = @ € Fp.

In a similar way it can be proved T+ (W 1) C Fé“ on CLY (X). O

Remark 2.8. We observe that by using the above proof, it can be shown:
Ff = TH(Wg) on CL(X) and FJ = T(W,,) on CLY(X) if and only if
(X, d) has nice closed balls. Therefore, we deduce that the double Fell topology
agrees with the double Wijsman topology if and only if the double upper Fell
topology agrees with the double upper Wijsman topology.

In the following Remark, we give an example where the above theorem does
not work if we change either the definition of the double Fell topology or the
definition of nice closed balls. We will use the following definition.

Definition 2.9. Let (X, P, Q) be a bitopological space. We define the double
upper Vietoris topological space as the double topological space ((CL(?(X), Vlj),
(CLOP(X),V(;')) where VI is the topology gemerated by all sets of the form
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Gt ={4 ¢ CLOQ(X) : A C G} where G is a P-open set; Vé’ is defined in a
similar way by writing P instead of Q@ and Q instead of P.

The double lower Vietoris topological space is defined as the double topological
space ((CL(?(X), Vy), (CLE(X), Vo)) where Vy, is generated by all sets of the
form G- ={A € CLOQ(X) : ANG # @} where G is P-open; Vg s defined in
a similar way by writing P instead of Q and Q) instead of P.

The double Vietoris topological space is defined as the double topological space
(CLY(X),Vp), (CLY(X),Vq)) where Ve = Vi V Vyy and Vo =V V V.

Remark 2.10. Now we motivate one fact about the definition of the double
Fell topology. We think that, maybe, the natural definition for Fp is to be
the topology generated by the sets of the form G and V'~ where G and V
are P-open sets and X\G is Q-compact. In a similar way, we define the F
hypertopology. We give an example where, with this definition, Theorem 2.7 is
not true.

Let d be the quasi-metric on N given by

We consider the quasi-metric space (N,d). Let P = T(d) and Q = T (d™!).
We claim that Fp = Vp on Py(X) and Fg = Vg on Py(X) . Since Proposition
2.4 is also true with this definition for the double Fell topology, we can deduce,
using that 7 (Wy) € Vp and T(Wy-1) € Vg on Py(X) (see [16]), that Fp =
T(Wy) on CL?(X) and Fg = T(Wy-1) on CLE(X) but (X,d) has not nice
closed balls. We only have to prove that Vlj CF Ff and VQ+ - FZ?“ .

Let G € P and we consider the V1 -open set GT. Since G is a T (d)-open
set, it easy to prove that N\G is a finite set, so it is QQ-compact. Therefore,
Gt € Fff so Vg = Ff on Py(X) .

On the other hand, let us suppose that G' € @ and we consider the VJ -open
set GT. It is clear that every subset of X is P-compact. Hence, Fc—gi— = Vé" on
Po(X) . We observe that this statement is not true if we consider the topology
PV Q, since it is the discrete topology.

We consider the closed ball By(n,1/n) = {n,n + 1,...}. It is evident that
this set is not P V Q-compact.

We notice that if we change the definition of a quasi-pseudo-metric space
having nice closed balls by saying that a quasi-pseudo-metric space has this
property if the proper closed d-balls are T (d!)-compact and the proper closed
d~!-balls are T (d)-compact the result is not true either. The preceding example
shows that. The above ball is not ()-compact, since it is an infinite set and
is the discrete topology.

Remark 2.11. We claim that if (X,d) is a quasi-metric space having nice
closed balls then 7(d) = T(d™!). Let us show this.



16 J. Rodriguez-Lépez

Let {x;}nen be a T(d !)-convergent sequence to z. Then, if m € N there
exists ng € N such that d(zp,z) < 1/2m for all n > ny. In addition, we
can find a proper closed d !-ball with center x (otherwise, since (X, 7 (d 1))
is a T} space, we would have that X = {z} and the result is obvious). Let
By-1 (7, @) be such a ball. Then, z,, € Bj—1(z,a) if n is greater or equal than
a certain natural number n;. Hence, {z,}nen admits a T (d)-cluster point y,
and, furthermore for each m € N

1

for a sufficient large n, so & = y and, therefore, 7 (d) C T(d1).
The other inclusion is similar.

In general, the equality 7 (d) = T(d!) is not true in a quasi-pseudo-metric
space (X, d) having nice closed balls. Let Z be the set of integers. The Khal-
imsky line consists of Z with the topology generated by all sets of the form
{2n —1,2n,2n + 1}, n € Z. It is introduced in image processing in [11]. Then
the quasi-pseudo-metric d defined on Z by d(2n,2n — 1) = d(2n,2n + 1) =
d(n,n) = 0 for all n € N and d(z,y) = 1 otherwise, generates the topology of
the Khalimsky line. It is clear that the proper closed d-balls and the proper
closed d~!-balls are finite so they are 7 (d*)-compact. Furthermore, it is obvious

that T(d) # T(d~1).
When we consider a quasi-metric space we obtain the following result.

Corollary 2.12. Let (X,d) be a quasi-metric space and T (d) = P, T(d!) =
Q. The following statements are equivalent.
i) Fp =T (Wy) and Fo =T (Wy-1) on CL{(X).
ii) Fp =T (Wy) on CLE(X) and Fg = T(Wy-1) on CLY(X).
iii) Fp =T (Wg) on CLE(X) and Fg = T(Wy=1) on CLE(X).
i) (X,d) has nice closed balls.
v) P=Q and (X,d) has nice closed balls.

Proof. 1) = i) and i) = i) are obvious. i3) implies iv) can be shown as
above, taking into account that (X, P) and (X, Q) are T} spaces. By the above
Theorem we obtain i4i) = v). iv) = v) is the above Remark. The implication
v) = 1) is [3, Theorem 5.1.10]. O

Remark 2.13. Let us observe that the above Corollary is not true when we
consider a quasi-pseudo-metric space. Let us show that i) = 4v) fails. Consider
the quasi-pseudo-metric space (R, ¢) where ¢ denotes the lower quasi-pseudo-
metric. Clearly, we have that Fp = T(W;) on CLY(X) and Fg = T(W,) on
CLBQ(X) where P = T(¢) and @ = T (u). However, (R, #) does not have nice
closed balls, since the closed £-balls and closed u-balls are not bounded.

3. OTHER FELL TYPE TOPOLOGIES

As we have already observed, we have various possibilities in order to define
the Fell hypertopology in the nonsymmetric situation. This section is devoted
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to describe the advantages and disadvantages of our definition compared with
other ones.
We begin giving the definition that we think is more natural.

Definition 3.1. Let (X, P,Q) be a bitopological space. We define the double
upper fine Fell space as the double space ((CL(?(X),FF;'), (CLOP(X),FFC'Q"))

where FFl;" is the topology generated by all sets of the form G where G is a
P-open set and X\G is Q-compact; the topology FFCf?F is defined in the corre-
sponding natural way.

The double fine Fell space is the double space ((CL(?(X),FFP), (CLY(X),
FFQ)) where FFp = FFg V Fp and FFg = FF, V F,.

With this definition, not all the results proved in the previous section work
(see Remark 2.10).

Another possible definition is suggested by Burdick’s investigations ([5, 6, 7]).
He looked for a context in which he considered separately the upper and lower
Vietoris topologies on a hyperspace and explored the interactions between them.

Definition 3.2. Let (X, P, Q) be a bitopological space. The double mixed Fell
space is the double space ((CLOQ(X),MFP),(CLéD(X),MFQ)) where M Fp =
FEVFy and MFg = F V Fp.

We call this hypertopology mixed, because we interchange the natural lower
hypertopologies between the two hyperspaces that we construct. We notice
that all results obtained in the previous section are true using this definition
whenever we change the definition of the Wijsman lower hypertopology. Let
us observe that our main results only use the upper hypertopologies since the
double lower Wijsman topology always coincides with the double lower Fell
topology. However, we think that is not a natural definition, although it pro-
vides a nontrivial topology on the bitopological space (R, 7 (£), T (u)).

Furthermore, we can give another definition.

Definition 3.3. Let (X, P, Q) be a bitopological space. The double mixed fine
Fell space is the double space ((CLOQ(X),MFFP), (CLY(X), MFFg)) where
MFFp =FFg VF, and MFFy = FFG V Fp.

Unfortunately, the double mixed fine Fell space has the same problems of
generalization as the double fine Fell space. However, it is an appropriate Fell
type topology to study epiconvergence of lower semicontinuous functions in the
double setting, which will be discussed elsewhere.

4. THE KURATOWSKI-PAINLEVE CONVERGENCE

In this section, we propose a definition for the Kuratowski-Painlevé conver-
gence in the nonsymmetric case and obtain some results about the relationships
of this type of convergence and some hypertopologies.

The Kuratowski-Painlevé convergence was introduced to describe the limit
of a net in terms of the members of the net itself. We propose the following
definitions.
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Definition 4.1. Let (X, P, Q) be a bitopological space and {Ax}rcra net of
subsets of X.
i) A point xy belongs to P-LiAy (resp. Q-LiAy) and we say that z¢ is a
P-limit point (resp. @Q-limit point) of {Ax}rcaif each Q-neighborhood
(resp. P-neighborhood) of xy intersects Ay for all X in some residual
subset of A.
i) A point xy belongs to P-LsAy (resp. Q-LsAy) and we say that xg
is a P-cluster point (resp. @-cluster point) of {Ax}aeaif each Q-
neighborhood (resp. P-neighborhood) of xy intersects Ay for all X in
some cofinal subset of A.

The proof of the following proposition is straightforward.

Proposition 4.2. Let (X, P, Q) be a bitopological space. If {Ax}rcnis a net of
subsets of X then P-LiAy (resp. Q-LiAy) and P-LsAy (resp. Q-LsAy) are
Q-closed sets (resp. P-closed sets).

Definition 4.3. Let (X, P, Q) be a bitopological space and let {Ay}renbe a net
of subsets of X and A € P(X).

We say that {Ax}aeais P-Kuratowski-Painlevé upper convergent (resp. Q-
Kuratowski-Painlevé upper convergent) to A if P-LsAy C A (resp. Q-LsAy C
A). We write A = Ki5-lim Ay (resp. A= K -lim A).

We say that {Ax}reats P-Kuratowski-Painlevé lower convergent (resp. Q-
Kuratowski-Painlevé lower convergent) to A if A C P-LiAy (resp. A C Q-
LiAy). We write A= Kp-lim Ay (resp. A= Kg-limA4,).

We say that {Ax}reats P-Kuratowski-Painlevé convergent (resp. Q-Kur-
atowski-Painlevé convergent) to A if A = P-LiA) = P-LsA) (resp. A = Q-
LiAy = Q-LsAy). We write A= Kp-lim Ay (resp. A= Kqg-limA)).

With these definitions, we can extend a classical result which gives a rela-
tionship between the Kuratowski-Painlevé convergence and the convergence in
the Fell topology. We need the following definition.

Definition 4.4 ([15]). A bitopological space (X, P,Q) is said to be locally
bicompact if every point has a neighborhood base in P and o neighborhood base
in @ whose elements are PV Q-compact sets.

Theorem 4.5. Let (X, P,Q) be a bitopological space, A € C'L(?(X) (resp.
A€ CLE(X)) and {Ax}aena net in CLY(X) (resp. CLY(X)).
i) A= Kp-limAy (resp. A = Ké—limA,\) if and only if A = Fé—limA,\
(resp. A= Fp-limAy).
i) If A= Kj-lim Ay (resp. A = K5—limA>\) then A = Flim Ay (resp.
A= Fg-limAA).
ii1) If (X, P, Q) is a locally bicompact quasi-uniformizable bitopological space
and A =F} —lim Ay (resp. A = Fg —limA),) then A= K; —lim A,
(resp. A= Kg —lim A, ).



Fell type topologies and the Kuratowski-Painlevé convergence 19

Proof. i) This statement is straightforward.
i4) Let us suppose that A = K;5-lim Ay. Then

P—LS(KHA)\)QP—LSA/\QA

for all PV Q-compact set K. Let Ky be a PV @Q-compact and P-closed set such
that K N Ay # @ for a cofinal subset of A. Let us prove that P-LsA) # &.
Choose k) € K N Ay for all A belonging to a cofinal subset Ag of A. We obtain
that {kx}ren, admits a PV Q-cluster point k € K. It is evident that k € P-
LsAyNK C Aso ANK # &. Therefore, if ANK = & then A \NK =2
eventually. Hence, A = F;; -lim Aj.

The other statement can be proved in a similar way.

i13) Let us suppose that P-LsA) € A. Let z € (P-LsAy)\A. Since (X, P, Q)
is a locally bicompact quasi-uniformizable bitopological space, we can find a
P-closed and PV Q-compact Q-neighborhood V' of x such that VN A = & but
Ay NV # @& frequently. Therefore, A # F ;5 -lim Ay which is a contradiction.
Consequently, P-LsA) C A.

The same reasoning proves the statement for Q). O

We characterize the Kuratowski-Painlevé convergence in terms of sequences
of points.

Proposition 4.6. Let (X, P, Q) be a quasi-pseudo-metrizable bitopological space
and d a quasi-pseudo-metric on X compatible with the bitopological space. A se-
quence { A }nen C P(X) is P-Kuratowski-Painlevé lower convergent to a set A
if and only if each point a € A is the limit of some T (d~')-convergent sequence
{an}nen such that a,, € A, for alln € N.

Proof. Let us suppose that {An}nen is Ffy-convergent to A € P(X). Pick
a € A (if A = @ the result is evident). Given k£ € N, we have that A €
By-1(a,1/k)™ so there exists ny € N such that A, € By-1(a,1/k)” for all
n > ng. We can suppose that n; < ng < ... <ng <.... Therefore, we can find
an € Ap N Byg-1(a,1/k) for all ngy1 > n > ni + 1. If we consider the sequence
{ap}tneny where if n € {1,... ,n1} we consider a fixed point a, € A,, we have
that this sequence is 7 (d~!)-convergent to a.

Conversely, let {A, }nen be a sequence and A C X satisfying our assumption.
If a € AN G where G is a T(d~!)-open set, there exists a sequence {a, }nen
T (d~')-convergent to a verifying that a,, € A, for alln € N. On the other hand,
we can find € > 0 and ng € N such that By 1(a,e) C G and d '(a,a,) < € for
all n > ng. Therefore, A, € G~ for all n > ny. O

We can also obtain a characterization of the Kuratowski-Painlevé upper con-
vergence in terms of sequences.

Proposition 4.7. Let (X, P, Q) be a quasi-pseudo-metrizable bitopological space
and d o quasi-pseudo-metric on X compatible with the bitopological space. A se-
quence { Ay tnen C P(X) is P-Kuratowski- Painlevé upper convergent to a set A
if and only if whenever there exist positive integers ng < ng < ... and a € Ay,
for all k € N such that {ag}ren is T (dt)-convergent to a then a € A.



20 J. Rodriguez-Lépez

Proof. Let us suppose that {A,}nen C P(X) is P-Kuratowski-Painlevé con-
vergent to A. If {a,}nen is a sequence as in the statement, it is evident that
a € P-LsA, C A.

Now, let a € P-LsA, and {B; 1(a,1/n) : n € N} a countable 7 (d !)-
neighborhood base of a. Choose n; € N such that By-1(a,1) N 4,, # @.
Since {n € N : By-1(a,1/2) N A,} is infinite, we can find ny > n; verifying
By-1(a,1/2) N A,, # @. Following this procedure, we can construct a strictly
increasing sequence of positive integers {nj}ren such that By-1(a, 1/k)NA,, #
@ for all k € N. If aj, € By-1(a,1/k) N Ay, for all k € N, it is evident that this
sequence is 7 (d~')-convergent to a, so by assumption a € A. O

Now, we can extend an interesting result due to Mrowka (see [14]).

Theorem 4.8 (Mrowka). Let (X, P, Q) be a bitopological space and let { A)}ren
be a net in P(X). Then {Ax}reahas a P-Kuratowski-Painlevé convergent sub-
net and a Q-Kuratowski-Painlevé convergent subnet.

Proof. Let B be a base for the topology (). Let us consider the space {0,1}
with the discrete topology. For each A € A, we define fy : B — {0,1} as follows:

1 ANV £O

V) = {0 it ANV =0

By the Tychonoff’s theorem, {fy}rea has a convergent subnet {fy }aep. For
each V € B, we obtain that fy (V) = 1 eventually if and only if fy/(V) =1
frequently. Therefore, if Ay NV # @ frequently then Ay NV # @ eventually,
so {Ax }renr is P-Kuratowski-Painlevé convergent.

The reasoning for P is similar. O

Theorem 4.9. Let (X,d) be a quasi-pseudo-metric space. Let P = T(d) and
Q= T(dY). Let us consider { Ay}xena net in CLOQ(X) and {By},er a net in
CL{ (X).
i) If A = TT(Wy)-limAy and B = TT(Wy-1)-limB, then A = K-
lim Ay and B = Kg_limB,,.
i) A= K}-limA, and B = Kg_hm B., implies A = T (Wy)-lim Ay and
B =T+ (Wy-1)-lim B, if and only if (X,d) has nice closed balls.

Proof. i) Let us suppose that A = T+ (Wy)-lim Ay and B = T (Wy-1)-lim B,,.

Let a € P-LsA) and suppose that a ¢ A. Thus d(A4,a) > 0. Therefore, given

0 < d <d(A,a) since a € P-LsA) we obtain that d(Ay,a) < 0 frequently so
d(A,a) —d(Ax,a) > d(A,a) =6 >0

frequently which contradicts that d(A,a) = T (¢)-limd(Ay,a). The same rea-
soning shows that B C Q-LsB,.
i1) This statement is similar to the proof of Theorem 2.7. g

We recall the following definitions (see [15]).
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Definition 4.10. Let (X, P,Q) be a quasi-uniformizable bitopological space
and U a quasi-uniformity compatible with the bitopological space. The dou-
ble upper U-proximal topological space is defined as the double topological
space ((CL?(X),'TJ“((SU)), (CLE(X), TH(0y-1))) where T () is the topology
generated by all sets of the form GTT = {A € CL(?(X) . there exists U €
U such that U(A) C G} where G is a P-open set. The topology T (0y-1) is
defined in a similar way by writing P instead of Q, Q instead of P and U™ in-
stead of U. The pair (Tt (6u), T T (0-1)) is called the double upper U-proximal
topology.

The double lower U-proximal topological space is defined as the double topo-
logical space ((CLOQ(X), T (6u)), (CLY(X), T~ (6-1))) where this double topo-
logical space coincides with the double lower Fell topological space. The pair
(T~ (8u), T~ (6y-1)) is called the double lower U-proximal topology.

The double U-proximal topological space is defined as the double topological
space ((CLg (X), T (o)), (CLE (X), T (1)) where T () = T+ (6u) VT~ (6u)
and T (6y—1) = T (6y-1) VT (6y-1). The pair (T (6y), T (0yy-1)) is called the
double U-proximal topology.

Definition 4.11. Let (X, P, Q) be a quasi-uniformizable bitopological space and
U a quasi-uniformity compatible with (X, P, Q). We say that (X, P,Q) has the
property pairwise star ¢f

i) given A € CL(?(X) and B € CLY(X) with AdyB there exist {z1,...,
zn} € X and Uy,...,U, € U such that AN (U?ZlUifl(xi)P) = and
B C UL Uy (1)

i) given A € CLY(X) and B € CLBQ(X) with Ady 1B there exist {z1, ...,
zp}t € X and Uy,...,U, € U such that AN (U?ZlmQ) = & and
B C U?ZlUi({L‘i).

Definition 4.12. Let (X,U) be a quasi-uniform space. We say that it has

-1 JE—
nice closed balls if every proper set of the form U(aU)T(u ) or Ufl(x)T(u) is

T (U*)-compact, where U € U and z € X.

Theorem 4.13. Let (X, P,Q) be a quasi-uniformizable bitopological space and
U a quasi-uniformity compatible with the bitopological space. Let us consider
{Ax}rera net in CL(?(X) and {By}yer a net in CLY(X).
i) If A =TV (0u)lim Ay and B = T (6y-1)-lim B, then A = K},-lim A
and B = K -lim B,,.
i) A= Kp-limAy and B = Kg-nt,y implies A = T (dy)-lim A\ and
B = T (8-1)-lim B, if and only if (X, P,Q) has the property pairwise
star and (X,U) has nice closed balls.

Proof. i) Suppose that A = T (&)-im Ay and B = T " (6y-1)-limB,. If
there exists a € P-LsA)\A, we can find U € U such that U 1(a) N A =
@. Tt is easy to prove that A € (intpV(A))™", where V € U and V2 C U.
Therefore, Ay C (intpV (A))T™ for all X in a residual subset of A. Furthermore,
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V(A)NV-1(a) = @. On the other hand, since a € P-LsA, we obtain that
V1) N Ay # @ for a cofinal subset of A which is not possible. Therefore,
LsAy C A. B = T (8y-1)-lim B, implies B = Ké“—limb can be proved in a
similar way.

P
i) Let us suppose that there exist U € ¢ and = € X such that U='(z) isa

P
proper set and is not PV Q-compact. Then, we can find yo € X\U~(z)" and

P
a net {zx}rea € U~1(z) such that it does not admit a P V Q-cluster point.
We can easily deduce that the net {A)}rea is P-Kuratowski-Painlevé upper

convergent to mQ, where Ay = WQ U @Q for all A € A. On the other
hand, if we consider the 7+ (dy)-open set (z'71tpV(mQ))+Jr where V. Uy € U,
V2 C Uy and Uy(yg) N Ufl(a;)P = &, we have that =, ¢ intpV(mQ) for all
A € A since if there exists z € @Q verifying (z,z)) € V, for some A € A,
we obtain that (yo,x)) € Uy which is not possible. Consequently, {A)}rca iS

not 7t (&y)-convergent to mQ. A contradiction. In a similar way, it can be
proved that the proper sets of the form WQ are PV(@Q-compact. Consequently,
(X,U) has nice closed balls.

Therefore, (X, P, Q) is a locally bicompact space. Applying Theorem 4.5, we
deduce that the double Fell topology agrees with the double proximal topology
which implies (see [15]) that the bitopological space has the property pairwise
star.

Conversely, if (X, P, Q) has the property pairwise star and (X,) has nice
closed balls it can be proved (see [15]) that the double upper Fell topology
agrees with the double upper proximal topology, and the statement follows
directly. O

At last, we establish the relationship of the Kuratowski-Painlevé convergence
and the convergence in the Vietoris hypertopology.

Theorem 4.14. Let (X, P, Q) be a quasi-uniformizable bitopological space. Let
us consider {Ax}rena net in CL(?(X) and {By}yer a net in CLY(X). Then
i) If A= Vg -limAy and B = Vg -lim B, then A = K};-lim Ay and B =
Kg-lim B,,.
i) A= Kj-limAy and B = K -lim B, implies A = Vi -lim A\ and B =
Vé’—liva if and only if (X, PV Q) is a compact space.

Proof. i) The proof is similar to the part i) of the above theorem.
i1) Let us suppose that (X, P V Q) is not a compact space. Therefore, there
exists a net {z)}rca that does not admit a PV Q-cluster point. If we fix yp € X

it is easy to prove that {{x,\}Q U {yo}Q} aeA is P-Kuratowski-Painlevé upper
— —pP —P
convergent to {yo}Q. We can also prove that the net {{zx} U {yo} }rea is

. . , P
Q-Kuratowski-Painlevé upper convergent to {yo} .
On the other hand, since yg is not a PV @-cluster point of {z)} e, we can find
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U € U such that z) & U*(yp) for all X in whatever cofinal subset Ay of A. We
can choose Ay in such way that we only have to distinguish two possibilities:

i) xx & Ulyg) for all A € Ay. Therefore, it is evident that if we consider
the P-open set intpV({yo}Q) where V' € U and V2 C U, we have
that 2y & V({yo]~) for all A € Ap so {{zx] U {50} " brca is not V-

convergent to {yo}Q. A contradiction.
i) zn & U™l(yp) for all A € Ayg. Reasoning as above we obtain that

——~P ——FP ——P
{Hzx} U{yo} }rea is not Vg—convergent to {yo} . A contradiction.

Conversely, since (X, P V Q) is a compact space then F = Vl;" on CLOQ(X)
and Fg = VJ on CLY(X) (see [15] ), so the proof is evident. O

We can also define the Kuratowski-Painlevé convergence in a bitopological
sense in a different way.

Definition 4.15. Let (X, P,Q) be a bitopological space and let {Ax}rcabe a
net of subsets of X and A € P(X).

We say that {Ax}reats P-mixed Kuratowski-Painlevé convergent (resp. Q-
mixed Kuratowski-Painlevé convergent) to A if A = K -limAy and A = K-
lim Ay (resp. A = K,-limAy and A = Ké“—limA)\). We write A = MKp-
lim Ay (resp. A= MKg-limA,).

With this definition, we can also wonder under which conditions we can
topologize this convergence. For the other definition, the condition was to
make the space locally bicompact. We observe that we use this condition only
to reconcile the Kuratowski-Painlevé upper convergence with the convergence
in the upper Fell topology. So we have that this is an appropriate concept to
work with the double Fell topology.

Proposition 4.16. Let (X, P, Q) be a locally bicompact bitopological space.
Then the mized Kuratowski-Painlevé convergence agrees with the convergence
in the double Fell topology.

Consequently, the concept of Kuratowski-Painlevé convergence is suitable to
obtain relationships with the double mixed Fell topology and the topologization
of the mixed Kuratowski-Painlevé convergence is the double Fell topology.

It is natural to wonder if we can obtain conditions for the bitopological
space (X, P, @) in order to obtain the coincidence of the Kuratowski-Painlevé
convergence and the other Fell topologies defined. We give a positive answer
to this question. It is natural to look for other definitions of local compactness
in bitopological spaces. The next definition is due to Stoltenberg.

Definition 4.17 ([22]). Let (X, P, Q) be a bitopological space. We say that P is
locally compact with respect to Q if for all x € X there exists a P-neighborhood
G of x such that the Q-closure of G is Q-compact.

We say that (X, P, Q) is pairwise locally compact if P is locally compact with
respect to () and @ s locally compact with respect to P.
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This definition is not suitable here. If we want that our techniques work with
this definition, we have to define another upper Fell topology for P considering
that this topology is generated by the sets of the form G where G is P-open
and X\G is P-compact. The upper Fell topology for ) would be defined in a
similar way. But this topology does not give good results.

Taking into account this, we propose the following definition.

Definition 4.18. Let (X, P, Q) be a bitopological space. We say that (X, P, Q)
is bilocally compact if (X, P) and (X, Q) are locally compact spaces.

It is clear that if (X, P, Q) is locally bicompact then it is bilocally compact.
With this definition we have the following obvious result.

Proposition 4.19. Let (X, P, Q) be a bitopological space and suppose that A €
CLBQ(X) (resp. A € CLY(X)) and that {A\}aeais a net in CL(?(X) (resp.
CL{(X)). Then
i) If A=K}, lim Ay (resp. A= K(g—limA,\) then A = FFJ lim Ay (resp.
A= FFg-limA,\).
it) If (X, P, Q) is a bilocally compact pairwise Hausdorff bitopological space
and A = FF;—limA)\ (resp. A = FFé“—limA)\) then A = K;;-limA,\
(resp. A= Ké“—limA)\).

Proof. The proof is similar to Theorem 4.5. U
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