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Notation 

cmE  secant modulus of elasticity of concrete 

cmf  mean value of cylinder compressive strength of concrete 

ccf  modified compressive strength of concrete 

cpf  equivalent plastic strength of concrete 

ckf  characteristic value of cylinder compressive strength of concrete 

ctf  tensile strength of concrete 

syf  yielding strength of steel 

ijG  tangential shear modulus 

fG  fracture energy of concrete 

i , j , k  strain in principal directions i, j, k 

1c  axial strain at unconfined concrete strength cmf  

1*c  axial strain at modified concrete strength ccf  

i , j , k  stress in principal directions i, j, k 

1. Introduction 

Computer software is widely applied in the analysis and design of reinforced concrete structures. In 

particular, the application of the finite element (FE) method has become most important in recent 

decades [1]. Although initially its use was limited mainly to the domain of researchers, today the FE 

method is an everyday tool in many structural design offices. The development of computing 



 

 

technology and FE programmes has contributed to this spread. Guidelines and recommendations 

have been edited to help practitioners define the models and analyses of the results (e.g. [1][2]). 

The FE method has permitted the development of advanced constitutive concrete models (e.g. 

[3][4][5]), which have been later implemented in FE software packages. On the one hand, the ability 

of some of these models to accurately reproduce the behaviour of concrete structures is doubtless. 

On the other hand, their complex formulation limits the number of potential users because only 

those who understand the fundamentals on which models are based should apply them. The 

calibration of model-related constants, some of which have no clear physical meaning and are 

difficult to understand [6][7], can also interfere with their application. 

The methods that are included in concrete design codes, and have been traditionally applied in 

practice, adopt simplifications to deal with the complex behaviour of concrete. As stated by Schlaich 

et al. [8], design concepts should be clear and based on simple models that are understandable by 

designing engineers. The truss analogy [9][10], which became a practical and useful tool to 

understand the response of cracked reinforced concrete beams, is such an example. Schlaich et al. 

later developed the strut-and-tie method [8], which generalised the truss analogy to apply it to any 

part of any structure, including regions with statical and/or geometrical discontinuities (D-regions). 

One of its main assumptions is neglecting the tensile strength of concrete. 

The stress field method [11] is also a simplified approach to design reinforced concrete structures. 

The tensile strength of concrete is neglected and a rigid-plastic constitutive behaviour is adopted in 

compression. Applications of the stress field method are similar to those of the strut-and-tie method. 

Strut-and-tie models can be viewed as discrete representations of stress fields. More detailed 

information about structural behaviour can be obtained from stress field models than from strut-and-

tie models, but the former also require considerable computational effort. 

Computer-based tools to balance the accuracy and adaptability of FE models, and the simplicity of 

design models and methods are of interest. Several computer-based tools have been developed to 

facilitate the use of strut-and-tie models [12][13][14] and stress field models [15][16]. These tools 

adopt simple concrete constitutive models, and are valuable for ultimate limit state analyses and for 



 

 

designing two-dimensional D-regions. However, no references of tools that have extended the use 

of simple concrete models to 3D have been found. 

In this paper a simplified, comprehensible 3D constitutive model for concrete is proposed and its 

fundamentals are described. This model characterises the 3D response of concrete by using 

uniaxial stress-strain laws, such as those proposed in concrete design codes, which are familiar to 

practitioners. Input variables are scarce and the parameters required to define the model have a 

clear physical meaning which allows the engineer to focus on the analysis and/or design of the 

structure rather than on the definition of the model. The undertaken simplifications limit the scope of 

the model to the ultimate limit state. 

This model has been implemented into a non-linear FE-based tool developed by the authors 

(FESCA 3D: Finite Elements for Simplified Concrete Analysis in 3D). Two examples of applications 

are provided: firstly, the results obtained for 12 four-pile caps are presented and discussed. 

Conclusions are drawn for applying strut-and-tie models to these elements; secondly, the stress 

fields obtained for three socket base column-to-foundation connections demonstrate that this 

approach may be of interest to understand the structural behaviour of elements with complex 

geometries and for proposing suitable strut-and-tie models. 

The proposed approach automatically allows the generation of three-dimensional stress fields from 

which three-dimensional strut-and-tie models can be easily developed. This feature is of interest 

because, for certain cases, the selection of an appropriate 3D stress field or strut-and-tie model is 

much more complicated than in 2D. Currently, and as addressed in fib bulletin 61 [17], there is 

scarce or absolutely no guidance about applying the strut-and-tie method to D-regions that display 

a three-dimensional behaviour. The results obtained with FESCA 3D could motivate the further 

study of the strut-and-tie method for 3D elements. 

2. Adoption of a simplified model for concrete 

2.1. On modelling concrete behaviour 

Concrete is a brittle aggregate material, and its behaviour depends on its components and their 

interaction. Some degree of idealisation is required and justified to characterise the non-linear 

response of concrete structures at a macroscale level. The inherent complexity of concrete, linked 



 

 

to the aspiration of accurately capturing its behaviour, has encouraged the development of various 

constitutive models in the last few decades. By means of different approaches, these models 

include diverse factors that affect concrete behaviour, such as cracking, confinement, crushing, 

degradation, etc. Although the accuracy of some of these models is unquestionable, their 

application can generally entail some difficulties for most practitioners given their complexity. 

Therefore, idealisation of concrete response is necessary for common engineering issues. 

Some common idealisations in design codes (like in MC 2010 [18], EC 2 [19], ACI 318-14 [20]) 

include: (i) linear elastic behaviour, i.e. assuming uncracked cross-sections, a linear stress-strain 

relationship and a mean modulus of elasticity value; (ii) plastic behaviour, like the strut-and-tie 

method and the stress field method; and (iii) non-linear behaviour by adopting adequate non-linear 

behaviour for concrete. Although these models entail some loss of accuracy, it may be admissible 

for the sake of simplicity and safety in general practice. 

The use of uniaxial stress-strain laws to characterise concrete behaviour is a common practice in 

the analysis and design included in plane and spatial problems. In compression, this relationship 

can be easily obtained from uniaxial compression tests. Standardised compressive stress-strain 

equations are also proposed in codes. Obtaining the stress-strain relationship in tension is also 

feasible, but is not as straightforward [21]. Standardised tension laws are found in the literature [22]. 

Notwithstanding, the lower tensile strength value of concrete compared to compressive strength, 

and the fact that stress drops abruptly after cracking, mean that neglecting tensile strength of 

concrete is common practice. 

Reducing the number of parameters required to define a model is also important since it reduces 

the risk of making mistakes while defining them or interpreting the results, and allows engineers to 

focus on the analysis and/or design. In design codes, concrete compressive strength is the main 

parameter from which the other variables, such as modulus of elasticity or tensile strength, can be 

derived. The effect of transverse cracking in compression zones and confinement can be 

considered by modifying concrete strength. 



 

 

After considering the above-mentioned issues, the authors propose a simplified, comprehensible 

behaviour model for concrete that adopts uniaxial stress-strain laws, such as those proposed in 

design codes, to characterise the response of 3D structural elements. 

2.2. Model description 

The adoption of an orthotropic model for concrete permits the 3D response to be split into three 

directions and to treat each direction separately. In this way a uniaxial stress-strain relation can be 

employed to model a three-dimensional phenomenon. Orthogonal models are suitable for smeared 

crack representations [23], where concrete is treated as a continuum, even after cracking. 

As proposed by Cope et al. [24], the axes of principal strain are taken as axes of material orthotropy 

(Figure 1a) and coaxiality between the principal strain and principal stress directions is enforced 

(Figure 1b). The adoption of this model is justified for its simplicity, but some limitations must be 

addressed. The assumption of coaxiality is only valid when sufficient shear stress transfer takes 

place along the crack planes. This is not the case in high strength concrete structural elements, 

where cracks typically propagate through aggregates, producing smooth and flat cracks. Moreover, 

crack planes are not memorized and, hence, the model may provide an incorrect response for non-

proportional or cyclic loadings, or when the initial cracks prior to loading are of significance [25]. 

For each direction, stress i  can be computed from its principal strain iε  based on the adopted 

stress-strain curve ( )( icF   in compression and )( itF   in tension):  










 0 if                        )(

 0 if ),,,()( kjkj

ictit

iccic

i
εfF

εfF




  ( 1 ) 

),,,( kjkj ccf  in Equation (1) takes into account the effect of transverse cracking and 

confinement on the compressive strength of concrete as follows. 

 

Figure 1. (a) 3D orthotropic model and (b) Mohr’s circle for strain and stress. Enforcing coaxiality 

between principal strain and stress directions 

 

 



 

 

The Tension-Compression Interaction 

Presence of major tensile strains that are normal to the compressive direction substantially reduces 

the strength and the stiffness of concrete in compression compared to the response in a standard 

cylinder test [26]. 

When transverse strains are unknown, a reduction factor can be applied, which is based on the 

assumed cracking pattern around the compressive flow. For the stress field and strut-and-tie 

models, MC 2010 [18] suggests using a factor equal: 1 for undisturbed uniaxial compression states; 

0.75 if cracks are parallel to the direction of compression and if tension reinforcement is 

perpendicular to it; 0.55 if reinforcement runs obliquely to the direction of compression. 

The reduction factor adopted in this paper is based on the Modified Compression-Field Theory 

(MCFT) of Vecchio et al. [26]. By testing reinforced concrete panels, the following relation for the 

reduction factor was obtained: 
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where t  is the transverse principal tensile strain. 

The MCFT was later extended to 3D by Vecchio and Selby [27]. When two tensile strains appear 

transversely to the direction of compression, Vecchio and Selby [27] propose taking the greater 

tensile strain of the two, which implies neglecting the effect of the second tensile strain. The 

constitutive model proposed herein was developed for a computer tool that addresses engineers, 

where safety takes priority over precision. Hence taking take t  in Equation (2) is suggested as the 

sum of the two transverse tensile strains, although this may lead to overestimate the reduction 

factor for certain strain states. 

Compression-Compression Interaction 

A Drucker-Prager yield criterion was adopted. The yield function is given by: 

kIJF  12    ( 3 ) 



 

 

where 2J  is the second deviatoric stress invariant, 1I  is the first stress invariant, and   and k  are 

parameters to be determined. Based on the experimental data presented in [28], the following 

values were considered: 

23.0   ( 4 ) 

cmfk 35.0   ( 5 ) 

At the beginning of each load/displacement step, and given the current principal stresses, the 

modified peak axial stress ccf  for each integration point derives from Equation (3). 

To enforce the coaxiality between the principal strain and stress directions (i.e.     in Figure 

1b), tangential shear modulus ijG  should be given by the following expression proposed by Bazant 

[29]: 

)(2 ji

ji

ijG







   ( 6 ) 

The above-described approach is known as the rotating smeared crack concept and permits the 

use of unidimensional stress-strain curves for 2D and 3D problems. This procedure has been 

previously implemented to analyse plane concrete elements, and provides reliable results [13][15]. 

2.3. Selecting uniaxial stress-strain laws 

A uniaxial stress-strain relation must be defined to complete the constitutive model. Concrete 

responds differently in tension and in compression. The tensile strength of concrete is very low 

compared to its compressive strength. Moreover stress drops abruptly after reaching the maximum 

tensile strength. Although the compressive response depends on transverse strains, stress 

generally decreases gradually after reaching the peak stress. A selection of uniaxial stress-strain 

laws which can be used in tension and compression is described below. 

Tension response 

As stated earlier, neglecting the tensile strength of concrete is common practice. Indeed, this is the 

main assumption of the strut-and-tie method [8] and the stress field method [11], and has been 

implemented into some computer-based tools for 2D analyses [15][16]. However, neglecting the 



 

 

tensile strength of concrete leads to predicted loads that are far below actual maximum loads when 

the tensile stresses between cracks are significant (the tension stiffening effect), or for structural 

elements with large volumes of unreinforced concrete. 

Some models proposed in the literature consider tensile stresses in concrete. They generally 

assume a linear-elastic response for uncracked concrete and a post-peak descending branch. 

The MCFT [26] considers tensile stresses in concrete and is frequently used to analyse planar 

reinforced concrete elements [13][30]. The relationship suggested after cracking is given by (Figure 

2a): 
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Figure 2. Selection of a uniaxial concrete stress-strain law: (a) MCFT model (tension); (b) Hordijk’s 

model (tension); (c) MC 2010 model, Hognestad parabola and elastic-perfectly plastic 

(compression). 

This model was derived by testing reinforced concrete panels and was later extended to reinforced 

concrete solids [27]. It takes into account the tensile stresses between cracks and employs average 

stress-average strain relationships for cracked concrete. It relies on the tension stiffening effect, 

hence it is more suitable for elements with a distributed reinforcement layout. This is not always met 

in large structural elements, like three-dimensional D-Regions with large volumes of unreinforced 

concrete.  

The softening model proposed by Hordijk [31] is based on the fracture mechanics theory and 

relates stress at crack-to-crack openings. Hordijk demonstrated that the shape of the normalised 

stress-crack opening relation is almost the same for most concrete types. The descending branch 

displays a tail in which stress gradually reaches a zero value. The equation proposed by Hordijk is 

(Figure 2b): 
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where w  is the crack opening and cw  is the critical crack opening where the stress equals zero. 

The best fit is obtained for 31 c  and 93.62 c . For these values, critical crack opening cw  must 

equal ctf fG /14.5 , so the area under the w  curve equals fracture energy fG . The equivalent 

crack length concept is used to transform crack openings into crack strains, and to hence obtain 

)( itF   in Equation (1). The equivalent length depends on the finite element volume.  

These or other tensile stress-strain relations can be defined in FESCA 3D. However, some 

comments ought to be noted. Neglecting the tensile strength of concrete leads to clear stress field 

models and provides a better understanding of the resisting mechanism, which can be appealing for 

initial analyses and for educational purposes. However, predicted maximum loads may significantly 

underestimate actual maximum loads, which could lead to over-reinforced designs. The tensile 

stresses between cracks can be serious, but some degree of distributed reinforcement is required 

to permit the stress transfer between cracks, which may not be the case in elements with large 

volumes of concrete like 3D D-regions. Models based on the fracture mechanics theory take into 

account tensile stresses for small crack openings, but the stress value lowers until it reaches a zero 

value for a certain crack opening. 

Compression response (Figure 2c) 

Based on the response observed in cylindrical compressive tests, design codes propose 

standardised equations. For non-linear structural analyses, MC 2010 proposes the following 

expression: 
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where 1/ cii   , cmccm fEk /05.1 1 . 

The Hognestad parabola adopted in the MCFT [26] is similar to this curve. Compressive stress is 

given by: 
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The Theory of Plasticity can also be applied and can adopt an elastic-perfectly plastic response. For 

these models, Muttoni et al. [11] suggested reducing concrete strength to an effective value 
cpf  to 

take into account the increase in brittleness with concrete strength as: 

MPafff
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Further reduction should be applied for cases in which strains of different orders of magnitude take 

place in the ultimate limit state. 

2.4. Safety format for design 

For design and checking purposes, the ultimate limit state should be verified by a partial safety 

factor method, in which design resistance is calculated using the design material values as input 

parameters for the non-linear analysis, as proposed in MC 2010. cmf  and ctf  should be 

substituted for their corresponding design values by dividing them by the partial safety factor for a 

material property M . The design strength of steel can be similarly obtained. The partial factors 

M  for concrete and steel, as proposed in MC 2010 for persistent loads, are 1.5 and 1.15, 

respectively.  

3. A brief FE model description  

FESCA 3D is a non-linear FE-based tool for the analysis and design of three-dimensional concrete 

structural elements, which was developed by the authors. Several elements were defined to 

facilitate the model definition and to make its use more intuitive than other more refined FE 

programmes. The code was implemented into MatLab [32]. 

The twenty-node serendipity hexahedron was chosen for concrete modelling. To generate the 

hexahedral mesh, the open source platform Salome [33] was used in the pre-processing stage. 

Steel reinforcement bars were introduced individually. An embedded model [34] was implemented, 

and allowed for considerable flexibility because the concrete mesh can be completely independent 

of the steel layout. 



 

 

Defining the support and load conditions 

Defining the proper boundary conditions is always important for the structural analysis. Results can 

vary if the local constraints at the supports or loads are not properly defined, especially for elements 

whose support/load dimensions are large compared to the global dimensions of the element. It is 

sometimes necessary to include the supports or the element that transfer(s) the load explicitly in the 

model, which implies more FE and additional work. 

Bearings can be modelled explicitly or implicitly in FESCA 3D, and the latter simplifies the modelling 

process. Apart from the classic displacement constraint, a constant stress distribution support 

condition was implemented. It automatically generates a uniform stress field in the defined support 

area in one, two or three local direction(s). This is achieved by accordingly introducing a 

supplementary stiffness matrix into the global stiffness system. This supplementary matrix is 

computed internally by the programme, which entails that the load carried by each node located 

inside the bearing area is proportional to its tributary area, thus conferring constant stress 

distribution. 

Regarding load modelling, it is usually assumed that loading results in a constant stress distribution 

under the loading plate. FESCA 3D also allows the implicit consideration of the effect of the loading 

plate/column stiffness in the stress distribution. It computes a stiffness matrix, based internally on 

the geometry and modulus of elasticity of the plate/column input by the user, which is introduced 

accordingly into the global stiffness system. 

4. Examples of applications 

4.1. Analysis, results and discussion of twelve four-pile caps 

Pile caps are structural elements used to transfer a load from a column to a group of piles, and are 

very common in construction [35]. For their design, two types of methods are proposed in concrete 

codes: sectional approaches and strut-and-tie models. The use of sectional approaches for pile cap 

design can prove inadequate because pile caps are three-dimensional D-regions with complex non-

linear strain distributions which are not considered in these methods [35][36]. The use of strut-and-

tie models has proven a more rational approach, and has also provided a clear understanding of 

physical behaviour [35][36][37][38].  



 

 

Based on a standard four-pile cap strut-and-tie model, Souza et al. [35] proposed the following 

equation to obtain the maximum column load resisted by a four-pile cap: 














mode failureshear 08.2

mode failure flexure
4

3/2

cfs

fsySD

ff
f

bdfN
e

dfA
N

N


 ( 12 ) 

where SDA  is the total amount of bunched and grid reinforcement in one direction, d  is the 

effective depth of the pile cap, e  is the distance between the centre of piles and b  represents the 

column dimensions. 

In this formulation, shear failure is assumed to be related to the splitting of compressive struts. The 

flexure failure load is obtained directly from the geometry of a standard four-pile cap strut-and-tie 

model. Coefficient f  is included to calibrate the model based on experimental test data, and 

obtains a value of f  that equals 2.05. Notwithstanding, this parameter offers no physical 

reasoning, which implies that some uncertainties still exist, especially in relation to finding the 

position of the nodal zone underneath the column and the real effective depth [39]. A physical 

explanation for calibration factor f  should be found. 

This section provides the results obtained with FESCA 3D for the analysis of the six four-pile cap 

models tested by Suzuki et al. [40]. These specimens were considered in [35] to calibrate f .The 

purpose was to enlighten readers as to the response of pile caps and the application of strut-and-tie 

models for the analysis and design of these elements. 

Description of specimens 

The six four-pile cap models are classified according to a reinforcement arrangement (BP stands for 

uniform grid and BPC for a bunched square arrangement over piles), pile depth (20 cm or 30 cm) 

and the side length of the square column (25 cm or 30 cm). The other dimensions are identical: slab 

square plane 80 cm, pile diameter 15 cm, a distance between pile centres of 50 cm and column 

height 20 cm. In the experimental programme, two specimens per model were prepared. 



 

 

The concrete cylindrical uniaxial strengths and the number of reinforcing rebars in each direction 

are provided in Table 1. The yield and ultimate stress for steel was 405 MPa and 592 MPa, 

respectively. 

In Table 1, B, S and BS respectively stand for flexural failure, corner shear failure and shear failure 

preceded by bending yield according to [40]. Corner shear failure refers to thrusting of one or two 

pile bearings into the slabs. Since reinforcement strains were not measured, bending yield is 

defined at the point at which the deflection begins to grow quickly without a rapid decrease in load. 

As shown in Table 1, the authors suggested that the maximum load was preceded by an apparent 

bending yielding of reinforcement in all the specimens, except in BP-30-30-1 and BP-30-25-2. 

 

Table 1. Summary of the four-pile caps tested by Suzuki et al. [39]. *B: Flexural failure. S: Corner 

shear failure 

The FE Analysis 

A regular FE mesh of 1014 (13x13x6) twenty-node hexahedrons was used for the 12 specimens. 

Only the cap itself was modelled. The supports were defined at the pile locations by employing the 

constant stress distribution support condition. The horizontal resistance at the supports was 

dismissed. The load was applied to the top of the cap and column stiffness was considered 

implicitly by using the option detailed in section 3. 

To address the importance of the adopted constitutive model of concrete in tension, three different 

tensile stress-strain equations were employed: (i) neglecting the tensile strength of concrete; (ii) the 

MCFT law and (iii) Hordijk’s model. 

In the MCFT and Hordijk’s model, ctf  was taken to equal the lower bound value of the 

characteristic tensile strength of concrete, as defined in MC 2010 (
3/221.0 ckct ff  ). The fracture 

energy for Hordijk´s model was also taken from the formula proposed in MC 2010 (
18.073 cmf fG  ). 



 

 

To study the influence of the stress-strain relation in compression, an elastic-perfectly plastic and a 

parabolic law were employed. In the former, the considered modulus of elasticity equalled 

3/1

10
5.21 








 cmf

E , as proposed in MC 2010. In the latter, a value of -0.002 was adopted for 1c . 

Results and discussion 

The predicted maximum loads FEP  for the 12 specimens, by adopting the above-mentioned 

uniaxial stress-strain laws, are provided in Table 2. The failure loads obtained according to 

Equation (15) [35] were also calculated. From these results, the average µ and the coefficient of 

variation CV of their corresponding safety factors ( FEPPSF /max,exp ) were calculated. 

 

Table 2. Predicted ultimate loads and the average µ and coefficient of variation CV of their 

corresponding safety factors SF. Notation: (i) neglecting concrete tensile strength; (ii) adopting the 

MCFT model; and (iii) adopting Hordijk’s model. 

In every finite element analysis case, the maximum load was preceded by several or all the steel 

rebars being yielded. 

For the twelve specimens, similar results were obtained when adopting compression in an elastic-

perfectly plastic or a parabolic model. Failure in specimens with low quantities of steel, such as 

those presented herein, is often governed by yielding reinforcement, and the concrete response in 

compression slightly affects the maximum load. 

The obtained predicted maximum loads indicated that concrete tensile stresses play an important 

role in the response of pile caps. When the tensile strength of concrete was neglected, the 

predicted maximum loads were below the experimental values (average safety factor of 1.20-1.23). 

Underestimation was higher for grid reinforcement (BP) than for bunched reinforcement (BPC). This 

is a reasonable result because the tension stiffening effect is more significant in the former 

elements. 

Neglecting the tensile strength of concrete is actually the main assumption of the strut-and-tie 

method, which in the model proposed by Souza et al.[35], justifies that the flexure failure load 

obtained from a theoretical four-pile cap strut-and-tie model needs to be increased by a calibration 



 

 

factor in order to approach the actual experimental maximum load. The value f  obtained by 

Souza et al. doubled the theoretical load obtained from the strut-and-tie model, while the FE model 

that neglected the tensile strength of concrete underestimated the maximum load by a factor of 

1.20-1.23. This difference was explained by the resulting strut angles in the models. In the model 

proposed by Souza et al., the idealised diagonal struts went from the centre of the column to the 

centre of the piles. In the FE model, the angles of the compressive stresses were steeper because 

the geometry of the piles and the column were considered. Therefore, the ties for the same vertical 

force were demanded less in the FE model than in the strut-and-tie model (see Figure 3). 

The average safety factor for the 12 specimens obtained by the adaptable strut-and-tie model by 

Souza after applying calibration parameter f  came closer to 1 than the average safety factor 

when applying the FE model and neglecting the tensile strength of concrete (1.03 vs. 1.20). 

However, the variation of the results was wider (coefficient of variation 0.14 vs. 0.07). The FE model 

considered more factors than the strut-and-tie model (e.g., pile dimensions, column dimensions, the 

stress state underneath the column) and allowed a better pile cap response, which is an 

improvement over the strut-and-tie model. 

 

Figure 3. Strut-and-tie model vs. FE model. (a) A standard three-dimensional strut-and-tie model for 

four-pile cap; (b) an FE model plot of concrete principal compressive stress directions for pile cap 

model BPC-30-30 after neglecting the tensile strength of concrete; (c) projection view of (a) on the 

diagonal plane; (d) projection view of (b) on the diagonal plane. 

Notwithstanding, considering the tensile strength of concrete appears necessary to obtain more 

accurate maximum loads. For example, the strut-and-tie-based method proposed in [36] considered 

the contribution of the tension stiffening effect to evaluate the strength of the steel ties as follows:  
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where d  is the effective depth, el  is pile spacing and pd  is the pile diameter. 

Regarding the finite element model results, when considering the tension stiffening effect by 

adopting the MCFT, the maximum loads for the 12 specimens were overestimated (average safety 

factor of 0.82-0.83). The tensile stress-tensile strain relation proposed by the MCFT accounts for 

the concrete tensile stresses between cracks. However, the pile caps treated in this section, and 

generally in most 3D D-regions, obtained large volumes of unreinforced concrete, and it was not 

possible to guarantee the tension stiffening effect throughout the element. 

The best predictions were obtained when adopting the softening law proposed by Hordijk. This 

model can be considered an intermediate approach between fully neglecting the tensile strength of 

concrete and relying excessively on the tension stiffening effect as in the MCFT: tensile stresses 

are admissible, but they gradually reach a zero value for relatively large strains. The average value 

of the safety factor came very close to 1 (1.01) and presented a small coefficient of variation (0.03-

0.04). 

The failure modes identified in the numerical analysis adopting Hordijk’s model are included in 

Table 2. Apart from specimen BP-30-25-2, all specimen failures are labelled as shear failure 

preceded by bending yield. For specimen BP-30-25-2, the maximum load is reached with some 

steel rebars yielding, but the load-displacement does not show an inflection previous to the 

maximum load which could point to a bending yield. Indeed, if rebar yielding areas are identified it 

can be seen that the propagation of the yielding for this specimen is much more limited than in the 

other specimens. In general the identified failure modes agree with the experimental observations 

reported in [40]. Regarding specimens BPC-20-30-1 and BPC-20-30-2, the difference observed 

between experimental and numerical observations could be explained as steel hardening after 

yielding, which is significant for the used rebars, has been neglected in the model. 

The size effect on the shear strength of pile caps is of importance and is included in some design 

codes. Based on the obtained safety factors, it can be said that for the specimens treated when the 

Hordijk´s model is used the proposed model captures this effect. 

When taking the results obtained from Hordijk’s model as reference, the contribution of the tensile 

stresses to the strength of the ties at the loads near the maximum load was negligible because the 



 

 

maximum load in each analysis case was achieved after yielding all or some of the reinforcement 

bars, which implies substantial tensile strains. The observed increment of the maximum load was 

due to the effect of the tensile stresses on the compressive stress flow, which led to steeper 

compressive stress angles at the meeting areas with reinforcement over piles (Figure 4). So based 

on these results, although the tensile stresses in concrete contributed to pile cap strength, their 

effect should not be understood as a strengthening of steel ties, as proposed in [36]. 

 

Figure 4. FE model plot of the concrete principal compressive stress directions for pile cap model 

BPC-30-30 by adopting Hordijk’s softening law (P=900kN). (a) 3D view, (b) plan view and (c) 

projection view on the diagonal plane. 

The results obtained in the FE model can provide a rational explanation for calibration coefficient 

f  used in the strut-and-tie model as proposed in [35]. This factor implicitly considers the effect of 

tensile stresses, the dimensions of piles and the column, and the stress state underneath the 

column. As explained above, all these factors affect the compressive stress flow, which means that 

the angles formed between the compressive stresses and the reinforcement rebars were steeper 

than assumed in the strut-and-tie model, hence the maximum load obtained for flexure failure 

needs to be increased. Yet when constant factor f  was applied regardless of the pile and column 

dimensions or the concrete tensile strength, it led to predictions with a relatively high coefficient of 

variation. 

4.2. Analyses and results of three socket base column-to-foundation connections 

A socket base column-to-foundation connection consists in a foundation element with a cavity in its 

upper part in which a precast column is embedded. Although its use in precast concrete structures 

is common, very little research has focused on them [41]. In this section the three column-

foundation connections tested by Gutiérrez [42] were analysed with FESCA 3D. 

Description of specimens 

The experimental programme conducted by Gutiérrez focused on the three-dimensional behaviour 

of the foundation element. Its dimensions were 1.4mx1.4mx1.0m (xyz). The cavity where the 

column was embedded measured 0.6mx0.5mx0.6m (xyz). A reusable steel column was employed 



 

 

to apply the load. By applying an eccentric load to the column, two horizontal loads on the vertical 

walls of the hole and one vertical load at the base of cavity were transferred to the foundation 

element. Eight load cells were used to measure the load applied inside the cavity by the column. 

Firstly, and in order to design the reinforcement, Gutiérrez proposed three base strut-and-tie 

models. From them, ten different reinforcement configurations were established, which yielded 10 

specimens to be tested. Specimens X2, X3 and X7 were considered in this section (Figure 5). The 

reinforcement layout of these specimens corresponded to the three base strut-and-tie models. 

Reinforcement in the other specimens was obtained as a combination of these three base layouts. 

The cylindrical uniaxial strengths of concrete for specimens X2, X3 and X7 were 28.0 MPa, 27.4 

MPa and 43.1 MPa, respectively. The yield stress for steel was 530 MPa. Rebar diameters were 8, 

12, 16 or 20 mm. 

 

Figure 5. Reinforcement layout. (a) Specimen X2, (b) Specimen X3 and (c) Specimen X7. 

The FE Analysis 

An FE mesh of 1875 twenty-node hexahedrons was used for the three specimens. The 

reinforcement bars were introduced individually. The relation between the loads applied by the 

column inside the cavity depended on element stiffness, and varied slightly during the experimental 

test. To simplify the numerical analysis, it was assumed that this relation was constant for each 

specimen and equalled the relation observed in the test when the maximum upper horizontal load 

was reached. The upper horizontal load was considered to compare the experimental and 

numerical results. 

The main purpose of this section was to show the capacity of the proposed simplified approach to 

facilitate the identification of the flow of forces, and to indicate the proposal of 3D strut-and-tie 

model for structural elements with complex geometries. Therefore, only the results obtained by 

neglecting the tensile strength of concrete are presented. 

Results 

The maximum experimental values of the upper horizontal load for specimens X2, X3 and X7 were 

869kN, 762kN and 924kN, respectively. The corresponding predicted values obtained with FESCA 



 

 

3D when neglecting the tensile strength of concrete were 811kN, 810kN and 878kN. In specimens 

X2 and X7, the predicted maximum load was limited by yielding the horizontal stirrups around the 

cavity. In specimen X3 the predicted maximum load was limited by yielding the horizontal rebars 

under the cavity in the longitudinal direction and the vertical rebars at the front wall. These failure 

modes agree with the experimental observations. 

Thus far the proposal of strut-and-tie models for elements with complex geometries, such as the 

socket base column-to-foundation connections treated herein, was not straightforward. In addition, 

understanding the structural behaviour of these elements is not easy task. The solution achieved 

herein by plotting the compressive stress directions obtained in the FE model helps overcome these 

difficulties and enlightens the understanding of the physical behaviour of these elements (Figures 6 

and 7). 

 

Figure 6. The FE model plot of the concrete principal compressive stress directions for specimen X2 

(FH=700kN) (left) and the proposed strut-and-tie model (right). 

 

Figure 7. The FE model plot of the concrete principal compressive stress directions for specimen (a) 

X3 and (b) X7 (FH=700kN) (left) and the proposed strut-and-tie models (right). 

5. Conclusions  

This paper describes the adoption of a simplified comprehensible constitutive model for the analysis 

of 3D reinforced concrete structural elements. The use of complex models, like those available in 

the literature, can entail some difficulties for most practitioners, which should be applied only by 

those who understand the fundamentals on which they are based. Alternatively, the simplified 

approach proposed herein idealises concrete behaviour by allowing the use of uniaxial stress-strain 

relationships, which are familiar to engineers, in order to characterise the 3D response. 

This constitutive model was implemented into the non-linear finite element-based tool FESCA 3D, 

which was developed by the authors to analyse three-dimensional concrete structural elements. 

The aim was to combine the accuracy and adaptability of FE models and the simplicity of the 



 

 

proposed concrete constitutive model in order to provide an alternative tool to more refined complex 

finite element software packages. 

If the tensile strength of concrete is neglected in the model, the simplified approach proposed 

herein can be used to study the kindness of the strut-and-tie method and the stress field method to 

analyse structural elements that display a three-dimensional behaviour. These methods are rational 

analysis and design tools that replace empirical approaches and rules of thumb. Notwithstanding, 

guidelines to apply 3D strut-and-tie models and 3D stress field models are scarce. 

The application of this simplified analysis approach was shown by means of two examples: firstly, 

the proposed model was used in the analysis of 12 four-pile caps. The predicted maximum loads, 

obtained by adopting different concrete stress-strain laws, were compared, and the influence of the 

tensile strength of concrete was discussed. The best predictions were made the tensile strength of 

concrete was considered and by adopting Hordijk’s model for tension softening. When the tensile 

strength of concrete was neglected, the effect of tensile stresses on the compressive flow was 

dismissed, which led to lighter maximum loads when failure was limited by steel yielding. 

Nevertheless, this decrease in accuracy is acceptable for design purposes. Analogously, the use of 

strut-and-tie models for pile caps also underestimated maximum loads. This underestimation can 

become even greater if the geometry of the piles and the column is not considered; secondly, the 

applicability of the model to generate three-dimensional stress field models for structural elements 

with complex geometries was proven by modelling three socket base column-to-foundation 

connections. Being able to view the principal compressive directions facilitates the identification of 

flow of forces and the development of 3D strut-and-tie models, and provides a better understanding 

of the structural response. 
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Figure 1. (a) 3D orthotropic model and (b) Mohr’s circle for strain and stress. Enforcing 

coaxiality between principal strain and stress directions 

(a) 
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Figure 2. Selection of a uniaxial concrete stress-strain law: (a) MCFT model (tension); (b) 

Hordijk’s model (tension); (c) MC 2010 model, Hognestad parabola and elastic-perfectly plastic 

(compression). 
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Figure 3. Strut-and-tie model vs. FE model. (a) A standard three-dimensional strut-and-tie 

model for four-pile cap; (b) an FE model plot of concrete principal compressive stress directions 

for pile cap model BPC-30-30 after neglecting the tensile strength of concrete; (c) projection 

view of (a) on the diagonal plane; (d) projection view of (b) on the diagonal plane. 
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Figure 4. FE model plot of the concrete principal compressive stress directions for pile cap 

model BPC-30-30 by adopting Hordijk’s softening law (P=900kN). (a) 3D view, (b) plan view and 

(c) projection view on the diagonal plane. 
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Figure 5. Reinforcement layout. (a) Specimen X2, (b) Specimen X3 and (c) Specimen X7. 

 

 

 

  



  

 
 

  

  

 
 

 
Figure 6. The FE model plot of the concrete principal compressive stress directions for 

specimen X2 (FH=700kN) (left) and the proposed strut-and-tie model (right). 
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Figure 7. The FE model plot of the concrete principal compressive stress directions for 

specimen (a) X3 and (b) X7 (FH=700kN) (left) and the proposed strut-and-tie models (right). 

 

 

 



Specimen cmf (MPa) Rebars 
Pmax,exp 

(kN) 
Mode 

BP-20-30-1|2 29.1|29.8 6-D10@120 485|480 B·S|B·S 

BPC-20-30-1|2 29.8|29.8 6-D10@40 500|495 B|B 

BP-30-30-1|2 27.3|28.5 8-D10@90 916|907    S|B·S 

BPC-30-30-1|2 28.9|30.9 8-D10@40 1039|1029 B·S|B·S 

BP-30-25-1|2 30.9|26.3 8-D10@90 794|725 B·S|  ·S 

BPC-30-25-1|2 29.1|29.2 8-D10@40 853|872 B·S|B·S 

Table 1. Summary of the four-pile caps tested by Suzuki et al. [39]. *B: Flexural failure. S: 

Corner shear failure 

 

Specimen 
Souza et al. Elasto-plastic Hognestad parabola 

PSTM(kN)/SF Pi(kN)/SF Pii(kN)/SF Piii(kN)/SF Pi(kN)/SF Pii(kN)/SF Piii(kN)/SF Modeiii 

BP-20-30-1 414/1.17 370/1.31 569/0.85 497/0.98 361/1.34 563/0.86 491/0.99 B·S 

BP-20-30-2 414/1.16 371/1.29 580/0.83 494/0.97 355/1.35 565/0.85 497/0.97 B·S 

BPC-20-30-1 414/1.21 446/1.12 631/0.79 499/1.00 440/1.14 618/0.81 507/0.99 B·S 

BPC-20-30-2 414/1.20 446/1.11 631/0.78 499/0.99 440/1.13 618/0.80 507/0.98 B·S 

BP-30-30-1 929/0.99 744/1.23 1098/0.83 866/1.06 723/1.27 1060/0.86 872/1.05 B·S 

BP-30-30-2 929/0.98 748/1.21 1115/0.81 868/1.04 722/1.26 1086/0.84 857/1.06 B·S 

BPC-30-30-1 929/1.12 933/1.11 1216/0.85 1004/1.03 898/1.16 1210/0.86 979/1.06 B·S 

BPC-30-30-2 929/1.11 937/1.10 1235/0.83 983/1.05 890/1.16 1231/0.84 969/1.06 B·S 

BP-30-25-1 929/0.85 617/1.29 1004/0.79 769/1.03 584/1.36 987/0.80 814/0.98 B·S 

BP-30-25-2 929/0.78 575/1.26 937/0.77 742/0.98 586/1.24 904/0.80 737/0.98 S 

BPC-30-25-1 929/0.92 747/1.14 1059/0.81 860/0.99 713/1.20 1027/0.83 860/0.99 B·S 

BPC-30-25-2 929/0.94 748/1.17 1060/0.82 860/1.01 731/1.19 1028/0.85 861/1.01 B·S 

µ (SF) 1.03 1.20 0.82 1.01 1.23 0.83 1.01  

CV (SF) 0.14 0.07 0.03 0.03 0.07 0.03 0.04  

Table 2. Predicted ultimate loads and the average µ and coefficient of variation CV of their 

corresponding safety factors SF. Notation: (i) neglecting concrete tensile strength; (ii) adopting 

the MCFT model; and (iii) adopting Hordijk’s model. *B: Flexural failure. S: Corner shear failure 


