# Common fixed point theorems for a countable family of fuzzy mappings 

Anna Vidal*


#### Abstract

In this paper we prove fixed point theorems for countable families of fuzzy mappings satisfying contractive-type conditions and a rational inequality in left $K$-sequentially complete quasi-pseudo-metric spaces. These results generalize the corresponding ones obtained by other authors.


2000 AMS Classification: 54 A 40.
Keywords: Fuzzy mapping, left K-Cauchy sequence, quasi-pseudo-metric.

## 1. Introduction

Heilpern [4] introduced the concept of fuzzy mappings and proved a fixed point theorem for fuzzy contraction mappings which is a fuzzy analogue of Nadler's [7] fixed point theorem for multivalued mappings. Bose and Sahani [1] extended Heilpern's fixed point theorem to a pair of fuzzy contraction mappings. Park and Jeong [8] proved the existence of common fixed points for pairs of fuzzy mappings satisfying contractive-type conditions and rational inequality in complete metric spaces. In [2] the authors extended the theorems of [8] to left $K$-sequentially complete quasi-pseudo-metric spaces and in [3] they obtained fixed point theorems for fuzzy mappings in Smyth-sequentially complete quasimetric spaces. This study was motivated by the efficiency of quasi-pseudometric spaces as tools to formulate and solve problems in theoretical computer science. In this paper we generalize the theorems of [2] and present a partial generalization for theorem 3.1 of [1] to countable families of fuzzy mappings in left $K$-sequentially complete quasi-pseudo-metric spaces.

[^0]
## 2. Preliminaries

Recall that $(X, d)$ is a quasi-pseudo-metric space, and $d$ is called a quasi-pseudo-metric if $d$ is a non-negative real valued function on $X \times X$, which satisfies $d(x, x)=0$ and $d(x, z) \leq d(x, y)+d(y, z)$ for every $x, y, z \in X$. If $d$ is a quasi-pseudo-metric on $X$, then the function $d^{-1}: X \times X \rightarrow \mathbb{R}$, defined by $d^{-1}(x, y)=d(y, x)$ for all $x, y \in X$, is also a quasi-pseudo-metric on $X$. Only if confusion is possible, we write $d$-closed or $d^{-1}$-closed, for example, to distinguish the topological concept in $(X, d)$ or $\left(X, d^{-1}\right)$.

We will make use of the following notion, which has been studied under different names by various authors (see e.g. [5], [9]).

Definition 2.1. A sequence $\left(x_{n}\right)$ in a quasi-pseudo-metric space $(X, d)$ is called left $K$-Cauchy if for each $\varepsilon>0$ there is $k \in \mathbb{N}$ such that $d\left(x_{r}, x_{s}\right)<\varepsilon$ for all $r, s \in \mathbb{N}$ with $k \leq r \leq s$. $(X, d)$ is said to be left $K$-sequentially complete if each left $K$-Cauchy sequence in $X$ converges (with respect to the topology $\mathcal{T}(d)$ ).

A fuzzy set in $X$ is an element of $I^{X}$ where $I=[0,1]$. The $r$-level set of $A$, denoted by $A_{r}$, is defined by $A_{r}=\{x \in X: A(x) \geq r\}$ if $r \in(0,1]$, and $A_{0}=c l\{x \in X: A(x)>0\}$. For $x \in X$ we denote by $\{x\}$ the characteristic function of the ordinary subset $\{x\}$ of $X$. If $A, B \in I^{X}$, as usual in fuzzy theory, we denote $A \subset B$ when $A(x) \leq B(x)$, for each $x \in X$.

Let $(X, d)$ be a quasi-pseudo-metric space. We consider the families of [2]

$$
\begin{gathered}
W^{\prime}(X)=\left\{A \in I^{X}: A_{1} \text { is nonempty and } d \text {-closed }\right\} \\
W^{*}(X)=\left\{A \in W^{\prime}(X): A_{1} \text { is } d^{-1} \text {-countably compact }\right\}
\end{gathered}
$$

and the following concepts for $A, B \in W^{\prime}(X)$ :

- $p(A, B)=\inf \left\{d(x, y): x \in A_{1}, y \in B_{1}\right\}=d\left(A_{1}, B_{1}\right)$,
- $\delta(A, B)=\sup \left\{d(x, y): x \in A_{0}, y \in B_{0}\right\}$ and
- $D(A, B)=\sup \left\{H\left(A_{r}, B_{r}\right): r \in I\right\}$,
where $H\left(A_{r}, B_{r}\right)$ is the Hausdorff distance deduced from the quasi-pseudometric $d$.

We will use the following lemmas for a quasi-pseudo-metric space $(X, d)$.
Lemma 2.2. Let $x \in X$ and $A \in W^{\prime}(X)$. Then $\{x\} \subset A$ if and only if $p(x, A)=0$.

Lemma 2.3. $p(x, A) \leq d(x, y)+p(y, A)$, for any $x, y \in X, A \in W^{\prime}(X)$.
Lemma 2.4. If $\left\{x_{0}\right\} \subset A$ then $p\left(x_{0}, B\right) \leq D(A, B)$ for each $A, B \in W^{\prime}(X)$.
Lemma 2.5. Suppose $K \neq \varnothing$ is countably compact in the quasi-pseudo-metric space $\left(X, d^{-1}\right)$. If $z \in X$, then there exists $k_{0} \in K$ such that $d(z, K)=d\left(z, k_{0}\right)$.

## 3. Fixed point theorems

First we generalize the theorems of [2] to countable families of fuzzy mappings. From now on ( $X, d$ ) will be a quasi-pseudo-metric space.

Definition 3.1. $F$ is said to be a fuzzy mapping if $F$ is a mapping from the set $X$ into $W^{\prime}(X)$. We say that $z \in X$ is a fixed point of $F$ if $z \in F(z)_{1}$, i.e., $\{z\} \subset F(z)$.

Theorem 3.2. Let $(X, d)$ be a left $K$-sequentially complete space and let $\left\{F_{i}: X \rightarrow W^{*}(X)\right\}_{i=1}^{\infty}$ be a countable family of fuzzy mappings. If there exists a constant $h, 0 \leq h<1$, such that for each $x, y \in X$,

$$
\begin{aligned}
& D\left(F_{i}(x), F_{i+1}(y)\right) \leq h \max \left\{\left(d \wedge d^{-1}\right)(x, y),\right. \\
& p\left(x, F_{i}(x)\right) \text {, } \\
& p\left(y, F_{i+1}(y)\right) \text {, } \\
& \left.\frac{p\left(x, F_{i+1}(y)\right)+p\left(y, F_{i}(x)\right)}{2} \quad\right\}, \quad i=1,2,3, \ldots \\
& D\left(F_{i}(x), F_{1}(y)\right) \leq h \max \left\{\left(d \wedge d^{-1}\right)(x, y),\right. \\
& p\left(x, F_{i}(x)\right) \text {, } \\
& p\left(y, F_{1}(y)\right) \text {, } \\
& \left.\frac{p\left(x, F_{1}(y)\right)+p\left(y, F_{i}(x)\right)}{2} \quad\right\}, \quad i=2,3,4, \ldots,
\end{aligned}
$$

then there exists $z \in X$ such that $\{z\} \subset F_{i}(z), i=1,2,3$, ldots
Proof. Assume $\alpha=\sqrt{h}$. Let $x_{01} \in X$ and suppose $x_{11} \in\left(F_{1}\left(x_{01}\right)\right)_{1}$. By Lemma 2.5 there exists $x_{12} \in\left(F_{2}\left(x_{11}\right)\right)_{1}$ such that $d\left(x_{11}, x_{12}\right)=d\left(x_{11},\left(F_{2}\left(x_{11}\right)\right)_{1}\right)$ since $\left(F_{2}\left(x_{11}\right)\right)_{1}$ is $d^{-1}$-countably compact. We have

$$
d\left(x_{11}, x_{12}\right)=d\left(x_{11},\left(F_{2}\left(x_{11}\right)\right)_{1}\right) \leq D_{1}\left(x_{11}, F_{2}\left(x_{11}\right)\right) \leq D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right)
$$

Again, we can find $x_{21} \in X$ such that $x_{21} \in\left(F_{1}\left(x_{12}\right)\right)_{1}$ and $d\left(x_{12}, x_{21}\right) \leq$ $D\left(F_{2}\left(x_{11}\right), F_{1}\left(x_{12}\right)\right)$. Continuing in this manner we produce a sequence

$$
\left\{x_{11}, x_{12}, x_{21}, x_{22}, x_{23}, x_{31}, x_{32}, x_{33}, x_{34}, \ldots, x_{n 1}, x_{n 2}, \ldots, x_{n(n+1)}, \ldots\right\}
$$

in $X$ such that
$x_{n 1} \in\left(F_{1}\left(x_{(n-1) n}\right)\right)_{1}, \quad d\left(x_{(n-1) n}, x_{n 1}\right) \leq D\left(F_{n}\left(x_{(n-1)(n-1)}\right), F_{1}\left(x_{(n-1) n}\right)\right)$,
$x_{n 2} \in\left(F_{2}\left(x_{n 1}\right)\right)_{1}, \quad d\left(x_{n 1}, x_{n 2}\right) \leq D\left(F_{1}\left(x_{(n-1) n}\right), F_{2}\left(x_{n 1}\right)\right)$,
$n=1,2, \ldots$ and

$$
x_{n i} \in\left(F_{i}\left(x_{n(i-1)}\right)\right)_{1}, \quad d\left(x_{n(i-1)}, x_{n i}\right) \leq D\left(F_{(i-1)}\left(x_{n(i-2)}\right), F_{i}\left(x_{n(i-1)}\right)\right),
$$

$i=3,4, \ldots,(n+1), n=2,3, \ldots$
We will prove that $\left(x_{r s}\right)$ is a left- $K$-Cauchy sequence. Firstly

$$
\begin{aligned}
d\left(x_{11}, x_{12}\right) \leq & D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right) \\
< & \alpha \max \left\{\left(d \wedge d^{-1}\right)\left(x_{01}, x_{11}\right), p\left(x_{01}, F_{1}\left(x_{01}\right)\right), p\left(x_{11}, F_{2}\left(x_{11}\right)\right)\right. \\
& \left.\frac{p\left(x_{01}, F_{2}\left(x_{11}\right)\right)+p\left(x_{11}, F_{1}\left(x_{01}\right)\right)}{2}\right\} \\
\leq & \alpha \max \left\{\left(d \wedge d^{-1}\right)\left(x_{01}, x_{11}\right), d\left(x_{01}, x_{11}\right), d\left(x_{11}, x_{12}\right),\right. \\
& \left.\frac{d\left(x_{01}, x_{12}\right)+d\left(x_{11}, x_{11}\right)}{2}\right\} \\
\leq & \alpha \max \left\{d\left(x_{01}, x_{11}\right), d\left(x_{11}, x_{12}\right), \frac{d\left(x_{01}, x_{11}\right)+d\left(x_{11}, x_{12}\right)}{2}\right\} \\
= & \alpha \max \left\{d\left(x_{01}, x_{11}\right), d\left(x_{11}, x_{12}\right)\right\}
\end{aligned}
$$

If $d\left(x_{11}, x_{12}\right)>d\left(x_{01}, x_{11}\right)$, then $d\left(x_{11}, x_{12}\right)<\alpha d\left(x_{11}, x_{12}\right)$, a contradiction. Thus, $d\left(x_{11}, x_{12}\right) \leq d\left(x_{01}, x_{11}\right)$, and $d\left(x_{11}, x_{12}\right)<\alpha d\left(x_{01}, x_{11}\right)$. Similarly

$$
\begin{aligned}
d\left(x_{12}, x_{21}\right) \leq & D\left(F_{2}\left(x_{11}\right), F_{1}\left(x_{12}\right)\right) \\
< & \alpha \max \left\{\left(d \wedge d^{-1}\right)\left(x_{11}, x_{12}\right), p\left(x_{11}, F_{2}\left(x_{11}\right)\right), p\left(x_{12}, F_{1}\left(x_{12}\right)\right),\right. \\
& \left.\frac{p\left(x_{11}, F_{1}\left(x_{12}\right)\right)+p\left(x_{12}, F_{2}\left(x_{11}\right)\right)}{2}\right\} \\
\leq & \alpha \max \left\{d\left(x_{11}, x_{12}\right), d\left(x_{12}, x_{21}\right)\right\}
\end{aligned}
$$

and $d\left(x_{12}, x_{21}\right)<\alpha d\left(x_{11}, x_{12}\right)<\alpha^{2} d\left(x_{01}, x_{11}\right)$;

$$
\begin{aligned}
d\left(x_{21}, x_{22}\right) & \leq D\left(F_{1}\left(x_{12}\right), F_{2}\left(x_{21}\right)\right) \\
& <\alpha \max \left\{d\left(x_{12}, x_{21}\right), d\left(x_{21}, x_{22}\right)\right\}
\end{aligned}
$$

and $d\left(x_{21}, x_{22}\right)<\alpha d\left(x_{12}, x_{21}\right)<\alpha^{3} d\left(x_{01}, x_{11}\right)$;

$$
\begin{aligned}
d\left(x_{22}, x_{23}\right) & \leq D\left(F_{2}\left(x_{21}\right), F_{3}\left(x_{22}\right)\right) \\
& <\alpha \max \left\{d\left(x_{21}, x_{22}\right), d\left(x_{22}, x_{23}\right)\right\}
\end{aligned}
$$

and so $d\left(x_{22}, x_{23}\right)<\alpha d\left(x_{21}, x_{22}\right)<\alpha^{4} d\left(x_{01}, x_{11}\right)$.
Let $y_{0}=x_{01}$. Now, we rename the constructed sequence $\left(x_{r s}\right)$ as follows:

$$
y_{1}=x_{11}, y_{2}=x_{12}, y_{3}=x_{21}, y_{4}=x_{22}, \ldots
$$

and so, we obtain the sequence $\left(y_{n}\right)$ of points of $X$ such that

$$
y_{n}=x_{i j} \in\left(F_{j}\left(y_{n-1}\right)\right)_{1} \text { for } n=\frac{(i+1) i}{2}+j-1
$$

where $i=1,2, \ldots, j=1, \ldots, i+1$. By the above relations, one can verify that $d\left(y_{n}, y_{n+1}\right)<\alpha d\left(y_{n-1}, y_{n}\right)<\alpha^{n} d\left(y_{0}, y_{1}\right) n=1,2, \ldots$ and for $m>n$ it is easy to see that $d\left(y_{n}, y_{m}\right) \leq \frac{\alpha^{n}}{1-\alpha} d\left(y_{0}, y_{1}\right)$. Then, from [6], $\left(y_{n}\right)$ is a left $K$-Cauchy sequence in $X$, so there exists $z \in X$ such that $d\left(z, y_{n}\right) \rightarrow 0$ (and $d\left(z, x_{i(i+1)}\right) \rightarrow 0, d\left(z, x_{i i}\right) \rightarrow 0$, as $\left.i \rightarrow \infty\right)$.

Next, we show by induction that $p\left(z, F_{j}(z)\right)=0, j=1,2,3, \ldots$ By lemmas 2.3, 2.4 we have:

$$
\begin{aligned}
p\left(z, F_{1}(z)\right) & \leq d\left(z, x_{12}\right)+p\left(x_{12}, F_{1}(z)\right) \\
& \leq d\left(z, x_{12}\right)+D\left(F_{2}\left(x_{11}\right), F_{1}(z)\right) .
\end{aligned}
$$

Similarly

$$
\begin{aligned}
p\left(z, F_{1}(z)\right) & \leq d\left(z, x_{23}\right)+p\left(x_{23}, F_{1}(z)\right) \\
& \leq d\left(z, x_{23}\right)+D\left(F_{3}\left(x_{22}\right), F_{1}(z)\right) \\
p\left(z, F_{1}(z)\right) & \leq d\left(z, x_{34}\right)+p\left(x_{34}, F_{1}(z)\right) \\
& \leq d\left(z, x_{34}\right)+D\left(F_{4}\left(x_{33}\right), F_{1}(z)\right)
\end{aligned}
$$

and in general, for $i=1,2,3, \ldots$

$$
\begin{equation*}
p\left(z, F_{1}(z)\right) \leq d\left(z, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right) \tag{3.1}
\end{equation*}
$$

But

$$
\begin{align*}
D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right) \leq & h \max \left\{\left(d \wedge d^{-1}\right)\left(x_{i i}, z\right), p\left(x_{i i}, F_{i+1}\left(x_{i i}\right)\right), p\left(z, F_{1}(z)\right),\right. \\
& \left.\frac{p\left(x_{i i}, F_{1}(z)\right)+p\left(z, F_{i+1}\left(x_{i i}\right)\right)}{2}\right\} \\
\leq & h \max \left\{\left(d \wedge d^{-1}\right)\left(x_{i i}, z\right), d\left(x_{i i}, x_{i(i+1)}\right)\right. \\
& d\left(z, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right) \\
& \left.\quad \frac{\left.d\left(x_{i i}, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right)+d\left(z, x_{i(i+1)}\right)\right)}{2}\right\} . \tag{3.2}
\end{align*}
$$

In the sequel, the expression (2) will be denoted by $h \max \{C\}$. Now, there are four cases:

Case I: If $\max \{C\}=\left(d \wedge d^{-1}\right)\left(x_{i i}, z\right)$, then the inequality (3.1) becomes

$$
\begin{aligned}
p\left(z, F_{1}(z)\right) & \left.\leq d\left(z, x_{i(i+1)}\right)\right)+h\left(d \wedge d^{-1}\right)\left(x_{i i}, z\right) \\
& \leq d\left(z, x_{i(i+1)}\right)+h d\left(z, x_{i i}\right) \rightarrow 0, \text { as } i \rightarrow \infty
\end{aligned}
$$

The other three cases II-IV coincide with the corresponding ones in [8], and $p\left(z, F_{1}(z)\right)=0$ in all them. Thus, $p\left(z, F_{1}(z)\right)=0$.

Suppose $p\left(z, F_{j}(z)\right)=0$. Then, by lemma $2.2\{z\} \subset F_{j}(z)$ and by lemma 2.4 we have

$$
\begin{aligned}
p\left(z, F_{j+1}(z)\right) \leq & D\left(F_{j}(z), F_{j+1}(z)\right) \\
\leq & h \max \left(d \wedge d^{-1}\right)(z, z), p\left(z, F_{j}(z)\right), p\left(z, F_{j+1}(z)\right) \\
& \left.\frac{p\left(z, F_{j+1}(z)\right)+p\left(z, F_{j}(z)\right)}{2}\right\} \\
= & h p\left(z, F_{j+1}(z)\right)
\end{aligned}
$$

Thus $(1-h) p\left(z, F_{j+1}(z)\right) \leq 0$, and therefore $p\left(z, F_{j+1}(z)\right)=0$. Hence, by lemma 2.2 it follows that $\{z\} \subset F_{j}(z)$, for each $j \in \mathbb{N}$.

Theorem 3.3. Let $(X, d)$ be a left $K$-sequentially complete space and let $\left\{F_{i}: X \rightarrow W^{*}(X)\right\}_{i=1}^{\infty}$ be a countable family of fuzzy mappings. If there exists a constant $h \in] 0,1[$, such that for each $x, y \in X$

$$
\begin{gathered}
D\left(F_{i}(x), F_{i+1}(y)\right) \leq k\left[p\left(x, F_{i}(x)\right) \cdot p\left(y, F_{i+1}(y)\right)\right]^{1 / 2}, \quad i=1,2,3, \ldots \\
D\left(F_{i}(x), F_{1}(y)\right) \leq k\left[p\left(x, F_{i}(x)\right) \cdot p\left(y, F_{1}(y)\right)\right]^{1 / 2},
\end{gathered} \quad i=2,3,4, \ldots, ~ ?
$$

then there exists $z \in X$ such that $\{z\} \subset F_{i}(z), i=1,2,3, \ldots$
Proof. Let $x_{01} \in X$. Let $\left(x_{r s}\right)$ be the sequence in the proof of theorem 3.2.
Now,

$$
\begin{aligned}
d\left(x_{11}, x_{12}\right) & \leq D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right) \leq \frac{1}{\sqrt{h}} D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right) \\
& \leq \frac{h}{\sqrt{h}}\left[p\left(x_{01}, F_{1}\left(x_{01}\right)\right) \cdot p\left(x_{11}, F_{2}\left(x_{11}\right)\right)\right]^{1 / 2} \\
& \leq h^{1 / 2}\left[d\left(x_{01}, x_{11}\right) \cdot d\left(x_{11}, x_{12}\right)\right]^{1 / 2}
\end{aligned}
$$

So, $d\left(x_{11}, x_{12}\right) \leq h d\left(x_{01}, x_{11}\right)$. Similarly

$$
\begin{aligned}
d\left(x_{12}, x_{21}\right) & \leq \frac{1}{\sqrt{h}} D\left(F_{2}\left(x_{11}\right), F_{1}\left(x_{12}\right)\right) \\
& \leq h^{1 / 2}\left[d\left(x_{11}, x_{12}\right) \cdot d\left(x_{12}, x_{21}\right)\right]^{1 / 2}
\end{aligned}
$$

and $d\left(x_{12}, x_{21}\right) \leq h d\left(x_{11}, x_{12}\right)<h^{2} d\left(x_{01}, x_{11}\right)$;

$$
\begin{aligned}
d\left(x_{21}, x_{22}\right) & \leq \frac{1}{\sqrt{h}} D\left(F_{1}\left(x_{12}\right), F_{2}\left(x_{21}\right)\right) \\
& \leq h^{1 / 2}\left[d\left(x_{12}, x_{21}\right) \cdot d\left(x_{21}, x_{22}\right)\right]^{1 / 2}
\end{aligned}
$$

and $d\left(x_{21}, x_{22}\right) \leq h d\left(x_{12}, x_{21}\right) \leq h^{3} d\left(x_{01}, x_{11}\right)$;

$$
\begin{aligned}
d\left(x_{22}, x_{23}\right) & \leq \frac{1}{\sqrt{h}} D\left(F_{2}\left(x_{21}\right), F_{3}\left(x_{22}\right)\right) \\
& \leq h^{1 / 2}\left[d\left(x_{21}, x_{22}\right) \cdot d\left(x_{22}, x_{23}\right)\right]^{1 / 2}
\end{aligned}
$$

and $d\left(x_{22}, x_{23}\right) \leq h d\left(x_{21}, x_{22}\right) \leq h^{4} d\left(x_{01}, x_{11}\right)$.
Let $y_{0}=x_{01}$. Now, we rename the constructed sequence $\left(x_{r s}\right)$ as theorem 3.2. By the above relations one can verify that $d\left(y_{n}, y_{n+1}\right) \leq h d\left(y_{n-1}, y_{n}\right) \leq$ $h^{n} d\left(y_{0}, y_{1}\right), \quad n=1,2, \ldots$ and from [6], $\left(y_{n}\right)$ is a left $K$-Cauchy sequence in $X$. Then, there exists $z \in X$ such that $d\left(z, y_{n}\right) \rightarrow 0$.

Next we will show by induction that $p\left(z, F_{j}(z)\right)=0, j=1,2,3, \ldots$ By lemmas 2.3 and 2.4 it follows that for $i=1,2,3, \ldots$

$$
\begin{aligned}
p\left(z, F_{1}(z)\right) & \leq d\left(z, x_{i(i+1)}\right)+p\left(x_{i(i+1)}, F_{1}(z)\right) \\
& \leq d\left(z, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right) \\
& \leq d\left(z, x_{i(i+1)}\right)+h\left[d\left(x_{i i}, x_{i(i+1)}\right) \cdot p\left(z, F_{1}(z)\right)\right]^{1 / 2} \rightarrow 0 \text { as } i \rightarrow \infty .
\end{aligned}
$$

Then, $p\left(z, F_{1}(z)\right)=0$. Now, suppose $p\left(z, F_{j}(z)\right)=0$. Then, by lemmas 2.2 and 2.4 we have

$$
\begin{aligned}
p\left(z, F_{j+1}(z)\right) & \leq D\left(F_{j}(z), F_{j+1}(z)\right) \\
& \leq h\left[p\left(z, F_{j}(z)\right) \cdot p\left(z, F_{j+1}(z)\right)\right]^{1 / 2}=0 .
\end{aligned}
$$

It follows that $p\left(z, F_{j+1}(z)\right)=0$ and $\{z\} \subset F_{j}(z)$, for each $j \in \mathbb{N}$.
Since $D(A, B) \leq \delta(A, B), \forall A, B \in W^{\prime}(X)$, then we deduce the following corollary.

Corollary 3.4. Let $(X, d)$ be a left $K$-sequentially complete space and let $\left\{F_{i}: X \rightarrow W^{*}(X)\right\}_{i=1}^{\infty}$ be a countable family of fuzzy mappings. If there exists a constant $h \in] 0,1[$, such that for each $x, y \in X$

$$
\begin{array}{ll}
\delta\left(F_{i}(x), F_{i+1}(y)\right) \leq k\left[p\left(x, F_{i}(x)\right) \cdot p\left(y, F_{i+1}(y)\right)\right]^{1 / 2}, & i=1,2,3, \ldots \\
\delta\left(F_{i}(x), F_{1}(y)\right) \leq k\left[p\left(x, F_{i}(x)\right) \cdot p\left(y, F_{1}(y)\right)\right]^{1 / 2}, & i=2,3,4, \ldots,
\end{array}
$$

then there exists $z \in X$ such that $\{z\} \subset F_{i}(z), i=1,2,3, \ldots$

Theorem 3.5. Let $(X, d)$ be a left $K$-sequentially complete space and let $\left\{F_{i}: X \rightarrow W^{*}(X)\right\}_{i=1}^{\infty}$ be a countable family of fuzzy mappings. If there exist constants $h, k>0$, with $h+k<1$, such that for each $x, y \in X$

$$
\begin{array}{ll}
D\left(F_{i}(x), F_{i+1}(y)\right) \leq \frac{\left.h p\left(y, F_{i+1}(y)\right)\right)\left[1+p\left(x, F_{i}(x)\right)\right]}{1+d(x, y)}+k d(x, y), & i=1,2,3, \ldots \\
D\left(F_{i}(x), F_{1}(y)\right) \leq \frac{h p\left(y, F_{1}(y)\right)\left[1+1+\left(x, F_{i}(x)\right)\right]}{1+d(x, y)}+k d(x, y), & i=2,3,4, \ldots \\
D\left(F_{1}(x), F_{i}(y)\right) \leq \frac{h p\left(y, F_{i}(y)\right)\left[1+p\left(x, F_{1}(x)\right)\right]}{1+d(x, y)}+k d(x, y), & i=3,4, \ldots
\end{array}
$$

then there exists $z \in X$ such that $\{z\} \subset F_{i}(z), i=1,2,3, \ldots$.
Proof. Let $x_{01} \in X$. Let $\left(x_{r s}\right)$ be the sequence in the proof of theorem 3.2.
Now, $d\left(x_{11}, x_{12}\right) \leq D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right)$ and using one of the two boundary conditions for $D$, it is proved that

$$
d\left(x_{11}, x_{12}\right) \leq \frac{k}{1-h} d\left(x_{01}, x_{11}\right) \text { and } d\left(x_{12}, x_{21}\right) \leq \frac{k}{1-h} d\left(x_{11}, x_{12}\right) .
$$

Similarly we have

$$
d\left(x_{21}, x_{31}\right) \leq \frac{k}{1-h} d\left(x_{12}, x_{21}\right), d\left(x_{32}, x_{31}\right) \leq \frac{k}{1-h} d\left(x_{21}, x_{31}\right), \ldots .
$$

Let $y_{0}=x_{01}$. Now, we rename the constructed sequence $\left(x_{r s}\right)$ as theorem 3.2 and we can see that

$$
d\left(y_{n}, y_{n+1}\right) \leq \frac{k}{1-h} d\left(y_{n-1}, y_{n}\right) \leq\left(\frac{k}{1-h}\right)^{n} d\left(y_{0}, y_{1}\right)
$$

Furthermore, taking $t=\frac{k}{1-h}$, for $m>n$ the following relation is satisfied

$$
d\left(y_{n}, y_{m}\right) \leq \frac{t^{n}}{1-t} d\left(y_{0}, y_{1}\right)
$$

In consequence $\left(y_{n}\right)$ is a left $K$-Cauchy sequence and hence converges to $z$ in $X$. We will see that $p\left(z, F_{j}(z)\right)=0, j=1,2,3, \ldots$ First,

$$
p\left(z, F_{1}(z)\right) \leq d\left(z, x_{i(i+1)}\right)+\frac{h d\left(x_{i i}, x_{i(i+1)}\right)\left[1+p\left(z, F_{1}(z)\right)\right]}{1+d\left(z, x_{i i}\right)}+k d\left(z, x_{i i}\right) \rightarrow 0
$$

as $i \rightarrow \infty$.
Then we have $p\left(z, F_{1}(z)\right)=0$. Now, suppose $p\left(z, F_{j}(z)\right)=0$. Then by lemmas 2.2 and 2.4 we have $p\left(z, F_{j+1}(z)\right) \leq h p\left(z, F_{j+1}(z)\right)$ and it follows that $p\left(z, F_{j+1}(z)\right)=0$. Hence, by lemma 2.2 it follows that $\{z\} \subset F_{j}(z)$, for each $j \in \mathbb{N}$.

We consider the following theorem for complete metric spaces.
Theorem 3.6 (Bose and Sahani [1]). Let $(X, d)$ be a complete linear space and let $F_{1}$ and $F_{2}$ be fuzzy mappings from $X$ to $W(X)$ satisfying the following condition: For any $x, y$ in $X$,

$$
\begin{aligned}
D\left(F_{1}(x), F_{2}(y)\right) \leq & a_{1} p\left(x, F_{1}(x)\right)+a_{2} p\left(y, F_{2}(y)\right)+a_{3} p\left(y, F_{1}(x)\right) \\
& +a_{4} p\left(x, F_{2}(y)\right)+a_{5} d(x, y)
\end{aligned}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, are non-negative real numbers, $a_{1}+a_{2}+a_{3}+a_{4}+a_{5}<1$ and $a_{1}=a_{2}$ or $a_{3}=a_{4}$. Then there exists $z \in X$ such that $\{z\} \subset F_{i}(z), i=1,2$.

We will present two similar theorems for a countable family of fuzzy mappings in a quasi-pseudo-metric space $(X, d)$.

Theorem 3.7. Let $(X, d)$ be a left $K$-sequentially complete space and let $\left\{F_{i}: X \rightarrow W^{*}(X)\right\}_{i=1}^{\infty}$ be a countable family satisfying the following condition: For any $x, y \in X$,

$$
\begin{aligned}
D\left(F_{i}(x), F_{i+1}(y)\right) \leq & a_{1} p\left(x, F_{i}(x)\right)+a_{2} p\left(y, F_{i+1}(y)\right)+a_{3} p\left(y, F_{i}(x)\right) \\
& +a_{4} p\left(x, F_{i+1}(y)\right)+a_{5}\left(d \wedge d^{-1}\right)(x, y), i=1,2, \ldots \\
D\left(F_{i}(x), F_{1}(y)\right) \leq & a_{1} p\left(x, F_{i}(x)\right)+a_{2} p\left(y, F_{1}(y)\right)+a_{3} p\left(y, F_{i}(x)\right) \\
& +a_{4} p\left(x, F_{1}(y)\right)+a_{5}\left(d \wedge d^{-1}\right)(x, y), i=2,3, \ldots
\end{aligned}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, are non-negative real numbers and $a_{1}+a_{2}+2 a_{4}+a_{5}<1$. Then there exists $z \in X$ such that $\{z\} \subset F_{i}(z), i=1,2,3, \ldots$

Proof. Let $x_{01} \in X$. Let $\left(x_{r s}\right)$ be the sequence in the proof of theorem 3.2.
Now

$$
\begin{aligned}
d\left(x_{11}, x_{12}\right) \leq & D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right) \\
\leq & a_{1} p\left(x_{01}, F_{1}\left(x_{01}\right)\right)+a_{2} p\left(x_{11}, F_{2}\left(x_{11}\right)\right)+a_{3} p\left(x_{11}, F_{1}\left(x_{01}\right)\right) \\
& +a_{4} p\left(x_{01}, F_{2}\left(x_{11}\right)\right)+a_{5}\left(d \wedge d^{-1}\right)\left(x_{01}, x_{11}\right) \\
\leq & a_{1} d\left(x_{01}, x_{11}\right)+a_{2} d\left(x_{11}, x_{12}\right)+a_{4}\left(d\left(x_{01}, x_{11}\right)+d\left(x_{11}, x_{12}\right)\right) \\
& +a_{5} d\left(x_{01}, x_{11}\right)
\end{aligned}
$$

i.e.,

$$
d\left(x_{11}, x_{12}\right) \leq \frac{a_{1}+a_{4}+a_{5}}{1-a_{2}-a_{4}} d\left(x_{01}, x_{11}\right) .
$$

Let $r=\frac{a_{1}+a_{4}+a_{5}}{1-a_{2}-a_{4}}$. Then $0<r<1$ and $d\left(x_{11}, x_{12}\right) \leq r d\left(x_{01}, x_{11}\right)$. Again

$$
\begin{aligned}
d\left(x_{12}, x_{21}\right) \leq & D\left(F_{2}\left(x_{11}\right), F_{1}\left(x_{12}\right)\right) \\
\leq & a_{1} d\left(x_{11}, x_{12}\right)+a_{2} d\left(x_{12}, x_{21}\right)+a_{4}\left(d\left(x_{11}, x_{12}\right)+d\left(x_{12}, x_{21}\right)\right) \\
& +a_{5} d\left(x_{11}, x_{12}\right)
\end{aligned}
$$

i.e.,

$$
d\left(x_{12}, x_{21}\right) \leq r d\left(x_{11}, x_{12}\right) \leq r^{2} d\left(x_{01}, x_{11}\right) .
$$

Let $y_{0}=x_{01}$. Now, we rename the constructed sequence $\left(x_{r s}\right)$ as theorem 3.2. By the above relations one can verify that $d\left(y_{n}, y_{n+1}\right) \leq r^{n} d\left(y_{0}, y_{1}\right), \quad n=$ $1,2, \ldots$ and there exists $z \in X$ such that $d\left(z, y_{n}\right) \rightarrow 0$.

We will show by induction that $p\left(z, F_{j}(z)\right)=0, j=1,2,3, \ldots$ By lemmas 2.3 and 2.4 it follows that for $i=1,2,3, \ldots$

$$
\begin{aligned}
p\left(z, F_{1}(z)\right) & \leq d\left(z, x_{i(i+1)}\right)+p\left(x_{i(i+1)}, F_{1}(z)\right) \\
& \leq d\left(z, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right)
\end{aligned}
$$

But

$$
\begin{aligned}
D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right) \leq & a_{1} p\left(x_{i i}, F_{i+1}\left(x_{i i}\right)\right)+a_{2} p\left(z, F_{1}(z)\right) \\
& +a_{3} p\left(z, F_{i+1}\left(x_{i i}\right)\right)+a_{4} p\left(x_{i i}, F_{1}(z)\right) \\
\leq & a_{1} d\left(a_{5}\left(d \wedge d^{-1}\right)\left(x_{i i}, z\right)\right. \\
& +a_{2}\left\{d\left(z, x_{i(i+1)}\right)\right. \\
& \left.+a_{3} d\left(z, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right)\right\} \\
& +a_{4}\left\{d\left(x_{i i}, x_{i(i+1)}\right)+D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right)\right\} \\
& +a_{5} d\left(z, x_{i i}\right) .
\end{aligned}
$$

Thus

$$
\begin{aligned}
D\left(F_{i+1}\left(x_{i i}\right), F_{1}(z)\right) \leq & \frac{a_{1}+a_{4}}{1-a_{2}-a_{4}+\left(x_{i i}, x_{i(i+1)}\right)} \\
& +\frac{a_{2}+a_{3}}{1-a_{2}-a_{4}} d\left(z, x_{i(i+1)}\right) \\
& +\frac{a_{0}}{1-a_{2}-a_{4}} d\left(z, x_{i i}\right) .
\end{aligned}
$$

So

$$
\begin{aligned}
p\left(z, F_{1}(z)\right) \leq & d\left(z, x_{i(i+1)}\right)+\frac{a_{1}+a_{4}}{1-a_{2}-a_{4}} d\left(x_{i i}, x_{i(i+1)}\right) \\
& +\frac{a_{2}+a_{3}}{1-a_{2}-a_{4}} d\left(z, x_{i(i+1)}\right)+\frac{a_{5}}{1-a_{2}-a_{4}} d\left(z, x_{i i}\right) \rightarrow 0 \\
& \text { as } i \rightarrow \infty .
\end{aligned}
$$

Then, $p\left(z, F_{1}(z)\right)=0$. Now, suppose $p\left(z, F_{j}(z)\right)=0$. Then, by lemma 2.2 $\{z\} \subset F_{j}(z)$ and by lemma 2.4 we have

$$
\begin{aligned}
p\left(z, F_{j+1}(z)\right) \leq & D\left(F_{j}(z), F_{j+1}(z)\right) \\
\leq & a_{1} p\left(z, F_{j}(z)\right)+a_{2} p\left(z, F_{j+1}(z)\right) \\
& +a_{3} p\left(z, F_{j}(z)\right)+a_{4} p\left(z, F_{j+1}(z)\right)+\left(d \wedge d^{-1}\right)(z, z) \\
= & \left(a_{2}+a_{4}\right) p\left(z, F_{j+1}(z)\right)
\end{aligned}
$$

Thus $\left(1-a_{2}-a_{4}\right) p\left(z, F_{j+1}(z)\right) \leq 0$, and it follows that $p\left(z, F_{j+1}(z)\right)=0$. By lemma 2.2 it follows that $\{z\} \subset F_{j}(z)$, for each $j \in \mathbb{N}$.

We notice the above theorem is not a generalization of theorem 3.6. Now we present a partial generalization of this theorem.
Theorem 3.8. Let $(X, d)$ be a left $K$-sequentially complete space and let $\left\{F_{i}: X \rightarrow W^{*}(X)\right\}_{i=1}^{\infty}$ be a countable family of fuzzy mappings, satisfying the following condition: For any $x, y \in X$,

$$
\begin{aligned}
D\left(F_{i}(x), F_{i+1}(y)\right) \leq & a_{1} p\left(x, F_{1}(x)\right)+a_{2} p\left(y, F_{2}(y)\right)+a_{3} p\left(y, F_{1}(x)\right) \\
& +a_{4} p\left(x, F_{2}(y)\right)+a_{5}\left(d \wedge d^{-1}\right)(x, y), i=1,2, \ldots \\
D\left(F_{1}(x), F_{i}(y)\right) \leq & a_{1} p\left(x, F_{1}(x)\right)+a_{2} p\left(y, F_{i}(y)\right)+a_{3} p\left(y, F_{1}(x)\right) \\
& +a_{4} p\left(x, F_{i}(y)\right)+a_{5}\left(d \wedge d^{-1}\right)(x, y), i=3,4
\end{aligned}
$$

where $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}$, are non-negative real numbers and $a_{1}+a_{2}+2 a_{3}+a_{5}<1$, $a_{1}+a_{2}+2 a_{4}+a_{5}<1$. Then there exists $z \in X$ such that $\{z\} \subset F_{i}(z)$, $i=1,2,3, \ldots$ (compare with 3.6).

Proof. Let $x_{01} \in X$. Let $\left(x_{r s}\right)$ be the sequence in the proof of theorem 3.2.
Now

$$
d\left(x_{11}, x_{12}\right) \leq D\left(F_{1}\left(x_{01}\right), F_{2}\left(x_{11}\right)\right)
$$

and, as in the proof of the above theorem, we have

$$
d\left(x_{11}, x_{12}\right) \leq \frac{a_{1}+a_{4}+a_{5}}{1-a_{2}-a_{4}} d\left(x_{01}, x_{11}\right) .
$$

Again

$$
d\left(x_{12}, x_{21}\right) \leq \frac{a_{2}+a_{3}+a_{5}}{1-a_{1}-a_{3}} d\left(x_{11}, x_{12}\right) .
$$

Let $r=\frac{a_{1}+a_{4}+a_{5}}{1-a_{2}-a_{4}}$, and $s=\frac{a_{2}+a_{3}+a_{5}}{1-a_{1}-a_{3}}$. Then $0<r, s<1$. Take $t=\max \{r, s\}<1$. So, we have

$$
\begin{aligned}
& d\left(x_{11}, x_{12}\right) \leq r d\left(x_{01}, x_{11}\right) \leq t d\left(x_{01}, x_{11}\right), \\
& d\left(x_{12}, x_{21}\right) \leq \operatorname{sd}\left(x_{11}, x_{12}\right) \leq t d\left(x_{11}, x_{12}\right) \leq t^{2} d\left(x_{01}, x_{11}\right) .
\end{aligned}
$$

Let $y_{0}=x_{01}$. Now, we rename the constructed sequence ( $x_{r s}$ ) as theorem 3.2. By the above relations one can verify that $d\left(y_{n}, y_{n+1}\right) \leq t^{n} d\left(y_{0}, y_{1}\right), n=1,2, \ldots$ Then there exists $z \in X$ such that $d\left(z, y_{n}\right) \rightarrow 0$ and as in the proof of the above theorem it can be shown that $\{z\} \subset F_{j}(z)$, for each $j \in \mathbb{N}$.

## References

[1] R. K. Bose and D. Sahani, Fuzzy mappings and fixed point theorems, Fuzzy Sets and Systems, 21 (1987), 53-58.
[2] V. Gregori and S. Romaguera, Common fixed point theorems for pairs of fuzzy mappings, Indian Journal of Mathematics, 41, N ${ }^{\circ} 1$ (1999), 43-54.
[3] V. Gregori and S. Romaguera, Fixed point theorems for fuzzy mappings in quasi-metric spaces, Fuzzy Sets and Systems, 115 (2000), 477-483.
[4] S. Heilpern, Fuzzy mappings and fixed point theorem, J. Math. Anal. Appl., 83 (1981), 566-569.
[5] J. C. Kelly, Bitopological spaces, Proc. London Math. Soc., 13 (1963), 71-89.
[6] H. P. A. Künzi, M. Mrsevic, I. L. Reilly, M. K. Vamanamurthy, Convergence, precompactness and symmetry in quasi-uniform spaces, Math. Japonica, 38 (1993), 239-253.
[7] S. B. Nadler, Multivalued contraction mappings, Pacific J. Math., 30 (1969), 475-488.
[8] J. Y. Park and J. U. Jeong, Fixed point theorems for fuzzy mappings, Fuzzy Sets and Systems, 87 (1997), 111-116.
[9] I. L. Reilly, P. V. Subrahmanyam and M. K. Vamanamurthy, Cauchy sequences in quasipseudometric spaces, Mh. Math., 93 (1982), 127-140.

[^1]Carreyera Nazaret-Oliva $s / n$
46730-Grau de Gandia, (Valencia), Spain
E-mail address: avidal@mat.upv.es


[^0]:    *While working on this paper the author has been partially supported by the grants from UPV "Incentivo a la Investigación / 99" and from Generalitat Valenciana GV00-122-1

[^1]:    A. Vidal

    Dep. de Matemática Aplicada
    Escuela Politécnica Superior de Gandia

