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1. INTRODUCTION

One of the main problems in the theory of fuzzy topological spaces is to obtain
an appropriate and consistent notion of a fuzzy metric space. Many authors
have investigated this question and several notions of a fuzzy metric space have
been defined and studied. In particular, and modifying the concept of metric
fuzziness introduced by Kramosil and Michalek [9] (which is a generalization
of the concept of probabilistic metric space introduced by K. Menger [10] to
the fuzzy setting), George and Veeramani [4, 5], have studied a notion of fuzzy
metric space. In a previous paper [7], Gregori and Romaguera proved that the
class of fuzzy metric spaces, in George and Veeramani’s sense, coincides with
the class of metric spaces. In the light of the results obtained in [7], we think
that the George and Veeramani’s definition is an appropriate notion of metric
fuzziness in the sense that it provides rich fuzzy topological structures which can
be obtained, in many cases, from classical theorems. On the other hand, metric
spaces can be studied from the point of view of fuzzy theory. Unfortunately,
not much examples of such spaces have been given. In this paper we give new
examples of fuzzy metric spaces and study some properties of these spaces.
The structure of the paper is as follows. After preliminaries, in section 3,
we construct new fuzzy metrics from a given one, and study some questions
relative to boundedness. In Section 4 we give new examples of fuzzy metrics.
In Section 5 we study a property of Cauchy sequences in standard fuzzy metric
spaces, and finally, in Section 6, we define the concept of non-Archimedean
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fuzzy metric space and prove that the family of these spaces agrees with the
class of non-Archimedean metric spaces, so it provides a characterization of the
Ty topological spaces which admit a compatible uniformity, that has a countable
transitive base, in the fuzzy setting.

2. PRELIMINARIES

Throughout this paper the letters N and R will denote the set of all posi-
tive integers and real numbers, respectively. Our basic reference for General
Topology is [2].

According to [11] a binary operation * : [0, 1] x [0, 1] — [0, 1] is a continuous
t-norm if * satisfies the following conditions:

(i) * is associative and commutative
(ii) * is continuous
(iii) a * 1 = a for every a € [0,1]
(iv) a xb < c*d whenever ¢ < c and b < ¢, for all a,b,¢,d € [0, 1]

According to [4],[5], a fuzzy metric space is an ordered triple (X, M, %) such
that X is a non-empty set, % is a continuous t-norm and M is a fuzzy set of
X x X><]0 +oo] satisfying the following conditions, for all z,y,z € X, s,¢t > 0:
x,y,t) >0
z,y,t) =1ifand only if z = y
t) = M(y,=,1)

x y, t)« M(y,z,s) < M(z,z,t+ s) (triangular inequality)
z,y,-) : |0, +00[— [0,1] is continuous.

NN N N N
8
‘F

If (X, M, %) is a fuzzy metric space, we will say that (M, x), or M (if it is not
necessary to mention ), is a fuzzy metric on X.

Lemma 2.1. [6] M(z,y,-) is nondecreasing for all z,y € X.

Lemma 2.2. [1] Let (X, M,*) be a fuzzy metric space.
() If M(z,y,t) >1—r forz,ye X, t>0,0<r <1, we can find a ty,
0 <ty <t such that M (z,r ty) >1—r.
(ii) For any r1 > re, we can find a r3 such that ri xr3 > ro, and for any
rq4 we can find a rs such that r5 x5 > rg, (r1, T2, T3, T4, T5 €]0,1[).

Let (X,d) be a metric space. Define a * b = ab for every a,b € [0,1], and let
M, be the function on X x X x]0, +oo[ defined by

My(z,y, —_—
al@,y, ) = t+d(z,y)
Then (X, Mg, *) is a fuzzy metric space, and My is called the standard fuzzy
metric induced by d (see [4]).
George and Veeramani proved that every fuzzy metric M on X generates a
Hausdorff topology 737 on X which has as a base the family of open sets of the
form:

{By(z,rt):ze X,0<r<1,t>0}
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where
By (z,rt) ={ye X : M(z,y,t) >1—r}

for every r €]0,1[, and ¢ > 0. (We will write B(z,r,t) when confusion is not
possible).

Definition 2.3. A sequence {z,} in a fuzzy metric space (X, M,*) is called
a Cauchy sequence [5], if for each € > 0, t > 0 there exists ng € N such that
M(xp, T, t) > 1 —¢, for all m,n > ng.

A subset A of X is said to be F-bounded if there exist t > 0 and r €]0,1]
such that M(x,y,t) > 1 —7r for all z,y € A.

Proposition 2.4 ([4]). If (X,d) is a metric space, then:

(i) The topology 14 on X generated by d coincides with the topology T,
generated by the standard fuzzy metric M.
(ii) {xn} is a d—Cauchy sequence (i.e., a Cauchy sequence in (X,d)) if
and only if it is a Cauchy sequence in (X, Mg, *).
(i1i)) A C X is bounded in (X, d) if and only if it is F-bounded in (X, Mg, *).

We say that a topological space (X, 7) is fuzzy metrizable if there exists a
fuzzy metric M on X such that 7 = 7ps. In [7] it is proved that a topological
space is fuzzy metrizable if and only if it is metrizable.

Unless explicit mention we will suppose R endowed with the usual topology.

3. SOME PROPERTIES OF FUZZY METRIC SPACES

From now on we will denote by T; (i = 1,2,3) the following continuous
t-norms:
Tl(x7y) = mln{x7y}
To(z,y) = xy
Ts3(z,y) = max{0,z+y—1}

The following inequalities are satisfied:
TS(‘T7 y) < TZ(‘T7 y) < Tl(x7 y)
and
T(:E, y) < Tl (LU, y)

for each continuous t-norm 7'.
In consequence the following lemma holds.

Lemma 3.1. Let X be a non-empty set. If (M, T) is a fuzzy metric on X and
T' is a continuous t-norm such that T < T, then (M,T") is a fuzzy metric on
X.

Next two properties give methods for constructing F-bounded fuzzy metrics
from a given fuzzy metric.
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Proposition 3.2. Let (X, M, *) be a fuzzy metric space and k €]0,1[. Define
N(z,y,t) = max{M(z,y,t),k}, for each z,y € X, t > 0.

Then (N,x) is an F-bounded fuzzy metric on X, which generates the same

topology that M.

Proof. 1t is straightforward. 0

Proposition 3.3. Let i € {1,2,3} and k > 0. Suppose that (X, M,T;) is a

fuzzy metric space, and define:

k+ M(x,y,t)

1+ k&

Then, (N,T;) is an F-bounded fuzzy metric on X, which generates the same
topology that M.

N(z,y,t) = for all z,y € X,t > 0.

Proof. We prove this proposition for the case i = 2. For seeing that (V,T;) is
a fuzzy metric on X, we only show the triangular inequality.
Now, it is an easy exercise to verify that the following relation
k+a k40 < k + ab
1+k 14k~ 14+k%

holds, for all a,b € [0, 1].

Therefore,
k—i—M(:r,y,t)'k—f—M(y,z,s) < k+ M(x,y,t)- M(y,z,s)
1+ k 1+k - 1+Ek
kE+ M(x,z,t+ s)
- 1+ k&

Clearly H—Lk is a lower bound of N (z,y,t), for all z,y € X, ¢ > 0.
Finally, for ¢ > 0,r €]0, 1] it is satisfied that

BM($7T7t) = BN($7 HLk’t)

and
BN(xa T, t) = BM($7 T(k + 1)7 t)a
and so Ty = TN.
The cases © = 1,3 are left as simple exercises. O
Problem 3.4. If (M, *) is a fuzzy metric on X and k > 0, then, is
k+ M(z,y,t)
1+k 7

a fuzzy metric on X ¢

Proposition 3.5. Let (My,*) and (M, ) be two fuzzy metrics on X. Define:
M(‘T7y7t) = Ml(x7y7t) * MZ(x7y7t)
N(x7y7t) = min{Ml(:v,y,t),Mz(:v,y,t)}

Then:
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(i) (M,x*) is a fuzzy metric on X if a xb # 0 whenever a,b # 0.
(i1) (N,*) is a fuzzy metric on X.
(11i) The topologies generated by M and N are the same.
Proof. The proofs of (i) and (i) are straightforward.
(iii) First we will prove that 7y < 7
Let A € 7y; then Vo € A,3r €]0, 1] such that
By(z,rt) ={y€ X : N(z,y,t) >1—r} C A
Consider
By (z,rt) ={y e X : M(z,y,t) >1—r}.
If z € By(z,r,t), then M(z,2,t) >1—r, ie.,
Mi(z,z,t) « My(z,z,t) > 1 —r.
Notice that
Ml(x7 Zat) > Ml(x7z7t) * MZ(x7Z7t) >1- T,
and
My(xz,z,t) > My (z,2,t) * My(z,2,8) > 1 —r
S0,
N(z,z,t) = min{ M (z, z,t), Mo(z, z,t)} > 1 —r.
Then,
BM(:U7 T, t) C BN(x7 T, t) - A7
thus A € 737 and hence 7 < 77.
For seeing that 1)y < 7y, let A € Tps; then Vo € A, 3r €]0, 1| such that
Buy(z,rt)y ={ye X : M(z,y,t) >1—r} C A.
Let s €]0,1] such that (1 —s)«x(1—s) >1—r.
Counsider
By(z,s,t) = {ye€X:N(z,y,t)>1-s}
{y €X: min{MI(xayat)aMQ(mayat)} >1- S}
If z € By(z,s,t), then M;(x,z,t) >1—s and My(z,z,t) >1—s.
So,
Mi(z,z,t) « Ma(x,z,t) > (1—s)*(Ll—s)
> 11—
Then By(z,s,t) C By(x,rt) C A, and hence 1y < 7. d

Remark 3.6. If we consider the fuzzy metric (My,*) where d is the usual
metric on R and * is T3, it is easy to verify that M = My x My is not a fuzzy
metric on R (compare with 2.10 of [5]).

Definition 3.7. [7] A fuzzy metric space (X, M, %) is called precompact if for
each r €]0,1[, and t > 0, there exists a finite subset A of X such that X =

U{B(a,r,t) : a € A}. In this case, we say that M is a precompact fuzzy metric
on X.
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In [7] it is proved that a fuzzy metric space is precompact if and only if every
sequence has a Cauchy subsequence. Using this fact, the proof of the following
proposition is straightforward.

Proposition 3.8. Let (X, d) be a metric space and let My be the standard fuzzy
metric deduced from d. Then, d is a precompact metric if and only if My is a
precompact fuzzy metric.

Proposition 3.9. Let (X, M, *) be a precompact fuzzy metric space, and sup-
pose a x b # 0 whenever a,b # 0. Then, (M, %) is F-bounded.

Proof. (Compare with the end of the proof of [4, Theorem 3.9].)
Let r €]0,1] and ¢ > 0. By assumption there is a finite subset A =
n

{ai,...,a,} of X such that X = |J B(a;,7,t). Let
i=1

a = min{M(a;,a;,t) :i,j =1,...,n} > 0.
Let z,y € X. Then « € B(a;,7,t) and y € B(aj,r,t) for some i,j € {1,...,n}.
Therefore M (x,a;,t) > 1 —1r and M(y,aj,t) > 1 —r. Now,
M(z,y,3t) > M(z,a;,t) * M(a;,a;,t) « M(aj,y,1)
> 1I-r)xax(l—r)
> 1-—s
for some s €]0, 1[ by the assumption on *, and so M is F-bounded O

Problem 3.10. Is each precompact fuzzy metric space F-bounded?

Remark 3.11. The converse of the last proposition is false. In fact, the sub-
space X of the Hilbert metric space (R*, d), formed by the points of unit weight
(0,...,0,1,0,...,0), is not precompact and bounded (it has diameter v/2), and
then by (iii) of Proposition 2.2, (X, My, *) is F-bounded, and by Proposition
3.8 My is not precompact.

4. EXAMPLES OF FUZZY METRIC SPACES

In this section we will see examples of fuzzy metrics where the t-norm is
T, and other fuzzy metrics (M, T;), (i = 2,3) which are not fuzzy metrics in
considering (M, T;_1). Before, we need the following lemma.

Lemma 4.1. Let (X, d) be a metric space and s,t > 0. The following inequality
holds, for alln > 1;

212 ¢ {e0) )}
(t+ s)» tn s"

Proof. We distinguish three cases:

(1) d(z,2) < d(z,y)

(2) d(z,2) < d(y,z)

(3) d(z,z) > d(z,y) and d(z,z) > d(y, z)

The inequality chosen is obvious in cases (1) and (2). Now, suppose (3) is

satisfied and distinguish two possibilities:
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(3.1) d(z,2) = d(x,y) + d(y, 2)

(3.2) d(z,2) <d(x,y) + d(y, 2)

Suppose (3.1) is satisfied. Put d(z,y) = 8d(z,z) with § €]0, 1| and hence
d(y, z) = (1 = B)d(, ).

Now, to show the above inequality we have to prove that

! §max{ﬁ,l_ﬂ}.
(t+ s)™ tn’ sn

Therefore, consider the functions f(3) = % and ¢g(B) = % which are

strictly decreasing and increasing, respectively. Now, the largest value of min {%, %}

is taken when f(8) = g(f), that is, for § = 4= . Then,

(t+s)" > t"+s"

tn
- I

> mim{ﬁ i}
- p’1-p

and the chosen inequality is stated.
The case (3.2) is a consequence of (3.1). O

Example 4.2. Let (X, d) be a metric space, and denote B(z,r) the open ball
centered in € X with radius r > 0.
(i) For each n € N, (X, M,T}) is a fuzzy metric space where M is given by

M(x,y,t) = @ forall z,y € X, t > 0,
e
and 1)y = 7(d).
(This example when n = 1 has been given in [4].)
(ii) For each k,m € R", n > 1, (X, M,T}) is a fuzzy metric space where M
is given by
kt"

M t) = ———FF——
S kt™ + md(z,y)

for all z,y € X,t > 0,

and 1)y = 7(d).

Proof. (i) It is easy to verify that (M, T)) satisfies all conditions of fuzzy metrics;
in particular the triangular inequality is a consequence of the previous lemma.
Now, for z € X,r €]0,1[ and ¢ > 0 we have that

By (z,r,t) = B(z,—t" In(l — 1)),
and )
B(a;,r) = BM($7 1- —7’7t)7

et
and hence 73y = 7(d).
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(i) We will only give a proof of the triangular inequality. Indeed, by the
previous lemma,

hence

k(t + s)" . ot ks™
2 min ; ;
E(t + s)" + md(z, z) kt" + md(z,y)’ ks™ + md(y, z)
and the triangular inequality is stated.
Now, for z € X, t > 0 and r €]0, 1| we have that

kt"r
B =Bz, ———
wlent) = Bla, )
and mr
B =B —t
(z,7) m(z, Kt + mr’ ),
and hence 73y = 7(d). O

Remark 4.3. The above expression of M cannot be generalized to n € RT
(take the usual metric d on R, kK =m =1, n = 1/2). Nevertheless it is easy to
verify that (M,T5) is a fuzzy metric on X, for n > 0. (Compare with 2.9-2.10
of [5]).

Next, we will give fuzzy metrics which cannot be deduced from a metric, in
the sense of last example, since they will not be fuzzy metrics for the t-norm
1.

Example 4.4. Let X be the real interval 0,400 and a > 0. It is easy to
verify that (X, M,T5) is a fuzzy metric space, where M is defined by

a
. :
Mz, 1) = {(5)a resv
(1) ity<e
forall xz,y € X, ¢t > 0.
(We notice that this example for X = N and ¢ = 1 was given in [4]).

Now, for z € X, t > 0 and r €]0, 1[, we have

B(z,rt) = ] (1— r)%x, %
(1—r)a
and hence B(z,r,t) is an open interval of R, whose diameter converges to zero
as r — 0. In consequence, 7y is the usual topology of R relative to X.
Finally, (X, M,T) is not a fuzzy metric space. Indeed, for a = 1, if we take
x=1,y=2and z =3, then

1
M(z,z,t+s) = 3
.12
< mln{§’§}

= min{M(z,y,t), M(y,z,s)}.
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Next, we will give examples of fuzzy metric spaces for the t-norm 75 which
are not for the t-norm T5.

Example 4.5. Let X be the real interval |1, +oo[ and consider the mapping
M on X?x]0,+o0[ given by

1
aAb aVb

We will see that (X, M,Ts) is a fuzzy metric space and (X, M,Ts) is not.
Further, the topology 73; on X is the usual topology of R relative to X.

For seeing that (M,T3) is a fuzzy metric we only prove the triangular in-
equality, which becomes (when the left side of the inequality is distinct of zero)
(4.1)

. 1 1 +h 1 1 L <1 1 1
aANb aVbd bAc bVe - alNc aVc

For it, first, we distinguish 6 cases:
(1) Suppose a < b < c. In this case, the inequality 4.1 becomes an equality.
(2) Suppose a < ¢ < b. In this case, the inequality 4.1 becomes:

1 1 1 1 1 1
i e e e
b b a " a c¢ c

M(a,b,t) =1 —( ) for all a,b € X,t > 0.

which is true, since % < %

(3) Suppose ¢ < a < b. In this case, the inequality 4.1 becomes:

1 1 1 1 1 1
P -
b b ¢~ a ¢ a
which is true, since % < é
(4) Suppose b < a < c. In this case, the inequality 4.1 becomes:

11 1 1 1 1

a ¢ a~b b ¢

which is true, since % < %.

(5) Suppose b < ¢ < a. In this case, the inequality 4.1 becomes:

1 1 1 1 1 1
- +-+-< =+ =-+-
a ¢ ¢ b b a

which is true, since % < %

(6) Suppose ¢ < b < a. In this case, the inequality 4.1 becomes an equality.

Now, if a = b, or a = ¢, or b = ¢, the inequality 4.1 is obvious, and the
triangular inequality is stated, so (M, T3) is a fuzzy metric.

On the other hand, if we take ¢ =2, b =3 and ¢ = 10, then

M(a,b,t) - M(b,c,s) > M(a,c,t+ s)

and thus, (M, T5) is not a fuzzy metric.
Finally, if we take z € X, r €]0,1[ with r < 1, and ¢ > 0, it is easy to verify

that B(z,r,t) = } L - [, then B(xz,r,t) is an open interval or R which

1+rz? 1-rx
diameter converges to zero as r — oo, and thus 7y is the usual topology of R
relative to X.
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Example 4.6. Let X be the real interval ]2, +o0o[ and consider the mapping
M on X?%x]0,+o0[ defined as follows

1 ifa=5
Lyl ifa#bt>0.

M(a,b,t):{

It is easy to verify that (X, M, T3) is a fuzzy metric space. On the other hand
if we take a = 1000, b = 3 and ¢ = 10000, then

M(a,b,t) - M(b,c,s) > M(a,c,t+ s)

and so (X, M,T») is not a fuzzy metric space.
Finally, the topology 7js is the discrete topology on X. Indeed, for z € X,
if we take 7 < 1 — 1 then B(z,r,t) = {z}.

x

Next example is based in [8].

Example 4.7. Let {A, B} be a nontrivial partition or the real interval X =
]2, +00[. Define the mapping M on X?2x]0, +oo[ as follows
1— (%y_%y) ifo,yc Aorz,y€ B

M(:L‘,y,t) = {

1,1
S+ y elsewhere.

Then, imitating example 2 of [8], one can prove that (X, M,T3) is a fuzzy
metric space, and by example 4.4, clearly (X, M, T5) is not a fuzzy metric space.

From examples 4.4 and 4.5 it is deduced that an open base for the neighbor-
hood system of a point z € X, is} L L [ﬂA ifz e A, and] L L [ﬂB,

14+rz’ 1—rx 1+rx’ 1—rz

with0<r<3—-21 ifzeB.

T’

5. SOME PROPERTIES OF STANDARD FUZZY METRICS

In this section (X,d) will be a metric space, and My the standard fuzzy
metric deduced of d.

Grosso modo, we can say that all properties of classical metrics can be trans-
lated to standard fuzzy metrics. Now, an interesting question is to know which
of these properties can be generalized to any fuzzy metric. In this sense we
will see a new property which is satisfied by standard fuzzy metrics. (Notice
that there is no significative difference between the standard fuzzy metric My
and the fuzzy metric #’M of example 4.2, unless M, is the most simple
expression depending of t).

Proposition 5.1. Let {z,}, and {yn}3>, be two Cauchy sequences in (X,
Mg, Ty) and let t > 0. Then, the sequence of real numbers {Mg(xn, Yn,t) 10>,
converges to some real number in ]0,1][.

Proof. Suppose {,}.-, and {y, }.- ; are Cauchy sequences in (X, My, T5). By
(ii) of proposition 2.2, {zp} ", and {y,},-, are Cauchy sequences in (X,d)
and then it is easy to verify that {d(xn,yn},-; is a Cauchy sequence in R.
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Now, let € > 0, t > 0. Then, there exists ng € N such that
£
|d(xmyn) - d(xm7ym)| < n for all m,n > ny.

Hence,

| =

= |d(xmyn) _d(xmuym”

1 1 ‘
Md($nayn7t) Md(xmaymat)

M

<

for all m,n > ng, and therefore {m} is a Cauchy sequence in R, which

converges to some k € R, and then the sequence {My(zn,yn,t)} o, converges
to % €]0, 1], since k # oo and My(zp, yn,t) < 1, for all n € N. |

Corollary 5.2. Let {z,},2, be a Cauchy sequence in the fuzzy metric space
(X,Mgq,T>) and a € X. Then, the sequence of real numbers {Mgq(a,zn,t)} 2,
converges to some real number in ]0,1][.

Problem 5.3. Let {z,},2, be a Cauchy sequence in the fuzzy metric space (X,
M, %) and let a € X, t > 0. Does the sequence of real numbers {M (a, ,,t)}0>,
converge to some real number in |0, 1[¢

The last proposition is not true for any fuzzy metric space as shows the
following example.

Example 5.4. Let {A, B} be a partition of the real interval X =]2, 4+o00[, such
that {2n —1}°, C A and {2n},2 | C B, and consider the fuzzy metric space
(X, M, Ts) of example 4.6. It is easy to verify that both sequences are Cauchy
in (X, M, Ts3). Now, if we put a, = 2n — 1 and b, = 2n, for n = 2,3,... we
have

1 1
2n_1+%)—>Oasn—>oo.

Mlansbuet) = (

6. ON NON-ARCHIMEDEAN FUZZY METRICS
Recall that a metric d on X is called non-Archimedean if
d(z,z) < max{d(z,y),d(y,z)}, for all z,y,z € X.
Now, we give the following definition.
Definition 6.1. A fuzzy metric (M, *) on X is called non-Archimedean if
M(z,z,t) > min{M(z,y,t), M(y, z,t)} for all z,y,z € X, t > 0.

Clearly, if M is a non-Archimedean fuzzy metric on X, then (M,T}) is a
fuzzy metric on X.

Proposition 6.2. Let d be o metric on X and My the corresponding stan-
dard fuzzy metric. Then, d is non-Archimedean if and only if My is non-
Archimedean.
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Proof. Suppose d is non-Archimedean. Then,

t
t+d(z,z)
t
t + max{d(z,y),d(y, z)}
= min{Md("E7 Y, t)7 Md(y7 2 t)}

Md(.’I’,Z,t) =

Conversely, if My is non-Archimedean then,

w2 = (g )

1
S ! (min{Md(x7y7t)7Md(y’Z’t)} - 1>
= max {d(z,y),d(y,2)}.

g

Recall that a completely regular space is called strongly zero-dimensional if
each zero-set is the countable intersection of sets that are open and closed, and
that a T topological space (X, 7) is strongly zero-dimensional and metrizable
if and only if there is a uniformity U compatible with 7 that has a countable
transitive base ([3, Theorem 6.8]).

Theorem 6.3. A topological space (X,T) is strongly zero-dimensional and
metrizable if and only if (X, T) is non-Archimedeanly fuzzy metrizable.

Proof. Suppose (X, 7) is strongly zero-dimensional and metrizable. Then, from
[3, Theorem 6.8], (X, 7) is non-Archimedeanly metrizable and by Proposition
6.2 it is non-Archimedeanly fuzzy metrizable.

Conversely, suppose M is a compatible non-Archimedean fuzzy metric for
(X, 7). Now, for a fuzzy metric space (X, M,x) in [7] it is proved that the
family {U,, : n € N} where

n

1 1
Un:{(l‘,y)EXXXZM(ZL‘,y,g) >1__}

is a base for a uniformity &/ on X which is compatible with 75;,. Now, we will
see that {U,, : n € N} is transitive.
Indeed, if (z,v), (y, z) € U, then

1 1 1
Mz,2,2) > mm{Mu,y, Ly M, 2, —)}
n
1
> 1--,
n

and thus (z, 2) € U, i.e., U, o U, C U,.
Now, from the mentioned theorem of [3], the Hausdorff topological space
(X, 7) is a strongly zero-dimensional and metrizable space. O
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