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Abstract

We consider the numerical integration of high-order linean-homogeneous fiierential
equations, written as first order homogeneous linear ezpsmtand using exponential meth-
ods. Integrators like Magnus expansions or commutater+inethods belong to the class
of exponential methods showing high accuracy off sti oscillatory problems, but the
computation of the exponentials or their action on vectars lse computationally costly.
The first order dferential equations to be solved presents an algebraictisteu(asso-
ciated with the companion matrix) which allows to build newethods (hybrid methods
between Magnus and commutator-free methods). The new dgeé#re of similar accuracy
as standard exponential methods with a reduced complédtjitional parameters can be
included into the scheme for optimization purposes. Wetithte how these methods can
be obtained and present several sixth-order methods whéctested in several numerical
experiments.

1. Introduction

In this work we consider the numerical integration of théh-order non-autonomous
and non-homogeneous lineaffdrential equation

L()x = g(t), 1)
where L(t) is a non-autonomous linear operator
LOx = XN 4 fy_ (OXND 4 ()X + fo(t)X, 2)

andx,ge C™d, fi e C™M x() = ‘(’j—tx
It is usual to write eq. (1) as a first order non-homogeneamgsali system of equations.
However, to simplify the analysis, we write the non-homagmars problem as'gN + 1)-
dimensional homogeneous problem by introdudnrg(y, 1)" € CN*Y,y = (y1,...,yn)" =
% ...,xXNT G(t) = (0,...,0,9(t))" € CN which satisfies the homogeneous linear
equation
Z=M®z  Z0)=(y0).1), 3

Email addressesp.bader@latrobe.edu.au (Philipp Bader)serblaza@imm.upv.es (Sergio Blanes),
fernando.casas@mat.uji.es (F. Casas)eponsoda@imm.upv.es (Enrique Ponsoda)
1For simplicity in the presentation and without loos of getigrave will take m= d = 1 andtg = 0.
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where @ is the zero vector of dimensidd, andA € CN*N is the companion matrix.
The second order autonomous matrigeliential equations of Apostol-Kolodner type
[4, 17] and its generalization to higher order [16, 25]

xN) = Mx,

belong to this class. These equations have been extensivelied and their formal solu-
tion can be written in closed form. However, if the matkixis time-dependent, a numerical
method is required.

On the other hand, high order nonlineafteiential equations of the form

Fit,x,x,....,xN)y=0

arise in many fields in physics and engineering (see [5, 22@&Rand references therein)
either with initial or boundary conditions. The shootingthe for the problem with
boundary conditions usually requires the numerical irgggn of a non-autonomous lin-
ear equation. The method of quasilinearization also requine numerical integration of
non-autonomous linear equations of the form (1), iterfti{&.

We also remark that the numerical integration of a close toeat problem

L([O)x =g(t) + eN(t, X), (5)

wherele| < 1 andN is a nonlinear operator dependingtor, . .., xN-3, can be iciently
carried out if the linear part is numerically integrated toetatively high accuracy and
separately from the non-linear part. Then, splitting mdthfor perturbed problems can be
used and have shown a high performance [9].

In the autonomous situation, the solution of (3) can be ®mith closed form

z(t) = exptM)z(0), (6)
or, equivalently,

y(t) = €”y(0) + te(tA)g = Y(0) + te(tA) (AY(0) + 9, )

whereyp(2) = (¢#— 1)/z In some cases it can be more convenient, from the numeioaat p
of view, to use approximations to the exponential matrixracbn a vector and in some
other cases the use of tlkematrix acting on a vector is preferable [1, 13, 19, 21, 24].

If the problem is explicitly time-dependent a closed-forotusion is not available and
numerical methods have to be used on a time mesh (for siryphet consider a constant
time steptp = 0,t; = h,...,ty = Nh=t;). Standard methods like Runge—Kutta, multistep
or extrapolation methods are, in general, not suitable foblems where the matri& has
a relevant algebraic structure (e.g.fif.1 = O the system is volume preserving) or if the
solution is oscillatory.

Alternatively, one can use exponential methods like Magaus Fer expansions or
commutator-free methods. They preserve the algebraictstaiof the exact solution and
show a high performance for fitiand oscillatory problems. The main drawback is the
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computational cost to compute the action of the exponentialvectors. While the com-
putation of the exponential of a companion matrix acting oreetor can be carried out
at a moderate cost for relatively small time steps, the egptsnappearing in Magnus and
Fer methods are much more involved (and computationallylygodue to their reduced

sparsity.

Commutator-free methods correspond, for this problem,dormaposition of exponen-
tials of companion matrices and then can be compufdently. The main dficulty is
that at least two exponentials are necessary to obtairhfauder methods in the time step,
h, and at least five for sixth-order methéd#n addition, for methods of order greater than
four, at least one of these companion matrices has to beatézbackwards in time, and
this could cause step-size restrictions foff ftroblems.

In this work, we analyze the structure of the elements aatstiwith the Lie algebra
generated by the matriM(t) evaluated at a given set of points, 9dy = M(r1),..., My =
M(r) for some values of4, ..., 7x. By definition, linear combinations or commutators of
elements of a given Lie algebra remain in the Lie algebradititeon, we observe that

O o 0 .- 0 0

0 o . 0 0

k : o : :
CJZZE\J’MJ‘Z ’ ’ ' o O 0 > (8)

= ) 0 ¢ 0

—fo —fn2 —fnor O

0 0 0 0 0

where
k ok k
O'ZZaj, fi :Zajfi(ﬁ')’ §=Zaj9(7'i)
j=1 j=1 =1

which we callcompanion matrixvheno # 0. Notice that, whewr = 0 the computation of
expC.,) is trivial.

The following properties for the exponential of matriceghair action on vectors will
be used in this work:

GivenB; € C*% i = 1,2, 3 with (k; + k» + k3 = k), we have that

Okl,k 0k1,k
expB)=exp| Bt Bz Bs [=lkk+| ¢(B2)Br ¢(B2)B2 ¢(B2)Bs [. (9)
Ok Ot k

If ko < kthen, sinceB; € C***, it is very simple and cheap to comput€B,) and, conse-
quently, expB) or its action on a vector. Given= (Vi,, Vk,, Vi) € CX, B = (By, By, B3) €
C**k and denotindd - v = ByVi, + BoVi, + Bavi, € C2, we have that

eXp(B)V = (Vk:w Vi, + QO(BZ)(B ' V)v Vks)'

For the schemes derived below, the matriBewill have small norms, typicallB, = O(h®)
with s > 2, and the matrixp(B,) can then be approximated, for example, using only the
first few terms of its Taylor expansion.

We also stress the following properties of some elementsisLie algebra:

1. If o = 0, thenC,_¢ is a matrix with only one row with non zero elemenits € 1).

2A four-exponential sixth-order method exists, but it showewry poor performance and it is not recommended
in practice.



2. The commutator
[C()'la C(J'z] = C(Tlc(rz - CO'ZCO';[

is a matrix with only two rows with non zero elements and ilgodrivial to compute
the exponential of this matridkf = 2).
3. Each additional commutator introduces a new non-emptyimaghe matrix.

We analyze how to obtain numerical methods #tedéent orders by considering expo-
nentials of elements of the Lie algebra such that the evaluaf the exponential for these
elements can be cheaply anti@ently computed. Apart from the order conditions, there
are additional constraints to be considered, for exampith-srder methods without com-
mutators necessarily involve the exponential of a compamatrix, &€, with a negative
g.

Allowing exponentials of elements of the Lie algebra withoa Icomputational cost
which includes certain commutators, we derive sixth-ordethods with positiver.

1.1. Numerical integration by standard methods: Rungetekimiethods

We consider Runge—Kutta (RK) methods as a representatiseonélard numerical in-
tegrators. The general classs$tage (explicit or implicit) Runge—Kutta methods are ehar
acterized by the real numbeag, by (i,j = 1,...,s) and¢ = Zlea”. For this linear
problem they take the form

s
Zi = zn+hZaijZj, i=1...,s
=1
s
Znyl = Zn+thiMiZi, (10)
i=1

whereM; = M(t, + ¢ih). If &; = 0, j > i then the method is explicit and one can compute
(and store) the vectoi&, ..., Zs sequentially. Otherwise, the method is implicit and one
has to solve the linear system of equations

| —haMy  —hapM; -+ —h&ysMs Z; Zn

—haiM; I —haoMz -+ —hapsMs Z; Z

—hag My -hagMz -+ | —hassMs Zs Zn
Explicit RK methods require onlyg productsMZ and they need to store vectors
(Miz;, i =1,...,9). Inthis sense, RK methods can be considered as very chehpase

However, in general, they requisevaluations of the functionf(t) (some methods require
less number of evaluations and this depends on the noded, the method) and, since
they can be considered as polynomial approximations todhgisn, a poor performance
is expected for sfi and oscillatory problems.

On the other hand, implicit RK methods can reach ordeard are suitable for sfi
problems, but they require to compute the inverse of a mafridimension §N) x (sN)
whose computational cost, in general,sistimes more expensive than the inverse of a
matrix of dimensionN x N (e.g. for sixth-order methods with = 3 we have that the
inverse of this matrix is abow = 27 times more expensive than the inverse of a matrix of
dimensionN x N).

Exponential methods like Magnus integrators or commutfres methods usually show
a high accuracy and in this work, we propose new compositi@xponentials with sim-
ilar accuracy at lower computational cost. The order céott for the new composition
methods are obtained by equating with the formal solutiermgby the Magnus series ex-
pansion in a similar way as the Taylor method is used to oliteérorder conditions for
RK method after expanding all terms. For this reason, weflpnieview some results for
Magnus integrators.



2. Magnusbased integrators

Given the homogeneous linear equation (3), with formaltsmbiiz(t) = ®(t)z(0), the
Magnus expansion expresses the fundamental matrix solutierms of a single exponen-
tial as [18]

o) = exp@), QO = D AW
k=1

whose termsQ(t), are linear combinations of integrals and nested commgatvolving
the matrixM at different times. Thus, the first terms read

t t t1
- [ Md 0= [ du [ deaMeimMel . @

The algebraic problem to numerically approximgteonsiderably simplifies if we use
the graded free Lie algebra generateddy, . . ., as} [15] where
hi+1 diM(t)

@iyl = ——

il dt

(12)
t=h/2

i=0,1,...,s— 1. Herea; = O(h) and then it can be considered as an element with grade
i = 1,2,...,srespectively. In particular, up to second-order, we RaW&! = o4, up to
fourth-order, we have

1
Ol = o, — 1—2[011, @], (13)

and up to sixth-order

Ql = oy + 1i2a3 - 1i2[12] + %[23] + 3—20[113] - 2—10[212] + 7—;0[1112] (14)
where [j ...kl] represents the nested commutator, [«j, [. .., [k ai] .. ]]]. However,
from the computational point of view, it is more convenieatréplace the elements
(derivatives) by linear a combination of the mathi(t) evaluated at the nodes of a given
guadrature rule (integrals). For example, it is possiblbuitd methods of order 2with
only s symmetric collocation points [14]. In order to obtain metkavhich can be eas-
ily used with any quadrature rule, we introduce the averggedeneralized momentum)
matrices for the intervak{, t,.1]

) 1 th+h . 1 h/2
AD() = = f (t—ty2) Alt)dt = = f tAt + ty2)dt, (15)
h' i, h J_n2

fori =0,...,s—1wheret;, = t, + h/2.
To second order, we can take = A® (neglecting higher order terms), to order four,
we can set (see [7] and references therein)

ay = AO, ap = 12AW), (16)
and to order six
ar = %A(O) —15A@) @, =12A0 @3 = ~15A0 + 180A®), 17
If bj, ¢, i =1,...,kdenote the weights and nodes of a given quadrature rule ef ord

p > 2s, then the momentum matrices can be computed as

k i
. 1 .
A = h E bj(cj_é) Aj, i=0,...,s—-1, (18)
j=1

3We denote by[P! an approximation (no unique) to the soluti@rup to ordehP, i.e. QIF! = Q + O(hP+Y).
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with A; = A(t, + ¢;h), and the corresponding numerical methods will remain déogs.
Notice that, whileQ? has the same sparsity &s this is not the case faR[P with
p > 2, and then the computational cost of the exponential (cadton on a vector) can
grow considerably.
To circumvent this problem we can consider, for example, roamator-free methods
which we briefly present.

2.1. Commutator-free Magnus integrators

Commutator-free (CF) methods can be a simple dfidient alternative to solve the
non-autonomous problem (3). These methods can be writbergne time steh andm
stages, as the composition

Zny1 = exp(nc(rm) EXanCaz) eXp(nCcrl)Zn (19)

where eaclC,, has the structure given in (8) and must satisfy the congigteandition
Zanl Ok = 1.

Second order methodsSecond order methods can be obtained with the very simpésreeh
Zoi1 = €XPE1)20 = expM )z, (20)

which could also be categorized as a second order Magnus ortEgrator, and where we
can approximat®(©, e.g., using the midpoint or the trapezoidal rule, i.e.,

MO =hM(t,+h/2) or MO = g(M(tn) + M(t, + h)).

Fourth order methods An additional exponential is needed for fourth-order metoA
simple two-stage methodn(= 2) is given by [10] (using the relation (16))

1 1 1 1
Zni1 eXp 50’1 + zaz| exp 50’1 - =2|Z

6 6
= exp(% MO 4 2M<1>) exp(% MO _ 2|v|<1>) z, (21)
where we can take, for example
VO _ B(M(t) + 4M(t + h/2) + M(t + h)) ~ Simpson rule,
B *—Z‘(M(t +ch) + M(t + czh)) Gaussian quadrature rule,
e H(M(t+h) - M(b)) Simpson rule,
%‘(M(t + ch) — M(t + clh)) Gaussian quadrature rule,
wherec; =1 - 8 ¢, =14 %8

With three exponentials, a standard method is

Zni1 12

= exp(M®) exp(M@) exp(-M®) z,. (22)

1 1
exp(l—zaz) exp(ai) exp(——az)zn

In general, the 2-exponential method provides slightlyerasrcurate results. However,
for the problem of interest (3)-(4), it is obvious from (12)at a1 = hM(h/2) has the
structure of a companion matrix (8), while the matrices eisdéed witha;, i > 1 have only
one non-zero row, i.e., they have the form

ON-1)x(N+1)
az =M Funey |
O1x(N+1)
6



where Gy, denotes a zero matrix of dimensiomxnandF.n.1) = (F1, . . ., Fne1) denotes
a row vector. Notice that for this particular problem, ¢xfV) and exf—M®) can be
written in a very simple closed form. Thus, the three-exmbiaémethod (22) is, in general,
faster to compute than its counterpart with two exponenfi2l) and can be mordfeient.

Example 1. Let us consider the following fourth-order non-homogen@wsar equation
X+ ()X + fo(t)x = g(b).

with

fo(t) = 100(1 + %cost)), fo(t) = 50(1 + %sin(t)), g = erf(t).
Notice that
(MOYZ=0 = exp(M®)=1+MD,

and then the 3-exponential method, for this problem, isrglwe

0O h 0 0 0
0 0 h 0 O
(1+MD)expf 0 0 0 h 0 [(1-M®) (23)
—f@® o —fO@ ¢ g(O)
0 2
0 0 0 0 O

being an algorithm with less complexity than the 2-expoémhethod because it only
requires exponentiation of one companion matrix.

In Figure 1, we show the 2-norm error of the fundamental matiution atT = 10
versus the number of time dependent function evaluatiottseoéxtended matriki(t). We
compare with the explicit standard 4-stage fourth-orderréthod (RK4) wheréM(t) is
evaluated at the same nodes as the Simpson rule, and theitr@giage fourth-order RK
method whereM () is evaluated at Gaussian nodes (GaussL4). The momentegraig
for the exponential methods have also been computed usingsiza quadrature.

This problem has oscillatory solutions and the exponemtiethods are much more
accurate at the same number of time-dependent functionai@hs. Naturally, one also
has to take into account the number of operations: In additiohe evaluations of the time-
dependent functions, the explicit RK method requires a lsmathber of products (and to
store 4 vectors), the implicit RK method has to invert a matrfi twice the dimension
of M(t), and it is considerably more costly than the explicit methdhe fourth-order
exponential integrators Magnus integrator (Mag4, see)(1lt¢ 2-exponential CF method
from (21) (CF42) and the 3-exponential CF method (22) (CFd@lire to approximate the
exponentials up to a given order of accuracy [1]. The methBdZls the most accurate
but CF43, which is only slightly less accurate, is cheapeotopute. a.

In general, sixth-order CF methods use compositions mwith 5 exponentials [2, 10]
and in each of them it appeats, which is the element which makes the computation of
the exponential to be relatively involved. In addition, @st in one of the exponentials
a1 appears multiplied by a negative ¢heient. These results motivated us to extend the
analysis to order six.

We analyze new composition methods which allows us to olstiaih-order methods
with positive codicients while being cheaper to compute that the existing Cihoas.

3. New hybrid composition methods

In the present Lie algebra from the system (3)-(4), not omdyrhatrix associated with
a, has a particularly simple structure. We observe that theviihg elements are very
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Figure 1: Error in norm of the fundamental matrix soluti¢i®(T, 0) — ®ap(T, 0)l, where®,p, denotes the nu-
merical solution for a given method, versus the number of tineddent function evaluations for the problem in
Example 1.

similar:

a3=h

ON-1)x(N+1) [ ON-2)x(N+2)

j+k

Gin+y | [@j,a] =h Koxney |
O1x(N+1) O1x(N+1)

i.e., they only contain one and two non-empty rows and theims are proportional to
O(h®) andO(hi*), respectively.

The goal is to build composition methods with as few expoiaéninvolving the ele-
menta; as possible at a given order while leaving the remaining eepbals with cheaply
computable matrices.

In our analysis, we only consider time-symmetric methods, & map$(h) such that
S~1(h) = S(=h). This approach simplifies the construction of methods dedreth-
ods share this property with the exact solution. In gendled, most ficient compo-
sition methods in the literature have this symmetry. In oreconsider a symmetric
composition we proceed as follows, givea(h), C,(h) odd and even functions df, i.e.,
Ci(=h) = —=C4(h), Cx(=h) = Cy(h), then if Si(h) is a symmetric composition the following
composition

Siua(h) = 10 g, () gFa(-Ca)

is also time-symmetric.
We have studied the following sixth-order schemes whictaraed by the number of
exponentials that involve;.

One-exponential methodiWe part from the fourth-order method (22) and suppose we use
a sixth-order quadrature rule. Them, can be added to the symmetric composition and it
can be used for optimization purposes, i.e.,

1 1
(D[;] = exp(l—zaz + 22(2’3) exp(al + Zla’g) exp(—l—zag + 2203) . (24)

This schemes has two parametegsz,. Using the Baker-Campbell-HausdofBCH) for-
mula and equating to (14), we find that, by consistercy, 2z, = 1/12, and this leaves us
with a free parameter which can be used to reduce the erme i, z, multiply a3, they
will appear linearly on the leading error terms at order 528][and [113]. If we consider
that the commutator [113] (which contains two operatarsis more relevant for the error
of the method, we can use the free parameter to cancel this ter

On the other hand, since a commutator contains only two ngoierows, we could
add to the first and last exponential a linear combinatiomeftbommutators [12]13] and
[23]. Since [12][23] are odd operators imwe will include them distributed symmetrically.
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The operator [13] is even imand will thus be distributed skew-symmetrically. In thisywa
we obtain the following symmetric composition scheme witichtains six free parameters
to solve the order conditions

(D[6] = grertBazteitzar a1 +zsas)]
1

e&1+21[l3 (25)

e—zzag+23ag+[—a1+z4a2,zsal+zeag]

Apparently, there is the same number of order conditionsespeters, however, we found
that there is a free parameter which we can use to reduce sahmearror terms at leading
order. In a similar way to the optimization process mentibfoe the fourth-order method,
we choose this parameter to cancel thefitoient which multiplies [11113]. The solution
obtained is:
1 1 1 3 1 1
o8’ ZZ—H)’ 23_4_2’ 24—_2_, 25—%, = 840

The next question is: can we obtain an eight-order methothgdew terms of similar
complexity to the previous scheme?

If we use an eight-order quadrature rukg, has to be included in the scheme and the
truncated Magnus expansion becomes

Z =

1
ol = Q[G]—%[M]
+£([34], [124].[223],[313], [412], [1114}, [1123] [1312] [2113] [2212]
[11113}[11212) [21112}[111112),

whereQ!®! is given in (14) and£ denotes a linear combination of the elements which are
of orderO(h’). The composition we can build is:

&)[6] _ ezzuz+z3oz3+[a1+24a2,25(y1+ze<13]+a1<14+a2[14]+a3[24]+a4[34]
1 =

@it (26)
e—Zzaz+Za£¥3+[—(11+2402,2501+250‘3]—alll4+az[l4]—a3[24]+a4[34]

We have four new parametems, a, ag, a4, multiplying terms witha4 which must satisfy
ay+2zsa3 = 1/80 in order to match the condition for [14] which is necesdarghe method
to be of order six. The three remaining parameters are usestitee the error from the
terms [34][124],[412],[1114]. To reach order eight, 11 parameters are needednbut o
10 independent terms are available including all combamatiwith double commutators,
and this has not been explored.

If an eight-order quadrature rule is used, the followingtiehs must be used [8]

a = JA0 — 150, ay = 15(5A0) - 28A3)),
a3 = -15A0 + 180AP), a4 = —140(AW — 20A3)).

Two-exponential methodNext, we explore the following scheme with seven parameters
to solve six order conditions leaving a free parameter:

(D[ZG] = gRortuastai+2502.%01+21a3] 1/ 2+ 2100+ 23 (27)
1/2-2102+ 2203 o= 2302+ ZazH[ a1+ 2502, Z01+2703]
There is a free parameter that, as in the previous case,dstosancel the cdicient
at order seven which multiplies [11113]. The solution otxai is:
12_89 Z_3 25 51 _ 61 Z_61
100 272536 #7780 #1134 ®7 976 ®7 1530 7~ 68040
9
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Three-exponential methodA third exponential opens the possibility of a negativefiee
cient multiplyinga;. We propose the following new commutator-free method:

cI)[36] — e25(1/2+Z7(1/3 eZ3(Y1+Z4(Iz+25(13 eZ1(11+ZzI13 ez3”1_z4"2+z‘5“3 e—Ze(l/2+Z7(l/3 )

Two real solutions are obtained, one with< 0 and the other witlzz < 0. The solution
withz; < Ois:

73 = —0.134081437730954855148833z, = —0.012669129450624949118909
73 = 0.567040718865477427574417 z, = 0.156797955467217572935920
Z5 = 0.032555028141095211662211 zs = 0.015446203250883929563910
77 = 0.015446203250883929563910

(28)

At least three exponentials including are necessary in order to solve the order conditions
associated with the elements of the algebrd12] and [1112] without using commutators.
This was not possible with the one- and two-exponential odth

4. Numerical Examples
In this section we analyse the performance of the followirgghads:

e The 7-stage sixth-order explicit RK method (RK6) with fia@ents given in [12,
page 177] which requires 5 new evaluations of the ma{¥) per step.

e The 3-stage sixth-order implicit Runge-Kutta-Gauss-Ilretye method (GaussL6)
which requires 3 new evaluations of the matkiXt) per step.

e The one-exponential sixth-order Magnus integrator (Mag#)g the Gauss quadra-
ture rule [8].

¢ The 6-exponential sixth-order CF method (CF6) from [2].

e The 1-exponential sixth-order Hybrid method (H61) giveri2b).
e The 2-exponential sixth-order Hybrid method (H62) giveridi).
e The 3-exponential sixth-order Hybrid method (H63) giveri28).

As a first test, we repeat the numerical integration in ExamplIThe results are shown
in Figure 2. We observe that all exponential methods arelglsaperior to the explicit and
implicit RK methods. The CF6 method is the most accurate thithybrid methods are
cheaper to compute. Obviously, the relative computatioast between them will depend
on each particular problem, but the the cost of H61 and H6®dwel up to twice cheaper
the cost of the method CF6. In addition, these two methode Ipasitive cofficients
multiplying @3 and this could be of interest for some problems.

As we have mentioned, the solution of this equation is agoity. When the cd&cients
of the equation oscillate with a frequency close to the fesmy of the system, a parametric
resonance can appear. This is the case, e.g. for the wellrkNtathieu equation’” + (W2 +
e cosf))x = 0 for w close the resonant values= 0,1,2,....

Example 2. Let us now consider the same fourth-order non-homogeneearliequation
XM 4 fo()x” + fo(t)x = g(t), (29)

but with
fo(t) = 5(1 + ecost)), fo(t) = 4(1 + esin(wt)), (30)

that has parametric resonances for valuas afoundw = 1 andw = 2. We takew = 2 and
integrate the fundamental matrix solution until the finaddit; = 10 and we repeat it until
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—&— CF6
—6— Mag6
RK6
— — — GaussL6
—8— H63
—— H61
—*— H62 1

Figure 2: Same as Fig. 1 for the sixth-order methods. H#82 andH63 denote the new sixth-order hybrid
methods with two and three exponentials given by (25) and (2gpectively.

e=1/10, =10 e=1/10, =100

-4

—&— CF6

—o— Magé
RK6

— — —GaussLé

—5— H63

O | ——re1

—+*— H62

ys

Figure 3: The two-norm error in the fundamental matrix solutfor the sixth-order methods applied to the
problem (29)-(30) computed at the final timgs= 10 (left figures) ands = 100 (right figures) for the choices
e = 1/10 (top figures) ane = 1/2 (bottom figures).
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t; = 100. The solution is very sensitive to the parametand we repeat the computations
fore=1/10 ande = 1/2. Figure 3 shows the results obtained.

We observe that the error grows with the final time as well &k e choice of the
parametele, and the new hybrid methods show an excellent performamze shey are
among the most accurate as well as the cheapest to compatt ffaon the explicit RK
method which show a very poor performance). Similar resadésobtained for the nu-
merical integration of the Mathieu equation for values @& garameters in the instability
region. If one is interested in finding the stability regidosa given set of parameters of
the equation, usually this is done with the numerical irdégn of the equations repeat-
edly for many diferent choices of the parameters afittent methods need to be fast and
accurate. The methods presented in this work are thus of igtesest for such problems.

5. Conclusions

We have studied the numerical integration of high-ordezdinnon-homogeneous dif-
ferential equations written as first order homogeneousalfireguations (which show a
particular algebraic structure in terms of the companioftrisjausing exponential meth-
ods. We have shown how to build new methods which are hybetsden Magnus and
commutator-free methods. The new methods can reach siatitaracy as standard ex-
ponential methods, but with a reduced complexity. Addaiqgrarameters can be included
into the scheme for optimization purposes. We have showntbakbtain the order condi-
tions to build sixth-order methods and several methods lat@ireed. The performance of
the new methods has been tested on several numerical pmblem

As a further application of the results of the present workremark that homogeneous
non-autonomous linear fiérential equations describe the evolution of many dynamica
systems in classical and quantum mechanics (see [6, 7] &m@mees therein) as well as
in biology [23] or engineering [3, 5, 11]. It is straightfoand to extend the here presented
analysis to the class of homogeneous non-autonomous eqsiati

X = M(t)x, (31)

whereM(t) = A+ B(t) such that the evaluation of exyl(t)) is computationally demanding
but expB(t)) can be trivially computed. One can either use the methedisetl in this
work or build new exponential methods for particular prolde This requires the analysis
of the Lie algebra associated with the Mathkt). If the analysis carried out on a family
of problems indicate that some other elements of the Liebafgean also beficiently
computed, these elements can also be considered in the sdhensimilar way as shown
in this work.

On the other hand, it is well known that the computationalt @fsa given method
strongly depends on the problem to be solved. As we have amadj ans-stage fully
implicit RK method requires to compute the inverse of a lamgrix which is abouts®
times the cost of the inverse oféax N matrix, and the inverse of a matrix can be carried
out at the cost of /B the product of two matrices [1]. Then, for a sixth-order noet with
s = 3 the total cost is 3 evaluations of tit) and s°"§‘ = 36 products. On the other hand,
one can approxima@™ using a Pad approximation up to accuracy of ord@¢h'®) with
3 products and one inverse, i.e. at the cost of only{A3) products (or using the Paterson-
Stockmeyer scheme to compute the Taylor expansion Qght) with only 4 products [1]).
Obviously, the cost of each matrix-matrix multiplicatiofildepend on the sparsity of the
matrix, and this is dferent for Magnus and commutator-free methods as well ashéor t
new methods. This analysis has to be undertaken in ordert¢éondi@e the mostfécient
method for a given problem class or, for the design of new ouslalong the procedures
of this work (possibly using extra parameters for optimat
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