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Common fixed point theorems for a
countable family of fuzzy mappings

ANNA VIDAL®

ABSTRACT. In this paper we prove fixed point theorems for
countable families of fuzzy mappings satisfying contractive-type
conditions and a rational inequality in left K-sequentially com-
plete quasi-pseudo-metric spaces. These results generalize the
corresponding ones obtained by other authors.
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1. INTRODUCTION

Heilpern [4] introduced the concept of fuzzy mappings and proved a fixed
point theorem for fuzzy contraction mappings which is a fuzzy analogue of
Nadler’s [7] fixed point theorem for multivalued mappings. Bose and Sahani [1]
extended Heilpern’s fixed point theorem to a pair of fuzzy contraction mappings.
Park and Jeong [8] proved the existence of common fixed points for pairs of
fuzzy mappings satisfying contractive-type conditions and rational inequality in
complete metric spaces. In [2] the authors extended the theorems of [8] to left
K-sequentially complete quasi-pseudo-metric spaces and in [3] they obtained
fixed point theorems for fuzzy mappings in Smyth-sequentially complete quasi-
metric spaces. This study was motivated by the efficiency of quasi-pseudo-
metric spaces as tools to formulate and solve problems in theoretical computer
science. In this paper we generalize the theorems of [2] and present a partial
generalization for theorem 3.1 of [1] to countable families of fuzzy mappings in
left K-sequentially complete quasi-pseudo-metric spaces.

*While working on this paper the author has been partially supported by the grants from
UPYV ”Incentivo a la Investigacién / 99”7 and from Generalitat Valenciana GV00-122-1
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2. PRELIMINARIES

Recall that (X,d) is a quasi-pseudo-metric space, and d is called a quasi-
pseudo-metric if d is a non-negative real valued function on X x X, which
satisfies d(z,x) = 0 and d(z,z) < d(z,y) + d(y, z) for every z,y,z € X. If d
is a quasi-pseudo-metric on X, then the function d=! : X x X — R, defined
by d (z,y) = d(y,z) for all z,y € X, is also a quasi-pseudo-metric on X.
Only if confusion is possible, we write d-closed or d~!-closed, for example, to
distinguish the topological concept in (X, d) or (X,d 1).

We will make use of the following notion, which has been studied under
different names by various authors (see e.g. [5], [9]).

Definition 2.1. A sequence (xy,) in a quasi-pseudo-metric space (X, d) is called
left K-Cauchy if for each € > 0 there is k € N such that d(z,,xs) < € for all
r,s € N with k <r <s. (X,d) is said to be left K-sequentially complete if each
left K-Cauchy sequence in X converges (with respect to the topology T (d)).

A fuzzy set in X is an element of IX where I = [0,1]. The r-level set of
A, denoted by A,, is defined by A, = {x € X : A(z) >r} if r € (0,1], and
Ay = c{x € X : A(z) > 0}. For z € X we denote by {z} the characteristic
function of the ordinary subset {z} of X. If A, B € I, as usual in fuzzy
theory, we denote A C B when A(z) < B(z), for each z € X.

Let (X,d) be a quasi-pseudo-metric space. We consider the families of [2]

W'(X) ={A e I*: A is nonempty and d-closed}

W*(X)={A € W'(X): Ay is d”'-countably compact}

and the following concepts for A, B € W/(X):

e p(A,B) =inf{d(z,y) : x € A1,y € B1} = d(A1, B1),

e §(A,B) =sup{d(z,y) : z € Ao,y € By} and

e D(A,B) =sup{H(A,,B,) :re€l},
where H(A,, B,) is the Hausdorff distance deduced from the quasi-pseudo-
metric d.

We will use the following lemmas for a quasi-pseudo-metric space (X, d).

Lemma 2.2. Let z € X and A € W/(X). Then {z} C A if and only if
p(z,A) =0.

Lemma 2.3. p(z,A) <d(z,y) + p(y, A), for any v,y € X, A € W'(X).
Lemma 2.4. If {zo} C A then p(z¢, B) < D(A, B) for each A,B € W'(X).
Lemma 2.5. Suppose K # @ is countably compact in the quasi-pseudo-metric

space (X,d™1). If z € X, then there exists kg € K such that d(z,K) = d(z, ko).

3. FIXED POINT THEOREMS

First we generalize the theorems of [2] to countable families of fuzzy map-
pings. From now on (X, d) will be a quasi-pseudo-metric space.
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Definition 3.1. F' is said to be a fuzzy mapping if F is a mapping from the
set X into W'(X). We say that z € X is a fized point of F if z € F(2)1, i.e.,
Theorem 3.2. Let (X,d) be a left K-sequentially complete space and let
{F;: X - W*X)}2, be a countable family of fuzzy mappings. If there exists
a constant h, 0 < h < 1, such that for each z,y € X,
D(Fl(x)7FZ+1(y)) < hmax{ (dAd_l)(I‘,y)7
p(z, Fy(x)

);
p( z+1(y) )
(CL’ F’Hrl( ))+p(y7F’i($)) }’ ’L = 1,2,3,

D(Fi(z), Fi(y)) < hmax{ (dA ”)(%y),

pef@)tPwli@) oy~ 93 4

then there exists z € X such that {z} C Fi(z), i = 1,2,3,ldots

Proof. Assume o = vh. Let 91 € X and suppose 211 € (F}(z01))1. By Lemma
2.5 there exists z12 € (Fy(x11))1 such that d(z11,z12) = d(x11, (F2(x11))1) since
(Fy(r11))1 is d~'-countably compact. We have
d(w11,712) = d(211, (F2(211))1) < Di(711, Fo(z11)) < D(Fi(w01), F2(711))
Again, we can find z; € X such that x5 € (Fi(z12))1 and d(z12,221) <
D(Fs(x11), Fi(z12)). Continuing in this manner we produce a sequence
{!Bn,9612,3621,9622,3623,9631,3632,903373034,---,%‘nb%‘nQ, e 7$n(n+1)7"'}
in X such that

Tn1 € (FL(Z(-1n))1, d@@n—1)n,Tn1) < D(Fn(@m-1)(n-1))> F1(T(n—1)n));
Tn2 € (Fa(zn1))1, d(@n1, Tn2) < D(FL(Z(n-1)n), F2(2n1)),

n=1,2,... and
Tni € (Fi(@Zn—1))1s d(@nii—1), Tni) < D(Fi—1)(Tngi—2))s Fi(Tni-1))),
i=3,4,...,(n+1), n=23,...
We will prove that (z,) is a left- K-Cauchy sequence. Firstly
d(z11,712) < D(Fi(zo1), Fo(z11))
< o max{(d Ad™")(zo1, 211), p(zo1, Fi(z01)), p(211, Fa(211)),

p(xo1, Fo(z11)) +p($11,F1(!E01))}
2

< ama‘x{(d/\d_l)(xma$11),d($01,$11),d(xll,xu),
d(zo1,212) + d($117$11)}
2
d(zo1,z11) +d(z11, %
<« max{d(zo1,z11), d(211, T12), (zo1,z11) (z11 12)}

2
= «a max{d(zo1,%11),d(®11,712)}
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If d(z11,z12) > d(zo1,711), then d(z11,712) < ad(x11,x12), a contradiction.
Thus, d(wn,wlg) S d(.’L‘m,.’L‘H), and d(.’L‘H,.’L‘lg) < ad(xm,xu). Similarly

d(z12,721) < D(Fa(z11), F1(12))
< amax{(d/\dil)(xn,:vlz),p(xn,Fz(:vn)),p(:vlz,Fl(xlz)),

p(z11, F1(z12)) +P($127F2($11))}
2

< a max{d(z11,712),d(z12,221)}

and d(z12,721) < ad(z11,712) < o?d(zo1, 211);

d(zo1,22) < D(Fi(z12), Fo(z21))
< a max{d(z12,521),d(z21,222)}

and d(z21,T22) < ad(z12,721) < a3d(wo1, 211);

d(z92,723) < D(Fy(war), F3(222))
< amax{d(r21,%22), d(®22, 723)}

and so d($22,$23) < Oéd(ivzl,{tzz) < a4d(:r01,:r11).
Let yo = z91. Now, we rename the constructed sequence (z,s) as follows:

Y1 = 211,Y2 = L12,Y3 = L21,Y4 = L22,--.
and so, we obtain the sequence (y,) of points of X such that

Yn = Zij € (Fj(yn—1))1 for n = @ +7-1

where ¢ = 1,2,..., 5 = 1,...,72 4+ 1. By the above relations, one can verify
that d(yn, yn+1) < ad(Yn—1,yn) < " d(yo,y1) n = 1,2,... and for m > n it
is easy to see that d(yn,ym) < %d(yo,yl). Then, from [6], (y,) is a left
K-Cauchy sequence in X, so there exists z € X such that d(z,y,) — 0 (and
d(2, Zii+1y) — 0, d(z,74) — 0, as i — 0).

Next, we show by induction that p(z, Fj(z)) = 0, j = 1,2,3,..By lemmas
2.3, 2.4 we have:

p(z, Fi(2)) < d(z,212) + p(212, Fi(2))
< d(Z,Ilz) —I—D(FQ(IH),Fl(Z)).
Similarly
p(z, Fi(2)) < d(z,223) + p(w23, F1(2))
< d(Z,IQ;),) =+ D(Fg(xzz),Fl(Z))
p(z, Fi(2)) < d(z,234) + p(wsa, Fi(2))
< d(Z,:U34) =+ D(F4(.’E33),F1(Z))

and in general, for : = 1,2,3, ...

(3.1) p(z, F1(2)) < d(z,2i(11)) + D(Fip1(zi), F1(2))
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But

D(Fiy1(zii), Fi(2)) < b max{(dAd ") (i, 2),p(wii, Fi1(wii)), p(z, F1(2)),
p(wii, Fi1(2)) +p(Z7Fi+1($z'i))}
2
h max{(d A d~") (2, 2), d(@3, Ti(i41)),
d(z, Ti(iy1)) + D(Fip1(wii), F1(2)),
(32) d(@iiy Tiig1)) + D(Fm(iv;i)a Fi(2)) +d(z, i11))) s

In the sequel, the expression (2) will be denoted by hmax{C}. Now, there
are four cases:
Case I: If max{C} = (d A d~')(zi;, #), then the inequality (3.1) becomes

Pz, Fi(2)) < d(2 %i11)) + b (d A d™1) (@i, 2)
< d(z,zii41)) + hd(z,7i) — 0, as i — oo.

IN

The other three cases II-I'V coincide with the corresponding ones in [8], and
p(z, F1(z)) = 0 in all them. Thus, p(z, Fi(z)) = 0.

Suppose p(z, Fj(z)) = 0. Then, by lemma 2.2 {z} C F}(z) and by lemma 2.4
we have

(2, Fj1(2)) D(F;(2), Fjt1(2))
hmax(d A d™")(z, 2),p(z, Fj (2)),p(2, Fj1(2)),
ples Py (2) +p(e,Fy(2),
2
= hp(z, Fj41(2))
Thus (1 — h)p(z, Fj+1(2)) < 0,and therefore p(z, Fj11(z)) = 0. Hence, by
lemma 2.2 it follows that {z} C F}(z), for each j € N. O

VANVA

Theorem 3.3. Let (X,d) be a left K-sequentially complete space and let
{F; : X — W*(X)}2, be a countable family of fuzzy mappings. If there exists
a constant h €]0,1[, such that for each z,y € X

D(Fl(x)vFlJrl(y)) <k [p(val(x)) 'p(y7Fi+1(y))]1/27 1=1,2,3,...

D(-FZ(x)uFl(y)) < k [p(erZ(‘T)) p(y7F1(y))]1/27 "= 273747 (4
then there exists z € X such that {z} C Fi(z), 1=1,2,3, ...

Proof. Let xg1 € X. Let (x,5) be the sequence in the proof of theorem 3.2.
Now,

d(z11,212) < D(Fi(wo1), Fo(x11)) SLD(Fl(!Em),FQ(l‘n))

vh

(o1, Fi(zo1)) - p(z11, F2(=T11))]1/2

VAN

h
N
R 2[d(wor, 211) - d(@11, 212)] 2

IN
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SO, d(wn,{L‘lg) S hd(.’L‘m,wH). Similarly

d(xlz,le) < Ll)(FZ(ivll%Fl(xl?))

Vh
R (211, 212) - d(z12, T91)]H?

and d(z12, 1) < hd(z11,212) < h?d(z01, 211);

IN

d($21,$22) < LZ)(Fl (3712)> By (le))

vVh
W2 (212, w91) - d(221, T92)]H?

and d(z21,292) < hd(z12,121) < h3d(z01,211);

VAN

d(xgg, .7;23) < LZ)(F2(3721)7 F3 (x22))

vh
W2 [d(91, 92) - (w92, 223)] 2

and d(.’EQQ,.’Ezg) S hd($21,$22) S h4d(I01,:E11).

Let yo = z91. Now, we rename the constructed sequence (z,s) as theorem
3.2. By the above relations one can verify that d(yn,yn+1) < hd(yp—1,yn) <
h™d(yo,y1), n =1,2,...and from [6], (y) is a left K-Cauchy sequence in X.
Then, there exists z € X such that d(z,y,) — 0.

Next we will show by induction that p(z, Fj(2)) =0, 7 = 1,2, 3, ... By lemmas
2.3 and 2.4 it follows that for i =1,2,3, ...

VAN

p(z, F1(2)) < d(z,%ii41)) + P(@igir1), F1(2))
< d(z,%i41)) + D(Figi(zi), F1(z))
< d(z,miggy) + hld(@i, i) - plz, Fi(2)])Y — 0 as i — co.
Then, p(z, Fi(z)) = 0. Now, suppose p(z, Fj(z)) = 0. Then, by lemmas 2.2

and 2.4 we have

p(% Fit1(2)) < D(Fj(2), Fj1(2))
< hp(z, F; (2)) - p(z, Fij (Z))]1/2 = 0.
It follows that p(z, Fj+1(2)) = 0 and {z} C Fj(z), for each 7 € N. O

Since D(A,B) < §(A,B), YA,B € W'(X), then we deduce the following
corollary.

Corollary 3.4. Let (X,d) be a left K-sequentially complete space and let
{F; : X = W*(X)}2, be a countable family of fuzzy mappings. If there exists
a constant h €]0,1[, such that for each z,y € X
5(Fl(x)7 -FZ+1(y)) < k[p(x7 FZ(*T)) : p(y7 -Fi+1(y))]1/27 1= ]-7 27 37 v
6(Fl(x)7 Fl(y)) < k[p($7 E(x)) 'p(yaFl(y))]l/zv 1 =2,3,4,...,

then there exists z € X such that {z} C Fi(z), 1=1,2,3,...
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Theorem 3.5. Let (X,d) be a left K-sequentially complete space and let
{F; : X = W*(X)}2, be a countable family of fuzzy mappings. If there exist
constants h, k > 0, with h + k < 1, such that for each z,y € X

D(Fy(z), Fyi1(y)) < hp(y, Fip1 (W) [1+p(@, 1 (2))] +kd(z,y), i=1,2,3,...

1+d(z,y)
D(F(z), Fi(y)) < PEubgr e hd(w,y), =234,
D(F\(z), Fy(y)) < Py, z(Z{Eg(Ing, @)l 4 kd(z,y), i=3,4,. ..,

then there exists z € X such that {z} C Fi(z), i =1,2,3,....

Proof. Let xg1 € X. Let (x,5) be the sequence in the proof of theorem 3.2.
Now, d(z11,%12) < D(Fi(zo1), Fo(z11)) and using one of the two boundary
conditions for D, it is proved that

k k
d(z11,212) < 77 d(@or, 211) and d(z13,221) < T d(211, 712).
Similarly we have

k k
d(z21,731) < 77 d(@12,921), d(w32, w31) < T d(@21,231), -

Let yo = z91. Now, we rename the constructed sequence (z,s) as theorem
3.2 and we can see that

k E \"
(Y, Yn+1) < T dYn-1,Yn) < (m) d(yo, y1)-
Furthermore, taking t = %, for m > n the following relation is satisfied
tn

In consequence (y,) is a left K-Cauchy sequence and hence converges to z in
X. We will see that p(z, Fj(2)) =0, 7 = 1,2,3, ... First,

hd(@ii, Ti(;11))[1 + p(2, F1(2))]
1 +d(z,xi)

p(za Fl(z)) < d(z7$i(i+1)) + + kd(zaxu) - 07

as ¢ — oo.

Then we have p(z, Fi(z)) = 0. Now, suppose p(z,F;(z)) = 0. Then by
lemmas 2.2 and 2.4 we have p(z, Fj11(2)) < hp(z, Fj+1(2)) and it follows that
p(z, Fj+1(2)) = 0. Hence, by lemma 2.2 it follows that {z} C F}(z), for each
JEN O

We consider the following theorem for complete metric spaces.

Theorem 3.6 (Bose and Sahani [1]). Let (X,d) be a complete linear space
and let Fy and Fy be fuzzy mappings from X to W(X) satisfying the following
condition: For any x,y in X,
D(F1(x), Fy(y)) < ap(z, Fi(x)) + aop(y, Fa(y)) + asply, F1(x))
+asp(z, F2(y)) + asd(z, y)
where a1, az, as, a4, as, are non-negative real numbers, a1+az+asz+as+as < 1
and a1 = ag or az = as. Then there ezists z € X such that {z} C Fy(z), 1 =1,2.
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We will present two similar theorems for a countable family of fuzzy mappings
in a quasi-pseudo-metric space (X,d).

Theorem 3.7. Let (X,d) be a left K-sequentially complete space and let
{F; : X — W*(X)}2, be a countable family satisfying the following condition:
For any z, y € X,
D(Fy(z), Fir1(y) < awp(z, Fy(x)) + azp(y, Fir1(y)) + asply, Fi(z))
—|—a4p(ac, FZ+1(y)) + 0’5(d A dil)(:pa y),l = 17 27

D(Fi(z), Fi(y)) < aip(z, Fi(z)) + agply, Fi(y)) + asply, Fi(z))
+aqgp(z, Fi(y)) + as(d A dil)(x,y), 1=2,3,..

where a1, ag, as, aq, as, are non-negative real numbers and a1 +as+2a4+as < 1.
Then there exists z € X such that {z} C Fi(z), i =1,2,3, ...

Proof. Let xg; € X. Let (z,5) be the sequence in the proof of theorem 3.2.
Now

d(z11,212) < D(Fi(zo1), Fa(w11))
< a1p(wor, Fi(wor)) + aep(@11, Fo(211)) + azp(z1, Fi(zor))
+asp(wor, Far(z11)) + as(d A d™") (o1, 11)
< ard(wor, 11) + a2d(w11, T12) + ag(d(zor, v11) + d(w11, 712))
+asd(wo1,711),
ie.,

a; + a4 + as
d(z11,212) <

d .
S — (o1, 211)

ay +aq +as

Let r = . Then 0 < r <1 and d(Ill,.’Elz) < Td(.’E()l,In). Again
1-— a9 — Q4
d(z12,221) < D(Fa(z11), Fi(z12))
< ad(z11,212) + apd(z12, 221) + as(d(z11, 212) + d(z12, 221))
+asd(z11,%12),
ie.,

d(z12,721) < rd(z11,712) < rd(wo1, 211).

Let yo = z91. Now, we rename the constructed sequence (z,s) as theorem
3.2. By the above relations one can verify that d(y,, yn+1) < r"d(yo,y1), n =
1,2, .... and there exists z € X such that d(z,y,) — 0.

We will show by induction that p(z, Fj(z)) =0, j =1,2,3,... By lemmas 2.3
and 2.4 it follows that for ¢ =1,2,3, ...

p(z, F1(2)) d(2, Zii+1)) + P(Ti(it1), F1(2))

<
< d(Z,$i(i+1)) + D(E+l($ii)7F1 (Z))



Common fixed point theorems 47

But
D(Fit1(zi), Fi(2)) < a1p(wii, Fip1(zi)) + a2p(z, F1(2))
+azp(z, Fir1(xii) + aap(wii, Fi(2))
+as(d A d 1) (2, 2)
< ard(@ii, Tigig1))

+as {d(z, xi(i+1)) + D(.FZ+1($“)7 Fy (Z))}
tazd(z, Tii11))

+ay {d(zii, Ti11)) + D(Figr (@), Fi(2)) }
+asd(z, zi).

Thus
D(Fiy1(zi), F1(2)) < %ﬂ(wn,mi(iﬂ))
a a,
+ (2, Tigi 1))
+1—a25—a4 d(Z,:Uu)
So
a1+ aq
p(z, F1(2)) < d(z,2iq1)) + md(gfﬁaxi(i—i—l))
as + ag a5
+md(za$i(i+l)) L d(z, i) = 0
as ¢ — oo.

Then, p(z, F1(z)) = 0. Now, suppose p(z, F;(z)) = 0. Then, by lemma 2.2
{z} C Fjj(z) and by lemma 2.4 we have
p(z, Fj1(2)) < D(Fj(2), Fj1(2))
< ap(z, Fj(2)) + asp(z, Fj11(2))
+azp(z, Fj(2)) + asp(z, Fii1(2)) + (d A d7Y)(2,2)
= (a2 +a4)p(z, Fj11(2)).

Thus (1 — ap — a4)p(z, Fj11(2)) <0, and it follows that p(z, Fj11(z)) = 0. By
lemma 2.2 it follows that {z} C F}(z), for each j € N.
U

We notice the above theorem is not a generalization of theorem 3.6. Now we
present a partial generalization of this theorem.

Theorem 3.8. Let (X,d) be a left K-sequentially complete space and let
{F;: X - WHX)}2, be a countable family of fuzzy mappings, satisfying the
following condition: For any z, y € X,
D(Fy(x), Fiy1(y)) < awp(z, Fi(x)) + aop(y, Fo(y)) + asp(y, F1(z))
+a4p(x, F2(y)) + a5(d/\ dil)(‘ray% = 17 27

D(F\(z), Fi(y)) < aip(z, Fi(z)) + azply, Fi(y)) + asp(y, F1(z))
+asp(, Fi(y)) + as(d A d ™) (z,y), i = 3,4,

where a1, a2, a3, a4, as, are non-negative real numbers and a1 +as+2a3+as < 1,
)

a; + ag + 2a4 + a5 < 1. Then there exists z € X such that {z} C Fi(z
i=1,2,3,... (compare with 3.6).

’
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Proof. Let g1 € X. Let (x,5) be the sequence in the proof of theorem 3.2.
Now

d(w11,212) < D(Fi(z01), Fa(711))
and, as in the proof of the above theorem, we have
a1 +aq4 + a3

d(z11,219) < (o1, 211)-
(@11, 212) < — (o1, 211)
Again
as + az + as
d < —" —d .
(12, 221) < 1—a; —as (211, 12)
Let r = w, and s = w. Then 0 < r,s < 1. Take
1—as—ay 1—ay —as
t =max {r,s} < 1. So, we have
d(z11,712) < rd(zor,z1) < td(wor,z11),
d(z12,221) < sd(zi1,712) < td(zin,z12) < t2d(zo1,z11).

Let yo = z¢1. Now, we rename the constructed sequence (z,4) as theorem 3.2.
By the above relations one can verify that d(yn, yn+1) < t" d(yo,y1),n =1,2,...
Then there exists z € X such that d(z,y,) — 0 and as in the proof of the above
theorem it can be shown that {z} C Fj(z), for each j € N. O
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