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Abstract:	
	
Electrochemical	 Impedance	 Spectroscopy	 (EIS)	 is	 an	 electrochemical	 measurement	
technique	 that	 has	 been	 applied	 to	 a	 broad	 range	 of	 applications.	 Three	 conditions	
must	 be	 fulfilled	 in	 order	 to	 obtain	 valid	 EIS	measurements:	 causality,	 linearity	 and	
stationarity.	The	non	 fulfilment	of	any	of	 these	conditions	may	 lead	to	distorted	and	
biased	EIS	spectra.	Consequently,	the	verification	of	the	four	fundamental	conditions	is	
mandatory	before	accepting	any	results	extracted	from	an	EIS	spectrum.	In	this	work,	a	
harmonic	analysis	based	method	 for	 linearity	assessment	and	noise	quantification	 in	
EIS	 measurements	 is	 presented,	 and	 validated	 both	 from	 an	 experimental	 point	 of	
view	and	from	a	theoretical	point	of	view,	for	Tafelian	systems.	It	was	shown	that	the	
presented	method	was	 able	 to	 quantitatively	 assess	 the	 nonlinearity	 of	 the	 system;	
and	to	quantify	and	characterize	the	noise.	Moreover,	the	presented	method	is	able	to	
determine	 the	 threshold	 frequency	 of	 the	 system	above	which	 the	 system	does	 not	
present	significant	nonlinear	effects	even	for	very	large	perturbation	amplitudes.	
	
Keywords:	Electrochemical	Impedance	Spectroscopy	(EIS),	Harmonic	analysis,	Tafelian	
systems,	Linearity	condition,	Noise	quantification.		
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1.	Introduction	
	
In	 recent	 years,	 the	 popularity	 of	 the	 Electrochemical	 Impedance	 Spectroscopy	 (EIS)	
technique	 has	 tremendously	 increased	 [1].	 This	 technique,	 also	 known	 as	 AC	
impedance	 method,	 was	 initially	 applied	 for	 the	 determination	 of	 double-layer	
capacitances,	 and	 for	 performing	 AC	 polarography	 [2].	 Nowadays	 it	 is	 applied	 for	
electrode	 process	 characterization	 and	 for	 studying	 complex	 interfaces	 [3].	 This	
electrochemical	technique	studies	the	response	of	a	given	system	to	the	application	of	
a	 sinusoidal	 AC	 perturbation	 signal.	 The	 measurement	 is	 carried	 out	 at	 different	
perturbation	 frequencies;	 hence	 the	 name	 “spectroscopy”	 [4].	 The	main	 strength	 of	
this	 electrochemical	 technique	 is	 that	 it	 is	 able	 to	 distinguish	 the	 different	 physic-
chemical	processes	undergoing	 in	the	studied	system	at	different	timescales	 [5].	This	
feature	makes	 the	 technique	 suitable	 for	 a	 large	 range	of	 applications.	 This	 explains	
why	 it	 has	 been	 widely	 used	 in	 electrochemical	 related	 fields	 as	 fuel	 cells	 [6-12],	
batteries	[13-18],	corrosion	[19-23],	coatings	[24-26],	electrochemical	sensors	[27-28]	
and	 supercapacitors	 [29-32].	 This	 electrochemical	 technique	 has	 also	 been	 used	 in	
fields	that	are	not	traditionally	related	to	electrochemistry	as	biochemical	assays	[33-
36],	oncology	[37-39]	and	immunology	[40-41],	amongst	others.	
	
The	 impedance	 of	 a	 given	 system	 is	 defined	 by	 Ohm’s	 generalized	 law	 as	 the	 ratio	
between	the	voltage	and	the	current	in	the	frequency	domain	[1]:	
	
	

𝑍 𝜔 =
ℱ 𝑈(𝑡)
ℱ 𝐼(𝑡) 	 (1)	

	
where	𝑍 𝜔 	denotes	the	complex	impedance	of	the	system	at	angular	frequency	𝜔 =
2𝜋𝑓.	𝑈 𝑡 	and	𝐼(𝑡)	respectively	 stand	 for	 the	potential	and	 the	current	 signals	 in	 the	
time	domain.	And	finally,	ℱ	is	the	Fourier	transform	operator.	The	Fourier	transform	of	
an	arbitrary	function	in	the	time	domain,	ℎ(𝑡),	is	defined	as	[42]:	
	
	

ℱ ℎ(𝑡) 𝜗 = ℎ(𝑡) ∙ 𝑒123456 ∙ 𝑑𝑡
89

19
	 (2)	

	
Where	𝑗	denotes	 the	 imaginary	 unit,	 −1;	 and	𝜗	represents	 the	 frequency	 domain	
independent	variable.	
	
The	impedance	defined	in	this	manner	is	a	complex	value.	On	the	one	hand,	its	module	
gives	the	ratio	between	the	amplitude	of	the	voltage	signal	and	the	amplitude	of	the	
current	signal:	the	electric	resistance	of	the	system.	On	the	other	hand,	 its	argument	
gives	the	phase	 lag	of	the	voltage	signal	with	respect	to	the	current	signal.	Thus,	the	
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impedance	 concept	 is	 a	 generalization	 of	 the	 DC	 electric	 resistance	 concept	 to	 AC	
perturbed	systems.	
	
The	validity	of	 the	complex	Ohm’s	 law,	and	thus	of	 the	 impedance	concept,	 requires	
the	fulfilment	of	three	critical	hypotheses:	causality,	linearity,	and	stability	[43].	If	any	
of	 these	 conditions	 is	 not	 met	 the	 obtained	 EIS	 spectra	 may	 be	 biased,	 and	 their	
analysis	may	lead	to	erroneous	conclusions	on	the	studied	system	[44-45].	Therefore,	
before	 performing	 any	 further	 analysis	 on	 the	 measured	 EIS	 spectra,	 it	 is	 highly	
advisable	 to	 assess	 if	 the	 four	 critical	 hypotheses	 were	 met	 during	 the	 EIS	
measurement	[46].	
	
A	 linear	 system	 is	 a	 system	 in	 which	 the	 superposition	 principle	 holds	 [47]:	 the	
response	of	a	 linear	system	to	a	linear	combination	of	perturbation	signals	 is	a	 linear	
combination	of	the	responses	of	the	system	to	each	one	of	the	individual	perturbation	
signals	 [48].	 However,	 nonlinear	 effects,	 such	 as	 nonlinear	 kinetics	 (Buttler-Volmer’s	
equation)	and	saturation,	often	appear	in	the	investigation	of	electrochemical	systems	
[49].	For	this	reason,	low	amplitude	perturbations	are	used	in	EIS	measurements	[50],	
in	 order	 to	 ensure	 the	 fulfilment	 of	 the	 linearity	 condition	 [51].	 Nevertheless,	 low	
perturbation	 amplitudes	 lead	 to	 low	 signal-to-noise	 ratios	 [52].	 Consequently,	 the	
quality	of	EIS	measurements	is	given	by	the	trade-off	between	the	linearity	condition	
fulfilment	 and	 the	 maximization	 of	 the	 signal-to-noise	 ratio	 [53]:	 the	 perturbation	
amplitude	has	 to	be	 low	enough	 in	order	 to	guarantee	the	 fulfilment	of	 the	 linearity	
condition	[54];	and	it	has	to	be	high	enough	in	order	to	achieve	an	acceptable	signal-
to-noise	 ratio	 [55].	 The	 optimum	 perturbation	 amplitude	 of	 a	 given	 system	
corresponds	with	the	perturbation	amplitude	that	maximizes	the	signal-to-noise	ratio	
without	violating	the	linearity	condition	[56].	
	
A	great	number	of	works	have	studied	the	effects	of	the	non-fulfilment	of	the	linearity	
condition:	some	examples	of	these	works	are	the	works	of	Darowicki	and	co-workers	
[51,	57-59];	the	works	of	Diard	and	co-workers	[60-65];	and	the	works	of	Van	Gheem’s	
team	[66-67].	It	has	been	shown	that	the	main	effect	of	nonlinearity	is	the	generation	
of	non-fundamental	harmonics	in	the	output	signal	[68].	In	the	case	of	linear	systems,	
when	 a	 mono-frequency	 sinusoidal	 perturbation	 is	 applied,	 a	 mono-frequency	
sinusoidal	output	signal	of	same	frequency	is	obtained	[54].	By	contrast,	when	a	mono-
frequency	sinusoidal	perturbation	 is	applied	 to	a	nonlinear	system,	 the	output	signal	
will	 be	 composed	by	a	 fundamental	 signal	 (sinusoidal	 signal	of	 same	 frequency	 than	
the	 perturbation	 signal)	 with	 non-fundamental	 harmonics	 (sinusoidal	 signals	 with	
frequencies	 that	 correspond	 to	 integer	 multiples	 of	 the	 fundamental	 frequency)	
superimposed	 to	 it	 [69].	 The	 non-fundamental	 harmonics	 generated	 because	 of	
nonlinearity	cause	a	distortion	of	the	measured	EIS	spectrum	that	may	lead	to	biased	
results.	Montella	and	Diard	implemented	a	Wolfram®	Demonstration	Project	[70]	that	
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illustrates	 very	 clearly	 the	effects	of	 the	nonlinearity	of	 a	Tafelian	 system	on	 the	EIS	
measurements	of	the	system	[71].		
	
A	great	amount	of	 research	has	been	 focused	 in	developing	 techniques	 to	verify	 the	
fulfilment	of	the	linearity	condition	[72].	The	linearity	assessment	methods	available	in	
literature	 can	 be	 classified	 in	 three	 main	 types:	 the	 experimental	 methods;	 the	
Kramers-Kronig	based	methods;	and	the	harmonic	analysis	based	methods	[2].		
	
On	 the	 one	 hand,	 the	 experimental	 methods	 include	 AC	 plots,	 resolution	 plots	 and	
Lissajous	 figures.	 These	 plots	 allow	 assessing	 linearity	 in	 real	 time	 during	 the	 EIS	
measurement,	by	directly	monitoring	the	voltage	and	current	raw	signals	 in	the	time	
domain	 [1].	 Today,	 most	 if	 not	 all	 EIS	 measurement	 softwares	 include	 this	 type	 of	
tools,	which	can	be	displayed	during	the	EIS	measurement	data	acquisition.	The	main	
limitation	of	this	type	of	linearity	assessment	method	is	that	it	is	a	qualitative	method:	
it	 is	 able	 to	detect	nonlinearities	but	 it	 is	not	able	 to	quantify	 the	nonlinearity	 level.	
Moreover,	while	the	distortion	of	AC	plots	and	Lissajous	figures	is	easily	recognizable	in	
the	 case	 of	 severe	 nonlinearities;	 the	 distortion	 of	 these	 plots	 due	 to	 low	 and	
moderate	nonlinearities	may	be	ambiguous,	and	its	identification	can	be	subjected	to	
the	 subjectivity	 of	 the	 analyst	 [1].	 Because	 of	 this,	 the	 use	 of	 experimental	 linearity	
assessment	methods	 should	 be	 reserved	 for	 auxiliary	 experimental	 validation	during	
the	measurement.	
	
On	the	other	hand,	Kramers-Kronig	relations	are	integral	relations	that	relate	the	real	
part	and	the	imaginary	part	complex	quantities	that	satisfy	the	conditions	of	causality,	
linearity,	 stability	 and	 finiteness	 [3].	 Numerous	 works	 have	 proven	 the	 power	 of	
Kramers-Kronig	 relations	 as	 EIS	 spectra	 validation	 tool.	 An	 extensive	 review	 of	 the	
available	 methods	 for	 the	 application	 of	 Kramers-Kronig	 relations	 for	 EIS	 spectra	
validation	was	 presented	 by	 Agarwal	 and	Orazem	 [73].	 Some	 examples	 of	 Kramers-
Kronig	 based	 validation	 methods	 available	 in	 bibliography	 are	 the	 Voight	 method	
developed	by	Boukamp	and	co-workers	[74-75];	and	the	measurement	model	method	
developed	 by	 Orazem’s	 group	 [46,	 73,	 76-83].	 Urquidi-Macdonald	 and	 co-workers	
observed	that	the	Kramers-Kronig	relations	were	highly	insensitive	to	nonlinearity	[47].	
More	recently,	 it	has	been	shown	that	Kramers-Kronig	 relations	are	only	sensitive	 to	
nonlinearities	 if	at	 least	part	of	 the	spectrum	has	been	measured	 in	a	range	above	a	
threshold	frequency	of	the	system;	and	even	then,	the	sensitivity	is	not	very	high	[84].	
Consequently,	 the	main	 limitation	 of	 the	 Kramers-Kronig	 based	 linearity	 assessment	
methods	is	their	low	sensibility	[85-86].	
	
Finally,	 the	 harmonic	 analysis	 based	 methods	 assess	 linearity	 through	 the	
quantification	of	the	non-fundamental	harmonic	content	in	the	response	signal.	These	
methods	are	based	in	the	analysis	of	the	system’s	response	in	the	frequency	domain.	
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Several	 examples	 of	 this	 type	 of	 linearity	 assessment	 method	 are	 available	 in	
literature,	such	as	the	method	developed	by	Popkirov	and	Schindler	 [44-69],	and	the	
Pintelon’s	 team	 method	 [87-88].	 This	 type	 of	 linearity	 assessment	 methods	 has	 a	
double	 advantage	 over	 the	 other	 two	 types:	 they	 are	 quantitative	 methods,	 and	
therefore	 they	are	able	 to	quantify	 the	 level	of	nonlinearity	 in	 an	objective	manner;	
and	they	have	a	great	sensibility	to	nonlinearities	[89].	
	
The	aim	of	this	work	is	to	develop	a	quantitative	linearity	assessment	method	for	EIS	
measurements,	 based	 on	 the	 analysis	 of	 the	 system’s	 response	 in	 the	 frequency	
domain.	The	presented	method	is	able	to	quantify	both,	the	nonlinearity	of	the	system	
and	the	noise	in	the	measurement:	therefore,	one	of	its	immediate	applications	can	be	
the	 optimization	 of	 the	 perturbation	 amplitude	 for	 EIS	 measurements.	 Thought	 the	
developed	method	can	be	applied	to	any	electrochemical	system,	this	work	will	focus	
on	 Tafelian	 systems.	 In	 this	 paper,	 both	 the	 theoretical	 foundation	 and	 the	
experimental	validation	of	the	method	are	presented.	The	experimental	validation	of	
the	 method	 was	 performed	 using	 a	 known	 Tafelian	 system:	 an	 alkaline	 hydrogen	
evolution	electrochemical	cell.	
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2.	Linearity	assessment	method	
	
The	 linearity	 assessment	 method	 implemented	 in	 this	 work	 consists	 in	 three	 main	
steps.	First,	 the	EIS	 spectrum	 is	 recorded	 in	 the	 traditional	way.	However,	 instead	of	
saving	only	the	impedance	value	for	each	excited	frequency,	as	it	is	usually	done;	the	
raw	current	and	voltage	signals	in	the	time	domain,	𝐼(𝑡)	and	𝑈(𝑡),	are	also	stored	for	
each	frequency.	 In	the	second	step	of	the	method,	the	current	and	voltage	signals	 in	
the	 frequency	domain,	𝐼(𝜗)	and	𝑈(𝜗),	 are	 obtained	 for	 each	 excited	 frequency.	 This	
step	is	accomplished	by	using	a	Fast	Fourier	Transform	(FFT)	algorithm	that	transforms	
the	signals	in	the	time	domain	into	the	frequency	domain.	This	algorithm	is	an	efficient	
algorithm	to	compute	the	discrete	Fourier	transform	of	a	discretized	signal	in	the	time	
domain	[90]:	
	
	

X? = xA ∙
B1C

ADE

e1
GHI
J ∙A∙?	 (3)	

	
where	N	stands	 for	 the	 number	 of	 samples	 acquired	 during	 the	 discretization	 of	 the	
signal	 in	the	time	domain;	 x 	denotes	the	series	of	 the	discretized	signal	 in	the	time	
domain;	and	 X 	is	the	series	of	the	Fourier	transform	in	the	frequency	domain.	In	this	
case,	 a	 discrete	 Fourier	 transform	 is	 used	 since	 the	 signals	 in	 the	 time	 domain	 are	
discrete	(digital	measurement).	
	
Once	 the	 signals	have	been	 transformed	 to	 the	 frequency	domain,	 the	 level	 of	 non-
fundamental	harmonics	in	each	one	of	the	signals	must	be	quantified.	In	this	work,	the	
following	 parameter	 was	 used	 in	 order	 to	 quantify	 the	 level	 of	 non-fundamental	
harmonics	in	signal	𝑋	(current	or	voltage):	
	
	

℘𝑋 = max
APC

			20 ∙ logCE
𝑋

U

𝑋
C

	 (4)	

	
where	 𝑋 	denotes	 the	 amplitude	 of	 the	 Fourier	 transform	 of	 signal	𝑋.	 Subscript	 1	
refers	 to	 the	 fundamental	 component	 of	 the	 signal,	 whereas	 subscripts	 greater	 or	
equal	to	2	refer	to	non-fundamental	harmonics	of	the	signal.	This	parameter	quantifies	
in	decibels	 (dB)	the	ratio	between	the	most	 important	non-fundamental	harmonic	of	
the	signal,	and	its	fundamental	component.		
	
The	third	step	of	the	 linearity	assessment	method	consists	 in	quantifying	the	 level	of	
non-fundamental	harmonics	 in	each	signal:	parameters	℘𝐼	and	℘𝑈	are	calculated	 for	
each	excited	frequency,	using	the	following	expressions:	
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℘𝐼 = max

APC
			20 ∙ logCE

𝐼
U

𝐼
C

	 (5)	

	
℘𝑈 = max

APC
			20 ∙ logCE

𝑈
U

𝑈
C

	 (6)	

	
Therefore,	after	applying	the	proposed	method,	the	values	of	parameters	℘𝐼	and	℘𝑈	
are	obtained	for	each	one	of	the	frequencies	at	which	the	impedance	was	measured	in	
the	 first	 step.	 These	 results	 can	be	analyzed	using	 two	 tools:	 the	℘𝑋	curves	 and	 the	
critical	 parameters.	 On	 the	 one	 hand,	 the	 ℘𝑋 	curves	 correspond	 with	 the	
representation	of	parameters		℘𝐼	and	℘𝑈	versus	the	excited	frequency.	These	curves	
allow	to	evaluate	linearity	for	each	frequency	individually.	Therefore,	these	curves	are	
very	 useful	 for	 distinguishing	 for	 which	 frequencies	 the	 studied	 system	 is	 more	
susceptible	 to	 present	 nonlinearities.	 On	 the	 other	 hand,	 the	 critical	 parameters	
correspond	 with	 the	 parameters	℘𝐼	and	℘𝑈	at	 the	 critical	 frequency.	 The	 critical	
frequency	 being	 defined	 as	 the	 excitation	 frequency	 with	 the	 highest	 harmonic	
content.	 Consequently,	 the	 critical	 parameters,	℘𝐼V 	and 	℘𝑈V ,	 are	 given	 by	 the	
following	expressions:		
	
	 ℘𝐼V = max

?W C;2;⋯;Z[
℘𝐼?	 (7)	

	 ℘𝑈V = max
?W C;2;⋯;Z[

℘𝑈?	 (8)	

where	𝑁]	denotes	the	number	of	frequencies	at	which	the	impedance	was	measured.	
These	critical	parameters	provide	an	overall	assessment	of	linearity	by	considering	the	
most	 unfavorable	 frequency:	 the	 frequency	 of	 the	 EIS	 spectrum	 with	 the	 highest	
harmonic	content.		
	
Figure	1	gives	 the	outline	of	 the	proposed	 linearity	assessment	method.	As	 it	can	be	
seen	in	the	mentioned	figure,	for	a	given	EIS	spectrum	two	℘𝑋	curves	and	two	critical	
parameters	 are	obtained	 (one	 for	 the	 current	 signal	 and	one	 for	 the	 voltage	 signal).	
This	 linearity	 assessment	 method	 can	 be	 easily	 automated	 in	 any	 programming	
language.	In	this	work	it	was	fully	implemented	in	Labview®.	The	developed	Labview®	
program	 directly	 takes	 as	 input	 the	 output	 of	 the	 software	 used	 for	 controlling	 the	
impedance	measurement	 system,	Nova®.	 Nova®’s	 output	 consists	 in	 the	 digitalized	
raw	signals	 (current	and	voltage)	 in	 the	 time	domain;	and	the	 transformed	signals	 in	
the	frequency	domain	(Nova®	applies	 internally	an	FFT	algorithm).	The	 implemented	
Labview®	program	reads	the	transformed	signals	in	the	frequency	domain;	and	then,	
it	 calculates	 parameters	 	℘𝐼	and	℘𝑈.	 This	 process	 is	 repeated	 for	 each	 one	 of	 the	
frequencies	at	which	the	impedance	is	measured.	
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3.	Experimental	
	
As	 it	 was	 stated	 in	 the	 introduction	 section,	 one	 of	 the	 aims	 of	 this	 work	 is	 to	
experimentally	 validate	 the	 implemented	 linearity	 assessment	method,	 presented	 in	
section	2.	 Therefore,	 the	goal	 is	 to	determine	whether	 the	method	 is	 able	 to	detect	
and	quantify	nonlinearities,	or	not.	The	experimental	validation	should	be	performed	
over	 a	 large	 range	of	nonlinearities.	 Thus,	 a	highly	nonlinear	electrochemical	 system	
should	 be	 used	 for	 performing	 the	 experimental	 validation;	 since	 for	 this	 kind	 of	
electrochemical	system,	a	slight	increase	in	the	perturbation	amplitude	causes	a	large	
increase	in	the	nonlinearity	of	the	system.	Consequently,	this	type	of	electrochemical	
system	allows	 to	obtain	a	wide	 range	of	nonlinearities	 just	by	 increasing	 the	applied	
perturbation	amplitude.	 In	addition,	as	 it	was	mentioned	 in	 the	 introduction	section,	
this	work	 focuses	 on	 Tafelian	 systems.	 Therefore,	 the	 selected	 experimental	 system	
should	 be	 a	 highly	 nonlinear	 Tafelian	 system.	 Using	 these	 selection	 criteria,	 the	
experimental	system	selected	for	this	work	was	the	cathodic	electrode	of	an	alkaline	
water	electrolyser.	According	to	the	works	of	Herraiz-Cardona	and	co-workers	[91-93],	
this	 electrochemical	 system	 corresponds	 to	 a	 highly	 nonlinear	 Tafelian	 system.	 A	
detailed	description	of	the	system	is	presented	by	Herraiz-Cardona	[91].	
	
Figure	 2	 illustrates	 the	 experimental	 setup	 used	 to	 perform	 the	 experimental	
validation	of	the	implemented	linearity	assessment	method.	The	main	element	of	this	
setup	is	an	electrochemical	cell	patented	by	the	Dpto.	Ingenieria	Quimica	y	Nuclear	of	
Universitat	 Politècnica	 de	 València	 (Spain)	 [95].	 It	 consists	 in	 a	 three-electrode	
electrochemical	 cell	 coupled	 to	 a	 heating	 water	 circuit	 that	 allows	 controlling	 the	
temperature	of	the	cell.		
	
On	the	one	hand,	one	of	the	electrodes	developed	by	Herraiz-Cardona	and	co-workers	
was	used	as	 the	working	electrode.	 The	working	electrode	was	placed	 in	one	of	 the	
two	 horizontal	 positions	 available	 in	 the	 electrochemical	 cell.	 It	 consists	 in	 a	 nickel	
electrode	 produced	 at	 very	 high	 current	 densities	 using	 the	 procedure	 described	 in	
[92].	 The	 geometric	 area	 of	 the	 electrode	 used	 in	 this	work	was	 of	 0.5	 cm2.	On	 the	
other	 hand,	 the	 counter-electrode	was	 placed	 in	 one	 of	 the	 three	 vertical	 openings	
available	in	the	electrochemical	cell.	In	this	work,	a	nickel	foam	with	very	high	surface	
area	 (Incofoam®	 0.17	 cm	 thick	 and	 50	 pores	 per	 linear	 inch)	 was	 used	 as	 counter-
electrode.	Finally,	a	commercial	Ag/AgCl	(3M	KCl)	electrode	was	used	as	the	reference	
electrode,	 which	 was	 placed	 in	 another	 of	 the	 three	 vertical	 openings	 of	 the	
electrochemical	 cell.	 The	 third	 vertical	 opening	was	 left	 open	 to	 the	 atmosphere,	 in	
order	 to	 act	 as	 a	 gas	 vent;	 and	 thus,	 to	 prevent	 overpressures	 inside	 the	
electrochemical	 cell	 due	 to	 the	 gases	 produced	 during	 the	 water	 electrolysis.	 An	
oxygen	free	30	wt.%	KOH	solution	was	used	as	electrolyte.	Before	each	experimental	
session,	fresh	electrolyte	was	prepared	using	85	wt.%	KOH	Panreac®	 lentils.	To	avoid	
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the	 carbonation	 of	 the	 electrolytic	 solution,	 which	 would	 cause	 an	 increase	 of	 the	
electrolyte	 resistance	over	 time,	 the	electrolyte	was	deaerated	by	bubbling	nitrogen	
for	15	minutes	just	before	starting	the	experiments.	
	
In	order	 to	perform	 the	experimental	 validation	of	 the	 linearity	assessment	method,	
the	 EIS	 spectrum	 of	 the	 system	 has	 to	 be	 obtained	 for	 different	 degrees	 of	
nonlinearity.	As	 introduced	above,	different	degrees	of	nonlinearity	may	be	obtained	
by	using	different	perturbation	amplitudes.	Therefore,	 in	this	work,	 the	EIS	spectrum	
of	 the	 system	 was	 measured	 using	 12	 different	 perturbation	 amplitudes	 (peak	 to	
peak):	0.1	mA;	0.5	mA;	1	mA;	2	mA;	…;	10	mA.	All	the	experiments	were	carried	out	at	
30℃,	 in	 galvanostatic	 mode.	 In	 preliminary	 works,	 it	 was	 observed	 that	 the	 most	
nonlinear	operation	point	of	the	system	is	obtained	for	an	operation	DC	current	of	-10	
mA,	which	corresponds	to	an	overvoltage	of	around	-200	mV.	The	minus	sign	indicates	
that	 the	 working	 electrode	 acts	 as	 the	 cathode	 of	 the	 system.	 As	 it	 was	 stated	
previously,	a	high	nonlinear	behaviour	is	desired	for	the	experimental	validation	of	the	
linearity	assessment	method,	since	it	maximizes	the	change	in	nonlinearity	for	a	given	
change	 in	 the	 perturbation	 amplitude.	 For	 this	 reason,	 all	 the	 experiments	 were	
performed	at	a	DC	current	of	-10	mA.	The	maximum	perturbation	amplitude	of	10	mA	
was	selected	in	order	to	guarantee	that	the	working	electrode	acts	as	the	cathode	of	
the	 cell	 during	 the	 whole	 EIS	 measurement,	 even	 for	 the	 maximum	 perturbation	
amplitude.	
	
The	 EIS	 measurements	 were	 performed	 using	 an	 Autolab®	 302N	
potentiostat/galvanostat	 with	 FRA	 module,	 controlled	 using	 NOVA®	 software.	 The	
measurement	frequency	range	was	10	kHz	–	5	mHz,	with	10	frequencies	per	decade.	
Table	 1	 lists	 the	 measurement	 parameters	 used	 for	 all	 the	 measurements.	 The	
meaning	 of	 each	 one	 of	 these	measurement	 parameters	 was	 widely	 explained	 in	 a	
previous	work	[96].		
	
Before	 each	 experiment,	 a	 pre-treatment	 was	 applied	 to	 the	 working	 electrode	 in	
order	 to	 ensure	 similar	 surface	 conditions	 in	 all	 experiments.	 The	 applied	 pre-
treatment	consisted	 in	applying	a	 -1.6V	vs.	Ag/AgCl	potential	 (this	corresponds	to	an	
overvoltage	of	around	-350	mV)	during	30	minutes.	This	treatment	was	done	to	reduce	
any	oxide	film	that	could	exist	on	the	surface	of	the	porous	electrode	[93],	in	order	to	
guarantee	 that	 the	 surface	 of	 the	 electrode	 was	 in	 similar	 conditions	 in	 all	 the	
experiments.	This	pre-treatment	is	critical	in	order	to	ensure	the	reproducibility	of	the	
results	from	one	experiment	to	another.					
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4.	Results	
	
The	methodology	outlined	 in	 section	2	was	applied	 to	each	one	of	 the	experimental	
spectra	 obtained	 using	 different	 perturbation	 amplitudes,	 as	 described	 in	 the	
experimental	methodology	section.	 In	this	section,	 the	obtained	experimental	results	
are	presented.	Since	this	work	 focuses	on	a	 linearity	assessment	method	and	not	on	
the	 effect	 of	 nonlinearity	 on	 the	 impedance	 measurement,	 the	 impedance	 results	
were	 omitted.	 If	 needed,	 the	 impedance	 results	 of	 this	 work	 were	 presented	 and	
thoroughly	discussed	in	a	previous	paper	[89].	
	

4.1.	℘𝑋	curves	
	
Figures	3	and	4	show	the	obtained	℘𝑋	curves	 for	the	perturbation	signal	and	for	the	
output	signal	respectively.	These	curves	consist	in	the	representation	of	the	℘𝑋	value	
obtained	using	equations	 (5)	 and	 (6)	 (℘𝐼	for	 the	perturbation	 signal;	 and	℘𝑈	for	 the	
output	signal)	versus	 the	perturbation	signal	 frequency.	Each	 figure	 is	divided	 in	 two	
parts:	 subfigure	 (a)	 shows	 the	℘𝑋	curves	 obtained	 for	 low	 perturbation	 amplitudes;	
whereas,	 subfigure	 (b)	 shows	 the	 ℘𝑋 	curves	 obtained	 for	 high	 perturbation	
amplitudes.		
	
On	the	one	hand,	 in	figure	3	it	can	be	observed	that	the	℘𝐼	curves	present	the	same	
pattern	for	all	the	perturbation	amplitudes.	For	a	given	perturbation	amplitude,	the	℘𝐼	
parameter	is	approximately	constant	for	high	perturbation	amplitudes.	A	little	℘𝐼	peak	
is	 observed	 in	 the	 intermediate	 frequency	 range,	 ranging	 from	10	𝐻𝑧 − 0.1	𝐻𝑧.	 And	
finally,	the	℘𝐼	parameter	stabilizes	for	low	perturbation	frequencies,	around	a	slightly	
higher	value	than	the	high	frequency	value.	In	figure	3.a	it	can	be	observed	that	for	low	
perturbation	amplitudes,	an	increase	in	the	perturbation	amplitude	shifts	the	℘𝐼	curve	
to	 lower	 values.	 In	 contrast,	 as	 it	 can	 be	 observed	 in	 figure	 3.b,	 for	 perturbation	
amplitudes	 larger	 than	 2	 mA,	 an	 increase	 in	 the	 perturbation	 amplitude	 has	 no	
significant	 effect	 on	 the	℘𝐼 	curve.	 When	 the	 potentiostat	 was	 used	 to	 perform	
measurements	 in	 a	 different	 system	 (i.e.	 PEM	 fuel	 cell)	 exactly	 the	 same	℘𝐼	curves	
were	 obtained	 [56]:	 this	 indicates	 that	 these	℘𝐼	curves	 are	 characteristic	 of	 the	
measurement	 equipment,	 which	 is	 responsible	 for	 generating	 the	 perturbation,	 and	
applying	it	to	the	system.	These	curves	may	be	affected	by	distortions	in	the	grid	signal	
that	 powers	 the	 measurement	 equipment,	 and	 by	 electric	 couplings	 between	 the	
measurement	equipment	and	other	devices	connected	to	the	same	electrical	grid.	For	
low	 perturbation	 amplitudes,	 an	 increase	 in	 the	 perturbation	 amplitude	 leads	 to	 an	
improvement	 of	 the	 signal-to-noise	 ratio,	 which	 causes	 a	 drop	 in	 the	℘𝐼	parameter	
according	 to	 equation	 (5):	 this	 effect	 explains	 the	 trend	 observed	 in	 figure	 3.a.			
However,	 there	 is	 a	 threshold	 amplitude	 (around	 2	 mA,	 in	 this	 case)	 above	 which	
further	 increases	 in	 the	 perturbation	 amplitude	 do	 not	 improve	 the	 signal-to-noise	
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ratio	anymore,	since	the	limit	of	the	measurement	system	has	been	reached.	Beyond	
this	 perturbation	 amplitude,	 the	℘𝐼	parameter	 does	 not	 decrease	 further	 with	 the	
perturbation	amplitude,	resulting	in	the	nearly	superimposed	℘𝐼	curves	with	no	clear	
trend	with	the	perturbation	amplitude,	as	seen	in	figure	3.b.		
	
On	 the	 other	 hand,	 in	 figure	 4	 it	 can	 be	 observed	 that	 the	 overall	 shape	 of	 the	℘𝑈	
curves	 changes	 from	 low	 perturbation	 amplitudes	 (figure	 4.a)	 to	 high	 perturbation	
amplitudes	(figure	4.b).	For	low	perturbation	amplitudes	(up	to	2	mA,	in	this	case),	the	
℘𝑈	curve	 for	 a	 given	perturbation	amplitude	 is	 a	point	 cloud	with	no	 clear	 trend	or	
shape,	 that	 presents	 peaks	 at	 given	 perturbation	 frequencies.	 	 The	℘𝑈	values	 are	
significantly	 higher	 in	 the	 intermediate	 frequency	 range	 from	100	Hz	 to	 1	Hz.	 It	 can	
also	be	observed,	that	an	increase	in	the	perturbation	amplitude	for	amplitudes	below	
2	mA	causes	a	 shift	of	 the	℘𝑈	curve	 towards	 lower	 values	of	℘𝑈.	 This	 is	due	 to	 the	
improvement	of	the	signal-to-noise	ratio.		
	
As	 it	can	be	observed	 in	 figure	4.b,	 for	high	perturbation	amplitudes	 (above	2	mA)	a	
clear	 shape	 appears	 in	 the	℘𝑈	curves.	 For	 a	 given	 perturbation	 amplitude,	 three	
distinct	zones	can	be	identified	in	the	℘𝑈	curve:	
	

• For	 high	 perturbation	 frequencies,	 the	℘𝑈	curve	 is	 nearly	 horizontal,	 except	
for	 peaks	 that	 appear	 at	 defined	 perturbation	 frequencies.	 Probably,	 these	
peaks	are	due	to	the	coupling	of	the	system	with	the	electric	grid;	

• For	 intermediate	 perturbation	 frequencies,	 the	℘𝑈	curve	 is	 monotonically	
increasing	and	presents	an	 inflexion	point.	Moreover,	 some	peaks	at	defined	
frequencies	appear	also	 in	 this	 frequency	range.	As	 in	 the	previous	case,	 it	 is	
probable	 that	 these	 peaks	 are	 due	 to	 the	 coupling	 of	 the	 system	 with	 the	
electric	grid;	

• Finally,	 the	℘𝑈	curve	 shows	 an	 asymptotic	 behavior	 for	 low	 perturbation	
frequencies.	In	this	frequency	range,	no	peaks	are	observed.	

	
Comparing	the	℘𝑈	curves	for	different	perturbation	amplitudes,	at	high	perturbation	
amplitude,	 it	 can	 be	 observed	 that	 the	℘𝑈	curves	 shift	 to	 higher	℘𝑈	values	with	 an	
increase	in	the	perturbation	amplitude.	This	trend	is	due	to	the	nonlinear	effects	of	the	
system.	 For	 high	 perturbation	 amplitudes	 (higher	 than	 a	 threshold	 amplitude),	 the	
nonlinear	 effects	 of	 the	 system	 are	 no	 longer	 negligible:	 an	 increase	 in	 the	
perturbation	amplitude	causes	greater	nonlinear	effects,	that	cause	an	increase	of	the	
amplitude	of	the	non	fundamental	harmonics	in	the	output	signal,	and	this	results	in	a	
higher	℘𝑈	value	according	to	equation	(6).	From	figure	4.b	it	can	be	deduced	that	the	
nonlinear	 effects	 appear	 mainly	 for	 low	 perturbation	 frequencies	 (lower	 than	 a	
threshold	 frequency).	 The	 existence	 of	 a	 frequency	 threshold	 above	 which	
nonlinearities	 are	 negligible	 even	 for	 high	 perturbation	 amplitudes	 was	 already	
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observed	by	Hirschorn	and	co-workers	[53,	84].	The	overall	shape	of	the	℘𝑈	curves,	in	
the	 nonlinear	 zone	 (high	 perturbation	 amplitudes),	 experimentally	 obtained	 in	 this	
work	are	consistent	with	the	theoretical	curves	obtained	by	Lai	[68].		
	
In	short:	for	amplitudes	lower	than	the	amplitude	threshold	of	the	system,	an	increase	
in	 the	 perturbation	 amplitude	 causes	 a	 shift	 of	 the	℘𝑈	curve	 towards	 lower	℘𝑈	
values;	while	 for	 amplitudes	 higher	 than	 the	 amplitude	 threshold	 of	 the	 system,	 an	
increase	in	the	perturbation	amplitude	causes	a	shift	of	the	℘𝑈	curve	towards	higher	
℘𝑈 	values,	 for	 frequencies	 lower	 than	 a	 frequency	 threshold.	 Moreover,	 for	
perturbation	amplitudes	higher	than	the	threshold	amplitude,	a	defined	shape	appears	
in	the	℘𝑈	curves.	The	effect	of	the	perturbation	amplitude	on	the	℘𝑈	curves	is	given	
by	 the	 balance	 of	 two	 antagonist	 effects:	 on	 the	 one	 hand,	 an	 increase	 in	 the	
perturbation	 amplitude	 improves	 the	 signal-to-noise	 ratio;	 on	 the	 other	 hand,	 an	
increase	in	the	perturbation	amplitude	leads	to	higher	nonlinear	effects	that	cause	the	
generation	 of	 higher	 non	 fundamental	 harmonics	 in	 the	 output	 signal.	 For	 low	
amplitudes	 (lower	 than	 the	 threshold	 amplitude),	 the	 non	 fundamental	 harmonics	
generated	on	account	of	the	nonlinear	effects	of	the	system	are	negligible.	Thus,	in	this	
amplitude	range,	the	noise	dominates	over	the	nonlinear	effects.	On	the	contrary,	for	
high	 amplitudes	 (higher	 than	 the	 threshold	 amplitude),	 nonlinear	 effects	 dominate	
over	the	noise.	Therefore,	the	net	effect	of	an	increase	in	the	perturbation	amplitude	
at	 high	 amplitudes	 is	 an	 increase	 of	 the	℘𝑈	value,	 for	 frequencies	 lower	 than	 a	
frequency	threshold.	For	frequencies	above	this	frequency	threshold,	the	system	does	
not	 present	 nonlinear	 effects	 even	 for	 high	 perturbation	 amplitudes.	 Thus,	 for	 high	
frequencies,	an	increase	in	the	perturbation	amplitude	always	causes	a	decrease	in	the	
℘𝑈	value.	This	can	be	observed	in	the	peaks	at	high	and	intermediate	frequencies	that	
appear	 in	 figure	 4.b:	 even	 for	 high	 perturbation	 amplitudes,	 an	 increase	 in	 the	
perturbation	amplitude	causes	a	drop	in	the	peak	height.		
	
Comparing	 figures	 3	 and	 4,	 it	 can	 be	 observed	 that	 the	℘𝑋	values	 associated	 to	 the	
output	signal	are	significantly	 larger	 than	the	values	associated	to	the	 input	signal.	 It	
can	be	deduced	that	the	major	part	of	the	harmonics	present	in	the	output	signal	(due	
to	both,	noise	and	nonlinear	effects)	are	generated	by	the	system	itself,	since	they	are	
only	present	in	the	output	signal.	In	addition,	it	can	be	also	deduced	that	the	harmonic	
generation	due	to	nonlinear	effects	only	occurs	 in	the	output	signal;	there	is	no	back	
resonance	 that	 would	 introduce	 harmonics	 in	 the	 perturbation	 signal	 due	 to	 the	
electrical	 coupling	 between	 the	 measurement	 system	 and	 the	 measured	 system.	
Therefore,	 only	 the	 output	 signal	 is	 relevant	 for	 linearity	 assessment.	 However,	 it	 is	
advisable	to	monitor	also	the	perturbation	signal,	in	order	to	control	the	quality	of	the	
perturbation	signal	and	to	detect	possible	distortions	in	the	grid	that	could	introduce	
noise	in	the	measurements.	
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It	 should	 be	 noted	 that	 if	 the	 EIS	 measurements	 were	 performed	 in	 potentiostatic	
mode,	 rather	 than	 in	galvanostatic	mode	as	 they	were	done	 in	 this	work,	 the	results	
would	be	 reversed:	 the	℘𝑋	values	of	 the	current	 signal	would	be	 significantly	higher	
than	the	℘𝑋	values	of	the	voltage	signal.	Thus,	in	potentiostatic	mode,	℘𝐼	contains	the	
information	of	the	noise	and	the	nonlinear	effects;	whereas,	in	galvanostatic	mode,	it	
is	℘𝑈	which	contains	this	information.	
	

4.2.	Critical	parameters	
	
Figures	5	and	6	present	 the	critical	parameter	curves	 for	 the	perturbation	signal	and	
the	response	signal	respectively.	These	curves	correspond	with	the	representation	of	
the	critical	parameter	(℘𝐼V	and	℘𝑈V)	versus	the	amplitude	of	the	applied	perturbation.	
Next	to	each	point,	the	critical	frequency	for	that	perturbation	amplitude	is	displayed.		
	
Comparing	 the	 scales	 of	 figures	 5	 and	 6,	 it	 can	 be	 observed	 that	 the		℘𝑈V 	are	
significantly	higher	than	the	℘𝐼V	values	for	all	perturbation	amplitudes.	This	 is	due	to	
the	 fact	 that	 the	 system	 introduces	 additional	 noise;	 and	 for	 high	 perturbation	
amplitudes	it	also	introduces	non	fundamental	harmonics	due	to	nonlinear	effects.	The	
result	 is	 that	 the	 critical	 parameter	 associated	 with	 the	 perturbation	 signal	 is	
significantly	 lower	 than	 the	 critical	 parameter	 associated	 to	 the	 output	 signal,	 for	 a	
given	perturbation	amplitude.		
	
On	 the	 one	 hand,	 in	 figure	 5	 it	 can	 be	 observed	 that	 for	 very	 low	 perturbation	
amplitudes	an	increase	in	the	perturbation	amplitude	causes	a	drop	of	the	℘𝐼V	value.	
On	 the	 contrary,	 for	 perturbation	 amplitudes	 higher	 than	 0.5	 mA,	℘𝐼V 	remains	
approximately	constant	around	-60.	When	the	perturbation	amplitude	is	increased	the	
signal-to-noise	 ratio	 of	 the	 perturbation	 signal	 improves,	 resulting	 in	 a	 drop	 of	 the	
critical	parameter	℘𝐼V.	Once	the	limit	of	the	measurement	equipment	that	generates	
the	perturbation	signal	is	reached,	further	increases	of	the	perturbation	amplitude	do	
not	improve	further	the	signal-to-noise	ratio.		
	
On	 the	 other	 hand,	 two	 different	 trends	 can	 be	 observed	 in	 figure	 6.	 For	 low	
perturbation	 amplitudes,	 an	 increase	 in	 the	 amplitude	 causes	 a	 drop	 of	 the	 critical	
parameter	of	the	output	signal,	℘𝑈V;	whereas,	at	high	amplitudes,	an	increase	in	the	
perturbation	 amplitude	 causes	 an	 increase	 in	℘𝑈V.	 The	 perturbation	 amplitude	 at	
which	 the	 trend	of	 parameter	℘𝑈V	inverts	 is	 defined	 as	 the	 critical	 amplitude	of	 the	
system,	∆𝐼c.	The	critical	amplitude	concept	is	consistent	with	the	threshold	amplitude	
concept	identified	in	section	4.1.	An	increase	in	the	perturbation	amplitude	causes	two	
antagonist	effects.	On	the	one	side,	an	increase	in	the	amplitude	improves	the	signal-
to-noise	ratio.	On	the	other	side,	an	increase	in	the	perturbation	amplitude	generates	
higher	levels	of	non	fundamental	harmonics	due	to	nonlinear	effects	of	the	system.	For	
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amplitudes	 below	 the	 critical	 amplitude,	 the	 first	 effect	 dominates	 over	 the	 second	
one:	the	net	effect	of	an	increase	of	the	perturbation	amplitude	for	low	amplitudes	is	a	
drop	 in	℘𝑈V;	 and	 therefore,	 the	 system	 can	 be	 considered	 to	 behave	 linearly-like	 in	
this	perturbation	amplitude	 range.	The	amplitude	 range	below	the	critical	amplitude	
corresponds	 with	 the	 linear	 behaviour	 zone,	 identified	 in	 figure	 6.	 In	 contrast,	 for	
amplitudes	 above	 the	 critical	 perturbation	 amplitude,	 the	 second	 effect	 dominates	
over	the	first	one:	the	net	effect	of	an	 increase	of	the	perturbation	amplitude	 in	this	
amplitude	 range	 is	 an	 increase	 in	℘𝑈V;	 and	 thus,	 the	 nonlinear	 behaviour	 of	 the	
system	 is	 significant	 for	 perturbation	 amplitudes	 above	 the	 critical	 amplitude.	 The	
amplitude	 range	 above	 the	 critical	 amplitude	 corresponds	 with	 the	 nonlinear	
behaviour	zone,	identified	in	figure	6.	
	
The	critical	perturbation	amplitude	delimits	 the	 linear	behaviour	zone	of	 the	system,	
and	 its	 nonlinear	 behaviour	 zone.	 The	 critical	 perturbation	 amplitude	 can	 be	
experimentally	 determined	 from	 the	 critical	 parameter	 curve.	 In	 this	 case,	 it	 can	 be	
deduced	 from	 figure	 6:	 the	 critical	 perturbation	 amplitude	of	 the	 studied	 system	 (in	
the	operation	conditions	at	which	it	was	operated	in	this	work)	is	around	2	mA.	
	
Finally,	in	figure	6	it	can	be	observed	that	the	critical	frequency	changes	from	one	zone	
to	 the	 other.	 On	 the	 one	 side,	 for	 all	 the	 perturbation	 amplitudes	 in	 the	 linear	
behaviour	 zone,	 the	 critical	 frequency	 is	 25	 Hz.	 This	 frequency	 is	 the	 perturbation	
frequency	 that	 presents	 a	 higher	 noise	 level	 in	 the	 system:	 therefore,	 in	 the	 linear	
behaviour	zone	(where	noise	is	dominant	over	nonlinear	effects)	the	critical	frequency	
corresponds	with	the	frequency	with	a	higher	noise	level.	On	the	other	side,	the	critical	
frequency	 is	 of	 5	mHz	 (the	 lowest	 frequency	 in	 the	measured	 frequency	 range)	 for	
every	perturbation	amplitude	in	the	nonlinear	behaviour	zone.	This	is	consistent	with	
the	 fact	 that	 nonlinear	 effects	 only	 appear	 for	 low	 frequencies	 (below	 a	 frequency	
threshold):	 therefore,	 in	 the	 nonlinear	 zone	 (where	 nonlinear	 effects	 are	 dominant	
over	 noise)	 the	 critical	 frequency	 is	 the	minimum	measured	 frequency,	which	 is	 the	
frequency	 that	 exhibits	 higher	 nonlinear	 effects.	 Consequently,	 the	 change	 in	 the	
critical	 frequency	 is	 an	 indicator	 of	 the	 domination	 switch	 from	 noise	 to	 nonlinear	
effects.		
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5.	Theoretical	modelling	
	

5.1.	Model	definition		
	
In	general,	 the	 input	signal	 for	EIS	measurements	 is	considered	as	a	mono-frequency	
sinusoidal	signal	with	negligible	levels	of	noise.	This	assumption	is	consistent	with	the	
experimental	 observations	 presented	 in	 section	 4.1;	 and	 consequently	 it	 was	
considered	in	this	work.	According	to	this	assumption,	the	perturbation	signal	can	be	
written	as:	
	
	 I t = Ifg + ∆I ∙ sin ωt 	 (9)	

	
where	 Ifg 	denotes	 the	 polarization	 current.	 By	 convention,	 the	 perturbation	
amplitude,	∆I,	 is	a	nonzero	positive	number.	When	this	perturbation	signal	 is	applied	
to	the	electrochemical	system	an	output	signal	is	obtained.	The	output	signal	consists	
in	a	superposition	of	sinusoidal	signals:	a	 fundamental	signal	and	 its	harmonics.	Each	
one	of	these	signals	is	composed	of	two	contributions.	One	contribution	is	due	to	the	
response	of	 the	system:	the	response	of	 the	system	 in	 the	 fundamental	 frequency	 is	
associated	 to	 its	 linear	 response;	 whereas,	 the	 response	 of	 the	 system	 in	 the	 non	
fundamental	 frequencies	 is	 associated	 to	 its	 nonlinear	 response.	 And	 the	 other	
contribution	 is	 associated	 to	 the	 noise.	 Consequently,	 the	 output	 signal	 can	 be	
expressed	as:	
	
	

𝑈 𝑡 = 𝑈mn + ∆𝑈C + ∆𝑈oC ∙ sin 𝜔𝑡 + 𝜑C + ∆𝑈U + ∆𝑈oU ∙ sin 𝑘𝜔𝑡 + 𝜑U

89

UD2

	 (10)	

	
where	𝑈mn 	denotes	 the	 DC	 component	 of	 the	 output	 signal.	 On	 the	 one	 hand,	∆𝑈C	
denotes	 the	 contribution	 of	 the	 linear	 response	 of	 the	 system	 to	 the	 fundamental	
component	 of	 the	 output	 signal;	 and	∆𝑈oC	stands	 for	 the	 noise	 in	 the	 fundamental	
component	of	the	output	signal.	On	the	other	hand,	∆𝑈U	and	∆𝑈oU	(for		𝑘 ≥ 2)	denote	
respectively	 the	 system’s	 response	 and	 the	 noise	 in	 the	 k-th	 harmonic.	 Finally,	 	𝜑U	
(for		𝑘 ≥ 1)	 denotes	 the	 phase-lag	 of	 the	 k-th	 component	 of	 the	 output	 signal	 with	
respect	to	the	perturbation	signal.	Figure	7	summarizes	the	assumed	situation.	
	
Two	different	cases	are	considered:	

• Case	1:	∆I ≤ ∆IV.	The	perturbation	amplitude	is	below	the	critical	perturbation	
amplitude,	 and	 therefore,	 the	 system	 is	 in	 the	 linear	 behaviour	 zone.	 The	
critical	 frequency	 of	 the	 system	 in	 this	 case	 is	 referred	 to	 as	 the	 critical	
frequency	of	the	linear	behaviour	zone,	𝑓c_uvowxy;	
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• Case	2:	∆I > ∆IV.	The	perturbation	amplitude	is	above	the	critical	perturbation	
amplitude,	and	 therefore,	 the	 system	 is	 in	 the	nonlinear	behaviour	 zone.	The	
critical	 frequency	 of	 the	 system	 in	 this	 case	 is	 referred	 to	 as	 the	 critical	
frequency	of	the	nonlinear	behaviour	zone,	𝑓c_o{ouvowxy.	

	
5.2.	Case	1:	Linear	behaviour	zone	

	
As	 described	 in	 detail	 in	 the	 previous	 section,	 in	 the	 linear	 behaviour	 zone,	 the	
nonlinear	effects	of	the	system	are	negligible	in	comparison	to	the	noise.	Therefore,	in	
this	region:	
	
	 ∆𝑈U ≪ ∆𝑈oU		∀𝑘 ∈ ℕ 𝑘 ≠ 1	 (11)	

	
Moreover,	 it	 can	 be	 assumed	 with	 no	 loss	 of	 generality	 that	 the	 fundamental	
component	 of	 the	 output	 signal	 is	 high	 enough	 in	 order	 to	 overcome	 the	 noise	
associated	 to	 it;	 otherwise,	 the	 measurement	 would	 be	 only	 noise.	 Thus,	 it	 can	 be	
considered	that:	
	
	 ∆𝑈C ≫ ∆𝑈oC	 (12)	

	
Introducing	 assumptions	 (11)	 and	 (12)	 in	 equation	 (10),	 and	 particularizing	 the	
obtained	 expression	 for	 a	 perturbation	 frequency	 of	𝑓,	 the	 following	 expression	 is	
obtained:	
	
	 𝑈 𝑡 = 𝑈mn + ∆𝑈C 𝑓 ∙ sin 2𝜋𝑓𝑡 + 𝜑C 𝑓

+ ∆𝑈oU 𝑓 ∙ sin 2𝑘𝜋𝑓𝑡 + 𝜑U 𝑓
89

UD2

	
(13)	

	
Applying	 the	 definition	 of	 Fourier’s	 transform	 to	 equation	 (13),	 the	 following	
expressions	are	obtained:	
	 𝑈

C
= ∆𝑈C	 (14)	

	 𝑈
U
= ∆𝑈oU		∀𝑘 ∈ ℕ 𝑘 ≠ 1	 (15)	

	
Introducing	 these	 expressions	 in	 the	 definition	 of	℘𝑈	presented	 in	 section	 2,	 the	
following	expression	is	obtained	for	the	parameter	℘𝑈	for	a	perturbation	frequency	𝑓:		
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℘𝑈 𝑓 = max

APC
			20 ∙ logCE

∆𝑈oU 𝑓
∆𝑈C 𝑓

	 (16)	

	
Applying	the	properties	of	the	maximum	operator:	
	
	

℘𝑈 𝑓 = 20 ∙ logCE
max	
APC

		∆U�A 𝑓

∆UC 𝑓
	 (17)	

	
The	following	parameter	is	defined:	
	
	 ∆U��?�� 𝑓 = max	

�PC
		∆U�� 𝑓 	 (18)	

	
This	 parameter,	 with	 dimensions	 of	 voltage,	 corresponds	with	 the	 amplitude	 of	 the	
non	 fundamental	 harmonic	 associated	 to	 noise	 with	 the	 highest	 amplitude.	 This	
parameter	is	a	measure	of	the	noise	level	at	frequency	𝑓.	It	is	assumed	that	the	noise	
level	 at	 frequency	𝑓	is	 independent	 of	 the	 perturbation	 amplitude:	 according	 to	 this	
assumption,	parameter	∆U��?��	does	not	depend	on	∆I.	
In	addition,	according	to	Ohm’s	generalized	law,	the	linear	component	of	the	system’s	
response	is	given	by:	
	
	 ∆UC 𝑓 = Z f ∙ ∆I	 (19)	

	
where	 Z f 	denotes	 the	 modulus	 of	 the	 impedance	 of	 the	 system	 at	 frequency	𝑓.	
Introducing	equations	(18)	and	(19)	in	(17):	
	
	

℘𝑈 𝑓 = 20 ∙ logCE
∆U��?�� 𝑓
Z f ∙ ∆I 	 (20)	

	
	
	
Applying	 the	 properties	 of	 logarithms,	 the	 following	 expression	 is	 obtained	 for	 the	
parameter	℘𝑈	for	a	perturbation	frequency	𝑓:	
	
	 ℘𝑈 𝑓 = 𝑐1 ∙ 𝑙𝑛

1
∆𝐼

+ 𝑐2 𝑓 	 (21)	

where:	
	 𝑐C =

20
ln	(10)	 (22)	



18	
	

	 𝑐2 𝑓 =
20

ln	(10) ∙ 𝑙𝑛
∆Unoise 𝑓
Z f 	 (23)	

	
It	 can	 be	 concluded	 that	 parameter	℘𝑈 𝑓 	follows	 a	 logarithmic	 relation	 with	 the	
inverse	of	the	perturbation	amplitude.	The	constant	term	of	the	relation	being	related	
to	the	noise-level-related	parameter	∆U��?�� 𝑓 ,	at	the	corresponding	frequency.	The	
constant	term,	𝑐2 𝑓 ,	 incorporates	the	noise	level	at	frequency	𝑓;	and	the	impedance	
modulus	 of	 the	 system	 at	 that	 frequency.	 Therefore,	 this	 parameter	 quantifies	 the	
effective	 level	 of	 noise	 at	 frequency	𝑓.	 Consequently,	𝑐2 𝑓 	is	 the	 effective	 noise	
parameter	 at	 frequency	𝑓.	 Expression	 (23)	 encapsulates	 the	 improvement	 of	 the	
signal-to-noise	ratio	obtained	by	increasing	the	perturbation	amplitude	when	the	noise	
level	is	constant	with	the	perturbation	amplitude.		
	
By	 the	 definition	 of	 the	 critical	 parameter	 introduced	 in	 section	 2,	℘𝑈V	corresponds	
with	 the	 parameter	℘𝑈 𝑓 	at	 the	 critical	 frequency.	 Expression	 (21)	 is	 applicable	 to	
any	perturbation	 frequency	𝑓;	 thus,	 it	 can	be	applied	 to	 the	critical	 frequency	of	 the	
linear	 behaviour	 zone	 𝑓c_uvowxy 	in	 order	 to	 obtain	 an	 expression	 for	 the	 critical	
parameter	℘𝑈V:	
	
	 ℘𝑈V = ℘𝑈 𝑓c_uvowxy =

20
ln	(10) ∙ 𝑙𝑛

1
∆𝐼

+ 𝑐2 𝑓c_uvowxy 	 (24)	

	
This	 model,	 which	 only	 has	 one	 fitting	 parameter	 (𝑐2),	 was	 fitted	 to	 the	 linear	
behaviour	 zone	 of	 the	 experimental	℘𝑈V	curve,	 presented	 in	 section	 4.2.	 The	 fitting	
process	 was	 performed	 using	 a	 Levenberg-Marquardt	 algorithm	 implemented	 in	
Labview®.	The	obtained	fitting	is	shown	in	figure	8.	It	can	be	observed	that	the	model	
given	 by	 equation	 (24)	 fits	 perfectly	 the	 experimental	℘𝑈V 	curve	 in	 the	 linear	
behaviour	 zone:	 the	associated	determination	 coefficient	being	of	99.93%.	 It	 can	be	
deduced	that	the	proposed	model	actually	explains	the	experimental	shape	of	the	℘𝑈V	
curve	in	the	linear	behaviour	zone.	This	confirms	the	assumption	that	the	noise	level	at	
frequency	𝑓	is	 independent	 of	 the	 perturbation	 amplitude,	 at	 least	 for	 the	 critical	
frequency	 of	 the	 linear	 behaviour	 zone.	 From	 the	 experimental	 fit,	 the	 value	 of	
𝑐2 𝑓𝑐_𝑙𝑖𝑛𝑒𝑎𝑟 	can	be	obtained:	

	
𝑐2 𝑓𝑐_𝑙𝑖𝑛𝑒𝑎𝑟 =

20
ln	(10) ∙ 𝑙𝑛

∆Unoise 𝑓𝑐_𝑙𝑖𝑛𝑒𝑎𝑟
Z 𝑓𝑐_𝑙𝑖𝑛𝑒𝑎𝑟

= −19.8	𝑑𝐵	 (25)	

	
In	 this	 case,	 the	 modulus	 of	 the	 impedance	 of	 the	 system	 at	 frequency	𝑓c_uvowxy 	
is	1.86𝛺.	 Using	 this	 value	 in	 expression	 (25),	 the	 value	 of	∆U��?�� 𝑓c_uvowxy 	can	 be	
estimated:	
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∆U��?�� 𝑓c_uvowxy = Z 𝑓c_uvowxy ∙ 10

𝑐2 [�_������
20 ≈ 0.191V	 (26)	

	
This	 value	quantifies	 the	noise	 level	 in	 the	 critical	 frequency	of	 the	 linear	 behaviour	
zone.	Therefore,	 the	noise	 level	 can	be	quantified	 from	the	 linear	behaviour	 zone	of	
the		℘𝑈V	curve.	
	

5.3.	Case	2:	Nonlinear	behaviour	zone	
	
In	contrast	with	the	linear	behaviour	zone	described	in	the	previous	subsection,	in	the	
nonlinear	 behaviour	 zone	 the	 nonlinear	 effects	 of	 the	 system	 are	 not	 negligible	 in	
comparison	 to	 the	 noise.	 Since	 the	 amplitude	 of	 the	 non	 fundamental	 harmonics	
decreases	with	the	harmonic	order	[71],	 it	can	be	assumed	without	loss	of	generality	
that	only	the	first	k¡?¢ ≥ 2	harmonics	overcome	the	noise	in	the	corresponding	frequency.	
Therefore,	in	the	nonlinear	behaviour	region:	
	
	 ∆UA ≫ ∆U�A							∀k ∈ ℕ k ≤ k¡?¢		with	k¡?¢ ∈ ℕ k¡?¢ ≥ 2	 (27)	

	 ∆UA ≪ ∆U�A							∀k ∈ ℕ k > k¡?¢		with	k¡?¢ ∈ ℕ k¡?¢ ≥ 2	 (28)	

	
Note	 that	 this	 set	 of	 conditions	 already	 incorporates	 the	 assumption	 that	 the	
fundamental	component	(k = 1)	overcomes	the	noise	associated	to	it.	
	
Introducing	 assumptions	 (27)	 and	 (28)	 in	 equation	 (10),	 and	 particularizing	 the	
obtained	 expression	 for	 the	 critical	 frequency	 of	 the	 nonlinear	 behaviour	
zone	 𝑓c_o{ouvowxy ,	the	following	expression	is	obtained:	
	
	 𝑈 𝑡 = 𝑈mn + ∆𝑈C ∙ sin 2𝜋𝑓c_o{ouvowxy𝑡 + 𝜑C

+ ∆𝑈U ∙ sin 2𝑘𝜋𝑓c_o{ouvowxy𝑡 + 𝜑U

U��¥

UD2

+ ∆𝑈oU ∙ sin 2𝑘𝜋𝑓c_o{ouvowxy𝑡 + 𝜑U

89

UDU��¥8C

	

(29)	

	
Applying	 the	 definition	 of	 Fourier’s	 transform	 to	 equation	 (29),	 the	 following	
expressions	are	obtained:	
	
	 𝑈

C
= ∆𝑈C	 (30)	

	 𝑈
U
= ∆𝑈U		∀𝑘 ∈ ℕ 𝑘 ∈ 2; k¡?¢ 	 (31)	
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	 𝑈
U
= ∆𝑈oU		∀𝑘 ∈ ℕ 𝑘 > k¡?¢	 (32)	

	
Introducing	 these	 expressions	 in	 the	 definition	 of	℘𝑈	presented	 in	 section	 2,	 the	
following	 expression	 is	 obtained	 for	 the	 critical	 parameter	℘𝑈V	(since	 equation	 (29)	
was	 particularized	 for	 the	 critical	 frequency	 of	 the	 nonlinear	 behaviour	 zone,	 the	
corresponding	℘𝑈	parameter	defines	the	critical	parameter	℘𝑈V):		
	
	
℘𝑈V = 20 ∙ logCE

𝑚𝑎𝑥 ∆𝑈U	𝑤𝑖𝑡ℎ	𝑘 ∈ 2; k¡?¢ ; ∆𝑈oU	𝑤𝑖𝑡ℎ	𝑘 > k¡?¢
∆𝑈C

	 (33)	

	
On	 the	 one	 hand,	 according	 to	 the	 fact	 that	 the	 amplitude	 of	 the	 non	 fundamental	
harmonics	 decreases	 with	 the	 harmonic	 order:	∆𝑈2 ≥ ∆𝑈U	∀𝑘 ∈ ℕ 𝑘 ∈ 2; k¡?¢ .	 On	
the	other	hand,	according	to	the	definition	of	the	nonlinear	behaviour	zone	introduced	
in	 section	 5.1,	 in	 this	 region	 the	 nonlinear	 effects	 are	 not	 negligible	with	 respect	 to	
noise.	 Therefore	 it	 can	 be	 assumed	 that	 in	 this	 case:		∆𝑈2 ≥ ∆𝑈oU	∀𝑘 ∈ ℕ 𝑘 > k¡?¢.	
Introducing	these	assumptions	in	equation	(33),	the	following	relation	is	obtained:	
	
	 ℘𝑈V = 20 ∙ logCE

∆U2
∆UC

	 (34)	

	
Therefore,	 in	 the	 nonlinear	 behaviour	 zone	 the	 critical	 parameter	 is	 given	 by	 the	
relation	 in	 decibels	 of	 the	 2nd	 order	 harmonic	 (first	 non-fundamental	 harmonic)	 and	
the	fundamental	component.		
	
	
The	 Taylor	 series	 expansion	 of	 the	 output	 signal	 around	 the	 operation	 point	
establishes	that	[97]:	
	
	

U I =
1
k! ∙

dAU
dIA «¬

∙ I − Ifg A
89

ADE

	 (35)	

	
Introducing	the	expression	of	the	perturbation	signal	given	by	equation	expression	(9),	
in	equation	(35):	
	
	

U t =
1
k! ∙

dAU
dIA «¬

∙ ∆I ∙ sin	(ω ∙ t) A
89

ADE

	 (36)	

	
Combining	Euler’s	formula,	Newton’s	binomial	theorem	and	De	Moivre’s	formula	[97]	
the	following	expression	is	obtained	for	the	k-th	power	of	a	sine	function:	
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sinA θ =

2
2A
∙ −1

¯°±
G 1? ∙ ki ∙ sin k − 2i ∙ θ

¯°±
G

?DE

					k	odd

1
2A
∙
k
k
2

+
2
2A
∙ −1

¯
G1? ∙ ki ∙ cos k − 2i ∙ θ

¯
G1C

?DE

					k	even

						 (37)	

	

where	 ki 	denotes	the	binomial	coefficients.	Using	equation	(37)	in	equation	(36),	and	

identifying	 the	 terms	 associated	 to	 the	 fundamental	 component	 and	 to	 the	 second	
order	harmonic:	
	
	

∆UC =
dAU
dIA «¬

∙
∆IA

k! ∙
2
2A
∙

k
k − 1
2

89

ADC
�´´

	

	

(38)	

	
∆U2 =

dAU
dIA «¬

∙
∆IA

k! ∙
2
2A
∙

k
k
2 − 1

89

AD2
�µ��

	 (39)	

	
	
	
	
	
Introducing	these	expressions	in	equation	(34),	the	following	expression	is	obtained	for	
the	critical	parameter:	
	
	

℘𝑈V = 20 ∙ logCE

´¯¶
´«¯ «¬

∙ ∆«
¯

A!
∙ 2
2¯
∙

k
A
2
− 1

89
AD2
�µ��

´¯¶
´«¯ «¬

∙ ∆«
¯

A!
∙ 2
2¯
∙

k
A1C
2

89
ADC
�´´

	 (40)	

	
Equation	(40)	is	valid	for	any	general	electrochemical	system:	the	nature	of	the	system	
will	define	the	derivative	terms	of	the	expression.	As	it	was	defined	in	the	introduction	
section,	 this	work	 focuses	of	Tafelian	systems.	The	U-I	 relation	 in	 this	kind	of	system	
establishes	that	[98]:	
	
	 U I = a − b ∙ ln I 	 (41)	
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Where	a	and	b	are	the	Tafel	constants	of	the	system.	a	stands	for	the	Tafel’s	ordinate;	
and	b	denotes	the	Tafel’s	slope.	Using	the	general	derivation	properties	[97]:	
	
	 dAU

dIA «¬

=
−1 A ∙ b ∙ k − 1 !

Ifg A 					∀kϵℕ	 (42)	

	
Introducing	 expression	 (42)	 in	 (40)	 and	 simplifying,	 the	 following	 expression	 is	
obtained:	
	
	 ℘𝑈V = 20 ∙ logCE

S
T 	 (43)	

	
Where	S	and	T	are	the	following	series:	
	
	

𝑆 = sA

89

ADC

=
2k − 1 !
Ifg 2A ∙

∆I2A

2k ! ∙
1

22A1C
∙ 2k
k − 1

89

ADC

	 (44)	

	
𝑇 = tA

89

ADC

=
2k − 2 !
Ifg 2A1C ∙

∆I 2A1C

2k − 1 ! ∙
1

2 2A12 ∙ 2k − 1k − 1

89

ADC

	 (45)	

	
Since	∆I > 0,	S	and	T	are	also	positive;	and	 therefore	equation	43	 is	well	defined.	By	
introducing	the	binomial	term	general	expression	and	simplifying:	
	
	

sA = 2 ∙
∆I

2 ∙ Ifg

2A

∙
2k − 1 !

k − 1 ! ∙ k + 1 !	
(46)	

	
tA = 2 ∙

∆I
2 ∙ Ifg

2A1C

∙
2k − 2 !
k − 1 ! ∙ k!	

(47)	

	
The	 critical	 parameter	℘𝑈V	is	 a	 parameter	 of	 a	 real	 system:	 therefore	 it	 has	 to	 be	
finite.	 Equation	 (43)	 only	 fulfils	 the	 finiteness	 condition	 if	 both	 series	 (𝑆	and	𝑇)	 are	
convergent.	Table	2	gives	the	results	of	the	convergence	study	of	both	series,	in	which	
3	 different	 cases	 were	 considered:	 ∆I < Ifg ,	 ∆I = Ifg ,	 and 	∆I > Ifg .	 The	
convergence	 criteria	 used	 in	 this	 work	 were:	 the	 necessary	 condition	 for	 series	
convergence	 [97],	 NCCS;	 D’Alembert’s	 criterion	 [97],	 RT;	 and	 the	 2nd	 ratio	 test	 [99],	
2RT.	As	 it	 can	be	seen	 in	 table	2,	both	series	converge	 for	∆I ≤ Ifg ,	and	 therefore,	
equation	(43)	fulfils	the	finiteness	condition	in	this	case.	On	the	contrary,	both	series	
diverge	 for	∆I > Ifg .	 However,	 this	 case	 has	 no	 physical	 meaning:	 applying	 a	
perturbation	amplitude	 larger	 than	 the	DC	current	would	 reverse	 the	polarity	of	 the	
electrode	 in	 some	parts	of	 the	EIS	measurement	cycle;	and	obviously,	 this	has	 to	be	
avoided	in	order	to	obtain	representative	EIS	measurements.	Consequently,	from	the	3	
considered	 cases	 only	 two	 have	 physical	meaning	 in	 the	modelled	 situation;	 and	 in	
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both	of	them	the	series	converge,	and	therefore,	expression	(43)	is	well	defined.	Using	
WolframAlpha® the	series	are	summed	for	the	case	∆I ≤ Ifg :	
	
	

𝑆 =
−∆I2 + 2 ∙ Ifg 2 − 2 ∙ Ifg 2 ∙ «¬ G1∆«G

«¬ G

∆I2 	
(48)	

	

𝑇 =
2 ∙ Ifg ∙ 1 − «¬ G1∆«G

«¬ G

∆I 	
(49)	

	
Introducing	 these	 expressions	 in	 equation	 (43)	 and	 simplifying	 the	 obtained	
expression,	the	following	expression	for	the	critical	parameter	is	obtained:	
	
	

℘𝑈V = 20 ∙ logCE
Ifg ∙ 1 − 1 − ∆«G

«¬ G

2 ∙ ∆I 	 (50)	

	
Expression	(50)	 is	defined	mathematically	for	∆I ∈ 0; Ifg .	This	definition	domain	is	
consistent	with	the	physical	background	of	the	modelled	situation:	On	the	one	hand,	
the	 perturbation	 amplitude	 is	 a	 nonzero	 positive	 quantity;	 on	 the	 other	 hand,	 as	
explained	previously,	the	perturbation	amplitude	has	to	be	smaller	or	equal	to	the	DC	
current	in	order	to	guarantee	that	the	electrode	works	as	the	cathodic	electrode	of	the	
system	during	the	whole	EIS	measurement.			
	
As	 explained	 in	 section	 3,	 the	 DC	 current	 at	 which	 the	 system	 was	 operated	
was	−10	𝑚𝐴.	Particularizing	expression	(50)	to	this	work’s	particular	case:	
	
	

℘𝑈V = 20 ∙ logCE
10 − 100 − ∆I2

2 ∙ ∆I 	 (51)	

	
Where	∆I	is	 expressed	 in	𝑚𝐴.	 Figure	 9	 shows	 the	 superposition	 of	 the	 theoretical	
model	(given	by	equation	(51))	with	the	nonlinear	behaviour	zone	of	the	experimental	
℘𝑈V	curve,	presented	in	section	4.2.	It	can	be	observed	that	the	theoretical	model	fits	
perfectly	the	experimental	℘𝑈V	curve	in	the	nonlinear	behaviour	zone:	the	associated	
determination	 coefficient	 being	 of	99.72%.	 Therefore,	 it	 can	 be	 deduced	 that	 the	
proposed	theoretical	model	actually	explains	the	experimental	shape	of	the	℘𝑈V	curve	
in	the	nonlinear	behaviour	zone.	
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5.4.	Transitions	

	
As	it	was	identified	in	figure	6,	two	frequencies	are	relevant	from	the	critical	parameter	
curve’s	point	of	view:	the	critical	 frequency	of	 the	 linear	behaviour	zone	(25	Hz)	and	
the	 critical	 frequency	 of	 the	 nonlinear	 behaviour	 zone	 (5	 mHz).	 Figures	 10	 and	 11	
present	 the	℘𝑈	versus	 perturbation	 amplitude	 curves	 for	 each	 one	 of	 these	 two	
frequencies.		
	
On	 the	 one	 hand,	 in	 figure	 10	 it	 can	 be	 observed	 that	 the	℘𝑈	curve	 for	𝑓 = 25	𝐻𝑧	
shows	 only	 one	 trend:	 	 it	 decreases	 with	 the	 perturbation	 amplitude	 in	 the	 whole	
amplitude	 range.	 Therefore,	 the	 	℘𝑈	curve	 for	𝑓 = 25	𝐻𝑧	consists	 only	 of	 a	 linear	
behaviour	zone:	no	nonlinear	effects	are	observed	for	this	frequency.	This	can	be	due	
to	 two	 factors:	 the	 25	 Hz	 frequency	 may	 be	 above	 the	 threshold	 frequency	 of	 the	
system,	and	therefore,	no	nonlinear	effects	would	be	generated	at	this	frequency	even	
for	very	large	perturbation	amplitudes;	or	the	noise	at	this	frequency	may	be	so	high	
that	 it	 would	 completely	 mask	 the	 nonlinear	 effects	 for	 all	 the	 perturbation	
amplitudes.	 The	 	℘𝑈	curve	 for	𝑓 = 25	𝐻𝑧	was	 fitted	 to	 the	 linear	 behaviour	 zone	
model	 given	 by	 equation	 (21),	 and	 the	 obtained	 fit	 is	 represented	 in	 figure	 10.	 The	
obtained	fitted	model	corresponds	with	the	 linear	model	 for	𝑓 = 25	𝐻𝑧.	As	 it	can	be	
observed	 in	 the	 figure,	 the	 linear	 model	 for	𝑓 = 25	𝐻𝑧	accurately	 represents	 the	
corresponding	experimental	data.	Therefore,	 since	no	nonlinear	effects	are	observed	
for	𝑓 = 25	𝐻𝑧,	 the	25	𝐻𝑧		℘𝑈	curve	 is	 directly	 given	 by	 the	 linear	 model	 for	𝑓 =
25	𝐻𝑧,	℘𝑈¡?��ÁÂ 𝑓c_uvowxy :	
	
	 ℘𝑈 𝑓c_uvowxy = ℘𝑈¡?��ÁÂ 𝑓c_uvowxy 	 (52)	

On	the	other	hand,	 in	figure	11	it	can	be	observed	that	the	℘𝑈	curve	for	𝑓 = 5	𝑚𝐻𝑧	
displays	 the	 two-trend-shape.	 As	 it	 has	 been	 already	 explained	 in	 previous	 sections,	
this	 two-trend-shape	 is	 related	 to	 a	 change	 of	 dominance	 from	 noise	 to	 nonlinear	
effects.	 The	 decreasing	 part	 of	 the	℘𝑈	curve	 for	𝑓 = 5	𝑚𝐻𝑧	was	 fitted	 to	 the	 linear	
behaviour	 zone	model	given	by	equation	 (21),	and	 the	obtained	 fit	 is	 represented	 in	
figure	 11.	 In	 the	 same	 graph	 the	 theoretical	 model	 for	 nonlinear	 effects	 is	
superimposed.	 As	 it	 can	 be	 seen,	 for	 low	 perturbation	 amplitudes,	 the	 linear	
component	 (related	 to	noise)	 is	 above	 the	nonlinear	one:	 thus,	 for	 low	perturbation	
amplitudes,	 noise	 dominates	 over	 nonlinear	 effects.	 On	 the	 contrary,	 for	 high	
perturbation	amplitudes,	 the	noise	related	component	 is	below	the	nonlinear	effects	
related	 component:	 therefore,	 for	 high	 perturbation	 amplitudes,	 nonlinear	 effects	
dominate	 over	 noise.	 According	 to	 the	 definition	 of	 parameter	℘𝑈	introduced	 in	
section	 2	 and	 applying	 the	 properties	 of	 the	 maximum	 function,	 the	 following	
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expression	 can	 be	 deduced	 for	 the	℘𝑈	parameter	 at	 the	 critical	 frequency	 of	 the	
nonlinear	behaviour	zone:	
	
	 ℘𝑈 𝑓c_o{ouvowxy = 𝑚𝑎𝑥 ℘𝑈¡?��ÁÂ 𝑓c_o{ouvowxy ; ℘𝑈���¡?��ÁÂ 	 (53)	

	
where	 ℘𝑈¡?��ÁÂ 𝑓c_o{ouvowxy 	denotes	 the	 linear	 model	 for 	𝑓 = 5	𝑚𝐻𝑧 ;	 and	
℘𝑈���¡?��ÁÂ 	stands	 for	 the	 theoretical	 nonlinear	 model	 given	 by	 equation	 (51).	
According	to	this	expression,	the	℘𝑈	curve	for	𝑓 = 5	𝑚𝐻𝑧	corresponds	with	the	linear	
model	 for 	𝑓 = 5	𝑚𝐻𝑧 	for	 low	 perturbation	 amplitudes	 (for	 which	 noise	 is	 the	
dominant	 effect).	 Once	 the	 nonlinear	 effects	 overcome	 noise	 (when	 the	 nonlinear	
model	 passes	 above	 the	 linear	model),	 the	℘𝑈	curve	 for	𝑓 = 5	𝑚𝐻𝑧	is	 given	 by	 the	
nonlinear	theoretical	model.	This	is	consistent	with	the	5	𝑚𝐻𝑧	experimental	data,	as	it	
can	be	 seen	 in	 figure	 11.	 The	point	where	 the	 nonlinear	model	 intersects	 the	 linear	
model	 is	 the	 linear/nonlinear	 transition	 point	 for	𝑓	 = 	5	𝑚𝐻𝑧.	 It	 has	 also	 been	
identified	on	the	figure.	
	
Comparing	 the	 obtained	 linear	 models	 for	𝑓 = 25	𝐻𝑧 	and	𝑓 = 5	𝑚𝐻𝑧 ,	 it	 can	 be	
observed	that	the	effective	noise	parameter	of	the	linear	behaviour	zone,	𝑐2,	is	larger	
in	the	25	𝐻𝑧	case.	Using	the	values	of	𝑐2	obtained	from	the	fitting	of	the	linear	model	
to	the	experimental	data,	the	impedance	modulus	at	the	corresponding	frequency	and	
expression	(23),	the	noise	characterization	parameter,	∆U��?��,	was	calculated	for	both	
frequencies.	The	calculation	results	are	given	in	table	3.	From	the	obtained	results,	 it	
can	be	deduced	that	the	noise	level	when	the	EIS	measurement	is	performed	at	25	𝐻𝑧	
is	larger	than	the	noise	level	of	the	measurement	at	5	𝑚𝐻𝑧.	Moreover,	the	impedance	
modulus	of	the	system	at	25	𝐻𝑧	is	 lower	than	the	 impedance	modulus	of	the	system	
at	5	𝑚𝐻𝑧.	The	combination	of	these	two	facts	(higher	noise	level	and	lower	impedance	
modulus)	 causes	 the	25	𝐻𝑧	measurement	 to	 be	 more	 affected	 by	 noise	 than	 the	
5	𝑚𝐻𝑧	one,	which	 is	 the	meaning	of	 a	higher	𝑐2	parameter	 value.	Consequently,	 the	
℘𝑈	curve	 for	𝑓 = 25	𝐻𝑧	is	 above	 the	 linear	 behaviour	 zone	of	 the	℘𝑈	curve	 for	𝑓 =
5	𝑚𝐻𝑧.	This	can	clearly	be	observed	in	figure	12.	
	
As	 it	 can	 be	 seen	 in	 figure	 12,	 for	 very	 small	 perturbation	 amplitudes,	 the	 noise	 is	
dominant	 in	 both	 frequencies:	 the	 system	 is	 in	 the	 linear	 behaviour	 zone	 for	 both	
frequencies.	Since	the	25	𝐻𝑧	measurement	is	more	affected	by	noise	than	the	5	𝑚𝐻𝑧	
one	 (it	 has	 a	 higher	 elective	 noise	 parameter,	𝑐2),	 the	 critical	 frequency	 for	 low	
amplitudes	 is	25	𝐻𝑧.	When	 the	perturbation	 amplitude	 is	 increased,	 both	℘𝑈	curves	
decrease	 due	 to	 the	 improvement	 of	 the	 signal-to-noise	 ratio	 for	 both	 frequencies.	
However,	 there	 is	 a	perturbation	amplitude	at	which	 the	nonlinear	effects	at	5	𝑚𝐻𝑧	
overcome	 the	 noise	 at	 that	 frequency.	 As	 it	 was	 explained	 before,	 this	 is	 the	
linear/nonlinear	transition	point	for	𝑓	 = 	5	𝑚𝐻𝑧.	Since	the	noise	effect	on	the	25	𝐻𝑧	
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measurement	 is	 higher	 than	 the	 noise	 effect	 on	 the 	5	𝑚𝐻𝑧 ,	 in	 the	 5	𝑚𝐻𝑧	
linear/nonlinear	transition	point	the	nonlinear	effects	overcome	the	5	𝑚𝐻𝑧	noise,	but	
do	not	overcome	the	25	𝐻𝑧	noise.	Consequently,	the	critical	frequency	is	still	25	𝐻𝑧.	If	
the	amplitude	is	increased	further:	the	25	𝐻𝑧	℘𝑈	curve	continues	to	decrease	due	to	
the	 improvement	 of	 the	 signal-to-noise	 ratio	 (no	 nonlinear	 effects	 are	 observable	
at	25	𝐻𝑧);	and	the	5	𝑚𝐻𝑧	℘𝑈	curve	increases	due	to	an	increase	in	nonlinearity	(after	
the	 linear/nonlinear	 transition	 point	 the	 system	 behaves	 significantly	 nonlinearly	
for	5	𝑚𝐻𝑧).	 If	 the	 perturbation	 amplitude	 continues	 to	 be	 increased,	 the	 critical	
amplitude	 is	 reached:	 the	 nonlinear	 effects	 at	5	𝑚𝐻𝑧	increase	 so	 much	 that	 they	
overcome	the	25	𝐻𝑧	noise	level.	At	this	point	there	is	a	critical	frequency	change:	the	
critical	frequency	changes	from	25	𝐻𝑧	to	5	𝑚𝐻𝑧.				
	
According	to	 the	definition	of	 the	critical	parameter	℘𝑈V	introduced	 in	section	2	and	
applying	 the	 properties	 of	 the	 maximum	 function,	 the	 following	 expression	 can	 be	
deduced	for	the	℘𝑈V	parameter:	
	
	 ℘𝑈V = 𝑚𝑎𝑥 ℘𝑈 𝑓c_uvowxy ; ℘𝑈 𝑓c_o{ouvowxy 	 (54)	

	
According	 to	 this	expression,	 the	critical	parameter	curve	 is	given	by	 the	highest	℘𝑈	
curve.	 Consequently,	 for	 low	 amplitudes	 the	℘𝑈V	curve	 corresponds	 with	 the	25	𝐻𝑧	
℘𝑈	curve;	and	after	the	critical	frequency	change	(at	the	critical	amplitude),	the	℘𝑈V	
curve	corresponds	with	the	5	𝑚𝐻𝑧	℘𝑈	curve.	This	can	clearly	be	seen	in	figure	12.	
	
	

5.5.	Critical	perturbation	amplitude	
	
As	 introduced	 in	 section	 5.1,	 the	 critical	 amplitude	 is	 the	 perturbation	 amplitude	 at	
which	 nonlinear	 effects	 overcome	 noise.	 As	 seen	 in	 the	 previous	 subsection,	 this	
occurs	 at	 the	 critical	 frequency	 change	 point;	 which	 in	 turn	 corresponds	 with	 the	
intersection	 of	 the	 linear	 model	 for	 the	 linear	 behaviour	 zone	 frequency	 with	 the	
nonlinear	 model.	 Combining	 the	 intersection	 condition	 with	 the	 expressions	 of	 the	
linear	model	 for	 the	 linear	behaviour	zone	 frequency,	given	by	equation	 (24);	and	of	
the	nonlinear	model,	given	by	equation	(50);	the	following	expression	is	obtained:	
	
	

20 ∙ logCE
1
∆IV

+ 𝑐2 𝑓c_uvowxy = 20 ∙ logCE
Ifg ∙ 1 − 1 − ∆«ÃG

«¬ G

2 ∙ ∆IV
	 (55)	

	
Solving	for	the	critical	perturbation	amplitude	the	following	expression	is	obtained:	
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∆IV = Ifg ∙ 1 − 1 −
2 ∙ 10

�G [�_������
GÄ

Ifg

2

	 (56)	

	
It	should	be	observed	that	even	if	mathematically	two	solutions	are	valid	(±	the	given	
solution);	 the	 negative	 one	 has	 not	 been	 considered	 in	 this	 work	 since	 it	 has	 no	
physical	meaning	 (perturbation	 amplitudes	 are	 positive	 values).	Moreover,	 from	 the	
mathematical	solving	process	the	following	condition	arises:	
	
	 𝑐2 𝑓c_uvowxy ≤ 20 ∙ logCE

Ifg
2

	 (57)	

	
In	order	to	be	able	to	apply	equation	(56)	to	calculate	the	critical	amplitude,	parameter	
𝑐2 	must	 fulfil	 condition	 (57).	 Though	 this	 condition	 arises	 from	 a	 mathematical	
reasoning,	it	has	a	clear	physical	meaning	that	will	be	discussed	in	detail	in	section	6.	
	
Particularizing	 equations	 (56)	 and	 (57)	 to	 the	 case	 presented	 in	 this	 work,	Ifg =
−10	𝑚𝐴,	the	following	expressions	are	obtained:	
	
	

∆IV = 100 − 10 − 2 ∙ 10
�G [�_������

GÄ

2

	 (58)	

	 𝑐2 𝑓c_uvowxy ≤ 20 ∙ logCE 5 	 (59)	

As	 it	 can	 be	 seen	 in	 figure	 10,	 in	 the	 case	 of	 the	 studied	 system:	𝑐2 𝑓c_uvowxy =
−20.0	𝑑𝐵.	Note	that	this	corresponds	with	the	value	obtained	from	fitting	the	whole	
25	𝐻𝑧	℘𝑈	curve	 (figure	 10).	 It	 is	 advisable	 to	 use	 this	 value	 instead	 of	 the	 value	
obtained	from	fitting	the	linear	behaviour	zone	of	the	critical	parameter	curve	(figure	
8);	since	it	is	more	accurate	because	it	takes	into	account	a	larger	number	of	points.	In	
this	 case,	−20.0	𝑑𝐵 < 20 ∙ logCE 5 ;	 and	 therefore	 expression	 (58)	 can	 be	 used	 to	
determine	 the	 critical	 amplitude,	 obtaining	 a	 result	 of	∆IV ≈ 1.99	mA.	 This	 result	 is	
consistent	with	the	critical	amplitude	estimated	from	the	experimental	data	in	section	
4.2.		
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6.	Discussion	
	
As	 discussed	 in	 section	 5.5,	 the	 critical	 perturbation	 amplitude	 is	 given	 by	 the	
intersection	 of	 the	 linear	 behaviour	 zone	 curve	 and	 the	 nonlinear	 behaviour	 zone	
curve.	 Figure	 13	 represents	 the	 nonlinear	 behaviour	model,	 obtained	 in	 section	 5.3;	
and	the	linear	behaviour	model,	obtained	in	section	5.2,	for	different	critical	effective	
noise	 parameter	 values,		𝑐2 𝑓c_uvowxy .	 All	 the	 curves	 represented	 in	 this	 figure	 are	
associated	 to	 a	 DC	 current	 of	 Ifg = 10	mA.	 The	 intersection	 points	 of	 the	 linear	
behaviour	zone	model	with	the	linear	model	associated	to	each		𝑐2 𝑓c_uvowxy 	value	are	
identified	 on	 the	 figure.	 As	 it	 can	 be	 observed,	 an	 increase	 in	 the	 effective	 noise	
parameter	 of	 the	 linear	 behaviour	 zone	 displaces	 the	 intersection	 point	 to	 higher	
critical	perturbation	amplitudes.	This	is	due	to	the	fact	that	a	higher		𝑐2 𝑓c_uvowxy 	value	
implies	that	the	net	effect	of	the	noise	 in	the	 linear	zone	critical	 frequency	 is	higher;	
and	therefore,	higher	nonlinear	effects	can	be	generated	before	the	nonlinear	effects	
overcome	 the	 noise.	 This	 leads	 to	 a	 higher	 critical	 perturbation	 amplitude.	 This	
observation	is	consistent	with	expression	(58).		
	
A	limit	case	is	identified	in	figure	13:	in	this	limit	case,	the	intersection	point	occurs	at	
the	maximum	perturbation	amplitude.	This	limit	case	is	the	case	in	which	the	effective	
noise	 level	 in	 the	 linear	 behaviour	 zone	 is	 so	 high	 that	 it	 is	 only	 overcome	 by	 the	
nonlinear	effects	at	the	maximum	perturbation	amplitude.	In	this	limit	case,	the	critical	
parameter	curve	only	displays	the	linear	behaviour	zone:	the	effective	noise	is	so	high	
that	 nonlinear	 effects	 are	 not	 observable	 even	 at	 the	 maximum	 perturbation	
amplitude.	 For		𝑐2 𝑓c_uvowxy 	values	 larger	 than	 the	 limit	 case	𝑐2 𝑓c_uvowxy 	value,	 the	
nonlinear	 effects	 do	 not	 overcome	 the	 noise	 even	 at	 the	 maximum	 perturbation	
amplitude.	 Therefore,	 the	 limit	 case		𝑐2 𝑓c_uvowxy 	value	 defines	 the	 effective	 noise	
parameter	limit	between	the	situation	where	the	noise	can	be	overcome	by	nonlinear	
effects	 at	 a	 certain	 critical	 amplitude	 (two-zone	 critical	 parameter	 curve);	 and	 the	
situation	 where	 nonlinear	 effects	 do	 not	 overcome	 noise	 even	 for	 the	 maximum	
perturbation	 amplitude	 (one-zone	 critical	 parameter	 curve).	 This	 limit	 case	 is	
associated	 with	 condition	 (57),	 which	 arose	 from	 the	 mathematical	 solving	 process	
described	 in	 section	 5.5.	 Consequently,	 the	 limit	 case		𝑐2 𝑓c_uvowxy 	value	 is	 given	 by	
the	following	expression:	
	
	

𝑐uvÇ = 20 ∙ logCE
Ifg
2 	 (60)	

	
where	𝑐uvÇ	stands	 for	 the	 limit	 effective	 noise	 parameter:	 above	 this	 effective	 noise	
level,	 nonlinear	 effects	 are	 not	 observable	 even	 at	 the	 maximum	 perturbation	
amplitude	 on	 account	 of	 the	 high	 noise	 level	 that	masks	 the	 nonlinear	 effects.	 This	
parameter	 defines	 the	 limit	 between	 the	 two-zone	 critical	 parameter	 curve	 (linear	
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behaviour	 zone	 and	 nonlinear	 behaviour	 zone)	 and	 the	 one-zone	 critical	 parameter	
curve	(only	the	linear	behaviour	zone).	
	
Figure	 14	 represents	 the	 critical	 perturbation	 amplitude	 versus	 the	 effective	 noise	
parameter,	 for	 different	 DC	 currents.	 It	 is	 the	 graphical	 representation	 of	 equation	
(56).	The	dashed	line	represents	the	limit	effective	noise	parameter,	given	by	equation	
(60).	It	can	be	observed	that	for	𝑐2 𝑓c_uvowxy < 𝑐uvÇ,	an	increase	in	the	effective	noise	
parameter	 leads	 to	 a	 higher	 critical	 perturbation	 amplitude.	 But	 for	 effective	 noise	
levels	 above	𝑐uvÇ 	the	 nonlinear	 effects	 do	 not	 appear	 even	 for	 the	 maximum	
perturbation	amplitude:	 therefore,	 in	 this	case,	 the	critical	amplitude	corresponds	 to	
the	maximum	perturbation	itself.	For	this	reason,	saturation	is	observed	in	the	curves	
after	passing	the	dashed	line.	
	
Moreover,	from	equation	(56)	the	following	limit	can	be	deduced:	
	
	 lim

cG ]�_������ →19
∆IV = 0	 (61)	

	
This	 is	 consistent	 with	 the	 curves	 shown	 in	 figure	 14.	 Therefore,	 an	 extremely	 low	
effective	 noise	 level	 leads	 to	 null	 critical	 perturbation	 amplitude.	 This	 has	 a	 very	
important	conceptual	implication:	a	nonlinear	system	is	always	nonlinear;	noise	masks	
the	 non	 fundamental	 harmonics	 generated	 by	 nonlinear	 effects,	 and	 thus,	 noise	 is	
responsible	 for	 the	 quasi-linear	 behaviour	 of	 the	 system.	 In	 the	 theoretical	 case	 in	
which	no	noise	would	be	present	in	the	system	 𝑐2 𝑓c_uvowxy → −∞ ,	even	very	small	
perturbation	amplitudes	would	generate	observable	nonlinear	effects:	 and	 therefore	
the	 critical	 amplitude	 would	 be	 0.	 Consequently,	 the	 definition	 of	 quasi-linear	
behaviour	 is	 linked	 to	 the	 noise	 level:	 a	 system	 behaves	 quasi-linearly	 when	 the	
nonlinear	effects	are	masked	by	the	noise.	In	other	words,	when	nonlinear	effects	are	
negligible	(in	comparison	with	the	noise).	
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7.	Conclusions	
	
In	 this	 work,	 a	 harmonic	 analysis	 based	 method	 for	 linearity	 assessment	 and	 noise	
quantification	 in	 EIS	 measurements	 has	 been	 validated	 successfully,	 both	 from	 an	
experimental	point	of	view	and	from	a	theoretical	point	of	view,	for	Tafelian	systems.	
The	main	 advantage	 of	 this	method	 over	 the	methods	 commonly	 used	 for	 linearity	
assessment	 (i.e.	AC	plots	 and	 Lissajous	plots)	 is	 that	 it	 is	 a	quantitative	method	 that	
allows	 to	 accurately	 quantify	 the	 signal-to-noise	 ratio	 and	 the	 magnitude	 of	 the	
nonlinear	effects.	Furthermore,	this	method	is	able	to	distinguish	the	nonlinear	effects	
from	the	noise.	This	allows,	for	instance,	to	compare	the	nonlinearity	of	two	different	
systems.	 This	 constitutes	 a	 major	 advantage	 of	 the	 presented	 method	 over	 other	
harmonic	analysis	methods	available	in	literature.		
	
On	the	one	hand,	the	presented	method	is	able	to	determine	the	critical	perturbation	
amplitude	which	delimits	the	zone	where	the	linearity	hypothesis	can	be	accepted	and	
where	 it	 cannot	 be	 accepted.	 This	 may	 be	 used	 for	 perturbation	 amplitude	
optimization.	 On	 the	 other	 hand,	 the	 presented	 method	 is	 able	 to	 determine	 the	
threshold	frequency	of	the	system,	above	which	no	significant	nonlinear	effects	appear	
even	 for	 high	 perturbation	 amplitudes.	 This	 information	 can	 be	 used	 to	 determine	
which	 part	 of	 the	 EIS	 spectrum	 of	 the	 system	 is	 sensitive	 to	 nonlinear	 effects,	 and	
which	one	is	not.	Finally,	the	presented	method	allows	quantifying	and	characterising	
noise.	 It	may	even	be	used	 in	order	 to	 track	 the	 sources	of	noise	 in	 the	 system	 (i.e.	
electric	coupling	of	the	system	with	the	grid).	Consequently,	the	method	presented	in	
this	work	has	a	clear	utility	in	linearity	assessment	of	electrochemical	systems;	and	in	
noise	quantification	and	characterization.	However	it	does	not	replace	the	impedance	
measurements	 themselves:	 once	 the	 linearity	 condition	 has	 been	 validated	 and	 the	
noise	has	been	quantified,	the	impedance	measurements	have	to	be	analysed	as	usual.		
	
It	 should	 be	 noted	 that	 this	 linearity	 assessment	 method	 does	 not	 require	 the	
knowledge	 of	 the	 underlying	 impedance	 model	 of	 the	 system	 (in	 this	 work,	 the	
impedance	model	 has	 not	 even	 been	mentioned!).	 This	 is	 a	 great	 advantage	 of	 the	
presented	 linearity	 assessment	 method:	 it	 can	 be	 applied	 to	 any	 tafelian	 system	
regardless	of	its	underlying	mechanism.	It	can	even	be	applied	to	systems	for	which	no	
prior	knowledge	on	their	impedance	model	is	available.		
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8.	Nomenclature	
	
Latin	letters	
	
a		 	 Tafel’s	ordinate		 𝑉 	
b		 	 Tafel’s	slope		 𝑉/𝑑𝑒𝑐 	
𝑐C		 	 Constant	parameter	of	the	linear	behaviour	zone	model	 𝑑𝐵 	
𝑐2			 	 Effective	noise	parameter	of	the	linear	behaviour	zone	model	 𝑑𝐵 	
𝑐uvÇ			 	 Limit	effective	noise	parameter	 𝑑𝐵 	
ℱ		 	 Fourier	transform	operator	
𝑓		 	 Frequency	 𝐻𝑧 	
𝑓c 		 	 Critical	frequency	 𝐻𝑧 	
𝑓c_uvowxy 		 Critical	frequency	of	the	linear	behaviour	zone	 𝐻𝑧 	
𝑓c_o{ouvowxy 		 Critical	frequency	of	the	nonlinear	behaviour	zone	 𝐻𝑧 	
𝐼		 	 Current	in	the	time	domain	 𝐴 	
𝐼		 	 Current	in	the	frequency	domain	 𝐴 	
𝐼mn 		 	 Polarization	current	 𝐴 	
𝑁]		 	 Number	of	measured	frequencies	
𝑅2		 	 Determination	coefficient	
𝑡	 	 Time	domain	independent	variable	 𝑠 	
𝑈		 	 Potential	in	the	time	domain	 𝑉 	
𝑈		 	 Potential	in	the	frequency	domain	 𝑉 	
𝑍	 	 Complex	impedance	 𝛺 	
𝑍 	 	 Impedance	modulus	 𝛺 	
𝑍′	 	 Real	part	of	complex	impedance	 𝛺 	
𝑍′′	 	 Imaginary	part	of	complex	impedance	 𝛺 	
	
Greek	letters	
	
Δ𝐼	 	 Galvanostatic	perturbation	amplitude	 𝐴 	
∆𝐼c 		 	 Critical	galvanostatic	perturbation	amplitude	 𝐴 	
∆𝑈U	 	k-th	component	of	 the	output	signal	generated	by	the	response	of	the	

system		 𝑉 	
∆𝑈oU		 k-th	component	of	the	output	signal	associated	to	noise		 𝑉 	
𝜗	 	 Frequency	domain	independent	variable	 𝐻𝑧 	
℘𝐼			 	Ratio	 between	 the	most	 important	 non-fundamental	 harmonic	 of	 the	

current	signal,	and	its	fundamental	component	 𝑑𝐵 	
℘𝐼V			 Critical	parameter	for	the	current	signal	 𝑑𝐵 	
℘𝑈			 	Ratio	 between	 the	most	 important	 non-fundamental	 harmonic	 of	 the	

voltage	signal,	and	its	fundamental	component	 𝑑𝐵 	
℘𝑈V			 Critical	parameter	for	the	voltage	signal	 𝑑𝐵 	
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𝜑U	 	 Phase	lag	of	the	k-th	component	of	the	output	signal	 𝑟𝑎𝑑 	
𝜔	 	 Angular	frequency	 𝑟𝑎𝑑 ∙ 𝑠1C 	
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Table	1.	EIS	measurement	parameters	
Measurement	parameter	 Value	

Integration	time	 1.0	𝑠	
Number	of	integration	cycles	 1	𝑐𝑦𝑐𝑙𝑒	
Number	of	stabilization	cycles	 10	𝑐𝑦𝑐𝑙𝑒𝑠	
Maximum	stabilization	time	 3.0	𝑠	

Minimum	stabilization	cycle	fraction	 0.00	
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Table	2.	Convergence	study	results	

Series	
∆I < Ifg 	 ∆I = Ifg 	 ∆I > Ifg 	

Convergence	 Criterion	 Convergence	 Criterion	 Convergence	 Criterion	
𝑆	 Yes	 RT	 Yes	 2RT	 No	 NCCS	
𝑇	 Yes	 RT	 Yes	 2RT	 No	 NCCS	
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Table	3.	Noise	characterization	parameter	calculation	
𝑓	 𝑐2 𝑓 	(𝑑𝐵)	 Z f 	(Ω)	 ∆U��?�� 𝑓 	(𝑉)	

𝑓c_uvowxy = 25	𝐻𝑧	 −20.0	 1.86	 0.187	
𝑓c_o{ouvowxy = 5	𝑚𝐻𝑧	 −33.1	 4.76	 0.106	
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Figure	1.	Linearity	assessment	method	outline	
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Figure	2.	Experimental	setup	
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Figure	3.	Perturbation	signal	℘𝑰	curves:	Experimentally	obtained	℘𝑰	ratio	for	each	
excitation	frequency	for	low	perturbation	amplitudes	(a)	and	high	perturbation	

amplitudes	(b)	
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Figure	4.	Response	signal	℘𝑼	curves:		Experimentally	obtained	℘𝑼	ratio	for	each	
excitation	frequency	for	low	perturbation	amplitudes	(a)	and	high	perturbation	

amplitudes	(b)	
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Figure	5.	Critical	parameter	curve	for	the	perturbation	signal:	experimentally	obtained	

critical	ratio	and	critical	frequency	for	each	perturbation	amplitude	
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Figure	6.	Critical	parameter	curve	for	the	response	signal:	experimentally	obtained	

critical	ratio	and	critical	frequency	for	each	perturbation	amplitude	
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Figure	7.	System	model	
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Figure	8.	Linear	behaviour	zone	model	fitting	
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Figure	9.	Nonlinear	behaviour	zone	theoretical	model	
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Figure	10.	℘𝑼	versus	perturbation	amplitude	curve		for	an	excitation	frecuency	of	25	

Hz	
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Figure	11.	℘𝑼	versus	perturbation	amplitude	curve		for	an	excitation	frecuency	of	5	

mHz	
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Figure	12.	Critical	parameter	curve	and	critical	frequency	change	
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Figure	13.	Evolution	with	the	noise	related	parameter	 𝒄𝟐 𝒇𝒄_𝒍𝒊𝒏𝒆𝒂𝒓 	of	the	

intersection	point	between	the	model	of	the	linear	behaviour	zone	and	the	theoretical	
model	of	the	nonlinear	behaviour	zone		
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Figure	14.	Critical	perturbation	amplitude	versus	the	noise	related	parameter	of	the	
linear	behaviour	zone,	for	3	different	operation	points:	5	mA,	10	mA	and	20	mA.	
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