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Cofinitely and co-countably projective spaces
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ABSTRACT. We show that X is cofinitely projective if and only if
it is a finite union of Alexandroff compactifications of discrete spaces.
We also prove that X is co-countably projective if and only if X admits
no disjoint infinite family of uncountable cozero sets. It is shown that
a paracompact space X is co-countably projective if and only if there
exists a finite set B C X such that B C U € 7(X) implies | X \U| € w.
In case of existence of such a B we will say that X is concentrated
around B. We prove that there exists a space Y which is co-countably
projective while there is no finite set B C Y around which Y is concen-
trated. We show that any metrizable co-countably projective space is
countable. An important corollary is that every co-countably projective
topological group is countable.
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1. INTRODUCTION

Given an arbitrary class F of continuous mappings, a space X is called
F-projective if each surjective continuous mapping f : X — Y is an element
of F whenever Y belongs to the class U of second countable regular spaces.
The paper [6] was the first one where F-projective properties were studied
systematically. One of the results of [6] says that each continuous mapping of
X with a second countable image is almost compact, i.e., its fibers are compact
except finitely many if and only if |[3X\X| < n for some n € w. This motivates
the following problem: is it true that for each almost compact projective second
countable space X there exists a decomposition X = K U Z such that K is
compact and Z is countable? It was proved in [2] that under CH the answer is
negative.
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Meéxico, grant 400200-5-28411-E
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A space X is said to be cofinitely projective if, for any surjective continuous
mapping f : X — Y € U, there exists a finite set A C Y such that |f~(y)| < w
for every y € Y\ A. We prove that X is cofinitely projective if and only if X is a
finite union of primary compact spaces, i.e., the Alexandroff compactifications
of discrete spaces. A space X is co-countably projective if, for any surjective
continuous function f : X — Y € U, there exists a finite set A C Y such that
|f~1(y)| < w for every y € Y\ A. We establish that X is co-countably projec-
tive if and only if X does not admit a disjoint infinite family of uncountable
cozero sets. In case when X is paracompact it is shown that X is co-countably
projective if and only if it is concentrated around a finite set, i.e., there exists a
finite B C X such that, for any open U € 7(X), if B C U then | X\U| < w. We
also show that not all co-countably projective spaces are concentrated around
a finite set. Our last group of results shows that there are some important
classes of spaces in which every co-countably projective space is countable; we
prove that this happens in metrizable spaces as well as in topological groups.

2. NOTATION AND TERMINOLOGY.

All spaces are assumed to be Tychonoff. If X is a space, then 7(X) is its
topology. Given B C X, let 7(B,X) = {U € 7(X) : B C U}. We write 7(z,X)
instead of 7({z}, X). We say that a space X is concentrated around B C X if,
for every U € 7(B, X), the set X\U is countable. All mappings are assumed
to be continuous. A subspace A C X is called C*-embedded in X if for each
bounded continuous function f : A — R there exists a continuous function
F : X — R such that F|A = f.

Suppose that we are given a space X, a family {Y;}scs of spaces and a family
of continuous mappings { fs }ses, where fs : X — Y;. The mapping that assigns
to any point £ € X the point {fs(z)} € Il;csY; is called the diagonal product
ANsesfs of the mappings {fs}ses. The symbol w stands for the first infinite
cardinal. Denote by I the interval [0, 1] with the usual topology. If f : X - Y
and y € Y, the fiber of y is the set f~!(y) = {x € X : f(z) = y}. A surjective
continuous mapping f : X — Y is closed if f(F) is closed in Y for each closed
F C X. A space X is almost injectively projective if each surjective continuous
function f: X — Y € U is almost injective, i.e., [{y €Y : |[f71(y)| > 1}| < w.

A space X is zero-dimensional if it has a base that consists of clopen sets.
We will use the symbol A(X) for the Alexandroff compactification of a locally
compact space X. A primary compact space is the space A(D) for some discrete
D.

3. COFINITELY PROJECTIVE SPACES AND DIMENSION.

In this section we give complete characterizations of cofinite projectivity and
projective n-dimensionality.

Definition 3.1. If n € w then a space X is called projectively n-dimensional
if, for any continuous onto map f: X - Y € U, we have dim Y < n.
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The following lemma is well known as a folklore but we give its proof here
for the sake of completeness.

Lemma 3.2. If a space X is not zero-dimensional then there exists a contin-
uous onto map f : X — I.

Proof. As X it is not zero-dimensional, we can choose an z € X and a neigh-
bourhood U of z such that U # X and there is no clopen W for which
x € W C U. Since X is completely regular there exists f : X — [0,1]
such that f(z) = 1 and f|(X\U) = 0. If there is t € (0,1)\f(X) then the
set W = f~1((t,1]) is clopen and z € W C U which is a contradiction. This
proves that f(X) = [0,1]. U

Theorem 3.3. The following conditions are equivalent for any space X :

(1) X is projectively zero-dimensional;

(2) X is projectively n-dimensional for some n € w;

(8) X can not be continuously mapped onto I;

(4) X can not be continuously mapped onto an infinite-dimensional second
countable space.

Proof. Tt is evident that (1) = (2). Assume that (2) is true and there is a
continuous onto map f : X — I. Take a continuous onto map g : I — I¥ and
observe that h = g o f maps X continuously onto I which is a contradiction
with the fact that any continuous second countable image of X must have
dimension < n. This proves (2) = (3).

Suppose that X can be continuously mapped onto a non-zero-dimensional
space Y. Apply Lemma 3.2 to conclude that Y can be continuously mapped
onto I. The relevant composition of maps shows that X can be continuously
mapped onto I and hence we proved that (3) = (4) and (3) = (1).

To finish our proof it suffices show that (4) = (3). Assume that f: X — I
is a continuous onto map. There exists a continuous onto map g : I — I¥, so
the map h = go f : X — I¥ is continuous and onto. Since the space I¥ is
infinite-dimensional, this settles (4) = (3) and our theorem is proved. U

Corollary 3.4. If a space X is almost injectively projective then it is projec-
tively zero-dimensional.

Proof. By Theorem 3.3 it suffices to show that X can not be continuously
mapped onto I. But if f : X — T is continuous and onto then I has to be
almost injectively projective [2] which it is not; this has also been proved in [2].

O

Corollary 3.5. Let X be projectively zero-dimensional. Then

(1) every continuous image of X is projectively zero-dimensional;

(2) if Y is C*-embedded in X then Y is projectively zero-dimensional. In
particular, if X is normal and projectively zero-dimensional then so is every
closed subspace of X.
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Proof. That (1) holds is an immediate consequence of the definition. To prove
(2) take any surjective continuous map f:Y — I. Since Y is C*-embedded in
X there exists a continuous map g : X — I such that g|Y = f. Hence X can
also be mapped continuously onto I and (2) holds. O

Corollary 3.6. A compact space X is projectively zero-dimensional if and only
if it is scattered.

Proof. To prove the necessity we take a compact space X which is projectively
zero-dimensional. If X is not scattered, there exists a surjective continuous
function f : X — I (see [5]), which is a contradiction with Theorem 3.3(3).
For the sufficiency suppose that X is scattered. It follows from [2, Proposi-
tion 2.14], that X is almost injectively projective. By Corollary 3.4 the space
X is projectively zero-dimensional. O

Example 3.7. There exists a pseudocompact scattered space which is not
projectively zero-dimensional.

Proof. The following construction can be found in [3]. Let v be a maximal
almost disjoint family of infinite subsets of w. For each A € v take a point
x4 ¢ w. We introduce a topology 7 on the set wU{z4 : A € v} in the following
way: if © € w then {z} € 7; if x = z4 then the base at = consists of the sets
{za} U (A\B) where B C w is finite. Let M, be the set wU {z4 : A € 7},
with the topology described above; then M, is a pseudocompact scattered
Tychonoff space [3]. It was also proved in [3] that a maximal almost disjoint
family v can be chosen so that M., can be mapped continuously onto [0, 1].
The space M, is as promised because it is pseudocompact, scattered and not
projectively zero-dimensional. O

The proofs of the following two statements are easy.

Proposition 3.8. If X is cofinitely projective then any continuous image of
X is cofinitely projective.

Proposition 3.9. If X is cofinitely projective then it is zero-dimensional.
Lemma 3.10. If X is cofinitely projective then it is pseudocompact.

Proof. If f : X —» Y € U, then there exists a finite set A C Y such that
|f~1(y)| < w for every y € Y\A. This proves that |[{y € Y : f~1(y) is not
compact}| < |4| < w. Therefore each map of X onto a space with countable
base is not compact at only a finite number of points and by Proposition 3.14
of [6] we can conclude that X is pseudocompact. U

Example 3.11. The Alexandroff one-point compactification A(D) of an arbi-
trary discrete space D, is a cofinitely projective space.

Proof. Let A(D) = D U {a} where a is the only non-isolated point of A(D).
Take a surjective continuous mapping f : A(D) - Y € U, and an arbitrary
y € Y\{f(a)}. As f is continuous the subspace f~1(y) is compact and discrete
in A(D). Therefore f~1(y) is finite. U
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Lemma 3.12. If X is regular and F' C X is a closed infinite set then there
exists a family {V; : i € N} C 7(X) such that V;NV; = & and FNV; # & for
alli,j € w withi # j.

Proposition 3.13. Any cofinitely projective space has only a finite number of
non-isolated points.

Proof. Let Y be the set of non-isolated points of a cofinitely projective space
X. Clearly Y is a closed subset of X. If Y is infinite, Lemma 3.12 implies that
there exists a family {V; : i € N} C 7(X) such that V;NV; = @ and YNV, # &
for all 4,5 € N with ¢ # j. Take z; € Y NVj for each j € N and consider the
set Z = {z, : n € N} which is discrete. As X is zero-dimensional, for each
n € N there exists a clopen set U, such that z,, € U, C V,,. Define a function
f:X = 1Iby f|lU, =+ for any n € Nand f(z) =0forall z € J{Un : n € N}.
Clearly f|U, is continuous for each n € N. Take any z ¢ |J{U, : n € N} and
a neighbourhood (—e, €) of the point f(z) = 0. For any n with 1 < € we have
fW) C (=1,1) C (—€¢) for W = X\, Ui. Therefore f is continuous
at z. Observe that U, C f‘l(%) and U, is infinite since z,, is not isolated.
Therefore we have an infinite number of infinite fibers of f whence X is not
cofinitely projective. U

Lemma 3.14. If X is pseudocompact and has only finitely many non-isolated
points then X is compact.

Proposition 3.15. If X is cofinitely projective then X is compact.

Proof. As X is cofinitely projective, Proposition 3.10 says that X is pseudo-
compact. By Proposition 3.13, the space X has a finite number of non-isolated
points and applying Lemma 3.14 we conclude that X is compact. [

Lemma 3.16. Any finite union of cofinitely projective spaces is a cofinitely
projective space.

Proof. Suppose that X = U?:l X; and each X; is cofinitely projective. Given
any f : X = Z € U, consider the maps f; = f|X; where f; : X; — Z; and
Z; = f(X;). As X; it is cofinitely projective there exists A; C Z; such that
|f,~_1(z)| < w for all z € Z;\ A;. Observe that the set A =J, A; is finite and
f @) =UL, fi'(z) for all 7 € X. If 7 ¢ A, the set f~1(z) is finite because
f7(z) is finite for every i < n. U

Now we can give a complete characterization of cofinitely projective spaces.

Theorem 3.17. The following conditions are equivalent for any space X :
(1) X is cofinitely projective;

(2) X is a compact space with a finite number of non-isolated points;

(8) X is a discrete union of a finitely many primary compact spaces.

Proof. To show that (1) = (2), assume that X is cofinitely projective. Propo-
sition 3.15 says that X is compact and, by Proposition 3.13, the space X has
only a finite number of non-isolated points.
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Suppose that (2) holds, and take an enumeration {z1, ..., £, } of the set of the
non-isolated points of X. Choose a disjoint family {Ui,...,U,} of clopen sets
of X such that z; € U; foralli <n. U = U; UU2U...UU, then X\U is finite
and each Uj; is a primary compact space. Therefore X = X1 @ Xo & ... ® X,
where X7 = U1 U(X\U) and X; = U; for all i € {2, ...,n}. It is clear that every
X; is also a primary compact space and the implication (2) = (3) is proved.

Now if (3) holds, then X = X1 ®X2®..® X, where each X is a primary com-
pact space. Example 3.11 shows that each X; is cofinitely projective. Applying
Lemma 3.16 we see that X is cofinitely projective and therefore (3) = (1). [

Corollary 3.18. If X is finite union of convergent sequences then X is cofi-
nitely projective.

Proof. Each convergent sequence is a cofinitely projective space, so X is cofinitely
projective by Lemma 3.16. O

Example 3.19. There exists a space X which is cofinitely projective, while
X x X is not cofinitely projective.

Proof. If X is a convergent sequence, the space X x X has an infinite number
of non-isolated points. By Proposition 3.13 the square of X is not cofinitely
projective. [l

4. CO-COUNTABLY PROJECTIVE SPACES.

The concept of a co-countably projective space is an evident generalization
of the notion of a cofinitely projective space. However we will see that these
classes have very different properties.

Theorem 4.1. A space X is co-countably projective if and only if there exists
no infinite disjoint family of uncountable cozero subsets of X .

Proof. To prove the necessity, assume that X is co-countably projective and
there exists a disjoint infinite family {U, : n € N} of uncountable cozero
subsets of X. For each n take a continuous function f, : X — [0, 1] such that
f71(0) = X\U,. For each n € N, the set U, = U{f;'([1/k,1]) : k € N}
is uncountable and hence there exists k, € N such that |f,;1([1/kn,1])| > w.
The sets P, = f,([1/kn,1]) and X\U, are functionally separated, so there
exists a continuous function g, : X — [0, £] such that g,|(X\U,) = 0 and
gn|Pn = 1/n. Tt is easy to see that the function g : X — [0,1] given by
9= Y_{gn : n € w} is continuous and, for each n € N, we have P, C g~(1/n).
Therefore, |g7!(1/n)| > w and g has an infinite number of uncountable fibers
which is a contradiction because X is co-countably projective.

To prove the sufficiency suppose that such a family does not exist and X
is not co-countably projective. Then some surjective f : X — Y € U has
an infinite number of uncountable fibers, i.e., there is an infinite A C Y such
that f~1(a) is uncountable for any a € A. Let us take an infinite discrete
B = {z, : n € w} C A. We can choose a disjoint family {W,},c0 C 7(Y)
such that z, € W, for each n € w. If U, = f~1(W,) for all n € w then
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{Un}new C 7(X) is a disjoint infinite family of uncountable cozero sets which
is a contradiction. ]

Definition 4.2. Say that a space X is locally countable at a point z € X if
there exists a countable U € 7(z, X). The space X is locally countable if it is
locally countable at all points.

Theorem 4.3. Let X be a co-countably projective space. Then there ezists a
finite set A C X such that X is locally countable at all points of X\ A.

Proof. We claim that the set A = {z € X : |U| > w for any U € 7(z,X)}
is finite. Indeed, if A is infinite then there exists a discrete infinite set D =
{d,, : n € w} C A. Take a disjoint family {Up}ne, C 7(X) such that d,, € U,.
It is clear that there exists a disjoint family {V;,}ne, of cozero sets such that
d, € V, C U, for all n € w. Since every V,, is uncountable we obtain a
contradiction with Theorem 4.1. Therefore |A| < w and for each z € X\A
there exists V, € 7(z, X) such that |V,| < w.

Proposition 4.4. If X is co-countably projective then any continuous image
of X 1is co-countably projective.

Proof. Suppose that Y is a continuous image of X, i.e., there exists a surjective
continuous function f : X — Y. Given a function g : Y — Z € U, consider
the composition go f : X — Z € U. As X is co-countably projective there
is a finite set A C Z such that |(go f)"!(y)| < w for every y € Z\A. As a
consequence |f~1(g7(y))| < w and hence [g7!(y)| < w for all y € Z\A. This
proves that Y is co-countably projective. [l

Example 4.5. The space [0, 1] is not co-countably projective.

Proof. As [0,1] x [0,1] is a continuous image of [0, 1], Proposition 4.4 implies
that the space [0,1] x [0,1] is co-countably projective if so is [0,1]. But the
projection [0,1] x [0,1] — [0, 1] has an infinite number of uncountable fibers.
Therefore none of the spaces [0, 1] and [0,1] x [0,1] is co-countably projective.

O

Proposition 4.6. Any co-countably projective space X is zero-dimensional.

Proof. If the space X is not zero-dimensional then there exists a continuous
onto map f : X — [0,1] (Lemma 3.2). Proposition 4.4 implies that [0,1] is
co-countably projective which contradicts the statement of Example 4.5. [

Corollary 4.7. If X is a compact metrizable space, then X is co-countably
projective if and only if it is countable.

Example 4.8. There exists a space X which is compact and scattered but not
co-countably projective.

Proof. Given a cardinal x, denote by D(k) the discrete space of cardinality &
and consider the space X = A(D(w)) x A(D(w1)). It is compact and scattered
while the projection map A(D(w)) x A(D(w1)) = A(D(w)) has an infinite
number of uncountable fibers. Therefore X is not co-countably projective. [l
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Proposition 4.9. If X is co-countably projective and Y is o C*-embedded
subspace of X then'Y is co-countably projective.

Proof. Let f : Y — Z be a continuous onto map for some Z € Y. We can
assume that Z C I¥ and therefore f = Apcwfn where f, : Y — I is a
continuous map for each n € w. As Y is C*-embedded, there exists a continuous
F, : X — I such that F,,|Y = f, for each n € w. The function F = Apec,Fp :
X — I¥ maps X onto some Z' C I¥ with Z' O Z. The space X being co-
countably projective, there exists a finite A C Z’ such that |[F~!(y)| < w for
ally € Z'\A. As f~Y(y) C F~(y) we have |f~1(y)| < w for all y € Z\A.
Therefore Y is co-countably projective. [

Theorem 4.10. If X is pseudocompact then BX is co-countably projective if
and only if X is co-countably projective.

Proof. Tt is clear that X is C*-embedded in X, so we can apply Proposition
4.9 to see that X is co-countably projective if so is X . Now assume that X is
co-countably projective and SX is not. By Theorem 4.1 we can find a disjoint
family {O, : n € w} of uncountable cozero subsets of fX. Since the family
O ={0,NX :n € w} is disjoint and consists of cozero subsets of X, all
elements of O except finitely many, must be countable by Theorem 4.1. Take
any n € w such that O, N X is countable. Since the uncountable set O, is a
countable union of compact sets, there is an uncountable compact F' C O,,. By
normality of 3X we can find an open U C X such that F C U C U C O, (the
bar denotes the closure in 3X). Observe that U = U N X because X is dense in
BX. However, P = clx(UN X) C O, N X is compact being a pseudocompact
countable subset of X. As a consequence, the set U C UNX C P = P is
countable which is a contradiction. [

Corollary 4.11. If X is countably compact then 8X is co-countably projective
if and only if so is X.

Corollary 4.12. Any pseudocompact co-countably projective space is scattered.

Proof. If X is pseudocompact and co-countably projective then SX is also
co-countably projective by Theorem 4.10. If X is not scattered then it can
be mapped onto I [5]. By Propostion 4.4 the space I has to be co-countably
projective which it is not (see Example 4.5). This contradiction shows that 5X
is scattered and hence so is X. [l

Definition 4.13. We say that a space X is concentrated around a set B C X
if, for every U € 7(B, X), the set X\U is countable.

Theorem 4.14. The following conditions are equivalent for any space X :
(1) X es Lindelof and co-countably projective;

(2) X is paracompact and co-countably projective;

(8) X is concentrated around o finite set B.
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Proof. The implication (1) = (2), is immediate because each Lindeldf is para-
compact.

Suppose that (2) holds, i.e., X is paracompact and co-countably projective.
By Theorem 4.3 the space X is locally countable at all points of X\Y for
some finite Y C X. For any U € 7(Y, X), the set X\U is paracompact and
co-countably projective by Proposition 4.9. Suppose that D C X\U is an
uncountable closed discrete set with |D| = w;. As X\U is collectionwise normal
there is a discrete family {Uy : d € D} C 7(X\U) such that Uy, is a cozero set
and d € Uy for all d € D. Tt is easy to find a disjoint family {D,, : n € w} such
that D = |J,,c,, Dn and |D,| = w; for each n € w. I U, = [J{Uq : d € D,}
for all n € w then {U, : n € w} is a disjoint infinite family of uncountable
cozero sets which contradicts Theorem 4.1. This shows that each closed discrete
subset of X\U is countable, i.e., e(X\U) = w. Being a paracompact space of
countable extent the space X\U has to be Lindelsf. For each point z € X\U
fix V, € 7(z,X) such that |[V;| < w. As X\U is Lindeldf, the open cover
{V: : z € X\U} of the space X\U has a countable subcover {V., }ne,. Since
X\U = U,c,, V2. and every V. is countable, we have |X\U| < w and the
implication (2) = (3) is proved.

Now suppose that X is concentrated around a finite set B = {z1,...,2,}.
If U is an open cover of X then choose, for each i < n, a set U; € U such
that ; € U;. Then B C U = Uy U...UU, and hence X\U is countable. It
is evident that there exists a countable &’ C U such that X\U C [JU'. The
family &' U {U,...,U,} is a countable subcover of U which proves that X is
Lindelof. It is easy to see that any space concentrated around a finite set, is
co-countably projective so (3) = (1) is established. U

Example 4.15. The space w; with the usual order topology is co-countably
projective and not concentrated around a finite set.

Proof. Each continuous real-valued function f on w; is eventually constant,
that is, there exists ap < wy such that f(a) = f(ag), for every a@ > ag. An
easy consequence is that any continuous f : wy — Z € U is eventually constant.
If A= {f(w)}, and y € Z\A then f1(y) C ag. Therefore |f 1(y)| < w for
any y € Z\A and w; is co-countably projective. If w; is concentrated around
a finite set B = {a4,...,a,}, where a1 < ... < ay, then, for the open set
U={a:a<a,+1}, wehave B C U and |X\U| < w which is false. U

Example 4.16. There exist models of ZFC in which there is a perfectly normal
space X which is co-countably projective without being concentrated around
a finite set.

Proof. The space X of Ostaszewsky [4], is perfectly normal, uncountable,
countably compact, and for any closed F' C X we have |F| < w or |X\F| € w.
Let f: X - Y where Y € Y. If |f~1(y)| < w for every y € Y then there is
nothing to prove. If | f~!(yo)| > w for some yo € ¥ then | X\{f ' (y0)}| < w so
fHy) € X\f Hyo) and |f~H(y)| < w for every y € Y\{yo}-
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If X is concentrated around a finite set B then, by perfect normality of X we
have X\B = [J{F, : n € w} where each F, is closed in X and hence countable
because X\F,, € 7(B,X). As a consequence, X = |J{F, : n € w}UB is
countable which is a contradiction. [l

Proposition 4.17. If X is second countable and co-countably projective then
X is countable.

Proof. As X es Lindelof, Theorem 4.14 implies that there exists a finite set
B = {z1,...,2,} C X around wich X is concentrated. Let us choose disjoint
sets Uy, ..., Up € T7(X) such that z; € U; for each i. For each i < n there exists a
family {Uf}re. C 7(X) such that U C U; for all k € w and ¢, UF = {z;}.
The set A, = X\ U, UF is countable for all k € w so we have X\B = U;¢,, 4i
and therefore | X| < w. U

Corollary 4.18. If X is metrizable and co-countably projective then X is
countable.

Proof. Any metrizable space is paracompact and every paracompact co-countably
projective space is Lindel6f by Theorem 4.14. Thus X is second countable. Ap-
plying Proposition 4.17, we can conclude that X is countable. U

Corollary 4.19. If G is a co-countably projective topological group then G is
countable.

Proof. ThesetY = {x € G : |U| > w for any U € 7(x,G)} is finite by Theorem
4.3. For any U € 7(Y, @) and any point z € G\U there exists V, € 7(z,G) such
that |V,| < w. But topological groups are homogeneous spaces and hence each
point of G has a countable neighbourhood. This shows that ¥(G) < w. Any
topological group with countable pseudocharacter admits a continuous bijection
onto a metrizable space M [1]. Applying Corollary 4.18 and Proposition 4.4,
we can see that M is countable. Since |G| = |M|, we conclude that G is also
countable. [l

5. OPEN QUESTIONS.

The following questions outline a natural development of the research done
in this paper.
Problem 5.1. Suppose that X is a metacompact co-countably projective space.
Must X be concentrated around o finite set?

Problem 5.2. Is there a ZFC example of a perfectly normal co-countably pro-
jective space which is not concentrated around a finite set?

Problem 5.3. Is there a realcompact co-countably projective space which is
not concentrated around a finite set?

Problem 5.4. Let X be a projectively zero-dimensional space. Must X x X
be projectively zero-dimensional?
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Problem 5.5. Let G be almost injectively projective second countable topolog-
ical group. Must G be countable?

Problem 5.6. Let X be a homogeneous co-countably projective space. Must
X be countable?
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