Hausdorff compactifications and zero-one measures II

Georgi D. Dimov* and Gino Tironi ${ }^{\dagger}$

Abstract

The notion of $P B S$-sublattice is introduced and, using it, a simplification of the results of [6] and of some results of [5] is obtained. Two propositions concerning Wallman-type compactifications are presented as well.

2000 AMS Classification: Primary 54D35, 28A60, 06D99; Secondary 54D80, 54E05, 06B99.

Keywords: Hausdorff compactifications, zero-one measures on Boolean algebras, maximal spectrum of distributive lattices, Efremovič proximities, Wallman-type compactifications.

1. Introduction

In 1977, V. M. Ul'janov ([15]) obtained a negative answer to the famous Frink's question, posed in [8], whether each Hausdorff compactification of a Tychonoff space X is a Wallman-type compactification (we shall use from now on the term "Wallman compactification" instead of "Wallman-type compactification"). O. Frink introduced the Wallman compactifications of a space X as spaces of all \mathcal{C}-ultrafilters, where \mathcal{C} is a ring of subsets of X and a special closed base of X (called normal base) (we will denote such compactifications by $\omega(X, \mathcal{C}))$. Passing to the complements in X of all elements of a normal base \mathcal{C}, one obtains a special open base $\mathcal{B}=\mathcal{C}^{\prime}$ of X (which is again a ring of sets), called normal Wallman base. This leads to a dual description of the Wallman compactifications of X as spaces of the type $\max (\mathcal{B})(=$ maximal spectrum of \mathcal{B}), where \mathcal{B} is a normal Wallman base of X (see, e.g., [9]). Hence, in general, not every Hausdorff compactification of a Tychonoff space X can be obtained as a maximal spectrum of a normal Wallman base of X. In our paper [6], using

[^0]the notion of $P B$-sublattice introduced in [5], we answered affirmatively two natural questions. The first one was:

Problem 1.1. Is it possible to correlate (in a canonical way) to each Tychonoff space X a Boolean algebra B_{X} and a set \mathcal{L}_{X} of sublattices of B_{X} in order to obtain that the set of all, up to equivalence, Hausdorff compactifications of X is represented by the set $\left\{\max (L): L \in \mathcal{L}_{X}\right\}$?

This question was motivated also by some measure-theoretic constructions of Hausdorff compactifications. It was well known (see [1, 3, 4, 14]) that, when \mathcal{C} is a normal base of X, then the space $I_{R}(\mathcal{C})$ (of all regular zero-one measures on the Boolean subalgebra $b(\mathcal{C})$ of the Boolean algebra $\exp (X)$ (of all subsets of X, with the natural operations), generated by the sublattice \mathcal{C} of $\exp (X))$ is a Hausdorff compactification of X equivalent to $\omega(X, \mathcal{C})$ and $\max \left(\mathcal{C}^{\prime}\right)$. The second problem was:

Problem 1.2. Is it possible to construct in a similar way (by means of zero-one measures) every Hausdorff compactification of X ?

In this paper we introduce the notion of $P B S$-sublattice and, using it, we obtain a simplification of the results of [6] and of some results of [5]. We also present the notion of PB-sublattice in a simpler but equivalent form. Finally, a necessary and sufficient condition and a sufficient condition, as well, which a lattice $L \in \mathcal{L}_{X}$ has to satisfy in order to obtain that $\max (L)$ is a Wallman compactification of X, are stated and proved.

2. Preliminaries

We first fix some notations.
Note 2.1. We denote by ω the set of all positive natural numbers. All lattices will be with top (= unit) and bottom (= zero) elements, denoted respectively by 1 and 0 and all sublattices of a lattice L are assumed to contain the top and the bottom elements of L. We don't require the elements 0 and 1 to be distinct.

Let A be a distributive lattice. The set of all ideals of A will be denoted by $\operatorname{Idl}(A)$ and the set of all maximal ideals of A (which will be, as usual, always proper) - by $\max (A)$. Put $\mathcal{T}_{A}=\left\{O_{I}=\{J \in \max (A): I \nsubseteq J\}: I \in \operatorname{Idl}(A)\right\}$. The space $\left(\max (A), \mathcal{T}_{A}\right)$ is called maximal spectrum of A and the topology \mathcal{T}_{A} is called spectral topology on the set $\max (A) .\left(\max (A), \mathcal{T}_{A}\right)$ is always a compact T_{1}-space (see, e.g., [9]). If the lattice A is normal (i.e., for each pair $a, b \in A$ with $a \vee b=1$, there exist $u, v \in A$ such that $a \vee u=1=b \vee v$ and $u \wedge v=0$) then $\left(\max (A), \mathcal{T}_{A}\right)$ is a compact T_{2}-space.

If L is a sublattice of a Boolean algebra B then we will denote by $b(L)$ the Boolean subalgebra of B generated by L. By $\exp (X)$ we denote the set of all subsets of the set X.

The ordered set of all, up to equivalence, Hausdorff compactifications of a Tychonoff space X will be denoted by $(K(X), \leq)$.

If (X, \mathcal{T}) is a topological space then we write $\operatorname{Coz}(X, \mathcal{T})$ or, $\operatorname{simply}, \operatorname{Coz}(X)$ for the set of all cozero-subsets of X; the closure of a subset M of (X, \mathcal{T}) will be denoted by $\mathrm{cl}_{X} M$; a dense embedding will mean an embedding with dense image.

By a proximity we shall always mean an Efremovič proximity. If δ is a proximity on a set X, then $\bar{\delta}$ will be the complement of the relation δ. If (X, \mathcal{T}) is a topological space and δ is a proximity on the set X, we say that δ is a proximity on the space (X, \mathcal{T}) if the topology \mathcal{T}_{δ}, generated by δ on the set X, coincides with \mathcal{T}. The ordered set of all proximities δ on a topological space (X, \mathcal{T}) will be denoted by $\left(P_{\mathcal{T}}(X), \leq\right)$.

For all undefined terms and notations see [7], [9] and [11].
We shall recall the Smirnoff Compactification Theorem:
Theorem 2.2 ([13]). Let (X, \mathcal{T}) be a Tychonoff space. If $(c X, c)$ is a Hausdorff compactification of X, then putting, for every $A, B \subseteq X, A \overline{\delta_{c}} B$ iff $\operatorname{cl}_{c X} c(A) \cap$ $\mathrm{cl}_{c X} c(B)=\varnothing$, we obtain a proximity δ_{c} on (X, \mathcal{T}). The correspondence

$$
s:(K(X), \leq) \longrightarrow\left(P_{\mathcal{T}}(X), \leq\right)
$$

defined by $s(c X, c)=\delta_{c}$, is an isomorphism.
If $\delta \in P_{\mathcal{T}}(X)$ then the compactification $s^{-1}(\delta)$ of X, which will be denoted by $\left(c_{\delta} X, c_{\delta}\right)$, is called Smirnoff compactification of (X, \mathcal{T}).
Definition $2.3([9,8])$. Let (X, \mathcal{T}) be a topological space. A sublattice \mathcal{B} of \mathcal{T} is called a Wallman base for X if \mathcal{B} is a base of \mathcal{T} and satisfies the following condition:
(W) Whenever $U \in \mathcal{B}$ and $x \in U$, there exists $V \in \mathcal{B}$ with $U \cup V=X$ and $x \notin V$.
If \mathcal{B} is a Wallman base for a T_{0}-space X, then the map

$$
\eta_{\mathcal{B}}: X \longrightarrow \max (\mathcal{B}), \quad x \mapsto \eta_{\mathcal{B}}(x)=\{U \in \mathcal{B}: x \notin U\}
$$

is a dense embedding. Hence, for every T_{1}-space $X,\left(\max (\mathcal{B}), \eta_{\mathcal{B}}\right)$ is a $T_{1^{-}}$ compactification of X. If \mathcal{B} is a normal Wallman base, then $\left(\max (\mathcal{B}), \eta_{\mathcal{B}}\right)$ is a T_{2}-compactification of X, called Wallman compactification.

A family \mathcal{C} of closed subsets of X, such that the family $\mathcal{B}=\mathcal{C}^{\prime}=\{X \backslash F$: $F \in \mathcal{C}\}$ is a normal Wallman base of X, is called a normal base of X. Let $\omega(X, \mathcal{C})$ denote the set of all \mathcal{C}-ultrafilters. Topologize this set by using as a base for the closed sets all sets of the form $A^{-}=\{\mathcal{F} \in \omega(X, \mathcal{C}): A \in \mathcal{F}\}$, where $A \in \mathcal{C}$. Then the map $\omega_{\mathcal{C}}: X \longrightarrow \omega(X, \mathcal{C})$, defined by the formula $\omega_{\mathcal{C}}(x)=\{F \in \mathcal{C}: x \in F\}$, where $x \in X$, is a dense embedding of X in $\omega(X, \mathcal{C})$ and $\left(\omega(X, \mathcal{C}), \omega_{\mathcal{C}}\right)$ is a compactification of X equivalent to $\left(\max (\mathcal{B}), \eta_{\mathcal{B}}\right)$.

We will need the following theorem of O . Njastad:
Theorem 2.4 ([12]). Let (X, \mathcal{T}) be a Tychonoff space. A compactification $(c X, c)$ of X is a Wallman compactification if and only if there exists a subfamily \mathcal{B} of \mathcal{T} which is closed under finite unions and satisfies the following two conditions:
(B1) If $U, V \in \mathcal{B}$ and $U \cup V=X$ then $(X \backslash U) \overline{\delta_{c}}(X \backslash V)$;
(B2) If $A, B \subseteq X$ and $A \overline{\delta_{c}} B$ then there exist $U, V \in \mathcal{B}$ such that $A \subseteq X \backslash U$, $B \subseteq X \backslash V$ and $U \cup V=X$.
Recall that (see, e.g., $[1,3,4,14]$) a measure on a Boolean algebra A is a non-negative real-valued function μ on A such that $\mu(a \vee b)=\mu(a)+\mu(b)$ for all $a, b \in A$ with $a \wedge b=0$; in the case when $\mu(A)=\{0,1\}, \mu$ is called a zero-one measure.

Let B be a Boolean algebra and L be a sublattice of B. A measure μ, defined on the Boolean algebra $b(L)$, is called L-regular measure (or, simply, regular measure) if $\mu(x)=\sup \{\mu(a): a \in L, x \geq a\}$ for any $x \in b(L)$. The set of all L-regular zero-one measures on the Boolean algebra $b(L)$ will be denoted by $I_{R}(L)$. The topology \mathcal{D}_{w} on $I_{R}(L)$ is defined as follows: a base for the closed sets of \mathcal{D}_{w} consists of all sets of the form $W(a)=\left\{\mu \in I_{R}(L): \mu(a)=1\right\}$, where $a \in L$. The space $\left(I_{R}(L), \mathcal{D}_{w}\right)$ is a compact T_{1}-space.

If X is a Tychonoff space and \mathcal{C} is a normal base of X then $\left(I_{R}(\mathcal{C}), \mathcal{D}_{w}\right)$ is a compact Hausdorff space. The map $M_{\mathcal{C}}: X \longrightarrow\left(I_{R}(\mathcal{C}), \mathcal{D}_{w}\right)$, defined by the formula $M_{\mathcal{C}}(x)=\mu^{x}$, where $x \in X$ and, for every element F of the Boolean subalgebra $b(\mathcal{C})$ of $\exp (X)$,

$$
\mu^{x}(F)=1 \text { if } x \in F, \text { and } m u^{x}(F)=0 \text { if } x \notin F,
$$

is a dense embedding. $\left(\left(I_{R}(\mathcal{C}), \mathcal{D}_{w}\right), M_{\mathcal{C}}\right)$ is a compactification of X equivalent to $\left(\omega(X, \mathcal{C}), \omega_{\mathcal{C}}\right)$ and $\left(\max \left(\mathcal{C}^{\prime}\right), \eta_{\mathcal{C}^{\prime}}\right)$.

We will recall a theorem of J. Kerstan.
Definition 2.5 ([10, 2]). A family \mathcal{U} of open subsets of a topological space space X is called completely regular if for every $U \in \mathcal{U}$ there exist two sequences $\left(U^{i}\right)_{i \in \omega}$ and $\left(V^{i}\right)_{i \in \omega}$ in \mathcal{U} such that $U=\bigcup\left\{U^{i}: i \in \omega\right\}$ and $U^{i} \subseteq X \backslash V^{i} \subseteq U$ for each $i \in \omega$.
Theorem 2.6 ($[10,2]$). A subset of a topological space is a cozero-set if and only if it belongs to a completely regular family.

3. The Results

Definition 3.1. Let (X, \mathcal{T}) be a space and U be an open subset of X. If there is a sequence $\left(U^{i}, U^{c i}\right)_{i \in \omega}$ in $\mathcal{T} \times \mathcal{T}$ with $U=\bigcup_{i \in \omega} U^{i}, U^{i} \subseteq X \backslash U^{c i} \subseteq U^{i+1}$, for every $i \in \omega$, then such a sequence $\left(U^{i}, U^{c i}\right)_{i \in \omega}$ will be called $U r-r e p r e s e n t a t i o n ~$ of U. We put $\mathcal{I}_{U r}=\{U \in \mathcal{T}: U$ has an $U r$-representation $\}$.
Definition 3.2. Let (X, \mathcal{T}) be a space. Denote by $L(X)$ the set of all $U r$-representations of the elements of $\mathcal{T}_{U r}$. The elements of $L(X)$ will be written in the following way:

$$
\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega}
$$

where $\left(U^{i}, U^{c i}\right)_{i \in \omega}$ is a $U r$-representation of $U^{0}=\bigcup\left\{U^{i}: i \in \omega\right\}$; two elements $\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega}$ and $\bar{V}=\left(V^{i}, V^{c i}\right)_{i \in \omega}$ of $L(X)$ are equal if $U^{i}=V^{i}, U^{c i}=$ $V^{c i}$, for every $i \in \omega$. Define two operations \wedge and \vee in $L(X)$ by

$$
\bar{U} \vee \bar{V}=\left(U^{i} \cup V^{i}, U^{c i} \cap V^{c i}\right)_{i \in \omega}
$$

and

$$
\bar{U} \wedge \bar{V}=\left(U^{i} \cap V^{i}, U^{c i} \cup V^{c i}\right)_{i \in \omega}
$$

where $\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega}$ and $\bar{V}=\left(V^{i}, V^{c i}\right)_{i \in \omega}$, and let $\overline{0}=\left(0^{i}, 0^{c i}\right)_{i \in \omega}, \overline{1}=$ $\left(1^{i}, 1^{c i}\right)_{i \in \omega}$, where $\varnothing=0^{i}=1^{c i}, X=1^{i}=0^{c i}, i \in \omega$.

Fact 3.3. $(L(X), \vee, \wedge)$ is a distributive lattice and $\overline{0}, \overline{1}$ are its zero and one.
Definition 3.4 (see also [5]). Let X be a Tychonoff space. A sublattice L of $L(X)$ is said to be a PB-sublattice if
(L1) The set $L^{0}=\left\{U^{0}=\bigcup\left\{U^{i}: i \in \omega\right\}:\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L\right\}$ is an open base of the space X;
(L2) For every $\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L$ and every $j \in \omega$, there exist $k \in \omega$ and $\bar{V}=\left(V^{i}, V^{c i}\right)_{i \in \omega}, \bar{W}=\left(W^{i}, W^{c i}\right)_{i \in \omega} \in L$ (which depend on the choice of \bar{U} and j) such that $U^{c(j+1)} \subseteq W^{k} \subseteq W^{0}=U^{c j}, U^{j-1} \subseteq V^{k} \subseteq V^{0}=$ $U^{j}($ for $j>1)$, and $V^{0}=U^{j}($ for $j=1)$.

Proposition 3.5. Let L be a $P B$-sublattice of $L(X)$. Then, for every element $\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega}$ of L and for every $i \in \omega$, we have that $U^{i}, U^{c i} \in \operatorname{Coz}(X)$. Hence, $L^{0} \subseteq \operatorname{Coz}(X)$.
Proof. For every $\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L$ and every $j \in \omega$, we have, by (L2), that there exist $\bar{V}=\left(V^{i}, V^{c i}\right)_{i \in \omega} \in L$ and $\bar{W}=\left(W^{i}, W^{c i}\right)_{i \in \omega} \in L$ such that $U^{j}=V^{0}$ and $U^{c j}=W^{0}$. Hence, in order to prove our proposition, we need only to show, according to Kerstan Theorem (see 2.6), that L^{0} is a completely regular family (see 2.5). So, let $\bar{U}=\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L$. Then $\left\{U^{i}: i \in \omega\right\} \subseteq L^{0}$ and $U^{0}=\bigcup\left\{U^{i}: i \in \omega\right\}$. We let $\left(U^{i}\right)_{i \in \omega}$ to be the first required sequence. As it follows from 3.1, $\left(U^{c i}\right)_{i \in \omega}$ can serve as the second required sequence. Therefore, L^{0} is a completely regular family.

Definition $3.6([5])$. Let (X, τ) be a space. Denote by $L(\operatorname{Coz}(X))$ the set of all $U r$-representations of all elements of $\operatorname{Coz}(X)$ by elements of $\operatorname{Coz}(X)$. We will regard $L(\operatorname{Coz}(X))$ as a sublattice of the lattice $L(X)$.
Remark 3.7. Let us remark that in [5] the notion of "PB-sublattice" was introduced with the redundant (as Proposition 3.5 shows now) requirement that a PB-sublattice is (by definition) a sublattice of $L(\operatorname{Coz}(X))$.

Proposition $3.8([5]) .(L(\operatorname{Coz}(X)), \vee, \wedge)$ is the greatest (with respect to the inclusion) PB-sublattice of $(L(X), \vee, \wedge)$.

Note 3.9. Let X be a set. We will denote by $S(X)$ the complete Boolean algebra $(\exp (X))^{\aleph_{0}}$.
Definition 3.10. Let (X, \mathcal{T}) be a topological space. We put

$$
\operatorname{OIS}(X, \mathcal{T})=\left\{\bar{U}=\left(U^{i}\right)_{i \in \omega}: U^{i} \in \mathcal{T}, U^{i} \subseteq U^{i+1}, \forall i \in \omega\right\}
$$

Instead of $\operatorname{OIS}(X, \mathcal{T})$, we shall often write simply $\operatorname{OIS}(X)$. For every $\left(U^{i}\right)_{i \in \omega} \in$ $\operatorname{OIS}(X)$, we put $U^{0}=\bigcup\left\{U^{i}: i \in \omega\right\}$. We will regard $\operatorname{OIS}(X)$ as a sublattice of $S(X)$.

Definition 3.11. Define a relation \sim in $S(X)$ putting: for every $\bar{U}=\left(U^{i}\right)_{i \in \omega}$, $\bar{V}=\left(V^{i}\right)_{i \in \omega} \in \operatorname{OIS}(X), \bar{U} \sim \bar{V}$ if and only if there exists an $i_{0} \in \omega$ such that $U^{i}=V^{i}$, for every $i \geq i_{0}$. Then \sim is a congruence relation on the Boolean algebra $S(X)$. So, a quotient Boolean algebra $S(X) / \sim$, which will be denoted by $[S(X)]$, is defined. The natural mapping between $S(X)$ and $[S(X)]$ will be denoted by π. We put, for every $\bar{U} \in S(X), \pi(\bar{U})=[\bar{U}]$.
Definition 3.12. Let (X, \mathcal{T}) be a Tychonoff space. A sublattice L of the lattice $\operatorname{OIS}(X)$ is said to be a PBS-sublattice in X, if
(LS1) The set $L^{0}=\left\{U^{0}:\left(U^{i}\right)_{i \in \omega} \in L\right\}$ is a base of the space X;
(LS2) For every $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and for every $j \in \omega$, there exist $\bar{V}=$ $\left(V^{i}\right)_{i \in \omega}, \bar{W}=\left(W^{i}\right)_{i \in \omega} \in L$ and $k \in \omega$ (which depend on the choice of \bar{U} and j) such that $X \backslash U^{j+1} \subseteq V^{k} \subseteq V^{0} \subseteq X \backslash U^{j}$, and $U^{j-1} \subseteq W^{k} \subseteq$ $W^{0}=U^{j}($ for $j>1), U^{j}=W^{0}($ for $j=1)$.

Fact 3.13. The restriction of the relation \sim (defined in 3.11) to any PBSsublattice L in X is a congruence relation in L. So, a quotient lattice $[L]=L / \sim$ is defined.

Lemma 3.14. Let L^{\prime} be a $P B$-sublattice of $L(X)$. Then

$$
L=\left\{\bar{U}=\left(U^{i}\right)_{i \in \omega}: \text { there exists an } \bar{U}^{\prime} \in L^{\prime} \text { such that } \bar{U}^{\prime}=\left(U^{i}, U^{c i}\right)_{i \in \omega}\right\}
$$

is a PBS-sublattice in X. For every $\bar{U}^{\prime}=\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L^{\prime}$ put $p\left(\bar{U}^{\prime}\right)=$ $\left(U^{i}\right)_{i \in \omega}$. Then $p: L^{\prime} \longrightarrow L$ is a lattice homomorphism, $L=p\left(L^{\prime}\right)$ and the correspondence

$$
[p]:\left[L^{\prime}\right] \longrightarrow[L], \quad\left[\bar{U}^{\prime}\right] \longrightarrow\left[p\left(\bar{U}^{\prime}\right)\right]
$$

is a lattice isomorphism.
Proof. For proving that L is a PBS-sublattice in X, we need only to check that the first part in the condition (LS2) (see 3.12) is satisfied.

Let $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$. There exists an $\bar{U}^{\prime} \in L^{\prime}$ such that $\bar{U}^{\prime}=$ $\left(U^{i}, U^{c i}\right)_{i \in \omega}$. By (L2) of 3.4, there exist $\bar{W}^{\prime}=\left(W^{i}, W^{c i}\right)_{i \in \omega} \in L^{\prime}$ and $l \in \omega$ such that $U^{j} \subseteq W^{l} \subseteq W^{0}=U^{j+1}$. Then $U^{j} \subseteq W^{l} \subseteq W^{l+2} \subseteq U^{j+1}$ and hence $X \backslash U^{j} \supseteq X \backslash \bar{W}^{l} \supseteq \bar{X} \backslash W^{l+2} \supseteq X \backslash U^{j+1}$. We have that $X \backslash \bar{W}^{l+2} \subseteq W^{c(l+1)} \subseteq$ $X \backslash W^{l+1} \subseteq W^{c l} \subseteq X \backslash W^{l}$. Using again (L2) of 3.4, we obtain that there exist $\bar{V}^{\prime}=\left(V^{i}, V^{c i}\right)_{i \in \omega} \in L^{\prime}$ and $k \in \omega$ such that $W^{c(l+1)} \subseteq V^{k} \subseteq V^{0}=W^{c l}$. Therefore $\bar{V}=\left(V^{i}\right)_{i \in \omega} \in L$ and $X \backslash U^{j+1} \subseteq V^{k} \subseteq V^{0} \subseteq X \backslash U^{j}$.

It is easy to see that $[p]$ is a lattice isomorphism.
Lemma 3.15. For every PBS-sublattice L in X there exists a $P B$-sublattice L^{\prime} of $L(X)$ such that $p\left(L^{\prime}\right)=L$ and $[p]:\left[L^{\prime}\right] \longrightarrow[L]$ is a lattice isomorphism (see 3.14 for the notations).

Proof. Let $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$. Then, by (LS2) (see 3.12), for every $j \in \omega$ there exist $\bar{V}_{j}=\left(V_{j}^{i}\right)_{i \in \omega} \in L$ and $k_{j} \in \omega$ such that $U^{j} \subseteq X \backslash V_{j}^{0} \subseteq X \backslash V_{j}^{k_{j}} \subseteq U^{j+1}$. Put $U^{c j}=V_{j}^{0}$, for every $j \in \omega$. Then $U^{j} \subseteq X \backslash U^{c j} \subseteq U^{j+1}$, for every $j \in \omega$, and hence $\bar{U}^{\prime}=\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L(X)$. Put $L^{\prime \prime}=\left\{\bar{U}^{\prime}: \bar{U} \in L\right\}$. Then
$L^{\prime \prime} \subseteq L(X)$. Let L^{\prime} be the sublattice of $L(X)$ generated by $L^{\prime \prime}$. In order to show that L^{\prime} is a PB-sublattice of $L(X)$, we need only to check that the first part of the condition (L2) (see 3.4) is satisfied. Let $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$. Then $\bar{U}^{\prime}=\left(U^{i}, U^{c i}\right)_{i \in \omega} \in L^{\prime \prime}$. Let $j \in \omega$. By the construction of \bar{U}^{\prime}, we have that $U^{c(j+1)} \subseteq X \backslash U^{j+1} \subseteq V_{j}^{k_{j}} \subseteq V_{j}^{0}=U^{c j}$. Since $\left(\bar{V}_{j}\right)^{\prime} \in L^{\prime \prime} \subseteq L^{\prime}$ and $k_{j} \in \omega$, we obtain that (L2) is satisfied by the elements of $L^{\prime \prime}$. From the facts that L is a lattice and $L^{\prime \prime}$ generates L^{\prime}, we obtain that (L2) is satisfied also by all elements of L^{\prime}. So, L^{\prime} is a PB-sublattice of $L(X)$. The construction of L^{\prime} shows that $p\left(L^{\prime}\right)=L$. The rest follows from 3.14.
Corollary 3.16. Let L be a PBS-sublattice in (X, \mathcal{T}). Then, for every element $\bar{U}=\left(U^{i}\right)_{i \in \omega}$ of L and for every $i \in \omega$, we have that $U^{i} \in \operatorname{Coz}(X)$. Hence, $L^{0} \subseteq \operatorname{Coz}(X)$.

Proof. It follows from 3.15 and 3.5.
Theorem 3.17. Let (X, \mathcal{T}) be a Tychonoff space and L be a PBS-sublattice in X. Define for $A, B \subseteq X: A \overline{\delta_{L}} B$ iff there exist $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $k \in \omega$ such that $A \subseteq U^{k} \subseteq U^{0} \subseteq X \backslash B$. Then δ_{L} is an Efremovič proximity on the topological space (X, \mathcal{T}). (We will say that the proximity δ_{L} is generated by the PBS-sublattice L in X.) Moreover, for any proximity δ on (X, \mathcal{T}) there exists a PBS-sublattice L in X such that $\delta=\delta_{L}$. The set of all PBS-sublattices in X generating a proximity δ on (X, \mathcal{T}) has a greatest element (with respect to the inclusion), which will be denoted by L_{δ}.

Proof. By Lemma 3.15, there exists a PB-sublattice L^{\prime} of $L(X)$ such that $p\left(L^{\prime}\right)=L$. In Proposition 2.12 of [5] we show that the relation $\delta_{L^{\prime}}$ generated by L^{\prime}, defined in the same way as we define here the relation δ_{L}, is a proximity on the space (X, \mathcal{T}). Hence, δ_{L} is such one, as well. This fact can be also obtained directly, modifying the proof of Proposition 2.12 of [5].

If $(c X, c)$ is a compactification of X then the family $\mathcal{F}=\{f: X \longrightarrow[0,1]: f$ has a continuous extension to $c X\}$ generates $(c X, c)$. The PB-sublattice $L_{\mathcal{F}}$ of $L(X)$, constructed in Example 2.4 of [5], has the property that $\delta_{L_{\mathcal{F}}}=\delta_{c}$ (see Theorem 3.1(a) of [5]). By Lemma 3.14, the lattice $L=p\left(L_{\mathcal{F}}\right)$ is a PBS-sublattice in X. Obviously, $\delta_{L_{\mathcal{F}}}=\delta_{L}$. Hence, by Theorem 2.2, for any proximity δ on (X, \mathcal{T}) there exists a PBS-sublattice L in X such that $\delta=\delta_{L}$.

Finally, one easily infer from Proposition 2.11 of [5] and our lemmas 3.14 and 3.15 that the set of all PBS-sublattices in X generating a proximity δ on (X, \mathcal{T}) has a greatest element (with respect to the inclusion).
Theorem 3.18. Let (X, \mathcal{T}) be a Tychonoff space and L be a PBS-sublattice in X. Put, for every $x \in X, I_{x}=\left\{\bar{U} \in L: x \notin U^{0}\right\}$. Then:
(a) $\pi\left(I_{x}\right)=\left\{[\bar{U}]: \bar{U} \in I_{x}\right\} \in \max ([L])$ and the map $e_{L}:(X, \mathcal{T}) \longrightarrow$ $\max ([L])$, defined by the formula $e_{L}(x)=\pi\left(I_{x}\right)$, is a dense embedding;
(b) $\left(\max ([L]), e_{L}\right)$ is a Hausdorff compactification of X, equivalent to the Smirnoff compactification $\left(c_{\delta_{L}} X, c_{\delta_{L}}\right)$ (see 3.17 for δ_{L} and 2.2 for $\left.\left(c_{\delta_{L}} X, c_{\delta_{L}}\right)\right)$.

Hence, the set $K(X)$ of all, up to equivalence, Hausdorff compactifications of X is represented by the set $\left\{\left(\max \left(\left[L_{\delta}\right]\right), e_{L_{\delta}}\right): \delta \in P_{\mathcal{T}}(X)\right\}$. Moreover, the following is true: $\left(c_{\delta_{1}} X, c_{\delta_{1}}\right) \leq\left(c_{\delta_{2}} X, c_{\delta_{2}}\right)$ iff $L_{\delta_{1}} \subseteq L_{\delta_{2}}$ (see 3.17 for L_{δ}).

Therefore, putting $B_{X}=[S(X)]$ and $\mathcal{L}_{X}=\left\{\left[L_{\delta}\right]: \delta \in P_{\mathcal{T}}(X)\right\}$, we obtain a new (simpler) solution of our Problem 1.

Proof. In [6] the PB-sublattice version of this theorem (i.e., the version obtained by substituting everywhere in the theorem "PBS-" with "PB-") was proved (see Theorem 3.8 there). Now our result follows from it, from lemmas 3.14, 3.15 and Theorem 3.17 proved above, and from 2.17, 2.13 of [5].

Definition 3.19. Let B be a Boolean algebra and L be a sublattice of B. A measure μ, defined on the Boolean algebra $b(L)$, is called u-regular measure (or u-L-regular measure) if $\mu(x)=\inf \{\mu(a): a \in L, x \leq a\}$ for any $x \in b(L)$. The set of all u-L-regular zero-one measures on the Boolean algebra $b(L)$ will be denoted by $I_{u r}(L)$.

The following lemma is essentialy known (see [1], Theorem 2.1):
Lemma 3.20. Let B be a Boolean algebra and L be a sublattice of B. Then there exists a bijection between the sets $\max (L)$ and $I_{u r}(L)$.

Lemma 3.21. Let (X, \mathcal{T}) be a Tychonoff space and L be a PBS-sublattice in X. Then $[L]$ is a sublattice of $[S(X)]$ (see 3.11 and 3.9 for the notations). For every $[\bar{U}] \in[L]$ put

$$
[\bar{U}]^{*}=\left\{\mu \in I_{u r}([L]): \mu([\bar{U}])=1\right\}
$$

Then the family $\mathcal{B}^{*}=\left\{[\bar{U}]^{*}:[\bar{U}] \in[L]\right\}$ is a base of a topology \mathcal{T}^{*} on the set $I_{u r}([L])$. If δ is the proximity on (X, \mathcal{T}) generated by L (see 3.17), then for every $x \in X$ and every $[\bar{U}]=\left[\left(U^{i}\right)_{i \in \omega}\right] \in b([L])$ put:
$\mu_{x}([\bar{U}])= \begin{cases}0 & \text { if there exists an } i_{0} \in \omega \text { such that } x \bar{\delta} U^{i} \text { for every } i \geq i_{0}, \text { and } \\ 1 & \text { if there exists an } j_{0} \in \omega \text { such that } x \bar{\delta}\left(X \backslash U^{j}\right) \text { for every } j \geq j_{0} .\end{cases}$
Then, for every $x \in X, \mu_{x}$ is a well-defined zero-one u-[L]-regular measure on the Boolean subalgebra $b([L])$ of the complete Boolean algebra $[S(X)]$ and the mapping $m_{L}:(X, \mathcal{T}) \longrightarrow\left(I_{u r}([L]), \mathcal{T}^{*}\right)$, defined by the formula $m_{L}(x)=\mu_{x}$, is a dense embedding. $\left(\left(I_{u r}([L]), \mathcal{T}^{*}\right), m_{L}\right)$ is a Hausdorff compactification of (X, \mathcal{T}) equivalent to the compactification $\left(\max ([L]), e_{L}\right)$ of (X, \mathcal{T}) (and, hence, to the Smirnoff compactification $\left.\left(c_{\delta} X, c_{\delta}\right)\right)$. The map $\Phi:\left(I_{u r}([L]), \mathcal{T}^{*}\right) \longrightarrow$ $\max ([L])$, defined by the formula $\Phi(\mu)=\mu^{-1}(0) \cap[L]$, carries out this equivalence.

Proof. In [6] the PB-sublattice version of this lemma was proved (see Lemma 3.16 there). Our result follows from it and from Lemma 3.15 proved above.

Theorem 3.22 (The Main Theorem). Let (X, \mathcal{T}) be a Tychonoff space. Then for every Hausdorff compactification $(c X, c)$ of X there exists a sublattice $[L]$ of the complete Boolean algebra $[S(X)]$ (where L is a PBS-sublattice in X) such that $\left(\max ([L]), e_{L}\right)$ (see 3.18 for the definition of the map e_{L}) and
$\left(\left(I_{u r}([L]), \mathcal{T}^{*}\right), m_{L}\right)$ (see 3.19 and 3.21 for the notations) are Hausdorff compactification of X equivalent to the compactification $(c X, c)$ of X.

Proof. Let $(c X, c)$ be a Hausdorff compactification of (X, \mathcal{T}). Then, by Theorem 3.17, there exists a PBS-sublattice L in X such that $\delta_{L}=\delta_{c}$ (see 2.2 and 3.17 for the notations). Now, Theorem 3.18, Lemma 3.21 and Theorem 2.2 imply that $\left(\max ([L]), e_{L}\right)$ and $\left(\left(I_{u r}([L]), \mathcal{T}^{*}\right), m_{L}\right)$ are Hausdorff compactification of X equivalent to the compactification $(c X, c)$ of X.

Corollary 3.23. Let (X, \mathcal{T}) be a Tychonoff space. Put

$$
M A(X)=\left\{\left(\max \left(\left[L_{\delta}\right]\right), e_{L_{\delta}}\right): \delta \in P_{\mathcal{T}}(X)\right\}
$$

and

$$
M E(X)=\left\{\left(\left(I_{u r}\left(\left[L_{\delta}\right]\right), \mathcal{T}^{*}\right), m_{L_{\delta}}\right): \delta \in P_{\mathcal{T}}(X)\right\}
$$

Order these sets putting for every $\delta_{1}, \delta_{2} \in P_{\mathcal{T}}(X)$,

$$
\max \left(\left[L_{\delta_{1}}\right]\right) \leq \max \left(\left[L_{\delta_{2}}\right]\right) \text { iff } \delta_{1} \leq \delta_{2} \text {, and } I_{u r}\left(\left[L_{\delta_{1}}\right]\right) \leq I_{u r}\left(\left[L_{\delta_{2}}\right]\right) \text { iff } \delta_{1} \leq \delta_{2} .
$$

Then the ordered sets $(M A(X), \leq)$ and $(M E(X), \leq)$ are isomorphic to the ordered set $(K(X), \leq)$ of all, up to equivalence, Hausdorff compactifications of X.

In the next proposition, the O . Njåstad's characterization of Wallman compactifications by means of proximities (see 2.4) is restated in the language of PBS-sublattices.

Proposition 3.24. Let (X, \mathcal{T}) be a Tychonoff space and L be a PBS-sublattice in X. Then $\left(\max ([L]), e_{L}\right)$ is a Wallman compactification of X iff there exists a family \mathcal{B}, consisting of open subsets of X, such that
(i) \mathcal{B} is closed under finite unions;
(ii) If $A, B \in \mathcal{B}$ and $A \cup B=X$ then there exist $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$ with $X \backslash A \subseteq U^{j} \subseteq U^{0} \subseteq B$;
(iii) If $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$ then there exist $A, B \in \mathcal{B}$ such that $U^{j} \subseteq X \backslash A \subseteq B \subseteq U^{0}$.

Proof. The proximity generated by the compactification $\left(\max ([L]), e_{L}\right)$ is exactly the proximity δ_{L} (see Theorem $3.18(\mathrm{~b})$). Hence, by Theorem 2.4, $\left(\max ([L]), e_{L}\right)$ is a Wallman compactification of X if and only if there exists a subfamily \mathcal{B} of \mathcal{T} which is closed under finite unions and satisfies the conditions $(B 1)$ and $(B 2)$. Since our proximity δ_{L} is generated by L, these conditions can be rewritten now as follows:
$\left(B 1_{L}\right)$ If $U, V \in \mathcal{B}$ and $U \cup V=X$ then there exist $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$ such that $X \backslash U \subseteq U^{j} \subseteq U^{0} \subseteq V$;
$\left(B 2_{L}\right)$ If $A, B \subseteq X$ and there exist $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$ such that $A \subseteq U^{j} \subseteq U^{0} \subseteq X \backslash B$ then there are $V, W \in \mathcal{B}$ with $A \subseteq X \backslash V$, $B \subseteq X \backslash W$ and $V \cup W=X$.

Obviously, condition $\left(B 1_{L}\right)$ coincides with condition (ii) of our Proposition and condition (i) is also satisfied. Since for every $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$ we have that $U^{j} \overline{\delta_{L}}\left(X \backslash U^{0}\right)$, condition $\left(B 2_{L}\right)$ is equivalent to the condition (iii). This completes the proof.

Now we will give a sufficient condition for $\left(\max ([L]), e_{L}\right)$ to be a Wallman compactification:

Proposition 3.25. Let (X, \mathcal{T}) be a Tychonoff space and L be a $P B S$-sublattice in X. If L satisfies the following condition:
(Wa) If $\bar{U}, \bar{V} \in L$ and $U^{0} \cup V^{0}=X$ then there exist $\bar{W}=\left(W^{i}\right)_{i \in \omega} \in L$ and $j \in \omega$ such that $X \backslash U^{0} \subseteq W^{j} \subseteq W^{0} \subseteq V^{0}$,
then $\left(\max ([L]), e_{L}\right)$ is a Wallman compactification of X. In fact, we have that $\left(\max ([L]), e_{L}\right)$ is equivalent to the Wallman compactification $\left(\max \left(L^{0}\right), \eta_{L^{0}}\right)$ (see 2.3 and 3.12 for the notations).
Proof. Let us recall that O . Nj jastad ([12]) proved that if (X, δ) is a proximity space then a subfamily \mathcal{B} of the topology \mathcal{T}_{δ}, generated by the proximity δ, is a normal Wallman base of $\left(X, \mathcal{I}_{\delta}\right)$ if it is a ring of sets and satisfies the conditions $(B 1)$ and $(B 2)$ from 2.4 ; moreover, he showed that $\left(\max (\mathcal{B}), \eta_{\mathcal{B}}\right)$ and $\left(c_{\delta} X, c_{\delta}\right)$ are equivalent compactifications of $\left(X, \mathcal{T}_{\delta}\right)$ (see 2.2 and 2.3 for the notations).

By Theorem 3.18(b), we have that $\left(\max ([L]), e_{L}\right)$ and $\left(c_{\delta_{L}} X, c_{\delta_{L}}\right)$ are equivalent compactifications of (X, \mathcal{T}). Obviously, $L^{0}\left(=\left\{U^{0}=\bigcup\left\{U^{i}: i \in \omega\right\}\right.\right.$: $\left.\left.\left(U^{i}\right)_{i \in \omega} \in L\right\}\right)$ is a ring of open sets in (X, \mathcal{T}) and $\mathcal{T}=\mathcal{T}_{\delta_{L}}$ (see Theorem 3.17). So, in order to prove our proposition, it is enough to show that the family L^{0} satisfies the conditions $(B 1)$ and $(B 2)$ from 2.4. The condition (Wa) says that if $U^{0}, V^{0} \in L^{0}$ and $U^{0} \cup V^{0}=X$ then $\left(X \backslash U^{0}\right) \overline{\delta_{L}}\left(X \backslash V^{0}\right)$. Hence ($B 1$) is satisfied. For proving $(B 2)$, let $A, B \subseteq X$ and $A \overline{\delta_{L}} B$. Then, by the definition of δ_{L}, there exist $\bar{U}=\left(U^{i}\right)_{i \in \omega} \in \bar{L}$ and $j \in \omega$ such that $A \subseteq U^{j} \subseteq U^{0} \subseteq X \backslash B$. Since L is a PBS-sublattice in X, we obtain (by the condition $(L S 2)$ from Definition 3.12) that there exist $\bar{V}=\left(V^{i}\right)_{i \in \omega} \in L$ and $k \in \omega$ with $U^{j} \subseteq X \backslash V^{0} \subseteq X \backslash V^{k} \subseteq U^{j+1} \subseteq U^{0}$. Hence $A \subseteq X \backslash V^{0}$, $B \subseteq X \backslash U^{0}, U^{0} \cup V^{0}=X$ and $U^{0}, V^{0} \in L^{0}$. Therefore, L^{0} satisfies (B2). The proof of our proposition is completed.

References

[1] G. Bachman and R. Cohen, Regular Lattice Measures and Repleteness, Comm. on Pure and Applied Math. 26 (1973), 587-599.
[2] H. Brandenburg and A. Mysior, Short proof of an internal characterization of complete regularity, Canad. Math. Bull. 27 (4) (1984), 461-462.
[3] G. Bachman and P. Stratigos, On the Relation of Lattice Repleteness and C-Real Compactness, Indian J. Pure and Applied Math. 20 (11) (1989), 1043-1066.
[4] R. Cohen, Lattice Measures and Topologies, Ann. Mat. Pura Appl. 109 (1976), 147-164.
[5] G. Dimov and G. Tironi, Compactifications, A-Compactifications and Proximities, Ann. Mat. Pura Appl. 169 (1995), 87-108.
[6] G. Dimov and G. Tironi, Hausdorff Compactifications and Zero-One Measures, Math. Proc. Camb. Phil. Soc. (2001) (to appear).
[7] R. Engelking, General Topology, (PWN, Warszawa, 1977).
[8] O. Frink, Compactifications and semi-normal spaces, Amer. J. Math. 86 (1964), 602607.
[9] P. T. Johnstone, Stone Spaces, Cambridge Studies in Advanced Math. no. 3 (Cambridge University Press, 1982).
[10] J. Kerstan, Eine Charakterisierung der vollständig regulären Räume, Math. Nachrichten 17 (1958), 27-46.
[11] S. A. Naimpally and B. D. Warrack, Proximity Spaces, (Cambridge Univ. Press, 1970).
[12] O. Njåstad, On Wallman-type Compactifications, Math. Zeitschr 91 (1966), 267-276.
[13] Y. M. Smirnoff, On proximity spaces, Mat. Sb. (Russian) 31 (1952), 543-574; Am. Math. Soc. Transl. (English translation) 38 Ser. 2, 5-35.
[14] A. Sultan, Measure, compactification and representation, Can. J. Math. 30 (1) (1978), 54-65.
[15] V. M. Ul'janov, Solution of a basic problem on compactifications of Wallman type, Soviet Math. Dokl. 18 (1977), 567-571.
[16] H. Wallman, Lattices and topological spaces, Annals of Math. 39 (1938), 112-126.

Received February 2001
Revised May 2001

Georgi D. Dimov
Department of Mathematics and Computer Science
University of Sofia
Blvd. J. Bourchier 5
1126 Sofia, Bulgaria
E-mail address: gdimov@fmi.uni-sofia.bg

Gino Tironi
Department of Mathematical Sciences
University of Trieste
Via A. Valerio 12/1
34127 Trieste, Italy
E-mail address: tironi@univ.trieste.it

[^0]: *The first author was partially supported by a Fellowship for Mathematics of the NATOCNR Outreach Fellowships Programme 1999, Bando 219.32/16.07.1999.
 ${ }^{\dagger}$ The second author was supported by the National Group "Analisi reale" of the Italian Ministry of the University and Scientific Research at the University of Trieste.

